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Abstract 
This report focuses on the hierarchical scheduling of systems where a number of separate 
applications reside on a single processor. It addresses the particular case where fixed priority 
pre-emptive scheduling is used at both global and local levels, with periodic or deferrable 
servers associated with each application. Using response time analysis, an exact schedulability 
test is derived for application tasks. This test improves on previously published work. The 
analysis is extended to the specific case of harmonic tasks that can be bound to the release of 
their server. These tasks exhibit improved schedulability indicating that it is advantageous to 
choose server periods that enable some tasks to be bound to the release of their server. The use 
of Periodic, Sporadic and Deferrable Servers is considered with the conclusion that the simple 
Periodic Server dominates both Sporadic and Deferrable Servers when the metric is application 
task schedulability. As an adjunct some interesting results are presented on the optimal priority 
ordering of a set of Deferrable Servers, rate-monotonic priority ordering is not optimal in this 
case. The second part of the report investigates the problem of selecting the optimal set of server 
parameters. Analysis of this problem reveals a simple method for determining the optimal set of 
server capacities given fixed server periods and priorities. Despite this advance, empirical 
results show that server parameter selection exhibits dependencies between the set of servers 
and so the locally optimum selection of parameters for one server often does not result in an 
overall selection of parameters that is either schedulable or results in the maximum remaining 
system utilisation. The selection of server parameters is a holistic problem that may in practice 
only be soluble via search; a greedy approach to parameter selection is demonstrated to be 
ineffective. 
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1 Introduction 
In automotive electronics, the advent of advanced high performance embedded microprocessors 
such as Freescale Semiconductor’s (Motorola’s) MPC5200 (PowerPC 603), Infineon’s TC1765 
(TriCore) and NEC’s V850E/RS1 have made possible functionality such as adaptive cruise 
control, lane departure warning systems, integrated telematics and satellite navigation 
applications as well as advances in engine management, transmission control and body 
electronics. Where low-cost 8 and 16-bit microprocessors were previously used as the basis for 
separate Electronic Control Units (ECUs) each supporting a single hard real-time application, 
there is now a trend towards integrating functionality into a smaller number of more powerful 
microprocessors. The motivation for such integration comes mainly from cost reduction but also 
offers the opportunity of functionality enhancement. This trend in automotive electronics is 
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mirrored by a similar trend in avionics. 

Integrating a number of real-time applications onto a single microprocessor raises issues of 
resource allocation and partitioning. Disparate applications require access to processor and other 
resources in a manner that ensures they are able to complete the necessary computations within 
specified time constraints, whilst ensuring that they do not impinge upon the real-time behaviour 
of other applications. 

When composing a system comprising a number of applications, it is typically a requirement to 
provide temporal isolation between the various applications. This enables the properties of 
previous system designs, where each application resided on a separate processor, to be retained. 
In particular if one application fails to meet its time constraints then there should be no knock on 
effects on other unrelated applications. There is currently considerable interest in hierarchical 
scheduling as a way of providing temporal isolation between applications executing on a single 
processor. 

In a hierarchical system, a global scheduler is used to determine which application should be 
allocated the processor at any given time and a local scheduler is used to determine which of the 
chosen application’s tasks should actually execute. A number of different scheduling schemes 
have been proposed for both global and local scheduling. These include cyclic or time slicing 
frameworks, dynamic priority based scheduling and fixed priority scheduling. In this report we 
focus on the use of fixed priority pre-emptive scheduling (FPPS) for both global and local 
scheduling. 

Fixed priority pre-emptive scheduling offers advantages of flexibility over cyclic approaches 
whilst being sufficiently simple to implement, that it is possible to construct highly efficient 
embedded real-time operating systems that use this scheduling policy. 

The basic framework for a system utilising hierarchical fixed priority pre-emptive scheduling is 
as follows. The system comprises a number of applications each of which is composed of a set of 
tasks. A separate server is allocated to each application. Each server has an execution capacity 
and a replenishment period, enabling the overall processor capacity to be divided up between the 
different applications. Each server has a unique priority that is used by the global scheduler to 
determine which of the servers with capacity remaining and tasks ready to execute should be 
allocated the processor. Further, each task has a unique priority within its application. The local 
scheduler, within each server, uses task priorities to determine which of an application’s tasks 
should execute when the server is active. The basic model assumes that tasks and applications 
are independent, however the model can be extended to allow local resource sharing between 
tasks in the same application and global resource sharing between tasks in different applications. 

1.1 Related Work 
Kuo and Li [1] first introduced analysis of hierarchical fixed priority pre-emptive scheduling, 
building upon the work of Deng and Liu [2]. The analysis provided by Kuo and Li considered 
the use of Sporadic Servers [3] to execute applications. Using the techniques of Liu and Layland 
[4] they provided a simple utilisation based schedulability test. However for this utilisation based 
test to be applicable, severe restrictions were placed on the server parameters. In particular, each 
server period had to be the greatest common divisor (GCD) or a divisor of the GCD of all the 
tasks in the application. 

Saewong et al [5] provided response time analysis for hierarchical systems using Deferrable 
Servers [6] or Sporadic Servers [3] to schedule a set of hard real-time applications. This analysis 
assumes that in the worst-case a server’s capacity is made available at the end of its period. 
Whilst this is a safe assumption it is also pessimistic, for example, the highest priority server will 
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typically have a response time that is much shorter than its period and so will always be able to 
make capacity available earlier than considered in [5]. The schedulability analysis given in [5] is 
sufficient but not necessary: there are some systems that it would deem unschedulable that are in 
fact schedulable. 

Lipari and Bini [7] provide an alternative response time analysis formulation using an 
availability function to represent the time made available by a server from an arbitrary time 
origin. This formulation again makes the assumption that in the worst-case, server capacity is 
made available at the very end of the server’s period. Lipari and Bini also investigate the 
problem of server parameter selection and consider choice of replenishment period and capacity 
for a single server in isolation, using a geometric approach based on an approximation of the 
server availability function. 

In [8], Almeida builds upon the work of Lipari and Bini. The analysis given in [8] recognises 
that the server availability function depends on the “maximum jitter that periods of server 
availability may suffer”. A parameter (delta) is introduced into the analysis to represent the 
initial latency in server capacity becoming available. We note that setting this parameter to 
reflect the server’s computed worst-case response time and hence its maximum jitter would 
result in more accurate analysis as demonstrated in section 3.1 of this report. Almeida also 
describes an approximate algorithm for selecting appropriate server parameters, for a single 
server, such that the server requires the minimum processor utilisation. 

1.2 Organisation of this Report 
This report is divided into two main sections addressing two key research topics: 

1. Schedulability analysis for hierarchical systems. 

2. Optimal server parameter selection. 

Section 2 describes the terminology, notation and system model used in the rest of the report.  

Section 3 presents schedulability analysis tests that compute the exact worst-case response time 
of tasks scheduled under a set of Deferrable Servers. This analysis is extended to accurately 
model bound tasks, the releases of which are synchronised with their server’s period. The 
analysis is also extended to account for access to global shared resources. We evaluate the exact 
analysis presented in this report by comparing its effectiveness to that of previously published 
schedulability tests. Our empirical study investigates the effects of server context switch 
overheads and server algorithm selection on system schedulability. 

Section 4 examines the problem of selecting server parameters. We provide methods that are 
able to derive optimum values for any one of the three server parameters (priority, period and 
capacity) if the other two are known. However we also demonstrate that the optimal selection of 
server periods and capacities has dependencies between the different servers and so cannot be 
solved by finding the local optima for a single server in isolation. Our empirical study 
investigates optimal server parameter selection and the utility of choosing server periods that are 
an exact divisor of one or more application task periods enabling those tasks to be bound to the 
release of the server. 

Section 5 summarises the major contributions of the report and suggests directions for future 
research. 

As an addendum to the main report, the appendix contains some interesting results on the 
optimal priority ordering of a set of Deferrable Servers. 
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2 Hierarchical Scheduling Model 

2.1 Terminology and System Model 
We are interested in the problem of scheduling multiple real-time applications on a single 
processor. Each application comprises a number of real-time tasks. Associated with each 
application is a server. The application tasks execute within the associated server, which affords 
them temporal isolation.  

Scheduling takes place at two levels: global and local. The global scheduling policy determines 
which server has access to the processor at any given time, whilst the local scheduling policy 
determines which application task that server should execute. In this report we analyse systems 
where the fixed priority pre-emptive scheduling policy is used for both global and local 
scheduling. 

Application tasks may arrive and become ready to execute either periodically at fixed intervals 
of time, or sporadically after some minimum inter-arrival time has elapsed. Each application task 

iτ , has a unique priority i within its application and is characterised by its relative deadline Di, 
worst-case execution time Ci, and minimum inter-arrival time Ti, otherwise referred to as its 
period. In addition, we will assume that each application contains one or more soft real-time 
tasks. These soft tasks are assumed to execute at lower priorities than the hard real-time tasks. 
The soft real-time tasks may however consume server capacity and hence affect the worst-case 
scenario for hard real-time task execution. 

Each server has a unique priority s, within the set of servers and is characterised by its capacity 
CS, replenishment period TS, and jitter JS. A server’s capacity is the maximum amount of 
execution time that may be consumed by the server in a single invocation. The replenishment 
period is the minimum time before the server’s capacity is available again. The server’s jitter is 
the difference between the minimum and maximum time that can elapse between replenishment 
of the server’s capacity and that capacity starting to be consumed given no higher priority 
interference. 

Application tasks are referred to as bound or unbound [18]. Bound tasks have a period that is an 
exact multiple of their server’s period and arrival times that coincide with replenishment of the 
server’s capacity. Thus bound tasks are only ever released at the same time as their server. All 
other tasks are referred to as unbound.  

A task’s worst-case response time Ri, is the longest possible time from the task arriving to it 
completing execution. Similarly, a server’s worst-case response time RS, is the longest possible 
time from the server being replenished to its capacity being exhausted, given that there are tasks 
ready to use all of the server’s capacity. A task is said to be schedulable if its worst-case 
response time does not exceed its deadline. A server is schedulable if its response time does not 
exceed its period. 

The critical instant [4] for a task is defined as the pattern of execution of other tasks and servers 
that leads to the task’s worst-case response time. 

Initially we will assume that all applications and tasks are independent, however this restriction 
is lifted in section 3.4, permitting access to mutually exclusive local resources by tasks in the 
same application and access to mutually exclusive global resources by tasks in different 
applications. 
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2.2 Servers 
In this report we consider the Deferrable Server (DS) [6] the Sporadic Server (SS) [3] and the 
Periodic or Polling Server (PS) [19]. 

The Periodic Server is invoked with a fixed period. If there are application tasks ready to use the 
server’s capacity, then they are executed until the tasks either complete or the server’s capacity is 
exhausted. If there are no tasks ready to use the server then its capacity is assumed to be idled 
away, as if there was a background task that is always ready to execute. Once the server’s 
capacity is exhausted, the server suspends execution until its capacity is replenished at the start 
of its next period. If a task arrives before the server’s capacity has been exhausted then it will be 
serviced. Execution of the server may be delayed and or pre-empted by the execution of other 
servers of a higher priority. 

The Deferrable Server is also invoked with a fixed period. It differs from the Periodic Server in 
that if no tasks are ready to use the server then it may suspend its execution, preserving its 
capacity. The Deferrable Server’s capacity may be preserved throughout its period. If an 
application task becomes ready late in the server’s period it can be executed until either the 
server’s capacity is exhausted or the end of the server’s period is reached. At the end of the 
server’s period any remaining server capacity is discarded and the server’s capacity is then 
replenished. Again execution of the server may be delayed and or pre-empted by the execution 
of other servers of a higher priority. Schedulability analysis of the Deferrable Server needs to 
take account of the well-known phenomenon of back-to-back hits. By preserving its capacity 
until near the end of its period a high priority Deferrable Server can cause back-to-back 
interference of 2CS on lower priority servers. Effectively a Deferrable Server has a jitter equal to 

 [9]. SS CT −

The Sporadic Server differs from both the Periodic Server and the Deferrable Server in that its 
capacity is only replenished after it has been used. Assuming a Sporadic Server of capacity CS, 
and replenishment period TS; if some fraction fS , of the server’s capacity is used then capacity fS 
is scheduled for replenishment at a time TS after the start of the priority level s busy period which 
included consumption of that fraction of the server’s capacity. This means that replenishment 
may take place less than TS after capacity fS started to be consumed provided that the processor 
was previously busy executing at a higher priority than s. In [3], Sprunt proved that in the worst-
case the interference due to a Sporadic Server is equivalent to that of a simple Periodic Server. 
The implementation complexity and overheads of the Sporadic Server are however significantly 
greater than those of either the Periodic or Deferrable Server due to the requirement to keep track 
of a number of different replenishment times and capacities. 

2.3 Busy Periods and Loads 
The analysis presented in section 3 makes use of the concepts of busy periods and loads. For a 
particular application, a priority level i busy period is defined as an interval of time during which 
there is outstanding task execution at priority level i or above. Busy periods may be represented 
as a function of the outstanding execution time at and above a given priority level, thus  is 
used to represent a priority level i busy period equivalent to the longest time that the 
application’s server can take to execute a given load L. 

)(Lwi

The load on a server is itself a function of the time interval considered. We use  to 
represent the total task executions of priority level i and above, released within a time window of 
length w. 

)(wLi
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3 Schedulability Analysis for Hierarchical Systems 
In this section we present exact schedulability analysis for applications comprising bound and 
unbound hard real-time tasks executing under a set of Deferrable Servers in a hierarchical system 
scheduled at both global and local levels according to the fixed priority pre-emptive scheduling 
policy. 

3.1 Exact Analysis 
We derive the exact worst-case response time for a task iτ ,executing under a server S,  using the 
principles of Response Time Analysis [10] as follows: 

1. Determine the critical instant: the pattern of server and task execution that leads to the 
worst-case response time of the task. 

2. Derive a formula for , the load at priority level i and above, released in a window 
of length w starting at the critical instant. 

)(wLi

3. Derive a formula for , the length of the priority level i busy period starting at the 
critical instant and finishing when the server has completed execution of the load L. 

)(Lwi

4. Combine the formulae for  and  into a recurrence relation that can be solved 
to find the worst-case response time of task 

)(wLi )(Lwi

iτ . 

3.1.1 Critical Instant 
In [5], Saewong et al showed that the critical instant for a task scheduled under a Deferrable 
Server occurs when: 

1. The server’s capacity has been exhausted by lower priority tasks as early in its period as 
possible. 

2. The task of interest and all higher priority tasks in the application arrive just after the 
server’s capacity has been exhausted. 

3. The server’s capacity is replenished at the start of its next period, however further 
execution of the server is then delayed for as long as possible due to interference from 
other higher priority servers. 

The critical instant is illustrated in Figure 1 below. 

 
Figure 1 Critical Instant for tasks scheduled under a Deferrable server. 
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3.1.2 Response Time Analysis 
The load due to application task execution released in any given time interval w is given by the 
equation: 

j
ihpj j

ii C
T
wCwL ∑

∈∀ ⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡
+=

)(

)(        (1) 

Where hp(i) is the set of tasks with priorities higher than i. If the set of tasks had the processor to 
themselves then the time taken to execute this load would be the same as the load itself. As the 
RHS of the equation represents a monotonically non-decreasing function of w it could be solved 
using the following recurrence relation [10]. 

j
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n
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i
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T
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∈∀

+

⎥
⎥
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⎡
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Recurrence begins with  and ends when  in which case the task is not 
schedulable or when  in which case  gives the worst-case response time of the 
task. 

ii Cw =0
i

n
i Dw >

n
i

n
i ww =+1 1+n

iw

However, we are interested in the case where tasks are executed under a server. In this case, the 
length of the busy period required to execute the load requires further consideration. Figure 2 
illustrates the busy period in more detail. 

 
Figure 2 Busy Period 

The extent of the busy period derives from three components: 

1. The execution of tasks of priority i and higher released during the busy period. Equation 
(1) quantifies this load. 

2. The gaps in any complete server periods. 

3. Interference from higher priority servers in the final server period that completes 
execution of task iτ . 

The total length of the gaps in the complete server periods is given by: 

)()(
SS

S

i CT
C

wL
−⎥

⎥

⎤
⎢
⎢

⎡
        (3) 
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The interference due to higher priority servers executing during the final server period that 
completes execution of task iτ  can be modeled in a number of ways. 

1. The analysis given by Saewong et al in [5] assumes that each server’s worst-case 
response time is equal to its period and effectively models this interference as )( SS CT − . 
This is a safe but pessimistic assumption. For the set of servers to be schedulable most if 
not all of the servers will have a response time that is shorter than their period1. In 
particular, the highest priority server will typically have a response time equal to its 
capacity. 

2. The interference can be modeled as )( SS CR − . This removes much of the pessimism 
however it does not provide exact analysis. The analysis given by Almeida in [8] can be 
made to match this model if an appropriate “initial latency” is chosen. Although this is 
not explicitly stated in [8]. 

3. The exact worst-case interference in the final server period is dependent on the amount of 
task execution that the server needs to complete before the end of the busy period. This 
may be much less that the server’s capacity and so the maximum interference may be 
considerable less than )( SS CR − . The exact interference can be calculated using 
information about server priorities, capacities and replenishment periods. 

Figure 3 illustrates the exact interference present in the final server period 

 
Figure 3 Interference in the final server period 

The extent to which the busy period w extends into the final server period is given by: 

⎟
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Which simplifies to: 
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1 In considering this point it is important to distinguish between the response time of a Deferrable Server and the 
latest time it may execute due to the server’s ability to suspend its execution if there are no tasks ready to execute. 
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Utilising the analysis of servers presented by Bernat and Burns [9], the interference due to higher 
priority servers in the above interval is given by: 

X

servers
ShpX X

XSS
S
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Where hp(S) is the set of servers with higher priority than server S and is the release jitter of 
the higher priority server X. (For a Deferrable Server, 

XJ

XXX CTJ −= ). 

Combining the previous equations we have: 
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Note that the length of the busy period w appears on both sides of equation (5). This type of 
equation can be solved via a recurrence relation provided that the RHS is a monotonically non-
decreasing function of w. It is not immediately obvious that this is the case here. However 
assuming that the servers are themselves schedulable, we observe that the interference in the 
server’s final period, given by the summation term, is constrained to be between 0 and 

. The summation term itself is a monotonically non-decreasing function of  
except at values of . At exactly these values the 2

)( SS CT − )(wLi

Si nCwL =)( nd term increases by )( SS CT − , 
thus the 2nd and 3rd terms taken together form a monotonically non-decreasing function of the 
task load . The task load is itself a monotonically non-decreasing function of w, hence the 
RHS of the equation is a monotonically non-decreasing function of w and solution via a 
recurrence relation is possible although not entirely straightforward. 

)(wLi

To solve equation (5) we need to modify the summation term to ensure correct convergence as 
intermediate values of w and  are calculated. This is as a direct consequence of the fact 
that the 3

)(wLi
rd term alone is not a monotonically non-decreasing function of w. The modification 

simply ensures that the extent to which the busy period extends into the final server period is not 
considered to be an interval of negative length. 
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Recurrence starts with a value of  and ends either when  in 
which case gives the task’s worst-case response time or when  in which case the 
task is not schedulable. On each iteration of the recurrence relation, a new value of  is 
first calculated using equation (1). 

⎡ ⎤ )(/0
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Example 
The following example shows how the recurrence relation iterates towards a solution. Consider a 
system comprising two Deferrable Servers with parameters given in the table below. 

Server CS TS JS RS

HP 2 5 3 2 

LP 8 20 12 16 

In this example, we determine the worst-case response time of the two highest priority tasks in 
the application serviced by the lower priority server (LP). These tasks are characterised as 
follows. 

Task Ci Ti Di

1 10 50 50 

2 8 100 100 

For the task at priority 1, we begin with )(0
1 SS

S

i
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As the recurrence relation has converged on a solution. The worst-case response time of 
the task at priority 1 is 38. 
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For the task at priority level 2 we have: 
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As the recurrence relation has converged on the solution. The worst-case response time 
of the task at priority 2 is 82. 
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5
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The table below compares the response times of the tasks in the above example using, (1) the 
exact analysis introduced in this paper, (2) approximate analysis modeling interference in the 
final server period as  and (3) the analysis given by Saewong et al in [5] treating 
interference in the final server period as 

)( SS CR −
)( SS CT − . 

Response Times RiTask Ci Ti Di

(1) Exact (2) (3) 

1 10 50 50 38 42 46 

2 8 100 100 82 84 88 
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This example clearly illustrates the improvements in task schedulability that can be obtained by 
using exact schedulability analysis. 

3.1.3 Analysis of Bound tasks 
The analysis derived in the previous sections considers only unbound tasks. Recall that unbound 
tasks may be released independently of their server. In this section, we provide analysis for the 
case of bound tasks that have periods that are strict multiples of their server’s replenishment 
period and arrivals that are synchronised with the replenishment of the server’s capacity. 

The critical instant for a bound task differs from that of an unbound task in that the arrival of a 
bound task is synchronised with replenishment of the associated server. The critical instant for a 
bound task is illustrated in Figure 4 below.  

 
Figure 4 Critical Instant for Bound Tasks 

In the case of a bound task, the critical instant is as follows: 

1. The server’s capacity has been exhausted by lower priority tasks as early as possible in its 
period. 

2. All higher priority unbound tasks in the application arrive just after the server’s capacity 
has been exhausted. 

3. The bound task of interest and all higher priority bound tasks in the application arrive at 
the start of the server’s next period. 

4. The server’s capacity is replenished at the start of its next period, however further 
execution of the server is delayed for as long as possible due to interference from other 
higher priority servers. 

The worst-case response time of a bound task iτ , can be found by determining the extent of the 
priority level i busy period deriving from the critical instant described above. As before the busy 
period can be viewed as being made up of three components: 

1. The execution of task iτ  and tasks of higher priority released during the busy period. 

2. The gaps in any complete periods of the server. 

3. Interference from higher priority servers in the final server period that completes the 
execution of task iτ . 
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The task load at priority level i and higher, to be executed in a busy period w, starting at the 
release of the bound task of interest is given by: 
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Where hp(i)bound and hp(i)unbound are the sets of bound and unbound tasks within the 
application, that have priorities higher than i. Note as the unbound tasks cannot be executed by 
the server until its next replenishment the release of the unbound tasks is effectively jittered by 

 from their arrival. )( SS CT −

The gaps in complete server periods, not including the final server period, are given by: 
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The extent to which the busy period w extends into the final server period is given by: 
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Hence the full extent of the busy period is given by: 
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Again it can be shown that the RHS of equation (9) is a monotonically non-decreasing function 
of the task load and can therefore be solved via a recurrence relation. 
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Recurrence starts with a value of )(10
SS

S

i
ii CT

C
CCw −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎥

⎤
⎢
⎢

⎡
+=  and ends either when 

 in which case gives the task’s worst-case response time or when  in 
which case the task is not schedulable. On each iteration of the recurrence relation, a new value 
of  is first calculated using equation (7). 
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Example 
We illustrate the operation of the recurrence relation given by equation (7) and equation (10) 
using the example described in section 3.1.2. This also highlights the improvement in 
schedulability that can be made by binding tasks to a server. Recall that the example system 
comprises two Deferrable Servers. 

Server CS TS JS RS

HP 2 5 3 2 

LP 8 20 12 16 

This time, we will calculate the worst-case response time of the 2nd highest priority task in the 
application serviced by the lower priority server (LP). The highest priority task cannot be bound 
to the server, as its period is not a multiple of the server period. 

As before, the tasks are characterised as follows. 

Task Ci Ti Di

1 10 50 50 

2 8 100 100 
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As the recurrence relation has converged on the solution. The worst-case response time 
of the task at priority 2 is 70. This compares favourably with a response time of 82 when the task 
is unbound. 
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3.1.4 Analysis of Unbound tasks 
Finally, we extend the analysis presented in section 3.1.2 to include the effect of higher priority 
bound tasks on the response time of an unbound task. The critical instant for an unbound task is 
illustrated in Figure 5. 

 
Figure 5 Critical Instant for an unbound task 

In the general case of an unbound task the critical instant occurs as follows: 

1. The server’s capacity has been exhausted by lower priority tasks as early in its period as 
possible. 

2. The unbound task of interest and all higher priority unbound tasks in the application 
arrive just after the server’s capacity has been exhausted. 

3. All higher priority bound tasks in the application arrive at the start of the server’s next 
period. 

4. The server’s capacity is replenished at the start of its next period, however further 
execution of the server is then delayed for as long as possible due to interference from 
other higher priority servers. 

It is not immediately obvious that the critical instant should involve release of higher priority 
bound tasks after an interval  from the start of the busy period. However we can see 
that this must be the case as follows: Let 

)( SS CT −

jτ  be a high priority bound task and t the time of the 
first release of the server in the busy period of the unbound task iτ , that is under analysis. There 
are two possibilities to consider: 

1. There is no priority level j computation outstanding at the start of the priority level i busy 
period. In this case, the maximum interference due to task jτ  occurs when it is released 
simultaneously with the first replenishment of the server at time t. 

2. There is priority level j computation outstanding at the start of the priority level i busy 
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period. In this case all the time from the previous release of jτ  constitutes a priority level 
j and hence also a priority level i busy period. Thus we may move the release of iτ  back 
to  prior to the release of )( SS CT − jτ  without altering the time at which iτ  completes 
execution, thus extending the length of the busy period for iτ . However, note that we 
now have the situation described in 1. 

Repeating the above argument for each high priority bound task shows the definition of the 
critical instant given above to be correct. 

Using this definition we can extend equation (1) to account for the load due to higher priority 
bound tasks. 
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This equation is then combined with the recurrence relation below, from equation (6), to 
determine the response time of an unbound task that is subject to interference from higher 
priority bound and unbound tasks. 
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3.2 Bound v Unbound 
In this section, we show that for any task where we have the choice of synchronizing its release 
with the replenishment of the server (making the task bound) or not doing so (making the task 
unbound), then for reasons of schedulability it is always preferable to bind the task to the release 
of its server. 

 
Figure 6 Critical Instant for a task (bound or unbound) 

Figure 6 illustrates the worst-case response times for a task depending on whether it is bound or 
unbound. As no server capacity is available in the first gap of length  between the 
release of the bound and unbound tasks, the busy period ends at exactly the same point 
irrespective of whether the task is bound or unbound. Hence when the task is bound, its worst-
case response time is exactly  less than if it was unbound, (assuming that the task is 

)( SS CT −

)( SS CT −
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schedulable in both cases). 

Further the interference that the task can have on lower priority tasks can be no greater if the task 
is bound rather than unbound. The interference can however be less due to its release later in the 
busy period. (Compare the interference terms for bound and unbound tasks in both equation (7) 
and equation (11)). 

Overall, ‘bound’ can be said to dominate ‘unbound’. If a task is schedulable when it is unbound, 
then it is guaranteed to also be schedulable if it is bound to the release of its server, further its 
response time will be reduced by exactly )( SS CT − . It may also reduce the response times of 
lower priority tasks. 

3.2.1 Release Jitter Model 
Comparing the busy periods for bound and unbound tasks, we see that in terms of schedulability, 
an unbound task is identical to a bound task that has a release jitter of . We can 
therefore use the equations presented for bound tasks to determine the response times of both 
bound and unbound tasks. 

)( SS CT −

The load at priority level i and above that becomes ready to execute in an interval w is given by: 
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where  is the maximum release jitter of task jJ jτ due to the operation of the server. This is zero 
for a bound task and for an unbound task. )( SS CT −

The length of the priority level i busy period required for the server to execute this load is given 
by: 
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 in which case gives the task’s worst-case response time or when 
 in which case the task is not schedulable. On each iteration of the recurrence 

relation, a new value of  is first calculated using equation (13). 
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3.3 Task Priority Ordering 
In this section, we consider the priority ordering of tasks within each application. As the 
processing time made available to the tasks is a monotonic non-decreasing function of time, then 
the optimal priority assignment policies for applications scheduled on a single processor apply. 
Hence: 

1. For a set of independent tasks that are: bound to the server, may be released 
simultaneously, have iii TDC =≤ and do not voluntarily give up the processor, then rate 
monotonic priority assignment is optimal [4]. 

2. Relaxing the above assumptions to allow tasks to have deadlines less than their periods; 
deadline monotonic priority assignment is optimal [23]. 

3. Further relaxing the restrictions to allow unbound as well as bound tasks then deadline 
minus jitter monotonic priority assignment is optimal. Here the task iτ with the smallest 
value of  is given the highest priority, where ii JD − 0=iJ  for a bound task and 

 for an unbound task. (Note we assume that SSi CTJ −= ii TD ≤  for every task iτ ). 

4. For bound and unbound tasks with more complex requirements such as arbitrary 
deadlines, offsets and deadlines prior to completion then the optimal priority assignment 
algorithm [11] developed by Audsley may be used to determine the optimal priority 
ordering. It should be noted that the analysis given in this report is not applicable to such 
systems and would need to be extended. 

Example 
The following simple example illustrates the use of ‘deadline minus jitter’ monotonic priority 
ordering. Consider a single server HP, with a capacity of 5, a period of 20 and a response time of 
5. This server is used to execute a task set, with the two highest priority tasks given in the table 
below. 

Task Type Ci Ti Di Ji Di -Ji

Aτ   bound 5 40 25 0 25 

Bτ  unbound 5 50 35 15 20 

If task Aτ is assigned a higher priority than Bτ , then the response times of the two tasks are 5 and 
40 respectively, with Bτ missing its deadline. The alternative ‘deadline minus jitter’ monotonic 
ordering gives response times of 20 for Bτ  and 25 for Aτ , with both tasks meeting their 
deadlines. 
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3.4 Blocking 
The analysis we have derived so far considers only independent tasks. In this section, we 
consider the effects of tasks accessing shared resources. Resources may be shared either: 

1. Locally: between the tasks of a single application. 

2. Globally: between tasks in different applications. 

3.4.1 Locally shared resources 
In [1] Kuo and Li showed that if tasks share resources that are utilised strictly within a single 
application according to the Stack Resource Policy (SRP) [12] then task schedulability analysis 
may be simply extended to account for blocking equal to the maximum time that any lower 
priority task within the application locks a resource shared with the task of interest or a task of 
higher priority. Here it is assumed that the server would simply suspend execution of a task when 
its capacity is exhausted even if that task currently has a resource locked. This scheme is 
however inappropriate for sharing mutually exclusive resources between applications as 
suspension of a task with a global resource locked would lead to unacceptability long periods of 
priority inversion. 

3.4.2 Globally Shared Resources 

In 1995 Ghazalie and Baker [15] analysed the effect of access to mutually exclusive globally 
shared resources on schedulability for the case of a single server. Kuo and Li [1] and Niz et al 
[14] later addressed the problem of sharing global resources within the context of hierarchical 
fixed priority pre-emptive scheduling. 

In [1] Kuo and Li introduced a common server for all globally shared resource accesses. This has 
the disadvantage that as more tasks are added that share global resources so the common server’s 
capacity must be made larger: its capacity is effectively the sum of the lengths of the critical 
sections in each task, whilst its period is the GCD of task periods. Accommodating such a server 
has a significant impact on system schedulability. 

In [14], Niz et al presented the multi-reserve PCP scheme. This scheme permits resources to be 
shared between tasks executed by different servers. With the multi-reserve PCP scheme, a 
special ‘ceiling priority’ reserve is created for each application task that requires access to a 
specific shared resource. This reserve effectively has a period equal to that of the task and a 
capacity of , where is the maximum time that the task spends accessing the shared 
resource. The priority of each special reserve is strictly higher than that of any application tasks 
that access the resource. A common server is used to permit access to the special reserves 
associated with a single resource, with admission control ensuring that only one task can access a 
reserve through the common server at any one time. This effectively limits priority inversion in 
the same way as the Stack Resource Policy. 

R
iC R

iC

Although [14] extends the Stack Resource Policy to hierarchical systems, the schedulability of 
such systems is not fully addressed. In simple fixed priority pre-emptive systems (e.g. a single 
application) using the Stack Resource Policy to control resource access minimizes priority 
inversion whilst leaving interference due to higher priority tasks unchanged. In hierarchical 
systems, priority inversion is again minimized using the Stack Resource Policy however there is 
also an effect of increased interference. 
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Example of increased interference: 
The following example illustrates how resource sharing in a hierarchical system results in 
increased interference on lower priority servers and tasks as well as blocking effects on higher 
priority applications. 

The example system comprises two Deferrable Servers, HP and LP with capacities and periods 
given in the table below. 

Server CS TS JS RS

HP 3 8 5 3 

LP 4 12 8 10 

Let us consider the worst-case response time of the highest priority unbound task in each 
application. These tasks are shown in the table below: 

Task Server Ci Ti Ri

A  HP 6 50 16 

B LP 4 100 18 

The response time of these tasks, with no resource accesses, is illustrated by the timelines in 
Figure 7 below. 

 

Figure 7 
Now consider the situation where a global resource is shared between tasks A and B. Assuming 
that the resource is locked for 2 units of time by each task; one possible scenario is shown in 
Figure 8. Before the HP server’s capacity is exhausted, task A locks the shared resource. Now 
either the resource access can be completed increasing the response time of server LP and task B, 
or alternatively task A could be suspended with the resource locked, in which case task B would 
end up blocked until after the next invocation of server HP. Either way, the response time of 
tasks handled by the lower priority server are increased as a result of the shared resource. Note 
that invoking a separate server to deal with the resource access results in exactly the same 
problem; the response time of the lower priority task is still increased. 
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Figure 8 
This problem was recognised by Ghazalie and Baker in their analysis of single server systems 
[15]. They proposed that if a server’s capacity is exhausted within a critical section then the 
server should be allowed to overrun until the critical section ends. This overrun is limited to the 
maximum resource access time. To avoid a cumulative effect in subsequent server periods any 
overrun is then deducted from the capacity allocated at the start of the next server period. 

3.4.3 Analysis of Blocking and Server Overruns 
In this section, we provide schedulability analysis for global resource access under the following 
assumptions: 

1. We assume that there is a set of globally shared resources G. Each task iτ  may access a 
global shared resource r, for at most an execution time . This critical section is 
assumed to be less than the task’s worst-case execution time and also less than the 
associated server’s capacity, so 

irb ,

Sir Cb <,  and iir Cb <, . For a well-constrained application, 
will typically be much smaller than these values. irb ,

2. Whilst a task accesses a global shared resource the priority of its server is increased to a 
ceiling priority that is strictly higher than that of any server that executes a task that also 
accesses the same resource. 

3. Whilst a task accesses a global shared resource, the priority of the task itself is also 
increased. If any task in a higher priority server accesses the same resource, then the 
priority of the task is increased to a level that is strictly higher than that of all the other 
tasks within its server. If there are no tasks within higher priority servers that access the 
same resource, then the priority of the task is increased to a ceiling priority strictly higher 
than that of any task within its server that accesses the same resource. 

4. If a server’s capacity is exhausted whilst executing a critical section then it continues to 
execute at the relevant ceiling priority until the critical section is completed. 

5. If a server overruns then the capacity allocated to it at the start of the next server period is 
reduced by the amount of the overrun. 

The longest critical section within an application executed by server S is given by:  

))(|(max , StasksibB irGr

APP
S ∈=

∈∀
 

where tasks(S) is the set of tasks handled by server S. The value of corresponds to the 
longest time that server S may overrun. 

APP
SB
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The longest time that server S can be blocked due to lower priority servers executing at a priority 
higher than S due to operation of the synchronization protocol is given by: 

)),(),(|(max ,)(
YSglobalrYtasksibB irSlpYS ∈∈=

∈∀
 

where lp(S) is the set of servers with lower priority than server S, tasks(Y) is the set of tasks 
executed by server Y and global(S,Y) is the set of global resources shared between tasks executed 
by server S or higher priority servers and a task executed by server Y.  

Server Schedulability 
The worst-case effects on the schedulability of a server S due to global resource access occur as 
follows: 

1. When server S is released, a lower priority server is running and the task that it is 
executing has just started accessing a global shared resource r. This critical section has a 
ceiling priority higher than that of server S and a length of . SB

2. Once server S is released, all subsequent releases of servers of higher priority than S 
overrun by their maximum amount due to tasks entering critical sections. This means that 
the first invocation of each higher priority server, in the busy period of S, has an 
execution time of , whilst subsequent invocations have an execution time of 

 as their capacity is reduced by  and they also overrun by . The additional 
interference due to this behaviour of the higher priority servers is given by: 

APP
XX BC +

XC APP
XB APP

XB

∑
∈∀ )( ShpX

APP
XB  

where hp(S) is the set of servers with higher priority than server S. 

Note, when considering the schedulability of server S, we only require that the server’s normal 
capacity  be completed within its period. We do not need to include any overrun by server S 
in the analysis of S itself. This is because any critical section and hence overrun by S in one 
period leads to a reduction in the capacity available in the next period by exactly the amount of 
the overrun. Hence in the next period, any interference due to the overrun plus the capacity of the 
server is limited to a total of . Again this must be completed by the end of the server period. 
There may of course be a further critical section and overrun at the end of this server period, 
however the same argument continues to apply. 

SC

SC

Server schedulability can be determined by incorporating the blocking and interference factors 
into the appropriate recurrence relation: 
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where  is the server’s jitter, equal to XJ XX CT −  in the case of a Deferrable Server. The 
recurrence relation given by equation (15) starts with  and ends when either  
in which case  gives the worst-case response time of the server or when  in which 
case the server is unschedulable. 
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An alternative formulation is possible if we relax the rule that any server overruns are deducted 
from the subsequent replenishment capacity. In this case, each server invocation may overrun by 
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APP
XB . Effectively the schedulability analysis is formulated as if each server had a capacity of 

although only  can be guaranteed for task execution. APP
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Although equation (16) leads to longer response times than equation (15), it may be preferable 
for systems with very short critical sections, to simply allow for server overruns without the 
additional overheads of monitoring the overrun and adjusting the subsequent capacity 
replenishment. 

Task Schedulability 
Task schedulability is dependent on both server blocking due to global resource access and also 
task blocking due to local resource access. 

The worst-case blocking experienced by a task iτ  due to local resource access under the 
operation of the Stack Resource Policy is given by , where is the longest time for which a 
task of lower priority than i executes with a local resource locked that is shared with task 

iB iB

iτ  or a 
task of higher priority than i. 

The worst-case effects on the schedulability of a task iτ within the application executed by server 
S due to both local and global resource access occurs as follows: 

1. Immediately prior to the final period of server S that will complete execution of task iτ , a 
lower priority server is running and the task that it is executing has just started accessing 
a global shared resource r. This critical section has a ceiling priority higher than that of 
server S and a length of . SB

2. In the final period of server S that will complete execution of task iτ , all releases of 
servers of higher priority than S overrun by their maximum amount due to tasks 
accessing globally shared resources. Again this means that the first release of each server 
has an execution time of , whilst subsequent releases have an execution time 
of  as their capacity is reduced by  and they also overrun by . The 
additional interference due to this behaviour of the higher priority servers is given by: 
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3. Either: 

The release of server S immediately prior to the release of task iτ  overruns by  
due to global resource access. This means that the following replenishment capacity 
will be reduced by . 

APP
SB

APP
SB

Or: 

The release of server S immediately prior to the release of task iτ  ends just after a 
lower priority task jτ , within server S, has locked a locally shared resource that is 
also accessed by task iτ  or a task of higher priority. The length of this local resource 
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access is , the longest time for which any lower priority task executes with a 
locally shared resource locked that is also accessed by task

iB

iτ  or a task of higher 
priority. 

These blocking and interference factors can be added into equation (13) and equation (14) to 
calculate the worst-case response time of bound and unbound tasks. The blocking and 
interference in the final server period that completes execution of the task is increased by the 
factors described in points 1 and 2 above. Further, the load that the server must execute to 
complete the task is also effectively increased by the maximum of the two factors described in 
point 3. 

Incorporating these factors, the load at priority level i and above that becomes ready to execute 
in an interval w is given by: 
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where  is the maximum release jitter of task jJ jτ due to the operation of the server. This is zero 
for a bound task and for an unbound task. )( SS CT −

The length of the priority level i busy period required for the server to execute this load is given 
by: 
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Recurrence starts with a value of  and ends either when  in which case 
gives the task’s worst-case response time or when  in which case the task 

is not schedulable. On each iteration of the recurrence relation, a new value of  is first 
calculated using equation (17). 
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Again an alternative formulation is possible if we relax the rule that any server overruns are 
deducted from the subsequent replenishment capacity. Formulation of the appropriate equations 
is left as an exercise to the reader. 

It is evident from the above analysis that the use of long critical sections in hierarchical fixed 
priority pre-emptive systems can have a large cumulative impact on the schedulability of both 
servers and application tasks. 

Development of effective protocols for global resource sharing in hierarchical fixed priority pre-
emptive systems remains an open area for research. 

We note that alternative approaches have been developed for hierarchical systems with a 
somewhat different set of assumptions scheduled using dynamic priorities [16][17]. These 
approaches avoid server overrun either by revising server parameters prior to entering critical 
sections [16] or by executing critical sections using the bandwidth of blocked servers [17]. It 
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remains an open question whether an approach based on avoiding server overruns would be 
successful in hierarchical fixed priority systems. 

3.5 Evaluation of Schedulability Analysis 
The exact analysis derived in section 3.1.2 enables us to determine the response time and hence 
schedulability of application tasks given a known set of server parameters. Alternatively it can 
also be used as the basis of a simple binary search to determine the minimum server capacity 
required to schedule application tasks given a known server period. 

In this section we report the results of experiments used to examine the relationship between 
minimum server capacity, server replenishment period and overheads. We also compared 
different schedulability analysis methods in terms of the minimum server capacity they deem 
necessary to schedule an application. 

The application task set used for our initial empirical investigation comprises three unbound 
tasks listed in the table below. 

Priority Execution
Time 

Period Deadline

1 5 50 50 

2 7 125 125 

3 6 300 300 

Table 1 
Simulations were performed for a simple system of two Deferrable Servers. The higher priority 
server (HP) had a fixed capacity of 4 and period of 10 time units. The lower priority server (LP) 
was responsible for executing the tasks listed in Table 1 above. The period of the lower priority 
server was varied during the simulation and the minimum capacity commensurate with a 
schedulable system was calculated for each period. 

3.5.1 Effect of overheads 
There are two reasons why it is important to consider the effects of overheads when examining 
the choice of server periods and capacities. Firstly, the server implementation in any real system 
is likely to incur significant overheads. Secondly, from a theoretical standpoint, ignoring 
overheads leads to the conclusion that the optimal selection of server parameters involves 
selecting infinitesimally small values for the servers’ periods and capacities. 

The effects of server context switch overheads can be modeled by considering the server’s 
capacity to be consumed first by context switch overheads and then by task execution. This is a 
safe if potentially slightly pessimistic approach to modeling overheads. 
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Server Utilisation: Exact Analysis
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Figure 9 Overheads: Exact Analysis 
Figure 9 illustrates the effect of server context switch overheads. The graph plots the minimum 
utilisation of the LP server necessary to achieve a schedulable system against the server’s period 
for a variety of levels of overheads. The total utilisation of the application tasks is 17.6% 
represented by the horizontal line immediately below the jagged lines depicting server 
utilisation. 

From the graph, it is clear that overheads markedly increase the required server utilisation at 
short server periods. Hence, whilst the optimum server period is 10,15 or 30 without taking 
account of overheads, it is 42 or 44 when the effects of overheads are included. 

As server utilisation is simply , moving along a line on the graph from left to right, the 
server utilisation decreases with increasing period, until an increase in server capacity is required 
at which point it increases sharply, giving the characteristic saw-tooth shape. 

SS TC /

It is interesting to note that the system remains schedulable for server replenishment periods that 
exceed the deadline of the highest priority task. This is somewhat counter-intuitive, however it is 
nevertheless correct. The server’s relatively large capacity and short response time mean that it 
can schedule a task that has a shorter period than that of the server itself, as illustrated in Figure 
10. 
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Figure 10 

Once the server’s period exceeds that of the highest priority task, each increase in server period 
requires a corresponding increase in server capacity to keep the interval from task release to the 
start of the task being serviced constant and hence the task schedulable. As the server period 
increases so its capacity is forced to increase with the server utilisation tending towards 100%. 

3.5.2 Comparison of Analysis Methods 
Figure 11 below, illustrates the minimum utilisation of the low priority server that was deemed 
necessary to schedule the task set from Table 1 using (1) the exact analysis presented in this 
report and (2) the analysis of Saewong et al [5] which models interference in the final server 
period as . )( SS CT −
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Figure 11 Comparison of Analysis Methods 
The graphs assume server context switch overheads of 2 time units. Hence the line for the exact 
analysis is the same as the ‘overheads = 2’ line in Figure 9 

It can be seen from the graph that the exact analysis presented in this report achieves the lowest 
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server utilisation of 26.19% (period = 42, capacity = 11). By comparison, the analysis of 
Saewong et al [5] achieves a server utilisation of 29.63% (period = 27, capacity = 8). The overall 
utilisation of the task set is 17.6% and the overheads are 4.76% (period = 46) or 7.41% (period = 
27). 

This simulation provides a clear example of the difference that more precise analysis can make 
to the feasibility of a system. Using the exact analysis presented in this report means that a server 
can be used which effectively requires 3.44% less processor utilisation, equivalent to 19.5% of 
the actual task load. Further the ability to use a longer server period reduces the time wasted due 
to server context switch overheads from 7.41% down to 4.76%. 

3.6 Choice of Server Algorithm 
The critical instant described in section 3.1.1 and the exact schedulability analysis given in this 
report is applicable to Periodic, Sporadic and Deferrable Servers. 

For all three server algorithms, the critical instant occurs when the server’s capacity is exhausted 
as early as possible in its period, then there is a delay of )( SS CT −  before the server’s capacity is 
replenished with subsequent capacity replenishments taking place after a period of . ST

The only differences in analysis are as follows: 

• When calculating interference from higher priority servers, Periodic Servers and 
Sporadic Servers have a jitter of zero whilst Deferrable Servers are treated as having a 
jitter equal to  [10]. )( SS CT −

• Tasks cannot be bound to a Sporadic Server due to its non-periodic behaviour in 
anything other than the worst-case scenario. 

3.6.1 Periodic v Deferrable Server 
Inspection of the exact analysis (equation (10) and equation (12)) shows that Periodic Servers 
dominate Deferrable Servers. That is there are no systems comprising a set of hard real-time 
application task sets that can be scheduled using a set of Deferrable Servers that cannot also be 
scheduled using an equivalent set of Periodic Servers with the same periods and capacities. 
There are however many sets of applications that can be scheduled using Periodic Servers that 
cannot be scheduled using Deferrable Servers. This is because the Deferrable Server has a 
drawback compared to a Periodic or Sporadic Server when used to service hard real-time tasks; 
the effect of back-to-back hits referred to earlier. Using a set of Deferrable Servers results in the 
lower priority servers receiving back-to-back interference from those of higher priority, 
increasing their response times and hence degrading the systems ability to schedule hard real-
time applications. 

 
Figure 12 Longer response times due to Deferrable Servers 

Figure 12 illustrates the longer worst-case response times of a system of Deferrable Servers due 
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to back-to-back hits. 

We repeated the simulations described at the start of section 3.5, this time for a system of two 
Periodic Servers. Again the higher priority server (HP) had a fixed capacity of 4 and period of 10 
time units. The lower priority server (LP) was responsible for executing the tasks listed in Table 
1. The period of the lower priority server was varied during the simulation and the minimum 
capacity commensurate with a schedulable system was calculated for each period. 
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Figure 13 Comparison of Server Algorithms 
Figure 13 compares the utilisation of server LP, required to schedule the task set when both 
server are (1) Deferrable (2) Periodic. As expected, the Periodic Server approach dominates the 
Deferrable Server algorithm. For short server periods (of 8-12 time units), using Periodic Servers 
results in a schedulable system whereas using Deferrable Servers does not. This is a direct 
consequence of the back-to-back hit phenomenon. The minimum required server utilisation is 
23.91% for the Periodic Server approach (period = 46, capacity = 11) compared to 26.19% for 
the Deferrable Server approach (period = 42, capacity = 11).  

We performed some additional simple experiments to further illustrate the effect that choice of 
server method has on system schedulability. These experiments simulated simple systems 
comprising two applications and hence two servers with 3 tasks each. The systems had overall 
utilisation values that varied from 40% to 95%. For each utilisation level, 100 task sets were 
generated. For each task set, an exhaustive search of server period combinations was conducted 
with the aim of determining whether Deferrable or Periodic Servers could schedule the task set. 
The results are presented in Figure 14 below. 
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Performance of Server Methods
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Figure 14 Periodic Servers versus Deferrable Servers 
Figure 14 plots the percentage of task sets that are schedulable at each utilisation level. It is 
evident from the graph that using Periodic Servers is preferable to using Deferrable Servers in 
terms of being able to schedule hard real-time tasks. 

3.6.2 Periodic Server v Sporadic Server 
The same critical instant and exact schedulability analysis applies to systems comprising 
Sporadic Servers as it does to systems of Periodic Servers, with one key difference: tasks cannot 
be bound to Sporadic Servers and must therefore always be treated as unbound. 

This means that Periodic Servers dominate Sporadic Servers. That is there are no systems 
comprising a set of hard real-time application task sets that can be scheduled using a set of 
Sporadic Servers that cannot also be scheduled using an equivalent set of Periodic Servers with 
the same periods and capacities. 

Further, the Sporadic Server is far more complex to implement than the Periodic Server and so in 
practice the performance of a system based on Sporadic Servers would be inferior to that of a 
Periodic Server based system due to increased overheads. 

Binding tasks to their server can improve system schedulability, effectively reducing the server 
utilisation required to schedule the task set. To illustrate the effect of making tasks ‘bound’ 
rather than ‘unbound’ we performed simulations of a simple system of two Periodic Servers. The 
higher priority server (HP) had a fixed capacity of 10 and a period of 32 time units. The lower 
priority server (LP) was responsible for executing the tasks listed in Table 2 below. The period 
of the lower priority server was varied during the simulation and the minimum capacity 
commensurate with a schedulable system was calculated for each period. 
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Priority Exec. Time Period Deadline

1 8 160 100 

2 12 240 200 

3 16 320 300 

4 24 480 400 

Table 2 
In this case, the task periods and deadlines were chosen to emphasize the effect of having tasks 
bound to the release of the server. The task periods were chosen such they would be harmonics 
of a number of different server periods. 
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Figure 15 Periodic Servers: bound and unbound tasks 
Figure 15 shows the different server utilisations required to schedule the task set for a range of 
server periods. The two lines on the graph are both for Periodic Servers, however the dashed line 
illustrates the effect of binding tasks to the server whenever a task’s period is an exact multiple 
of that of the server. This results in improvements in task response times and hence a system 
which is schedulable for lower server capacities. This is apparent from the graph for server 
periods of 16, 20, 32, 40, 60, 80, 96 and 160. 

We note that although 120 is a harmonic of two of the task periods, there is no improvement in 
schedulability or reduction in server capacity when this value is selected for the server period. 
This is because the highest priority task (period 160) remains unbound for a server period of 120. 
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Further, this task has a deadline of 100, so with an LP server period of 120, and a HP server 
capacity of 10, the LP server is forced to have a capacity of at least 38 to schedule the highest 
priority task alone. As this server capacity is sufficient to schedule all the other tasks as well, 
there is no difference in server utilisation (31.6%) between the bound and unbound cases. 

Treating all tasks as unbound results in a minimum server utilisation of 28.57% for a server 
period of 77. Permitting tasks to be bound to the server reduces this minimum utilisation to 
25.63% for a server period of 160. 

We note from the shape of the graph that the problem of selecting the optimal server period does 
not lend itself to being easily solved via generic search techniques. The optimal server period, 
160 in this case, is a single excellent solution surrounded by neighbouring solutions that are very 
poor. 

3.6.3 Periodic Server Behaviour 
We note that the analysis of Periodic Servers in the previous sections assumes that the Periodic 
Servers can service tasks that arrive after the start of the server’s period. Effectively server 
capacity of at least  is assumed to remain at time )( tCS − SCt ≤  from the start of the server 
period. This is a sensible model for many hierarchical systems, as each of the applications 
running on the system will typically contain an idle task that executes at a background priority 
level when all the application’s other tasks are inactive. This idle task is often used to implement 
built-in-tests of the application and its memory areas and some types of watchdog functionality. 

An alternative behavior for a Periodic Server is for the server’s capacity to be discarded at the 
start of its period if no tasks are ready to use it. We refer to these servers as Discarding Periodic 
Servers. Discarding capacity in this way reduces the server’s ability to guarantee hard real-time 
applications. With this server behaviour, a critical instant occurs when at the start of the server’s 
period its capacity is discarded and then the task of interest is released along with all other tasks 
of higher priority in the application. Effectively the busy period extends  further than when 
the server consumes its capacity, for example via an idle task. 

SC

Figure 16 shows how the busy period extends from the start of the server period. (Compare with 
Figure 1). 

 

Figure 16 Critical Instant when Capacity Discarded 
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The amount, by which the busy period for a task is extended, with respect to the busy period 
under a Periodic Server that does not immediately discard its capacity, is as follows: 

Discarding Periodic Servers: At least : the associated server’s capacity. SC

Deferrable Servers: At least ∑
∈∀ )(ShpX

XC : the sum of the capacities of all higher priority 

servers (see section 7.1) 

This means that when we consider simple systems of just two servers with roughly the same 
capacities, we would expect the performance of the Deferrable and Discarding Periodic Server 
approaches to be similar. This is borne out in experiments on two-server system that show using 
Discarding Periodic Servers results in performance that is broadly similar to the Deferrable 
Servers. Note however that there are systems that are schedulable using Discarding Periodic 
Servers that are not schedulable using Deferrable Servers and vice-versa. Neither method 
dominates the other. 

We note however that as the number of applications in the system increases, the performance of 
the Deferrable Server approach degrades. The table below gives an indication of this degradation 
in performance. It shows the response time of a hard real-time task requiring 5 units of 
computation time executing under each of a set of 6 servers. Each server is assumed to have a 
period of 100 and capacity of 10. 

 Task worst-case response time 

Server 
Priority 

Periodic 
Servers 

Discarding 
Periodic 
Servers 

Deferrable 
Servers 

1 95 105 95 

2 105 115 115 

3 115 125 135 

4 125 135 155 

5 135 145 175 

6 145 155 Not 
Schedulable 

Note that the system of six Deferrable Servers is not schedulable as in the worst-case; the lowest 
priority server receives back-to-back hits from each of the other five higher priority servers, 
filling its entire period with interference. 

3.6.4 Recommended Server Algorithm 
Both Deferrable and Sporadic Server algorithms were designed to provide responsive scheduling 
for soft aperiodic tasks in single application systems, whilst in the worst-case appearing to be 
similar to a periodic hard real-time task in terms of their effects on system schedulability. It is 
perhaps therefore no surprise that these mechanisms are no better than the much simpler Periodic 
Server approach when it comes to dividing up processor capacity between a number of hard real-
time applications. It is a very different problem from the one for which they were designed. 
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Although we can recommend the use of Periodic Servers when the sole criteria is guaranteeing 
the deadlines of hard real-time application tasks, this does not mean that there is no place for 
Deferrable or Sporadic Servers in hierarchical systems. When quality of service (QoS) is also an 
issue, it may be appropriate to use a different approach. This is discussed in section 3.7. 

3.7 Flexible Scheduling and Gain Time 
So far we have only considered simple systems where each application comprises a set of hard-
real-time tasks and some lower priority soft real-time tasks, possibly including an idle task. The 
only criterion of interest has been guaranteeing that hard real-time tasks will complete prior to 
their deadlines. 

In more complex systems, as well as guaranteeing hard real-time task deadlines, quality of 
service (QoS) issues are important. In general, improved quality of service may be provided by: 

1. Responsive execution of soft real-time tasks. 

2. Executing optional components or alternative versions of hard real-time tasks that 
improve the quality of the results produced. 

3. Sharing execution time between tasks to ameliorate the effects of an execution time 
overrun. 

To provide enhanced quality of service, flexible scheduling techniques are required that identify 
spare processor capacity and make it available in a timely manner. There is a considerable body 
of research into techniques and mechanisms for flexible scheduling in fixed priority preemptive 
systems that could potentially be applied to hierarchical systems. 

Examples include: 

1. Identifying and exploiting gain time [22], which becomes available when tasks execute 
for less than their worst-case execution times. 

2. Using server based approaches within each application to responsively schedule soft real-
time tasks. 

3. Capacity sharing [20] and History Rewriting [21] between tasks in the same application 
to ameliorate the effects of overruns and exploit spare capacity to execute optional 
components. 

4. Capacity sharing between applications. 

5. Dual-Priority scheduling [13]. 

Flexible scheduling in hierarchical systems is a broad and interesting area for future research. It 
is however beyond the scope of this report. 

3.8 Open and Closed Systems and Online analysis 
Hierarchical systems may be either closed where all the hard real-time application tasks are 
known prior to the system executing or open where new applications can be added at run-time. 
Examples of closed systems include most automotive electronics and avionics whilst open 
systems include personal digital assistants (PDAs) and telecomms. 

In closed systems all schedulability analysis is performed offline and exact schedulability 
analysis is appropriate. In open systems schedulability analysis may be performed online as an 
acceptance test prior to guaranteeing the execution of an application. Here the computational 
overhead of the schedulability tests may be of some concern. However unless there is a very 
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short deadline on accepting an application this is still unlikely to mean that methods other than 
exact analysis are appropriate. 

For comparison purposes the schedulability tests required to admit a new application are as 
follows: 

Schedulability Tests 
required for: 

New and all 
lower priority 
Servers 

All tasks in 
new server 

All tasks in all 
lower priority 
servers 

Exact Analysis Yes Yes Yes 

)( SS CR −  Method  Yes Yes Yes 

)( SS CT −  Method  Yes Yes No 

All the schedulability tests are pseudo-polynomial in their computation time, with a dependency 
on the task and server periods. The exact analysis can be expected to take more computation time 
than the other methods due to iteration over the higher priority servers in the interference term 
and the requirement to check schedulability of all tasks executed by lower priority servers. 

Modeling interference from higher priority servers as )( SS CR −  removes the need to iterate over 
the higher priority servers when calculating task response times. However it is still necessary to 
check schedulability of all the tasks in lower priority applications as an increase in the response 
time of a server has an impact on the response time of its associated tasks. 

Finally, the  method will typically require the least computation time as the pessimistic 
assumptions made about interference mean that the only tasks that need to be checked for 
schedulability are those in the new application. Provided that all the existing servers remain 
schedulable then their associated tasks will be schedulable also. 

)( SS CT −

The approximate analysis methods may of course reject applications that are in fact schedulable. 

We note that the above discussion assumes that any new applications are independent of, and so 
do not share resources with existing applications and also that the parameters of existing servers 
are not changed when a new application is added. 

35 



4 Server Parameter Selection 
In this section, we consider the problem of server parameter selection. 

The overall problem may be stated as follows: Given a set of applications to be scheduled, with 
each application allocated a single server, what is the optimum set of server parameters (priority, 
period and capacity) that leads to a schedulable system whilst preserving the maximum 
remaining processor utilisation. 

∑
∈∀

−
serversX X

X

T
C1         (19) 

There are two sets of schedulability constraints on any given system. 

1. The servers must have worst-case response times that do not exceed their periods. (Each 
server S must guarantee to provide capacity  in each of its periods ). SC ST

2. The tasks executed by the servers must have worst-case response times that do not 
exceed their deadlines. 

The problem of server parameter selection can be generalized further by permitting more than 
one server to be used to handle each application (i.e. statically allocating the tasks from a single 
application to more than one server) this is however beyond the scope of our work. 

4.1 Determining Server Capacities 
In this section, we consider the sub-problem of determining server capacities given a known set 
of server priorities and periods. Given these parameters, we can use the following simple 
algorithm to derive the optimal set of server capacities for the set of server periods and priorities 
provided. 

 
For each server in priority order highest first 
{ 
 Binary search between 0 and the server period for 
  the minimum capacity Z that results in the 
  server and its tasks being schedulable. 
 If no schedulable capacity found 
 { 
  exit system not schedulable 
 } 
 else 
 { 
  set the capacity of the server to Z 
 } 
} 
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This method works because: 

1. The capacities of lower priority servers are not required when determining the 
schedulability of a higher priority server or the tasks that it services. 

2. Any increase in the capacity of a higher priority server cannot decrease the response time 
of a lower priority server or the tasks it schedules. Hence increasing the capacity of a 
higher priority server beyond that determined by the above algorithm cannot lead to a 
lower priority server requiring less capacity to schedule its application tasks. 

Hence the set of minimum server capacities calculated in descending priority order are optimal 
for the set of server priorities and periods selected. 

This method of determining server capacities simplifies the overall problem a little. However the 
difficulty remains: how to select server priorities and periods? 

We note that using a binary search to determine server capacities is possible using the exact 
schedulability analysis presented in section 3, however the binary search method fails to function 
correctly when the approximate ( SS CR − ) analysis is used. This happens because the worst-case 
response times of tasks appear as if they are not monotonically non-decreasing with respect to 
decreasing server capacity. This effect is due to the dependence of the interference term 
( ) on the server’s response time and the fact that the interference term can increase more 
than the associated increase in the server’s capacity. To appreciate this problem, consider the 
following two Deferrable Servers: 

SS CR −

Server CS TS JS RS

HP 2 5 3 2 

LP 7 20 13 15 

According to the approximate ( SS CR − ) analysis, server LP can provide 2 units of task 
execution time in a worst-case response time of 232)()( =+−+− SSSS CRCT . However, if we 
reduce the capacity of server LP to 6, then its response time becomes 12 giving a worst-case 
response time of 22 for the same 2 units of task execution time. Both task response times are 
upper bounds on the actual values, however the non-monotonic behaviour prevents the use of 
binary search techniques. When calculated using the exact analysis, task response times are 
monotonically non-decreasing with decreasing server capacity, allowing binary search 
techniques to be used. The exact response times for this example are 19 when the server capacity 
is 7 and 20 when the server capacity is reduced to 6. 

4.2 Determining Server Priorities 
Section 7.2 in the Appendix discusses priority assignment policies based on considerations of 
server schedulability. In the case of Periodic Servers, rate-monotonic priority assignment 
(RMPA) is optimal whilst for a set of Deferrable Servers under certain conditions “period plus 
capacity” monotonic priority assignment is shown to be optimal. However, the analysis 
presented in the appendix only considers the schedulability of the servers themselves. Adding the 
constraint that the tasks executed by the servers must also be schedulable has a significant effect 
on server priority assignment. In particular when task schedulability is considered, empirical 
investigations show that RMPA is no longer optimal for Periodic Servers. Similarly, deadline-
monotonic priority assignment based on the deadline of the shortest deadline task in each 
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application is not optimal either. 

For the sub-problem where server periods and capacities are known then a feasible priority 
ordering can be determined, if one exists, using a variation on the Optimal Priority Assignment 
Algorithm devised by Audsley [11]. This is possible because: 

1. The specific priority ordering of higher priority servers has no effect on the schedulability 
of a lower priority server or the tasks that it executes. 

2. The parameters selected for a low priority server have no bearing on the schedulability of 
the higher priority servers or tasks that they execute. 
 
for each priority level, lowest first 
{ 
 for each unallocated server 
 { 
  if the server and its tasks are schedulable at 
  this priority level 
  { 
   allocate the server to this priority 
   break (continue with outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable 
 

Optimal Priority Assignment Algorithm 
This algorithm requires n(n+1)/2 tests of server and associated task schedulability compared to 
the n! potential server priority orderings.  

Although the optimal priority assignment algorithm is guaranteed to find a schedulable priority 
ordering if one exists, it will not necessarily determine the priority ordering that results in the 
highest remaining processor utilisation. 

4.3 Determining Server Periods 
If the server priorities and capacities are fixed, then a set of server periods can be systematically 
derived. This is possible because: 

1. The parameters selected for a low priority server have no bearing on the schedulability 
of the higher priority servers or the tasks that they execute. 

2. The interference on lower priority servers and the tasks they execute is monotonically 
non-increasing with respect to increases in the period of each higher priority server. 

This means we can perform a simple binary search to determine the maximum possible period 
for the highest priority server, commensurate with the server and its tasks remaining schedulable. 
Once this maximum period has been selected, this process can be repeated for the next highest 
priority server and so on, until a set of maximum server periods have been derived. 

This set of maximum periods is optimal for the given set of server priorities and capacities, in the 
sense that the servers will have the minimum total utilisation and the system will be schedulable 
with this set of server periods if it is schedulable for any selection of server periods. 
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4.4 Overall parameter selection 
Although it is possible to systematically derive one of the server parameters (priority, period or 
capacity) if the other two are fixed, this still leaves the problem of selecting the other two 
parameters. 

Our experiments have shown that even if the problem is simplified by fixing server priorities, it 
is still difficult to find the combination of server periods and capacities required to achieve the 
minimum total utilisation. This is because the set of period and capacity values for each server 
that result in the minimum total utilisation (global optima), do not necessarily correspond to 
those values that result in the minimum utilisation for any of the servers taken individually (local 
optima). This can be seen in systems of just two servers. Typically the period-capacity pair that 
results in the minimum utilisation for the higher priority server has a long period and large 
capacity. However, as a consequence of the large capacity of the higher priority server, the 
period of the lower priority server has to be reduced, increasing its overall utilisation. In fact the 
lower priority server and its tasks may simply be unschedulable due to the large amount of 
interference from the higher priority server. Halving the period of the higher priority server 
increases its utilisation, as a result of overheads, but also typically allows the lower priority 
server to have a much longer period for the same capacity. Although a shorter period for the 
higher priority server results in a larger utilisation for that server this can be more than 
compensated for by a reduction in utilisation of the lower priority server. 

Example: 

Consider two Periodic Servers  and . Each server has a single (unbound) hard real-time 
task to accommodate. The task parameters are given in the table below: 

AS BS

Task Ci Ti Di Server 

1τ  10 20 20 AS  

2τ  4 24 24 BS  

Further, assume that server context switch overheads are 1 time unit and that the processor needs 
to provide each invocation of a server with this context switch time before it can execute its 
tasks. 

Now consider the choice of server periods, assuming that  has the higher priority. The lowest 
utilisation for  occurs for a period of 20 and a capacity of 11 (55% utilisation). However, with 
these parameters for  there are no parameters for  that result in a schedulable system. To 
accomodate task 

AS

AS

AS BS

2τ , the period of  is constrained according to:  BS

2)( DCCnTCT BABBB ≤+++−  

and so  where n+1 is the number of invocations of  that are used to service task 13)1( ≤+ BTn BS

2τ . Also for  to be schedulable BS BAB CCT +≥ . Thus possible periods for  are constrained to 
lie in the range 11 to 13 with a maximum possible capacity for of 2. None of these parameter 
selections result in task 

BS

BS

2τ  being schedulable. 

However if we choose , 10=AT 6=AC  then  has a utilisation of 60% which is 5% greater 
than before. However,  is now just schedulable with 

AS

BS 9=BT , 3=BC  (33.3% utilisation). The 
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overall server utilisation is 93.3%. Note that the servers are in the reverse of rate-monotonic 
priority order. 

4.5 Greedy Algorithms 
In this section, we compare the performance of a greedy method of server parameter selection 
with that of optimal parameter selection.  

The greedy algorithm proceeds as follows. For each server, highest priority first: scan through 
the range of potential server periods. For each possible server period, use a binary search to 
determine the minimum possible server capacity. Select the pair of server parameters (period and 
capacity) that provide the minimum utilisation for the server (local optima). This process is then 
repeated for each lower priority server in turn. 

For comparison purposes an exhaustive search of possible server period combinations was used 
to determine the optimal selection of periods and capacities. This was possible for simple 
systems comprising just two applications. For each combination of server periods, the optimal 
server capacities were computed using the algorithm described in section 4.1. This method yields 
the global optima. 

Our experimental investigation involved generating simulated systems comprising two 
applications of 3 unbound tasks each with overall task utilisation levels of 40 to 85%. 100 
systems were generated for each utilisation level. For each system we then used the greedy and 
exhaustive (optimal) algorithms to select server periods and capacities. Note that the server 
priority ordering was fixed and the use of Periodic Servers was assumed. 

Performance of Greedy Algorithm: Two Servers
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Figure 17 Greedy Algorithm for Server Parameter Selection 
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Figure 17 shows the performance of the greedy algorithm in terms of the number of systems it 
was able to schedule compared to the optimal algorithm. At low system utilisations, the greedy 
approach is able to find a schedulable set of server parameters however its performance drops off 
significantly before that of the optimal algorithm. We also compared the number of solutions that 
the greedy algorithm produced that were within 1% of the optimal server utilisation levels. It is 
apparent from the graph that even at relatively low utilisation levels, the greedy approach results 
in a large number of sub-optimal solutions. 

We would expect that the performance of the greedy approach to deteriorate with an increasing 
number of servers. As performance is relatively poor even for two server systems, this approach 
has little to recommend it. 

To summarise, server parameter selection does not appear to have an analytical solution. The 
best that we can currently achieve is to select server priorities and periods according to some 
search algorithm (potentially exhaustive search in the case of simple systems) and to derive the 
optimal set of server capacities via a binary search using the analysis presented in section 3. 

It is clear that any approach to server parameter selection based on determining the best 
parameters for a single server in isolation is flawed. Dependencies between the parameters 
chosen for one server influence the choice of feasible parameters for others servers in such a way 
that choosing solutions that are locally optimal do not necessarily lead to a globally optimal 
solution. 

4.6 Empirical Investigation 
In this section we present the results of empirical investigations into the selection of server 
parameters for simple systems. 

With systems comprising just two Periodic Servers, it is possible to exhaustively evaluate all 
possible combinations of server periods. In this experimental investigation, we used a binary 
search and the analysis presented in section 3 to determine the minimum capacity for each 
Periodic Server, for every possible combination of server periods. 

The results of the experiments are presented as 3-D graphs of the remaining processor utilisation: 

∑
∈∀

−
serversX X

X

T
C1  

The remaining utilisation (z-axis) is plotted against the period of the lower priority server (x-
axis) and the period of the higher priority server (y-axis). The remaining utilisation surface is 
colour coded according to its value. Peaks in the surface represent the best choices of server 
periods. Although it is possible to understand and interpret the figures in this section when they 
are viewed in black and white, the figures are clearer when displayed in colour. It is therefore 
suggested that readers who only have access to a black and white printout of this report view the 
figures online. 
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4.6.1 Experiment 1 
In this experiment, we used a task set comprising the three tasks given in the table below. 

Priority Execution
Time 

Period Deadline

1 5 50 50 

2 7 125 125 

3 6 300 300 

Table 3 
Each server was required to execute a copy of this task set, thus making the server priority 
ordering irrelevant. A representative server context switch overhead of 2 time units was 
assumed. 

Figure 18 illustrates the remaining processor utilisation for all combinations of low priority (LP) 
and high priority (HP) server periods in the range 4-100. In this case, all the tasks were 
considered to be unbound, irrespective of whether their periods were a multiple of the server’s 
period. 

The graph shows a jagged landscape of remaining utilisation, dependent on the relationship 
between the server periods and those of the tasks. The peaks in remaining utilisation are closer 
together at shorter server periods. This is because the peaks relate to values of the server periods 
that are fractions of the task periods. For example: 1/6, 1/5, 1/4, 1/3, 1/2. 

A number of interesting features are visible in the graph. In the region indicated by label “A”, the 
LP server’s period exceeds that of the highest priority task it must execute, this results in the 
server’s capacity increasing with each increase in its period, leading to a significant tail off in the 
remaining processor utilisation. In the region indicated by label “B”, long HP server periods and 
the resultant large capacity of the HP server result in the LP server being unschedulable with 
relatively short periods. 
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Figure 18 

The optimal selection of server periods ( 50=HPT and 43=LPT ) gives a maximum remaining 
utilisation of 52.4%. Note this optimum selection of parameters has the servers in the opposite of 
rate-monotonic priority ordering. This is a clear example of the fact that although the optimum 
priority ordering for Periodic Servers is rate-monotonic when only server schedulability is 
considered, this is not necessarily the case when task schedulability is also a factor. 

43 



 
Figure 19 

Figure 19 shows a very similar graph to Figure 18, however this time whenever a server’s period 
is an exact divisor of the period of a task, that task is bound to the server. This results in two 
increased ‘ridges’ with respect to treating the tasks as always being unbound. These ridges occur 
for LP server periods of 25 and 50. 

Allowing tasks to be bound to the release of their server results in a change in the optimal server 
parameters. The maximum remaining utilisation of 54% occurs when both servers have a period 
of 50, which is a harmonic of two of the task periods (50 and 300). 

It is interesting to note that there are no additional ridges corresponding to particular values of 
the HP server period, despite the fact that this server executes an identical task set. The reason 
for this is that in the case of the highest priority server only, if a task’s deadline is equal to its 
period and is also an exact multiple of the server’s period, then the amount of execution time that 
a server of a given capacity can make available to the task is the same irrespective of whether the 
task is bound to the release of the server or not. As the task’s period is an exact multiple n of the 
server’s period, then in both bound and unbound cases, the server can make exactly n times its 
capacity available by the task’s deadline (which is also equal to n times the server’s period), 
hence there is no observable advantage in tasks being bound to the HP server in this case. 
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4.6.2 Experiment 2 
In this experiment we used a task set comprising the four tasks given in the table below. 

Priority Exec. Time Period Deadline

1 8 160 100 

2 12 240 200 

3 16 320 300 

4 24 480 400 

Table 4 
Each server was required to execute a copy of this task set, making the server priority ordering 
irrelevant. Again a representative server context switch overhead of 2 time units was assumed. 

In this case, the task periods and deadlines were chosen to emphasize the effect of having tasks 
bound to the release of the server. The task periods were chosen such that they would be 
harmonics of a number of different server periods. Further, the task deadlines were chosen to be 
strictly less than the corresponding task periods as this also enhances the difference between the 
server capacity required if tasks are treated as bound versus unbound. It should however be noted 
that this task set is a reasonable one: there are many real world systems that have such harmonic 
relationships between their task periods. 
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Figure 20 

Figure 20 illustrates the remaining processor utilisation for various server periods for the task set 
in Table 4. In this case, all the tasks were assumed to be unbound. The optimal selection of 
server periods ( and ) gives a maximum remaining utilisation of 42.875%. 64=HPT 100=LPT

Figure 21 illustrates the remaining utilisation for various server periods when tasks can 
potentially be bound to the servers. A task is treated as being bound to its server if the task’s 
period is an exact multiple of the server’s period. Note that Figure 21 shows only data for those 
server periods that result in one or more bound tasks and where the resultant remaining 
utilisation is higher than it would otherwise be if all the tasks were treated as being unbound. 
This makes it very easy to see the advantage of binding tasks to the servers. 
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Figure 21 

There are a large number of possible server periods that the task periods are harmonics of. The 
harmonic periods that provide an advantage in terms of reduced server capacity are 16, 20, 32, 
40, 48, 60, 64, 80, 96 and 160 in the case of the LP server and 48, 60, 96, 120 and 160 for the HP 
server. The optimal selection of server periods ( 160=HPT and 160=LPT ) gives a maximum 
remaining utilisation of 51.25%. This is a significant increase in remaining utilisation compared 
with treating all the tasks as unbound (42.875%). 

The deadlines were less than the task periods for the task set used in this experiment. This 
highlights the difference between the analysis of bound and unbound tasks. If a task is unbound, 
then for server periods greater than the task’s deadline, the server’s capacity has to increase 
significantly to ensure that the task is schedulable, resulting in a marked reduction in remaining 
utilisation. This is not the case when a task is bound to the server, with both task and server 
sharing the same period, a short deadline task may be schedulable for a small server capacity. 
Thus permitting tasks to be bound to a server results in solutions that are very different in terms 
of server utilisation from those that are available when all the tasks are unbound. 

For comparison purposes, Figure 22 shows the remaining utilisation for all combinations of 
server periods. Here tasks are treated as bound if their period is an exact multiple of the server’s 
replenishment period; otherwise they are treated as unbound. 
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It is interesting to note that the optimum selection of server periods occurs as a spike in the 
remaining utilisation surface. This has implications for search techniques aimed at determining 
the optimal selection of server parameters. Given such a discontinuous landscape, a general-
purpose search technique such as simulated annealing or genetic algorithms may not be effective 
without the use of heuristics to locate potential good solutions based on harmonics.  

 
Figure 22 

4.6.3 Additional Experiments 

We performed a number of additional experiments similar to those described in the previous two 
sections. The basic trends visible in these experiments were as follow: 

1. Number of tasks: Increasing the number of tasks in an application (or more correctly 
increasing the number of distinct task periods) results in a change in the topology of the 
remaining utilisation landscape. More tasks imply an increased number of valleys each 
with less depth. With 10 or more tasks with co-prime periods precise choice of server 
period becomes less important. In this case there is a region of values that give similar 
levels of remaining utilisation.  

2. Harmonic task periods: If a period can be chosen for the server that exactly divides a 
number of task periods and those tasks can be bound to the server then an increase in 
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remaining utilisation can often be achieved. 

3. Deadline less than period: Binding tasks to a server appears to have the biggest impact 
when the shortest deadline task is bound to the server. This is because the range of values 
possible for the server’s period is effectively constrained to less than the shortest task 
deadline in the case of unbound tasks and to less than the shortest task period in the case 
of bound tasks. Permitting a greater useful range of server periods typically results in 
better solutions as long server periods lead to lower overheads. 

Figure 23 illustrates the remaining utilisation surface for a two-server system where each server 
schedules an application comprising 10 tasks with co-prime periods. Figure 24 provides a 
comparable set of results when the tasks may be bound to the server. In this case the advantage 
of binding tasks to the server is limited and most effective when the server period is equal to that 
of the shortest period (and deadline) task. 

 
Figure 23 
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Figure 24 
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5 Summary and Conclusions 
In this report we addressed the problem of scheduling a number of applications on a single 
processor using a set of servers. The motivation for this work comes from the automotive, 
Avionics and other industries where the advent of high performance microprocessors is now 
making it both possible and cost effective to implement multiple applications on a single 
platform. 

Our research has focused on systems that are scheduled using fixed priority pre-emptive 
scheduling at both local and global scheduling levels. 

5.1 Contribution 
The major contributions of this work are: 

• Exact response time analysis for hard real-time tasks scheduled under Periodic, Sporadic 
and Deferrable Servers. This analysis provides a reduction in the calculated worst-case 
response times of tasks when compared to previous published work. A similar 
improvement is also apparent in the server capacity and replenishment periods deemed 
necessary to schedule a given task set. 

• Extension of the analysis to tasks that are bound to the release of their server. We showed 
that permitting tasks to be bound to a server with the appropriate replenishment period 
always enhances task schedulability and can reduce the server capacity required. 

• Comparison of Periodic, Sporadic and Deferrable Servers in terms of their ability to 
guarantee the deadlines of hard real-time tasks. The Periodic Server was shown to 
completely dominate the other server algorithms on this metric. 

• Extension of the schedulability analysis to hierarchical systems where tasks in disparate 
applications are permitted to access mutually exclusive global shared resources.  

• Evidence that server parameter selection is a holistic problem. It is not sufficient to 
determine the optimal set of server parameters for each server in isolation as these 
parameters have an effect on the choice of possible values for other servers. 

In addition to these analytical results, we conducted an empirical investigation into the selection 
of server parameters. Our empirical results clearly illustrated the advantages of choosing server 
periods that are exact divisors of the task periods, thus enabling tasks to be bound to the release 
of the server. 

5.2 Future Work 
Today it is possible using the analysis techniques described in this report to determine the 
optimal set of server parameters via an exhaustive search of possible periods and priorities for 
simple systems comprising 3 or 4 applications. Further work is required to provide an effective 
algorithm capable of choosing an optimal or close to optimal set of server parameters given 
systems comprising perhaps ten or more applications. 

A global optimisation technique such as simulated annealing or genetic algorithms could 
possibly be used as the high-level search method, with selection of locally optimal server 
capacities via a binary search. It should be noted however that the spiky topography of the 
remaining utilisation surface makes effective search difficult. As an alternative approach, the use 
of heuristics, such as checking all possible combinations of harmonics, may be effective in some 
cases. 
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Another interesting area of future research involves incorporating Quality of Service (QoS) 
requirements into hierarchical fixed priority pre-emptive systems. Here additional servers could 
be deployed at both levels in the hierarchy to make spare capacity available responsively. An 
interesting alternative would be to use Dual Priority Scheduling [13] as the policy of choice at 
both global and local scheduling levels. 
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7 Appendix 

7.1 Comparison of Interference due to Deferrable and Periodic Servers 
In this section, we compare the interference due to a set of Deferrable Servers with that of a set 
of Periodic Servers with exactly the same parameters (periods and capacities). 

Consider the response time of a low priority server S where all higher priority servers are 
Periodic Servers: 
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The solution to this equation and hence the response time of the low priority server is 
constrained to lie in one of the intervals ])1(,( XXX TnCnT ++  where n is an integer. (These 
intervals are closed-open in the sense that the end of the interval may be a solution, but the start 
of the interval may not). The fact that the solution is constrained to lie in one of these intervals 
can be seen by considering the alternative. If the length of the busy period increased such that it 
was in the interval  then interference from another invocation of server X would 
need to be accounted for, thus increasing the length of the busy period by at least  and hence 
ensuring that any solution is in one of the intervals 

],( XXX CnTnT +

XC
])1(,( XXX TnCnT ++ . 

Now consider the response time of a low priority server when all the higher priority servers are 
Deferrable Servers. In this case the response time may be found according to [9]: 
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As , the length of the busy period which provides the solution to equation (21) 
must be at least as long as the busy period which forms a solution to equation (20), given the 
same set of servers. As a starting point in solving equation (21) we are free to choose any value 
that can be guaranteed not to exceed the solution. We therefore choose the value  that is the 
solution to equation (20). Now we know that for every higher priority server,  must fall into 
an interval  where the total interference from that server is given by 

. However if  is in the interval 

XX TCX <∀ :

AR

AR
])1(,( XXXXX TnCTn ++

XX Cn AR ])1(,( XXXXX TnCTn ++ then the interference due to 
server X according to equation (21) is XX Cn )1( + . As this is the case for all higher priority 
servers, the response time of the low priority server assuming interference from Deferrable 
Servers is at least  greater than it is for an equivalent set of Periodic Servers. ∑

∈∀ )(ShpX
XC
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7.2 Priority Ordering of Servers 
In this section, we consider the optimal priority ordering of servers with respect to their own 
schedulability. 

A server is schedulable if its response time is no greater than its period. A system of servers is 
schedulable if all the servers in the system are schedulable. Servers are assigned priorities 
according to some priority assignment policy. A priority ordering is said to be feasible with 
respect to a given system if it results in the system being schedulable. 

A priority assignment policy is optimal if and only if that policy results in a feasible system, 
whenever there exists a feasible priority ordering for the system. 

For a system comprising only Periodic Servers, the rate-monotonic priority assignment (RMPA) 
policy is optimal as the servers behave in the same way as simple periodic tasks [4]. 

For a system comprising a set of Deferrable Servers, it is easy to construct examples to show that 
RMPA is not optimal. (Such an example appears at the end of section 7.2.2) 

In [9] Bernat and Burns showed that the analysis of Deferrable Servers resembles that of periodic 
tasks with jitter equivalent to . SS CT −
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We note from the above recurrence relation used to determine server response times that: 

1. Lower priority servers have no effect on the response time of a higher priority server. 

2. The priority ordering between higher priority servers has no effect on the response time 
of the server of interest. 

This means that the Optimal Priority Assignment Algorithm developed by Audsley [11] can be 
used to select the optimal priority assignment for a set of Deferrable Servers. 

 
for each priority level, lowest first 
{ 
 for each unallocated server 
 { 
  if the server is schedulable at this priority 
  { 
   allocate the server to this priority 
   break (continue with outer loop) 
  } 
 } 
 return unschedulable 
} 
return schedulable 
 

Optimal Priority Assignment Algorithm 

The algorithm works because we can determine the schedulability of a server at a given priority 
level without reference to the priority ordering of the set of higher priority servers. 
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This algorithm requires n(n+1)/2 schedulability tests compared to the n! potential priority 
orderings. 

Let us assume that there is a feasible priority ordering. Now consider the operation of the optimal 
priority assignment algorithm. It selects a server that is schedulable at the lowest priority level, 
note there must be at least one if there exists a feasible priority ordering. Let us assume that this 
server was at priority level j in the feasible ordering. The response times of all servers with 
higher priority than j are unaffected by moving this server to the lowest priority level. Further all 
servers of lower priority than j are subject to less interference and so their response times cannot 
increase, hence they too all remain schedulable. Finally, the server that was placed at the lowest 
priority is also schedulable so the system remains schedulable. This argument can be repeated at 
successively higher priority levels thus proving that if a feasible priority ordering exists then the 
optimal priority assignment algorithm will find a feasible ordering. 

7.2.1 Partial Ordering 
Consider a set of Deferrable Servers that have capacities and periods such that for any pair of 
servers, the servers can be labeled A and B such that both of the following conditions hold: 

 and . BBAA CTCT +≥+ BA CC ≥

For such a set of servers, period plus capacity monotonic priority assignment is optimal. That is 
optimal priority assignment can be achieved by assigning the server with the smallest value of 

 the highest priority, the server with the next smallest value of  the second 
highest priority and so on. 

SS CT + SS CT +

Proof: 
Let us assume that we have a system of Deferrable Servers which is schedulable and has two 
servers labeled  and  where  is at a higher priority level and the two conditions 

 and  hold. To prove that ‘period plus capacity’ monotonic priority 
assignment is optimal, it is sufficient to prove that we may exchange the priorities of the two 
servers  and and that each will remain schedulable. By repeatedly applying such an 
exchange of priorities it is possible to convert any feasible priority ordering into a ‘period plus 
capacity’ monotonic ordering that is also feasible. 
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Consider the response time of  when it is at the lower priority level x: BS
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Where  is the interference from all servers of higher priority than x with the exception of 
 which is considered separately. 
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Equation (22) simplifies to: 
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As  is schedulable at this priority level, BS BB TR ≤ . As ABA CTT −≥  the ceiling function in 
equation (23) must evaluate to 1 and therefore: 
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Now consider the response time of  when the server priorities are reversed and server  is at 
priority level x:  
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We know that equation (23) converges on a value of  starting with 
an initial value of . As the initial value for equation (25), is no 
greater than and the interference function for other servers is the same. Therefore 
equation (25) must converge on a value that is no greater than  and hence no greater than  
so: 
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The interference is monotonically non-decreasing in the length of the time interval, so 
as  it follows that . Comparing equation (24) and equation (26) we 
have . As 

BA RR ≤ )()( BxAx RIRI ≤

BBAA CRCR +≤+ BBBB CTCR +≤+  and one of our pre-conditions is that 
 then it follows that  and so  is schedulable at the lower priority 

level, thus proving the theorem. 
BBAA CTCT +≥+ AA TR ≤ AS

As well as providing an optimal ordering of server priorities in cases where a full ordering is 
possible based on the criteria BBAA CTCT +≥+  and , this result is also useful when the 
set of servers only has a partial ordering based on these criteria. In this case the criteria can be 
used in conjunction with the Optimal Priority Assignment Algorithm to reduce the number of 
schedulability tests required. On each inner loop of the algorithm it is unnecessary to perform a 
schedulability test on a server if a server  has already been found to be unschedulable and 

 and . In this case  will also be unschedulable. 

BA CC ≥

BS AS

BBAA CTCT +≥+ BA CC ≥ BS

7.2.2 No Partial Ordering 

This section provides a simple example showing that if BBAA CTCT +≥+  but BA CC < then 
‘period plus capacity’ monotonic priority ordering is not optimal. 

Server Priority Capacity Period Period + 
capacity 

Response Time 

A 1 2 12 14 2 

B 2 1 16 17 5 

C 3 5 11 16 11 

In the priority order presented in the above table, all the Deferrable Servers are schedulable. 
However placing them in ‘period plus capacity’ order results in server B becoming 
unschedulable. Note that placing the servers in rate-monotonic priority order also results in 
server B having the lowest priority and hence being unschedulable. 

58 


	Abstract
	Acknowledgements
	Introduction
	Related Work
	Organisation of this Report

	Hierarchical Scheduling Model
	Terminology and System Model
	Servers
	Busy Periods and Loads

	Schedulability Analysis for Hierarchical Systems
	Exact Analysis
	Critical Instant
	Response Time Analysis
	Analysis of Bound tasks
	Analysis of Unbound tasks

	Bound v Unbound
	Release Jitter Model

	Task Priority Ordering
	Blocking
	Locally shared resources
	Globally Shared Resources
	Analysis of Blocking and Server Overruns

	Evaluation of Schedulability Analysis
	Effect of overheads
	Comparison of Analysis Methods

	Choice of Server Algorithm
	Periodic v Deferrable Server
	Periodic Server v Sporadic Server
	Periodic Server Behaviour
	Recommended Server Algorithm

	Flexible Scheduling and Gain Time
	Open and Closed Systems and Online analysis

	Server Parameter Selection
	Determining Server Capacities
	Determining Server Priorities
	Determining Server Periods
	Overall parameter selection
	Greedy Algorithms
	Empirical Investigation
	Experiment 1
	Experiment 2
	Additional Experiments


	Summary and Conclusions
	Contribution
	Future Work

	References
	Appendix
	Comparison of Interference due to Deferrable and Periodic Se
	Priority Ordering of Servers
	Partial Ordering
	No Partial Ordering



