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Abstract. Deformable image registration is a key enabling technology
for advanced treatment of lung cancer patients, as it can facilitate mo-
tion estimation, structure segmentation, as well as dose tracking and
accumulation. In this work, we developed a hybrid feature-constrained
deformable registration method and applied it to tackle the EMPIRE10
(Evaluation of Methods for Pulmonary Image Registration 2010) lung
image registration challenge. The method uses the results of feature de-
tection and matching based on robust 3D SURF descriptors to guide
an intensity-based deformable image registration. The initial registra-
tion result is further refined by a hybrid MI/NSSD deformable registra-
tion process. The proposed method is fully automatic and does not re-
quire pre-segmentation of any lung structures. Validation results on the
EMPIRE10 data showed that our method performed very well among
34 competing algorithms. Future improvement is possible with adaptive
parameter selection, site-specific feature detection methods, and better
deformation models.

1 Introduction

Lung cancer is the leading cause of cancer death worldwide, with deaths exceed-
ing 1 million cases every year [1]. Radiation therapy (RT) plays an important
role in both the curative and palliative treatment of lung cancer patients. More
advanced RT techniques, such as 4D or adaptive radiotherapy, offer even better
tumor control by taking into account respiration-induced lung and tumor motion
as well as physiological and geometric changes of tumors and normal anatomy
over the course of treatment.

Deformable or nonlinear image registration has been recognized as a key en-
abling technology for the successful implementation of adaptive RT [2]. By def-
inition, image registration is the process of establishing spatial correspondences
between two images. The correspondence information can be used to charac-
terize patient-specific tumor or lung motion, thus reducing uncertainties related
to target volume definition. The estimation of respiratory motion itself is also
beneficial for assessing pulmonary functions [3]. The anatomical correspondence
can also be used to map daily treatment dose to a reference frame, allowing
cumulative dose to be computed and compared against original treatment plan.
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A large variety of nonlinear image registration methods have appeared in the
literature, and many have been applied for the registration of lung CT images
(cf. [3-9] and references therein). In general, existing registration methods can be
broadly classified into three categories: feature-based methods, intensity-based
methods, and hybrid methods that combine the previous two. Feature-based
methods rely on the detection and matching of isolated image features such
as points, curves, or surface patches. Such methods are usually more efficient
to compute, but an interpolation method is needed to get the image correspon-
dences at non-feature locations. In addition, the automatic detection and match-
ing of a large set of features for the purpose of detailed nonlinear registration
is not an easy task. Intensity-based methods directly use the image intensity
values to derive image matching, which can be easily made fully automatic and
can exploit the full image information. However, such methods tend to have
high computational cost, and they typically require a good starting point for the
registration optimization due to the large number of local optima in a typical
non-linear image matching function. Consequently, hybrid methods have also
been proposed, which aim to integrate the merits of both feature- and intensity-
based methods [6, 8].

In this work, we have developed a novel feature-constrained hybrid deformable
registration method for lung CT images. Incorporating features have been proven
beneficial for thoracic image registration due to the presence of rich anatomical
landmarks in the lung region, such as the blood vessel trees and the bronchial
airways [10, 6, 8]. But instead of trying to segment out these anatomical struc-
tures, we use a more generic feature detection method and rely on a robust
feature descriptor recently proposed in the computer vision literature for auto-
matic feature point matching. The feature matching result is then used to help
constrain an intensity-based nonlinear image registration procedure. In the fol-
lowing, we first present the proposed method and then summarize our results
for the EMPIRE10 data.

2 Methods

The overall method consists of four major steps: a global rigid registration, fea-
ture point detection and matching, a feature-constrained mutual-information
(MI) deformable registration, and finally another dense deformable registration
to further refine the results. The major reason for the two separate deformable
registration steps is to deal with the large size of the EMPIRE10 data. In par-
ticular, most of the EMPIRE10 data have sub-millimeter resolution and very
large image sizes. To improve computation speed and reduce memory usage, we
first down-sample the input images to an isotropic, lower resolution of 1.5 mm?3.
The first three steps are all performed on the low resolution data. The resulting
deformation field is then upsampled to the original resolution and refined at the
last deformable registration step. In order to handle large image size at the last
step, the full image domain is first divided into 8 slightly overlapping sub-regions
(10-voxel margin on each side). Each sub-region is computed separately, but the
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final deformation field in the overlapping area is taken as the average of results
from neighboring subregions. In the next, we detail each of the four steps and
explain the parameters we used for processing the EMPIRE10 data.

2.1 Rigid Registration

The rigid registration step aims to correct for global differences in position and
orientation between the two input images of each subject. To find the optimal
transformation parameters (three rotations and three translations), we maxi-
mize the global MI between the two images using a multi-resolution stochastic
gradient-descent optimization scheme [11]. This scheme exploits the fact that
the rigid registration is an over-constrained problem since the number of trans-
formation parameters is far less than the number of voxels in the image domain.
Thus, at each iteration, the stochastic scheme uses only a very small subset of
random image samples to estimate the image similarity metric and the trans-
formation parameters, which leads to a highly efficient algorithm that usually
takes only a few seconds on a modern desktop computer. As mentioned earlier,
this step was performed on down-sampled version (1.5 mm? isotropic resolution)
of the original images. Three resolution levels were used for the multi-resolution
computation. At each resolution level, 100 random samples and 32 histogram
bins were used to estimate the MI for the stochastic gradient optimization.

2.2 Feature Point Extraction and Matching

Many existing feature-based lung registration methods require the segmentation
of the blood vessel trees or airways [10, 6, 8]. Instead, we follow a more generic
approach and use a simple 3D landmark detector for feature point extraction.
In particular, we use a structure-tensor-based 3D Forstner operator as recom-
mended in [12]. The same feature detector was also used in [5] for lung CT image
registration and in [13] for registering liver images. However, we adopt a different
feature descriptor in the feature matching stage, and the overall nonlinear reg-
istration method proposed here is also different from the previous work, which
will become clear later.

The 3D Forstner operator assigns a cornerness measure, denoted by F(x),
for each image voxel x, which can be defined by the following equation:

F(x) = det(C)/trace(C*Y), (1)

with

C=vVI(VT,
where C?d denotes the adjugate matrix of C. VI is the gradient of the input
image I, and VI(VI)T represents the average of the structure tensor VI(VI)T
in a local neighborhood of voxel x. We used a 3 x 3 x 3 neighborhood to compute
the local average in this EMPIRE10 study.
After the cornerness measure F' is computed for every image voxel, we extract
feature points as the subset of image voxels whose F-value is a local maximum
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within a local neighborhood of size 5 x 5 x 5. For illustration, Fig. 1 shows the
detected feature points on (approximately) corresponding slices of two separate
images of one subject.

Fig. 1. Illustration of feature point detection. Blue dots show detected feature points
on the respective sagittal slices of two images of the same subject.

To perform feature point matching, a feature descriptor is needed in order
to assign a unique characteristic for each feature point. The SIFT descriptor
introduced by Lowe [14] has become very popular and been widely adopted by
the medical imaging community [5,13,15,16]. A major drawback of the SIFT
descriptor is its long computation time and large feature size in 3D. In this
work we use instead the SURF (Speeded Up Robust Features) descriptor that is
proposed more recently by Bay et al. [17], and extend it to 3D. First, we take a
16 x 16 x 16 neighborhood for each detected feature point, and further divide it
into sixty-four 4 x 4 x 4 sub-regions. Second, for each subregion, a six-dimensional
description vector v is computed to characterize the local intensity structure:

V= (Z grvzgya ZQZa Z 92|, Z |gy|a Z 921)

where g, gy, and g, denote the three components of the image gradient vec-
tor. The sub-region descriptors are then concatenated together to form a 384-
dimensional feature vector, which is further normalized to a unit vector to get
the final SURF descriptor for each feature point.

The correspondences between feature points of two input images are estab-
lished by finding nearest-neighbors (NNs) in the 384-dimensional vector space.
Two extra steps are performed to help eliminate false matches as proposed in
the original SIFT paper [14]. First, a distance ratio r is computed after the NN
search, which is the ratio of the smallest distance value to the second-smallest. A
match is rejected if r is greater than a given threshold (0.6 is used in this study).
Second, a symmetric criterion is applied, which performs the NN search in two
directions and a matched pair (p, q) is kept only if it satisfies the NN-optimality
in both directions.
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2.3 Feature-constrained MI Deformable Registration

The matched feature points are usually sparse, thus insufficient to derive a full
image correspondence map. Instead, we use the feature-matching results to help
constrain an intensity-based image registration method. We adopt the MI as the
intensity-based image similarity measure at this step due to its ability to handle
intensity variations that often exist between a pair of lung images. The MI of
two images I and J measures the degrees of dependence between I and J and
can be approximated as (cf. [11]):

pIJ I X)7 (T(X)))
Zl { 100 (TTm) ) @)

where NV denotes the total number of image points within the overlapped region
of the two images and T" denotes the image transformation model. The functions
pr.s(+,-) and pr(-), ps(-) denote the joint and marginal image intensity distribu-
tions respectively. A non-parametric transformation model is used at this step
where the image transformation is modeled directly as a vectorial displacement
field U, such that T'(x) = x + U(x) for every image point x.

To incorporate feature-matching constraints, the total objective function for
estimating the optimal deformation field is formulated as:

J(I1,J,0) = —=MI(I, J,U) + A[VU[2 + £ Y |Ux) = V(x)[?,  (3)
xeS

where S indicates the set of feature points with established correspondences, and
V denotes the displacements at these points as given by the feature matching
results. ||VU]J|2 denotes the Lo norm of the gradients of U, which enforces a
smooth deformation field. The two weighting factors, A and u, control the relative
strength of each term. Their values are not explicitly set but reflected in the
parameter selection of the optimization process as will become clear later.

The optimal deformation field is computed iteratively using a “pair-and-
smooth” strategy, which alternates between optimizing the MI similarity metric
and satisfying the regularization and feature constraints. In addition, we adopt a
compositive update scheme, where the deformation field U is updated according
to the following equation:

U"=U"'o(Id +u") +u” (4)

or equivalently,
U"(x) = U (x + u"(x)) + u"(x), Vx. (5)
In Eq. (4), Id denotes the identity transformation and “o” denotes transforma-

tion composition. u” is a local update field at the n-th iteration. A benefit of the
compositive update scheme is that the total deformation field U can be easily
guaranteed to be a diffeomorphic mapping. At each iteration, u™ is computed to
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maximize the MI between image I and the deformed image J" = Jo (Id + U"),
i.e., to maximize

MI(7, J" o (Id + u™)) —Zl [Pf s (I(x), J"(x + u"(x)))

Dp (J7(x + u(x)))

IID

ZSMI ), J"(x +u"(x))). (6)

In the above equation, SMI(-, ) denotes a point-wise MI measure (cf. [18]).

I X[ X[ X
@(o|e X|O| X
I X | X[ X
1 J"

Fig. 2. A 2D illustration of explicit local search. The open circles indicate the image
point under consideration and its current correspondence in the other image. The
crosses indicate the neighbors involved in the forward search. The solid circles indicate
the neighbors involved in the backward search.

As explained in our earlier work [18], the optimal update u™(x) at each image
location x can be found by searching the local neighbors of x in the deformed
image J" and finding the neighbor x’ that maximizes SMI(I(x), J"(x' = x +
u”(x))) (cf. Fig. 2). This simple explicit neighbor search scheme avoids the
difficulty in determining the optimal time step size as needed for a traditional
gradient-descent optimization approach. It also eliminates the need to compute
derivatives of either the images or the image intensity distributions. A symmetric
version of the local update scheme was designed in [18] that further improves
the convergence rate of the registration method (cf. Fig. 2).

After the update field is found, we smooth it with a spatial Gaussian filter
(a fixed kernel width of 1-voxel is used in this study). We then update the
total deformation field according to Eq. (4). To satisfy the feature constraint,
we simply set U™ (x) = V(x) at the feature point locations. To help eliminate
any remaining outliers undetected in the feature matching step, the previous
assignment is performed only at points where the original difference || U™ (x) —
V(x)| is less than a given threshold, for which we have used a fixed value of
50 mm throughout this study. Finally, to ensure smoothness of the deformation
field, we perform a spatially weighted Gaussian smoothing of U™:

U™ Gy x (W -U") /Gy x W, (7)

where W is a spatially-varying weighting function, with high value (1.0) at
matched feature point locations and low (0.01) otherwise. We use a relatively
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large Gaussian smoothing kernel size (o = 2 voxels) to help extend the effects
of feature-constraint to a larger neighborhood.

To further improve computational speed, a multi-resolution scheme is also
applied at this step. For the EMPIRE10 study, we used three resolution levels.
The number of histogram bins for the MI computation was set to 32, 64, and
100 respectively for the three levels from coarse to fine.

2.4 Final Dense Deformable Registration

In this last step, we aim to further refine the deformation field estimation from
the previous step on the original image resolution. No feature-based constraint is
applied at this step since the feature points were detected on the lower resolution
images. In order to align structure boundaries better while still being robust to
image intensity changes, we have designed a hybrid image matching metric to be
used at this step, which is a combination of the MI metric and a new normalized-
sum-of-squared-differences (NSSD) metric:

Ju(I,J,U) = —MI(I, J,U) + w - NSSD(I, J, U), (8)

where w denotes a relative weighting of the two terms, and U is a dense deforma-
tion field that is defined at every voxel of the fixed image. From our experience,
this hybrid similarity measure provides better alignment of image edges than us-
ing the MI metric alone since the latter cannot account for local image contrast
changes. The NSSD metric is an edge-based alignment metric, which is defined
as follows:

NSSD(T, 7, U) = + 3 17(x) — J(T ), )
where
I(x) = W’ (10)

and pur = G, * I and 0% = G, * (I — puy)? denote the local intensity mean and
local intensity variation for image I. Similar notations hold for image J. We call
I and J the normalized local offset images as implied by Eq. (10).

A similar iterative and compositive update scheme as in Section 2.3 is applied
to compute the optimal deformation field for Eq. (8). But unlike in the previous
section, two separate update fields are computed at each iteration step. The
first update field optimizes the MI-term and is computed in exactly the same
way as explained in Section 2.3. A second update field is computed in a similar
fashion to optimize the NSSD term, since this term can also be expressed as the
summation of N independent point-wise terms as indicated in Eq. (9). Hence, the
explicit search scheme is applied again to find an update field u™ that optimizes
NSSD(I, J"o(Id+u")). The two update fields are simply averaged to get the final
update field, which is then used to update the total deformation field following
Eq. (4). To ensure smoothness of the computed deformation field, we regularize
it with a uniform Gaussian filter at each iteration. A kernel size of 1-voxel is
used in all the experiments.
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3 Results and Discussions

To evaluate the performance of the proposed method, we applied it to the 20 pairs
of lung CT images provided by the EMPIRE10 workshop. Each pair of scans
was taken from a single subject but the whole data sets came from a variety of
sources including different institutes with different scanners and protocols. Most
of the data have a fine sub-millimeter image resolution (& 0.7mm isotropic), but
a few have a lower resolution larger than 1 mm. More details of the data can
be found in the summary paper by the workshop organizers [19]. In addition to
the original CT image data, a pre-segmented binary mask of the lung is also
provided for each image. However, our method does not require pre-segmention
of the lung and hence these lung masks were ignored when generating the results
presented below.

Evaluation of the image registration results was carried out by the work-
shop organizers independently. Performance measures were computed in four
categories: alignment of the lung boundaries, alignment of the major fissures,
correspondence of annotated point pairs, and singularities in the deformation
field. Details of the evaluation criteria can also be found in [19].

Table 1 summaries the performance of our method and the comparison
against other 33 competing algorithms. Overall, our method performed well in
each of the four categories, and achieved a final overall ranking of 6 among all
34 algorithms. The use of feature-based constraints clearly helped reducing the
landmark error for difficult cases such as Subjects 01, 14, and 18. We note that
we have used a fixed set of parameters for all the image data. In particular,
deformation field regularization was set relatively low in order to handle large
deformations. This low regularization effectively increases the degrees of freedom
of the deformation model and renders the method more sensitive to image noise
and other artifacts, which is possibly the main reason for the relatively worse
performance of our method for the easy cases (i.e., small lung deformation) such
as Subject 06.

The feature descriptors applied in this work are robust to local deformations
to some extent; large deformations can still prevent the detection of all correct
matches. Due to computation time considerations, the feature matching is cur-
rently only performed once after the linear registration step. It may be beneficial
to repeat the feature matching several times during the iterative estimation of
the deformation field.

We are still working on implementing the proposed registration method on
GPU in order to improve the computational speed. For the results presented
above, only the last hybrid MI/NSSD deformable registration step was computed
on GPU using a CUDA-based implementation, and the other three steps were
computed on CPU. The computation time was approximately proportional to
the input image size. For a pair of images of fine resolution such as Subject
10, the linear registration step took about 3 seconds, the feature detection and
matching about 2.5 minutes, the feature-constrained MI deformable registration
about 2 minutes, and the last hybrid MI/NSSD deformable registration about
2.3 minutes (for 8 sub-regions in total). The total computation time for this case
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was about 7 minutes. The time was recorded on a HP xw8400 desktop computer
equipped with an Intel Xeon Quad-core 2.66 GHz CPU and a NVIDIA GTX
280 graphics card.

Lung Boundaries Fissures Landmarks Singularities
if:;;l Score | Rank Score | Rank || Score | Rank || Score | Rank
01 0.01 16.00 0.03 9.00 1.17 1.00 0.00 11.50
02 0.00 11.00 0.00 15.00 0.49 17.00 0.00 12.50
03 0.00 5.50 0.00 12.50 0.49 17.00 0.00 12.00
04 0.00 20.00 0.00 16.50 1.12 14.00 0.00 14.00
05 0.00 13.00 0.00 16.00 0.03 18.00 0.00 13.50
06 0.00 16.00 0.00 15.00 0.49 27.00 0.00 14.00
o7 0.00 10.00 1.99 21.00 1.73 6.00 0.00 10.00
08 0.00 8.00 0.22 19.00 0.77 9.00 0.00 12.50
09 0.00 7.00 0.07 30.00 0.59 15.00 0.00 13.00
10 0.00 12.00 0.00 15.00 2.24 17.00 0.00 13.50
11 0.02 14.00 0.07 14.00 0.78 8.00 0.00 11.50
12 0.00 10.00 0.00 13.50 0.05 11.00 0.00 14.50
13 0.00 9.00 0.07 9.00 0.95 15.00 0.00 13.00
14 0.01 12.00 3.21 14.00 1.12 2.00 0.00 9.50
15 0.00 8.00 0.00 7.00 0.70 17.00 0.00 12.50
16 0.00 20.00 0.00 2.50 1.02 11.00 0.00 13.50
17 0.00 6.50 0.05 16.00 0.83 13.00 0.00 14.00
18 0.01 11.00 0.80 8.00 1.49 4.00 0.00 10.50
19 0.00 14.00 0.00 12.00 0.62 22.00 0.00 14.50
20 0.00 9.00 2.86 17.00 1.46 8.00 0.00 10.50
Avg|| 000 [ 11.60 || 047 | 1410 || 091 | 1260 [ 0.00 | 12.52
Average Ranking Overall 12.70
Final Placement 6

Table 1. Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.

4 Conclusion

We have developed a fully automated, hybrid nonlinear image registration meth-
ods for intra-subject registration of lung CT images. Promising results were
obtained when tested on the EMPIRE10 data. Future work includes adaptive
parameter selection and investigating other feature detection methods. It is also
desirable to incorporate proper physical deformation models to further improve
the registration accuracy.
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