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Abstract Grouping behaviour occurs often in crowd evacuation. On the one hand, 
groups are needed for efficient evacuation. On the other hand, large uncontrolled 
groups (herds) may cause clogging and increase panic. The mechanisms of emer-
gence of leaders and groups in complex socio-technical systems with intelligent 
technical components are not well understood. This paper presents the first at-
tempt to unveil the role of AmI technology in formation of spontaneous groups in 
crowd evacuation. To this end several hypotheses were formulated, which were 
tested by simulation experiments based on a cognitive agent model. The checking 
of the hypotheses was done in the context of a train station evacuation scenario. 
The general outcome is that in a system with scarce and uncertain information, 
AmI technology can be used to stimulate emergence of leaders and groups to in-
crease the efficiency of evacuation. Furthermore, a large penetration rate of ambi-
ent devices may be unnecessary and even not appropriate for fluent evacuation.  

1   Introduction 

In the literature [1, 9, 10, 13] it is indicated that people often form spontaneous 
groups during evacuation. On the one hand, dynamic formation of groups is rec-
ognised as a prerequisite for efficient evacuation [1,13]. On the other hand, large 
uncontrolled groups, sometimes called herds, may cause clogging of paths and in-
crease panic [1, 9]. In examples of efficient evacuation emergent leaders played a 
prominent role in guiding of and sustaining a steady emotional state in groups [1]. 
In social psychology several sources of power of informal (or emergent) leaders 
are recognised, among which knowledge and physical traits are the most essential 
ones [2]. AmI technology can be used to discover and propagate knowledge in 
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socio-technical systems. Although much research has been done on emergent 
leadership in social systems [2], the mechanisms of emergence of leaders and 
groups in complex socio-technical systems with intelligent technical components 
are less clear. This paper presents the first attempt to unveil the role of AmI-
technology in formation of spontaneous groups in crowd evacuation. For this sev-
eral hypotheses were formulated.  

Hypothesis 1: AmI-equipped humans, who obtain up-to-date information about 
the environment, are recognised as leaders in emergent groups in organisations 
with scarce and uncertain information.  

Previous studies showed that in general humans have a loyal attitude to informa-
tion provided by (intelligent) technology. The validation of this statement for 
crowd evacuation is necessary, but also problematic, as such experiments cannot 
be organised easily. To address this issue, we examined three conditions: (a) hu-
mans have high initial trust to technology and distrust it slowly after negative ex-
periences; (b) humans trust technology in the same manner as to human strangers; 
(c) humans have high initial trust to technology (initial bias), but distrust it rapidly 
after negative experiences. Note that trust to technology is dynamic and depends 
on the human’s experiences with technology. In relation to these conditions the 
following hypotheses are formulated: 

Hypothesis 2: More grouping behaviour is observed under (a) and (c) conditions 
than under (b) condition.  

Hypothesis 3: Humans under (c) change groups more frequently than under (a).  

To quantify these hypotheses the measures following index, change index and 
group size are introduced in section 4. One more hypothesis to be tested in the pa-
per is related to the large group effect known for social emergency systems [1]: 

Hypothesis 4: Evacuation with larger groups proceeds more slowly (less effi-
ciently) than with smaller groups. 

The hypotheses were tested in the frames of an emergency case study introduced 
in Section 2. For formal verification of the hypotheses a cognitive agent-based 
model was developed, in which humans and AmI devices were represented by 
agents. This model is based on a number of theories from Neuropsychology, So-
cial Science and Psychology, many of which were empirically validated. The 
model is described in Section 3.The verification results for the hypotheses are pre-
sented in Section 4. Section 5 concludes the paper. 

2   Case Study 

Since it is nearly impossible to perform an evacuation trial to validate an emer-
gency egress strategy at a mass place, an agent-based social simulation approach 
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was taken instead. In this simulation study we focussed on evacuation of a train 
station. To ensure that the simulation setting is a true representative of reality, we 
incorporated real CAD design of an existing Austrian main railway station to gen-
erate the space along with observed population statistics. 

The station in the simulation model had 3 exits with different flow capacities. 
The station was populated randomly with 500 agents representing humans, from 
which 10 agents were equipped with AmI technology.  

The AmI technology in focus is the LifeBelt, specially designed for emergency 
situations [4]. Particularly, it exploits the unused information transmission capa-
bility of sense of touch instead of usual visual and auditory perception to deliver 
the message. In this way, it does not deviate and frustrate the human already 
overwhelmed with the visual and auditory perceptual overload. The LifeBelt sys-
tem exploits the position and variation of vibro-tactile stimuli to indicate both ori-
entation (intended direction) as well as urgency (intended speed) through tactor-
elements embedded into a hip worn belt. The controller activates the vibrator 
switches according to commands received wirelessly from a global control unit, in 
this case a global ‘evacuation control unit’. 

The recommendation for an exit is generated by evacuation control unit under 
the influence of exit area dynamics (e.g. flow, density), which are assumed to be 
measured by a technology mounted on the exit. The exit choice would then be 
communicated to all the LifeBelts. Each LifeBelt has a location map used to trans-
form the coordinates of an exit to the desired orientation to move.  

Agents interact with each other non-verbally by spreading emotions and inten-
tions to choose particular exits, and verbally by communicating information about 
the states of the exits. As the agents with LifeBelts possess information about the 
exits not available to the agents without LifeBelts, the AmI-equipped agents hold 
one of the most important sources of power identified in social studies on emer-
gent leadership [2]. However, the agents without devices are still free to decide 
whether to follow AmI-equipped agents or to rely on their own beliefs and exit 
choices. It is important to stress that the grouping effect is not encoded in our 
model explicitly, but emerges as a result of complex decision making by agents. 

3   Cognitive Agent Model 

To model cognitive processes of an agent a general affective decision making 
model from [11] was instantiated for the case study. The model is formalised us-
ing a temporal state transition system format [12]. 

Depending on a situational context an agent determines a set of applicable op-
tions to satisfy its goal. In the case study the goal of each agent is to get outside of 
the building in the fast possible way. This is achieved by an agent by moving to-
wards the exit that provides for fastest evacuation as it perceived by the agent. 
Evacuation options are represented internally in agents by one-step simulated be-
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havioural chains, based on the neurological theory by Hesslow [5] (see Fig.1). In 
Fig. 1 the burning station situation elicits activation of the state 
srs(evacuation_required) in the agent’s sensory cortex that leads to preparation for 
action preparation_for(move_to(E)). Here E is one of the exits of the station. Note that 
if more than one exit is known to the agent, then in each option representation the 
preparation state corresponding to the option’s exit is generated. Then, associa-
tions are used such that preparation_for(move_to(E)) will generate srs(is_at(E)), which 
is the most connected sensory consequence of the action move_to(E). 

 

 
 

Fig. 1. The emotional decision making model for the option to move to exit E.  
 
The strength of the link between a preparation for an action and a sensory rep-

resentation of the effect of the action (see Fig.1) is used to represent the confi-
dence value of the agent’s belief that the action leads to the effect.  

The simulated sensory states elicit emotions, which guide agent behaviour ei-
ther by reinforcing or punishing simulated actions. By evaluating sensory conse-
quences of actions in simulated behavioural chains using cognitive structures from 
the OCC model [8], different types of emotions can be distinguished. In the exam-
ple two types of emotions - fear and hope – are distinguished, which are often 
considered in the emergency domain. According to [8], the intensity of fear in-
duced by an event depends on the degree to which the event is undesirable and on 
the likelihood of the event. The intensity of hope induced by an event depends on 
the degree to which the event is desirable and on the likelihood of the event. Thus, 
both emotions are generated based on the evaluation of a distance between the 
effect states for the action from an option and the agent’s goal state.  

In particular, the evaluation function for hope in the evacuation scenario is 
specified as eval(g, is_at(E)) = ω, where ω is the confidence value for the belief 
about the accessibility of exit E, which is an aggregate of the agent’s estimation of 
the distance to the exit and the degree of clogging of the exit. Although it is as-
sumed that the distances to the exits are known to the agents, the information 
about the degree of clogging of the exits is known only to AmI-equipped agents. 

Emotions emerge and develop in dynamics of reciprocal relations between 
cognitive and body states of a human [3]. These relations, omitted in the OCC 
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model, are modelled from a neurological perspective using Damasio’s principles 
of ‘as-if body’ loops and somatic marking [3]. The as-if body loops for hope and 
fear emotions are depicted in Fig. 1 by thick solid arrows. The following rules de-
scribe the evolution of the emotional states: 
srs(eval_for(is_at(E),bhope),V2) & srs(G(bhope),V1)  

→→ hope(o, (βh- βh *(1-V1)*(1-a1) + (1-βh)*V1*a2)/(1- βh*(1-V1)*a1 - (1-βh)*V1*a1)),  
where a1 = βh - 2*βh*V2 + V2, a2 = βh – βh*(1-V2) 

srs(eval_for(is_at(E),bfear),V2) & srs(G(bfear),V1)  

→→ fear(o, (βf - βf *(1-V1)*(1-a3) + (1-βf)*V1*a4)/ (1- βf*(1-V1)*a3 - (1-βf)*V1*a3)),  
where a3 = βf*V2+1-V2-βf*(1-V2), a4 = βf – βf*V2 

here βh is the degree of extraversion (i.e.,  tendency to experience positive emo-
tions) of the agent; βf is the degree of neuroticism (i.e.,  a tendency to experience 
negative emotions) of the agent; G(bhope) is the aggregated preparation to the emo-
tional response (body state) of the agent’s social neighbourhood.  

The social influence on the individual decision making is modelled based on 
the mirroring function [6] of preparation neurons in humans. Such neurons, in the 
context of the neural circuits in which they are embedded, show both a function to 
prepare for certain actions or bodily changes and a function to mirror similar states 
of other persons. This mirroring function in social decision making is realised in 
two forms: (1) by mirroring of emotions, which indicates how emotional re-
sponses in different agents about a decision option mutually affect each other, and 
(2) by mirroring of intentions or action preparations of individuals for a decision 
option. Furthermore, the social influence includes spread of beliefs of agents sup-
porting or prohibiting options (e.g., the belief about the accessibility of an exit).  

The mirroring is realised through information and emotion contagion proc-
esses. The contagion strength of the interaction from agent B to agent A is defined 
as follows: γBA=εB⋅ trust(A, B) ⋅ δA , here εB is the personal characteristic expressive-
ness of the sender (agent B), δA is the personal characteristic openness of the re-
ceiver (agent A). 

Trust is an attitude of an agent towards an information source that determines 
the extent to which information received by the agent from the source influences 
agent’s belief(s). The trust to a source builds up over time based on the agent's ex-
perience with the source. In particular, when the agent has a positive (negative) 
experience with the source, the agent's trust to the source increases (decreases). 
Currently experiences are restricted to information experiences only. An informa-
tion experience with a source is evaluated by comparing the information provided 
by the source with the agent's beliefs about the content of the information pro-
vided. The experience is evaluated as positive (negative), when the information 
provided by the source is confirmed by (disagree with) the agent's beliefs. The fol-
lowing property describes the update of trust of agent A to agent B based on infor-
mation communicated by B to A about the degree of contagion around exit e: 

trust(Ai, Aj, V1) & communicated_from_to(Aj, Ai, congestion(e, V2)) & belief(Ai, congestion(e, 
V3)) →→ trust(i, j, V1+ γtr*(V3/(1 + eα) – V1)), here α=-ω1*(1-|V2-V3|) + 4. 
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According to the Somatic Marker Hypothesis [3], each represented decision op-
tion induces (via an emotional response) a feeling which is used to mark the op-
tion. For example, a strongly positive somatic marker linked to a particular option 
occurs as a strongly positive feeling for that option. To realise the somatic marker 
hypothesis in behavioural chains, emotional influences on the preparation state for 
an action are defined as shown in Fig. 1. Through these connections emotions in-
fluence the agent’s readiness to choose the option.  

4  Experiments and Results 

The model was implemented in the Netlogo simulation tool [14]. In this tool the 
environment is represented by a set of connected cells, where moveable agents 
(turtles) reside. Cells can be walkable (open space and exits) and not-walkable 
(concrete, partitions, walls). Each cell of the environment is accessible from all the 
exits. Based on the conditions (a)-(c) identified in the introduction, three simula-
tion settings S1-S3 were determined (see Table 1, the upper part). To test the hy-
pothesis 4, setting S4 was identified, in which AmI-equipped agents were able to 
propagate information in a large range. Since the model contains stochastic ele-
ments, 10 trials were performed for each simulation setting with 500 agents. 

To evaluate the hypotheses three evaluation metrics were introduced: following 
index (fi), which reflects the degree of following of AmI-equipped agents by other 
agents, change index (ci), reflecting the frequency of group change by agents, and 
group size (gs). As shown below, the metrics are defined per an AmI-enabled 
agent L (i.e, fiL, ciL, gsL) and by taking the mean over all AmI-equipped agents (i.e., 
fi, ci, gs): 

fiL = 1/|N| ⋅ ∑ A∈ N |FA,L|/(t_last - t_firstA), fi = ∑ i∈ LEAD fii/|LEAD|, 

where t_firstA is such that ∃ o1:INFO at(communicated_from_to(L, A, inform, o1), t_firstA) & 

∀ t:TIME, o:INFO t < t_firstA &  ¬at(communicated_from_to(L, A, inform, o), t); N = {a | t_firstA 

is defined}; FA,L = { t | t ≥ t_firstA & ∃ d1,d2: DECISION at(has_preference_for(A, d1), t) & 

at(has_preference_for(L, d2), t) & d1=d2 & at(distance_between(A, L) < dist_threshold, t) }, 
t_last is the time point when L is evacuated, LEAD is the set of all technology-
equipped agents, |LEAD|=10 in all experiments.  

ciL = 1/|N| ∑ A∈ N |SA,L|, ci = ∑ i∈ LEAD cii/|LEAD|, 

where SA,L = { t | (t∈  FA,L & (t+1) ∉  FA,L)  OR ((t+1)∈  FA,L & t ∉  FA,L) }. 

gsL = ∑ t=1..t_last FTL,t/t_last, gs=∑ i∈ LEAD gsL/|LEAD|, 

where FTL,t = { ag | t ≥ t_firstag & ∃ d1,d2: DECISION at(has_preference_for(ag, d1), t) & 

at(has_preference_for(L, d2), t) & d1=d2 & at(distance_between(A, L) < dist_threshold, t) }. 
 
The obtained results are summarised in Table 1 (in the lower part). 
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As one can see from the table, the emergence of groups with AmI equipped agents 
as guiding leaders occurs in all settings (fi > 0), thus, the hypothesis 1 is confirmed. 
The high standard deviation values for fi and gs in S2 indicate that in some trials 
persistent groups emerged, whereas in other trials almost no grouping occurred. 
This is in contrast to the other simulation settings, in which notable grouping be-
haviour emerged in every trial. The highest fi is observed in settings S1 and S4, in 
which the agents were biased positively towards technology.  

 Table 1. The parameters used in the simulation settings S1-S4 (the upper part) and the cor-
responding results for 10 simulation trials for each setting (lower part) 

                                     Simulation setting                      

Parameter      

S1 S2 S3 S4 

Initial trust value to an AmI-enabled agent 0.9 0.1 0.9 0.9 

Initial trust value to an agent without AmI  0.1 0.1 0.1 0.1 

ω1 in the update of trust to an AmI-enabled agent 39 9 9 39 

ω1 in the update of trust to an agent without AmI 9 9 9 9 

Interaction range (in cells) 10 10 10 25 

Evaluation metrics S1 S2 S3 S4 

Mean overall evacuation time  

(standard deviation) 

147.7 

 (10.7) 

174.4 

(16.9) 

150.1 

(9.7) 

170.3 

(21.3) 

Mean following index fi 

(standard deviation) 

0.46 

(0.09) 

0.27 

(0.12) 

0.43 

(0,07) 

0.5 

(0.09) 

Mean change index ci  

(standard deviation) 

0.48 

(0.05) 

0.25 

(0.07) 

0.92 

(0.21) 

0.17 

(0.03) 

Mean group size gs 

(standard deviation) 

26 

(8.7) 

29 

(19.8) 

27 

(8.3) 

81 

(14.2) 

 
Hypothesis 2 is also confirmed, as the fi’s for settings S1 and S3 are significantly 

higher than fi for setting S2. From the comparison of the ci’s for settings S1 and S3 
the confirmation of hypothesis 3 follows. For the hypothesis 4, first it can be ob-
served in table 1 that the groups formed in S4 are in average 3 times larger than 
the groups formed in S1. Note that the only distinction between S1 and S4 is the 
interaction range (penetration rate) of the AmI-enabled agents. Thus, settings S1 
and S4 are adequate for checking hypothesis 4. As can be seen from the table, the 
overall evacuation time for S1 is lower than for S4. Thus, hypothesis 4 is con-
firmed as well. Also, as can be seen from the results, AmI-enabled evacuation 
with relatively small groups (settings S1 and S3) proceeds the fastest. 

5  Conclusions 

Dynamic formation of groups and emergence of leaders have a significant impact 
on the efficiency of evacuation [1]. However, governing principles behind these 
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phenomena in socio-technical systems are not clearly understood. In this paper we 
made the first step towards understanding how AmI technology influences group-
ing behaviour in large-scale socio-technical systems. For this, four hypotheses 
were formulated, a cognitive agent model was developed, and agent-based social 
simulation tools were used to verify the hypotheses. Although the obtained results 
still require empirical validation, some of them correlate well with findings from 
Social Science (cf [1, 13]). Furthermore, the simulation model developed relies 
strongly on a theoretical basis comprising theories from Social Science, Psychol-
ogy and Neuropsychology, many of which were empirically validated. 

Previously, grouping (or herding) behaviour of humans in evacuation was 
modelled using diverse computational techniques [7, 9, 10]. However, this work 
largely ignores the (intelligent) technological component. Also, the human behav-
iour is modelled in a very simplistic way, often using classical contagion models 
or lattice gas principles. 

In the future, in collaboration with social psychologists more realistic mecha-
nisms of emergent leadership (e.g., physiological and behavioural cues) and group 
formation will be integrated in the existing model. 
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