
A prettier printerPhilip WadlerBell Labs, Lucent Technologieswadler@research.bell-labs.comApril 1997, revised March 1998AbstractJohn Hughes has made pretty printers one of the prime demonstrations of using combinatorsto develop a library, and algebra to implement it. This note presents a new design for prettyprinters which improves on Hughes's classic design. The new design is based on a single con-catenation operator which is associative and has a left and right unit. Hughes's design requirestwo separate operators for concatenation, where horizontal concatenation has a right unit butno left unit, and vertical concatenation has neither unit.Joyce Kilmer and most computer scientists agree: there is no poem as lovely as a tree. In ourlove a�air with the tree it is parsed, pattern matched, pruned | and printed. A pretty printeris a tool, often a library of routines, that aids in converting a tree into a text. The text shouldoccupy a minimal number of lines while retaining indentation that reects the underlying tree. Agood pretty printer must strike a balance between ease of use, exibility of format, and optimalityof output.Over many years, John Hughes has re�ned the design of pretty printers to a �ne art.Hughes (1995) describes the evolution of a pretty printer library, where both the design and im-plementation have been honed by an appealing application of algebra. This library has become astandard package, widely used in the �eld. A variant of it was implemented for use in the GlasgowHaskell Compiler by Simon Peyton Jones (1997).This note presents a new pretty printer library, which I believe is an improvement on the onedesigned by Hughes. The new library is based on a single way to concatenate documents, whichis associative and has a left and right unit. This may seem an obvious design, but perhaps itis obvious only in retrospect. Hughes's library has two distinct ways to concatenate documents,horizontal and vertical, with the horizontal composition possessing a right unit but no left unit, andthe vertical composition possessing neither unit. The new library, being more uniform, is slightlyeasier to implement than Hughes's; our �nal version is more e�cient than Hughes's, and about60% as long.However, I come not to bury Hughes but to praise him. The new library was inspired byHughes's previous work and designed using his algebraic approach. Readers familiar with Hughes's1

paper will spot many similarities to this one. Nonetheless, this note assumes no previous familiaritywith pretty printers. A more detailed comparison with Hughes's work is reserved for the end.1 A simple pretty printerTo begin, we consider the simple case where each document has only one possible layout | thatis, no attempt is made to compress structure onto a single line. There are six primitives for thispurpose.(<>) :: Doc -> Doc -> Docnil :: Doctext :: String -> Docline :: Docnest :: Int -> Doc -> Doclayout :: Doc -> StringHere <> is the associative operation that concatenates two documents, which has the empty doc-ument nil as its left and right unit. The function text converts a string to the correspondingdocument, and the document line denotes a line break; we adopt the convention that the stringpassed to text does not contain newline characters, so that line is always used for this purpose.The function nest adds indentation to a document. Finally, the function layout converts a doc-ument to a string. (In practice, one might choose to make (text "\n") behave like line, where"\n" is the string consisting of a single newline.)One simple implementation of simple documents is as strings, with <> as string concatenation,nil as the empty string, text as the identity function, line as the string consisting of a singlenewline, nest i as the function that adds i spaces after each newline (to increase indentation),and layout as the identity function. This implementation is simple, but it is not especially e�cient(nesting examines every character of the nested document) nor does it generalise easily. We willconsider a more algebraic implementation shortly.We will occasionally use the following utility operators.x <+> y = x <> text " " <> yx </> y = x <> line <> yThe �rst is concatenation with an added space, the second is concatenation with an added newline.As an example, here is a simple tree data type, and functions to convert a tree to a document.data Tree = Node String [Tree]showTree (Node s ts) = text s <> nest (length s) (showList ts)2

showList [] = nilshowList ts = text "[" <> nest 1 (showTrees ts) <> text "]"showTrees [t] = showTree tshowTrees (t:ts) = showTree t <> text "," <> line <> showTrees tsThis produces output in the following style.aaa[bbbbb[ccc,dd],eee,ffff[gg,hhh,ii]]Alternatively, here is a variant of the above function.showTree (Node s ts) = text s <> showList tsshowList [] = nilshowList ts = text "[" <>nest 2 (line <> showTrees ts) <>line <> text "]"showTrees [t] = showTree tshowTrees (t:ts) = showTree t <> text "," <> line <> showTrees tsThis now produces output in the following style.aaa[bbbbb[ccc,dd],eee,ffff[gg,hhh,ii]] 3

It is easy to formulate variants to generate yet other styles.Every document can be reduced to a normal form of text alternating with line breaks nestedto a given indentation.text s0 <> nest i1 line <> text s1 <> � � � <> nest ik line <> text skThe following laws are adequate to reduce a document to normal form, taken together with thefact that <> is associative with unit nil.text (s ++ t) = text s <> text ttext "" = nilnest (i+j) x = nest i (nest j x)nest 0 x = xnest i (x <> y) = nest i x <> nest i ynest i nil = nilnest i (text s) = text sAll but the last law come in pairs: each law on a binary operator is paired with a corresponding lawfor its unit. The �rst pair of laws state that text is a homomorphism from string concatenation todocument concatentation. The next pair of laws state that nest is a homomorphism from additionto composition. The pair after that state that nest distributes through concatenation. The lastlaw states that nesting is absorbed by text. In reducing a term to normal form, the �rst four lawsare applied left to right, while the last three are applied right to left.We can also give laws that relate a document to its layout.layout (x <> y) = layout x ++ layout ylayout nil = ""layout (text s) = slayout (nest i line) = '\n' : copy i ' 'The �rst pair of laws state that layout is a homomorphism from document concatention to stringconcatentation. In this sense, layout is the inverse of text, which is precisely what the next lawstates. The �nal law states that the layout of a nested line is a newline followed by one space foreach level of indentation.A simple, but adequate, implementation can be derived directly from the algebra of documents.We represent a document as a concatenation of items, where each item is either a text or a linebreak indented a given amount.data Doc = Nil -- nil| String `Text` Doc -- text s <> x| Int `Line` Doc -- nest i line <> x4

Here Nil represents nil, and (s `Text` x) represents (text s <> x), and (i `Line` x) repre-sents (nest i line <> x).It is then easy to derive representations for each function from the above equations.nil = Niltext s = s `Text` Nilline = 0 `Line` Nil(s `Text` x) <> y = s `Text` (x <> y)(i `Line` x) <> y = i `Line` (x <> y)Nil <> y = ynest i (s `Text` x) = s `Text` nest i xnest i (j `Line` x) = (i+j) `Line` nest i xnest i Nil = Nillayout (s `Text` x) = s ++ layout xlayout (i `Line` x) = '\n' : copy i ' ' ++ layout xlayout Nil = ""For instance, here is the derivation of the �rst line of concatenation.(s `Text` x) <> y= { definition Text }(text s <> x) <> y= { associative <> }text s <> (x <> y)= { definition Text }s `Text` (x <> y)The remaining derivations are equally trivial.2 A pretty printer with alternative layoutsWe now consider documents with multiple possible layouts. Whereas before we could naively viewa document as equivalent to a string, now we should view it as equivalent to a set of strings, eachcorresponding to a di�erent layout of the same document.This extension is achieved by adding a single function.group :: Doc -> Doc 5

Given a document, representing a set of layouts, group returns the set with one new element added,representing the same set with one layout added in which everything is compressed on one line.This is achieved by replacing each newline (and the corresponding indentation) with text consistingof a single space. (Variants might be considered where each newline carries with it the alternatetext it should be replaced by. For instance, some newlines might be replaced by the empty text,others with a single space.)The function layout is replaced by one that chooses the prettiest among a set of layouts. Ittakes as an additional parameter the preferred maximum line width of the chosen layout.pretty :: Int -> Doc -> String(Variants might be considered with additional parameters, for instance a `ribbon width' indicatingthe maximum number of non-indentation characters that should appear on a line.)As an example, here is a revision of the �rst form of the function to convert a tree to a document,which di�ers by the addition of a call to group.showTree (Node s ts) = group (text s <> nest (length s) (showList ts))If the previous document is printed with layout 30, this de�nition produces the following output.aaa[bbbbb[ccc, dd],eee,ffff[gg, hhh, ii]]This �ts trees onto one line where possible, but introduces su�cient line breaks to keep the totalwidth less than 30 characters.To give a formal semantics of the new operations, we add two auxiliary operators.(<|>) :: Doc -> Doc -> Docflatten :: Doc -> DocThe <|> operator forms the union of the two sets of documents. The flatten operator replaceseach line break (and its associated indentation) by a single space; note that sets should be createdin such a way that all documents in the set atten to the same document.Laws extend each operator on simple documents pointwise through union.(x <|> y) <> z = (x <> z) <|> (y <> z)x <> (y <|> z) = (x <> y) <|> (x <> z)nest i (x <|> y) = nest i x <|> nest i ySince attening gives the same result for each element of a set, the distribution law for flatten isa bit simpler.flatten (x <|> y) = flatten x 6

Further laws explain how flatten interacts with other document constructors, the most interestingcase being what happens with line.flatten (x <> y) = flatten x <> flatten yflatten nil = nilflatten (text s) = text sflatten line = text " "flatten (nest i x) = flatten xNow we can de�ne group in terms of flatten and <|>.group x = flatten x <|> xThese laws are adequate to reduce any document to a normal formx1 <|> � � � <|> xn,where each xj is in the normal form for a simple document.An alternative formulation is possible. As it turns out, union is only introduced by grouping,so its left argument is always already attened. Hence, we might replace the law above by thefollowing.flatten (x <|> y) = xHowever, this precludes any more exible use of union to describe alternative layouts, and mea-surements show it improves e�ciency by less than 1%, so we will forego this trick.Next, we need to specify how to choose the best layout among all those in a set. FollowingHughes, we do so by specifying an ordering relation between lines, and extending this lexically toan ordering between documents.The ordering relation depends on the available width. If both lines are shorter than the availablewidth, the longer one is better. If one line �ts in the available width and the other does not, the onethat �ts is better. If both lines are longer than the available width, the shorter one is better. Notethat this ordering relation means that we may sometimes pick a layout where some line exceeds thegiven width, but we will do so only if this is unavoidable. (This is a key di�erence from Hughes, aswe discuss later.)One possible implementation is to consider sets of layouts, where sets are represented by lists,and layouts are represented by strings or by the algebraic representation of the preceding sec-tion. This implementation is hopelessly ine�cient: a hundred choices will produce 2100 possibledocuments.Fortunately, the algebraic speci�cation above leads straightforwardly to a more tractable im-plementation. The new representation is similar to the old, except we add a construct representingthe union of two documents. 7

data Doc = Nil -- nil| String `Text` Doc -- text s <> x| Int `Line` Doc -- nest i line <> x| Doc `Union` Doc -- x <|> yAs an invariant, we require that in (x `Union` y) that all the �rst lines in x are longer than allthe �rst lines in y.To achieve acceptable performance, we will aim to exploit the distributive law,and use the representation (s `Text` (x `Union` y)) in preference to the equivalent((s `Text` x) `Union` (s `Text` y)). For instance, consider the documentgroup (group (group (group (text "hello" <> line <> text "a")<> line <> text "b")<> line <> text "c")<> line <> text "d")This has the following possible layouts:hello a b c hello a b hello a helloc b ac bcIf we are to lay this out with a �eld width of 5, then we must pick the last of these { and wewould like to eliminate the others in one fell swoop. Our best bet for achieving this is to pick arepresentation that brings to the front any common string. For instance, we will aim to representthe above document in the form"hello" `Text` ((" " `Text` x) `Union` (0 `Line` y))for suitable documents x and y. Here "hello" has been factored out of all the layouts in x andy, and " " has been factored out of all the layouts in x. Since "hello" followed by " " occupies6 characters and the line width is 5, one may immediately choose the right operand of `Union`without further examination of x, as desired.The de�nitions of nil, text, line, <>, and nest remain exactly as before, save that <> andnest must be extended to specify how they interact with Union.(x `Union` y) <> z = (x <> z) `Union` (y <> z)nest k (x `Union` y) = nest k x `Union` nest k y8

These lines follow immediately from the distributive laws.De�nitions of group and flatten are easily derived.group Nil = Nilgroup (i `Line` x) = (" " `Text` flatten x) `Union` (i `Line` x)group (s `Text` x) = s `Text` group xgroup (x `Union` y) = group x `Union` yflatten Nil = Nilflatten (i `Line` x) = " " `Text` flatten xflatten (s `Text` x) = s `Text` flatten xflatten (x `Union` y) = flatten xFor instance, here is the derivation of the second line of group.group (i `Line` x)= { definition Line }group (nest i line <> x)= { definition group }flatten (nest i line <> x) <|> (nest i line <> x)= { definition flatten }(text " " <> flatten x) <|> (nest i line <> x)= { definition Text, Union, Line }(" " `Text` flatten x) `Union` (i `Line` x)In the union, each document on the left begins with a space while each document on the rightbegins with a newline, so we have maintained the invariant that �rst lines are longer in the leftoperand of `Union`.The derivation of the third line of group reveals a key point.group (s `Text` x)= { definition Text }group (text s <> x)= { definition group }flatten (text s <> x) <|> (text s <> x)= { definition flatten }(text s <> flatten x) <|> (text s <> x)= { <> distributes through <|> }text s <> (flatten x <|> x)= { definition group }text s <> group x= { definition Text }s `Text` group x 9

Distribution is used to bring together the two instances of text generated by the de�nition ofgroup. As we saw above, this factoring is crucial in e�ciently choosing a representation. The otherlines of group and flatten are also easily derived. The last line of each follows from the invariantthat the two operands of a union both atten to the same document.Next, it is necessary to choose the best among the set of possible layouts. This is done with afunction best, which takes a document that may contain unions, and returns a document containingno unions. A moment's thought reveals that this operation requires two additional parameters: onespeci�es the available width w, and the second speci�es the number of characters k already placedon the current line (including indentation). The code is fairly straightforward.best w k Nil = Nilbest w k (i `Line` x) = i `Line` best w i xbest w k (s `Text` x) = s `Text` best w (k + length s) xbest w k (x `Union` y) = better w n (best w k x) (best w k y)better w k x y = if fits (w-k) x then x else yThe two middle cases adjust the current position: for a newline it is set to the indentation, and fortext it is incremented by the string length. For a union, the better of the best of the two options isselected. (It is essential for e�ciency that the inner computation of best is performed lazily.) Bythe invariant for unions, the �rst line of the left operand must be longer than the �rst line of theright operand. Hence, by the criterion given previously, the �rst operand is preferred if it �ts, andthe second operand otherwise.It is left to determine whether a document's �rst line �ts into w spaces. This is also straight-forward.fits w x | w < 0 = Falsefits w Nil = Truefits w (s `Text` x) = fits (w - length s) xfits w (i `Line` x) = TrueIf the available width is less than zero, then the document cannot �t. Otherwise, if the documentis empty or begins with a newline then it �ts trivially, while if the document begins with text thenit �ts if the remaining document �ts in the remaining space. The case for negative widths is notmerely esoteric, as the code for text may yield a negative width. No case is required for unions,since the function is only applied to the best layout of a set.Finally, to pretty print a document one selects the best layout and converts it to a string.pretty w x = layout (best w 0 x)The code for layout is unchanged from before. 10

3 Improving e�ciencyThe above implementation is tolerably e�cient, but we can do better. It is reasonable to expectthat pretty printing a document should be achievable in time O(s), where s is the size of thedocument (a count of the number of <>, nil, text, nest, and group operations plus the length ofall string arguments to text). Further, the space should be proportional to O(w max d) where wis the width available for printing, and d is the depth of the document (the depth of calls to nestor group).There are two sources of ine�ciency. First, concatenation of documents might pile up to theleft. (� � �((text s0 <> text s1) <> � � �) <> text snAssuming each string has length one, this may require time O(n2) to process, though we mighthope it would take time O(n). Second, even when concatenation associates to the right, nesting ofdocuments adds a layer of processing to increment the indentation of the inner document.nest i0 (text s0 <> nest i1 (text s1 <> � � � <> nest in (text sn)� � �))Again assuming each string has length one, this may require time O(n2) to process, though wemight hope it would take time O(n).A possible �x for the �rst problem is to add an explicit representation for concatenation, and togeneralise each operation to act on a list of concatenated documents. A possible �x for the secondproblem is to add an explicit representation for nesting, and maintain a current indentation whichis incremented as nesting operators are processed. Combining these two �xes suggests generalisingeach operation to work on a list of indentation-document pairs.Here is how the �x acts on the simple documents (with a single possible layout) from the�rst section. The representation is changed so that there is one constructor corresponding toeach operator that builds a document. We use names in all caps to distinguish from the previousrepresentation.data DOC = NIL| DOC :<> DOC| NEST Int DOC| TEXT String| LINEThe operators to build a document are de�ned trivially.nil = NILx <> y = x :<> ynest i x = NEST i xtext s = TEXT sline = LINE 11

Operators will act on a list of indentation-document pairs. The representation function maps theseinto the corresponding document.rep ixs = fold (<>) nil [nest i x | (i,x) <- ixs]A generalised layout operation, lay, is de�ned in terms of the old layout operation and the repre-sentation function.lay = layout . rep (hypothesis)Now it is possible to compute the new layout function from the old. The result is as follows.layout x = lay [(0,x)]lay [] = ""lay ((i,NIL):z) = lay zlay ((i,x:<>y):z) = lay ((i,x):(i,y):z)lay ((i,NEST j x):z) = lay ((i+j,x):z)lay ((i,TEXT s):z) = s ++ lay zlay ((i,LINE):z) = '\n' : copy i ' ' ++ lay zEach line follows by a straightforward computation. Here is the derivation of the �rst line.lay [(0,x)]= { hypothesis, definition rep }layout (nest 0 x <> nil)= { nil is unit for <> }layout (nest 0 x)= { nest homomorphism from addition to composition }layout xHere is the case for :<>.lay ((i,x:<>y):z)= { hypothesis, definition rep, definition :<> }layout (nest i (x <> y) <> rep z)= { nest distributes over <> }layout ((nest i x <> nest i y) <> rep z)= { <> is associative }layout (nest i x <> (nest i y <> rep z))= { definition rep, hypothesis }lay ((i,x):(i,y):z)Here is the case for NEST. 12

lay ((i,NEST j x):z)= { hypothesis, definition rep, definition NEST }layout (nest i (nest j x) <> rep z)= { nest homomorphism from addition to composition }layout (nest (i+j) x <> rep z)= { definition rep, hypothesis }lay ((i+j,x):z)Here is the case for TEXT.lay ((i,TEXT s):z)= { hypothesis, definition rep, definition TEXT }layout (nest i (text s) <> rep z)= { text absorbs nest }layout (text s <> rep z)= { definition layout }s ++ layout (rep z)= { hypothesis }s ++ lay zThe remaining cases are similar.The same �x acts for documents with alternative layouts. The code is collected in Figures 1 and2. Only one function requires generalisation, best. Since best processes a document and choosesthe best layout, its result (and the argument to layout and fits) can be represented exactly as inthe �rst section.4 Comparison with HughesAlgebra Hughes has two fundamentally di�erent concatenation operators. His horizontal con-catenation operator (also written <>) is complex: any nesting on the �rst line of the second operandis cancelled, and all succeeding lines of the second operand must be indented as far as the text on thelast line of the �rst operand. His vertical concatenation operator (written $$) is simpler: it alwaysadds a newline between documents. For a detailed description of the operators, see Hughes (1995).Hughes's operators are both associative, but associate with each other only one way around.That is, of the two equations,x $$ (y <> z) = (x $$ y) <> zx <> (y $$ z) = (x <> y) $$ zthe �rst holds but the second does not. Horizontal concatenation has a left unit, but becausehorizontal composition cancels nesting of its second argument, it is inherently inamicable to a rightunit. Vertical concatenation always adds a newline, so it has neither unit.13

infixr 5 :<|>infixr 6 :<>infixr 6 <>data DOC = NIL| DOC :<> DOC| NEST Int DOC| TEXT String| LINE| DOC :<|> DOCdata Doc = Nil| String `Text` Doc| Int `Line` Docnil = NILx <> y = x :<> ynest i x = NEST i xtext s = TEXT sline = LINEgroup x = flatten x :<|> xflatten NIL = NILflatten (x :<> y) = flatten x :<> flatten yflatten (NEST i x) = NEST i (flatten x)flatten (TEXT s) = TEXT sflatten LINE = TEXT " "flatten (x :<|> y) = flatten xlayout Nil = ""layout (s `Text` x) = s ++ layout xlayout (i `Line` x) = '\n' : copy i ' ' ++ layout xcopy i x = [x | _ <- [1..i]]Figure 1: Pretty printer14

best w k x = be w k [(0,x)]be w k [] = Nilbe w k ((i,NIL):z) = be w k zbe w k ((i,x :<> y):z) = be w k ((i,x):(i,y):z)be w k ((i,NEST j x):z) = be w k ((i+j,x):z)be w k ((i,TEXT s):z) = s `Text` be w (k+length s) zbe w k ((i,LINE):z) = i `Line` be w i zbe w k ((i,x :<|> y):z) = better w k (be w k ((i,x):z)) (be w k ((i,y):z))better w k x y = if fits (w-k) x then x else yfits w x | w < 0 = Falsefits w Nil = Truefits w (s `Text` x) = fits (w - length s) xfits w (i `Line` x) = Truepretty w x = layout (best w 0 x)Figure 2: Pretty printer, continuedIn comparison, here everything is based on a single concatenation operator that is associativeand has both a left and right unit. We can de�ne an analogue of vertical concatenation.x </> y = x <> line <> yIt follows immediately that </> is associative, and that <> and </> associate with each other,though </> has neither unit.Expressiveness Hughes has a sep operator that takes a list of documents and concatenatesthem horizontally with spaces in between if the result �ts on one line, and vertically otherwise. Incontrast, here there is a group operator that �ts a document on one line if possible. For Hughes,some pretty-printers return documents, while others return lists (to be concatenated with otherlists and processed by sep); for us, all pretty-printers return documents.The two approaches encourage di�erent styles. For Hughes, a layout is typically speci�ed by asep operator with an appropriate nesting added to each line. A typical entry might look like this.showExp (Cond e0 e1 e2) = sep [text "if " <> pp e0,nest 2 (text "then " <> pp e1),15

nest 2 (text "else " <> pp e2)]For us, a layout is typically delimited by a single nested group.showExp (Cond e0 e1 e2) = group (nest 2 (text "if " <> pp e0 <> line <>text "then " <> pp e1 <> line <>text "else " <> pp e2))Although the styles are slightly di�erent, it seems equally easy to use either format.However, there are some layouts that are easy for Hughes but hard or impossible for us, andvice versa. For instance, the �rst form of showTree we gave in this paper is easier for Hughes,since horizontal concatenation will compute the amount by which to nest; while the second form isharder for Hughes, since it requires restructuring the program to combine showTree and showList,and showTrees must return a list of documents to be combined with the sep combinator.Further, there are some layouts that Hughes can express but we cannot. It is not clear whetherthese layouts are actually useful in practice, but it is clear that they impose di�culties for Hughesin choosing where to place line breaks, as discussed next.Optimality Say that a pretty printing algorithm is optimal if it chooses line breaks so as to avoidoverow whenever possible; say that it is bounded if it can make this choice after looking at nomore than the next w characters, where w is the line width.Hughes notes that there is no algorithm to choose line breaks for his combinators that is bothoptimal and bounded. Here is his example.sep [text "a", text "b"] <> (text "c" $$text "d" $$text "e" $$text "f" $$text "g" $$text "hijklmnop")This has two possible layouts.a bc ad bce df eghijklmnop fghijklmnopTo print in a line of width twelve, the second layout must be chosen. Since the vertical segmentcould be arbitrarily long, optimality requires unbounded lookahead. To avoid arbitrary lookahead,16

Hughes uses a heuristic algorithm that occasionally overruns a line when this might have beenavoided.In contrast, the pretty-printing algorithm presented here is optimal and bounded. This ispossible because the combinators are less expressive, as the indentation of a line does not dependon the layout chosen for the previous lines.Derivation Hughes derives his pretty-printer by an application of algebra, and his work inspiredthe approach taken here.However, Hughes derivations is more complex than ours. For Hughes, not every document setcontains a at alternative (one without a newline), and sep o�ers a at alternative only if eachcomponent documents has a at alternative. As a result, Hughes must treat empty document setsspecially. Hughes requires code sequences that apply negative nesting, to unindent code when thescope of nesting introduced by horizontal concatenation is exited. No empty document sets ornegative indentations are required here. The �nal code given here is more e�cient than that ofHughes, and about 60% as long.Oppen (1980) describes a pretty-printer with similar capabilities to the one described here.Like the algorithm given here, it is optimal and bounded: line breaks are chosen to avoid overowwhenever possible, and lookahead is limited to the width of one line. Oppen's algorithm is based ona bu�er, and can be fairly tricky to implement. My �rst attempt at implementing the combinatorsdescribed here used a bu�er in a similar way to Oppen, and was quite complex. This paper presentsmy second attempt, which uses algebra as inspired by Hughes, and is much simpler.So three cheers for Hughes! His algebraic approach works.Acknowledgements I thank John Hughes, Simon Peyton Jones, Je�rey Lewis, and Daniel J. P.Leijen for comments on earlier versions of this note.References[1] Hug95 Hughes, J. 1995. The design of a pretty-printer library. In J. Jeuring and E. Meijer,editors, Advanced Functional Programming, Springer Verlag LNCS 925.[2] Opp80 Oppen, D. 1980. Pretty-printing. ACM Transactions on Programming Languagesand Systems, 2(4).[3] Pey97 Peyton Jones, S. L. 1997. Haskell pretty-printer library. Available athttp://www.cse.ogi.edu/~simonpj/.
17

