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Preface

Mesoscopic physics has emerged as a new, interdisciplinary field combining
concepts of atomic, molecular, cluster, and condensed-matter physics. On
the one hand mesoscopic systems represent an important class of electronic
devices in the rapidly growing fields of micro- and nano-physics. Quantum
interference effects in these small, low-dimensional electronic systems have led
to various novel physical phenomena. On the other hand mesoscopic physics
has posed conceptually new questions to theory. These systems are usually too
complex to treat starting from microscopic models. Moreover, they often show
features of coherent quantum mechanics combined with statistical properties
and classical chaos. Hence mesoscopics has developed into a prominent field
of application of quantum chaos.

This book combines both mesoscopics and quantum chaos. This connec-
tion between mesoscopic quantum phenomena and classical dynamics is nat-
urally achieved in the framework of advanced semiclassical methods. The
purpose of this book is on the one hand to present basic concepts of modern
semiclassical theory. On the other hand emphasis is put on the further de-
velopment and adaption of these concepts to current problems in mesoscopic
physics. In particular, the presentation is guided by the aim of demonstrating
that semiclassical theory not only includes very suitable and inherent con-
cepts for dealing with general problems of quantum chaos but also provides
powerful tools to quantitatively compute mesoscopic quantities.

The book begins with an introductory chapter on modern semiclassical
concepts in the context of mesoscopic physics. The formalism developed there
serves as a platform for current research topics in mesoscopics. On the basis
of the semiclassical representation of Green functions, semiclassical trace for-
mulas in terms of classical phase-carrying (periodic) orbits are presented for
mesoscopic spectral, thermodynamic, and transport quantities. In Chap. 3
semiclassical concepts for ballistic quantum transport through both phase-
coherent microstructures and macroscopic patterned systems are reviewed.
As examples, conductance in semiconductor billiards and magnetotransport
in antidot lattices are treated and are compared with related experiments.

The semiclassical approach naturally provides a decomposition of meso-
scopic quantities into a dominant, smooth classical part and additional quan-
tum oscillations reflecting interference effects due to the confinement. Such
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quantum size effects are inherent in the orbital magnetism of mesoscopic
systems, since there exists no classical counterpart. The geometrical effects
on orbital magnetism are reviewed in detail on the level of both individual
samples and ensembles. Furthermore, weak-disorder effects in quantum dots
are discussed, and a semiclassical way to treat the crossover from ballistic to
diffusive dynamics is outlined. Finally a semiclassical approach to electron–
electron interaction effects on orbital magnetism is presented.

This book grew out of my Habilitation thesis at the University of Augs-
burg. Thus the selection of topics and the particular emphasis put on semi-
classical concepts certainly reflect my working experience. I did not attempt
to achieve a complete and fully balanced account of semiclassical approaches
in mesoscopic physics but tried at least to mention further relevant work
whenever appropriate. This also implies that several topics of the more gen-
eral field of quantum chaos, with its overwhelming literature of the last
decade, are not or are only briefly discussed.

In carrying out the research in this area I have benefited from a long and
continuous collaboration with Rodolfo Jalabert and Denis Ullmo, which con-
stitutes the basis of large parts of the present work. I further acknowledge
fruitful collaboration with Harold Baranger, Ed McCann, Bernhard Mehlig,
and Felix von Oppen on the theoretical side and Dieter Weiss on the experi-
mental side during different stages of the work. Furthermore, I am grateful to
many friends and colleagues for valuable and helpful conversations. I would
like to thank Ulrike Goudschaal, Ed McCann, and Jens Nöckel for carefully
reading major parts of the manuscript.

I am particularly indebted to Oriol Bohigas, Peter Fulde, Peter Hänggi,
and Gert-Ludwig Ingold for their continuous support, numerous helpful dis-
cussions, and interest in the work. Moreover, I would like to thank all mem-
bers of the Division de Physique Théorique at the IPN in Orsay, of the The-
oretische Physik I+II at the University of Augsburg, and of the Max-Planck-
Institut für Physik komplexer Systeme in Dresden for creating a friendly and
stimulating atmosphere where research has been fun.

Finally I would like to thank Ms. Ute Heuser, Dr. Hans J. Kölsch, and
Mrs. Jacqueline Lenz at Springer-Verlag for their help, patience, and co-
operation. I acknowledge partial financial support from the Alexander von
Humboldt Foundation and the DAAD through the PROCOPE programme.

Dresden, August 1999 Klaus Richter
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1. Introduction

During the last two decades mesoscopic physics has evolved into a rapidly
progressing and exciting interdisciplinary field of physics. Mesoscopic elec-
tronic systems build a bridge between microscopic objects such as atoms on
the one side and macroscopic, traditional condensed-matter systems on the
other side.1 These structures, which are less than or of the order of a micron
in size, represent a challenge to experimentalists, since they demand elabo-
rate fabrication processes and involve delicate measurements. The motivation
for theoreticians is not any smaller, because, on the one hand, the approaches
employed for systems on macroscopic scales no longer apply or at least need
refinement. On the other hand, mesoscopic structures are often too large
and complex to treat them starting from a microscopic model. Moreover, as
originally motivated by experiment, not only individual systems but also the
response of a whole ensemble of similar systems is of interest. This has di-
rected theoretical activities towards considerations of average quantities and
their statistical properties.

Mesoscopic devices frequently exhibit both classical, though peculiar,
remnants of bulk features, and quantum signatures. At low temperature, the
coherence of the electron wavefunctions is retained over micron scales and
hence may extend over the whole system. Thus mesoscopic behavior calls for
new theoretical methods which combine statistical concepts and assumptions
on the one hand with tools to treat coherent quantum mechanics on the other
hand.

Examples of systems whose behavior can be classified generally as meso-
scopic are found in diverse fields of physics: in nuclear scattering processes,
strongly perturbed Rydberg atoms, polyatomic molecules, “quantum cor-
rals”, acoustic waves, microwaves and optical radiation in cavities, clusters,
and electrons in small metallic particles or semiconductors of reduced di-
mensionality. The latter, mesoscopic electronic devices, will be the focus of
application of the theoretical concepts presented in this book.

The emergence of quantum interference in these structures has given rise
to a variety of novel, often surprising effects: universal conductance fluctua-

1 For an overview showing the shrinkage of electronic components from the tran-
sistor to one-atom point contacts see [1].
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tions in disordered samples,quantized conductance2 and force oscillations [4]
in microjunctions, persistent currents in rings,3 weak localization,4 and other
Aharonov–Bohm-like effects, to name a few. These quantum phenomena con-
stitute the heart of mesoscopic physics.5

Initially, disordered metals were the focus of interest in mesoscopics.
The advent of high-mobility semiconductor heterostructures, the basis of
the physics of two-dimensional electron gases, and advances in lithographic
techniques have allowed the confinement of electrons in nanostructures of
controllable geometry. These rather clean systems, where impurity scattering
is strongly reduced, have been termed ballistic since scattering comes from
specular reflection on the boundary.

The wide range of experimentally accessible systems – metal and semi-
conductor, disordered and ballistic, normal and superconducting – have made
mesoscopic physics an interface between apparently different theoretical ap-
proaches.

There are, on the one hand, methods which have been especially de-
signed to deal with random potentials in disordered metals. Traditionally,
diagrammatic perturbation theory in a random potential has been a very
useful tool [2]. During the last decade, powerful nonperturbative methods,
in particular the supersymmetry method [8, 21], have attracted considerable
interest and have been applied to a large number of different problems in
mesoscopics.

On the other hand, approaches dealing with quantum chaos have been
directed towards mesoscopic physics, since these methods appear promising
for combining statistical concepts with quantum coherence. Moreover, phase-
coherent ballistic nanostructures can be regarded as ideal laboratories for
investigating chaos in quantum systems. Quantum chaos, as a novel discipline,
devotes itself to the relation between classical and quantum mechanics; in
particular, the question of how classical chaotic behavior is reflected on the
level of the corresponding quantum system. Billiards have traditionally served
as prominent model systems in quantum chaos: they combine conceptual
simplicity – the model of a free particle in a box – with complexity with
regard to the character of the classical dynamics and to features of the spectra
and wavefunctions. Hence, the possibility of realizing such quantum billiards
in microconductors has been fascinating and has opened a whole branch of
research.

2 For reviews on transport in disordered systems see e.g. [2]; for a review with the
main focus on ballistic systems see [3].

3 For a historical account of persistent currents see e.g. [5].
4 For reviews of weak localization in disordered systems see e.g. [6]; for a semiclas-

sical approach to weak localization see [7].
5 For a number of books, general reviews, and recent special issues on mesoscopic

physics see [3, 8–20].
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Originally, two main approaches to quantum chaos could be distinguished:
random-matrix theory and semiclassical techniques. Random-matrix theory6

has been developed and proved very powerful for complex systems where the
a priori knowledge of the Hamiltonian is rather limited.

Semiclassical techniques [26–30] probably allow one to combine classical
and quantum mechanics in the most direct way. Modern semiclassical theory7

is based on the trace formulas introduced by Gutzwiller for chaotic systems
and by Berry and Tabor, as well as Balian and Bloch, for the integrable case.
Semiclassical trace formulas are sums over Fourier-like components associated
with classical paths and establish a connection between quantum objects such
as the spectral density and pure classical terms such as the action along the
orbits and stability amplitudes. Since the actions enter as phases, interference
effects are introduced.

More than ten years ago, the semiclassical branch of quantum chaos began
to receive considerable attention, first in atomic and molecular physics, when
semiclassical Fourier techniques allowed one to unveil signatures of classical
periodic orbits in the photoabsorption of Rydberg atoms [32]. In addition
to the semiclassical analysis of experimental or quantum spectra, which has
evolved into a frequently employed tool for understanding complex spectra,
it has become a challenge to synthesize quantum spectra and compute indi-
vidual energy levels on the basis of trace formulas and pure classical entities.
This task implies, for chaotic systems, that one has to overcome the conver-
gence problems of trace formulas, and it has directed interest to the question
of proper resummation techniques for trace formulas of model systems [33,34]
and highly excited atomic systems [35,36]. Though considerable progress has
been made in dealing with trace formulas for chaotic systems, a systematic
and precise semiclassical computation of energy levels remains an open prob-
lem. Related problems appear on the level of energy-level correlators when
considering energy scales of the order of the mean level spacing ∆.

With the development of ballistic microstructures mesoscopic physics has
emerged as a novel field of application of semiclassical methods. Ballistic
microstructures are particularly suitable for mesoscopic systems for the fol-
lowing reasons:

(i) The Fermi wavelength λF, which is, for example, of the order of 40 nm
in GaAs heterostructures, is usually the shortest length scale. It is, in
particular, much shorter than the typical system size a, if we exclude
the extreme limit of few-electron quantum dots, so-called artificial atoms
[37]. In other words, the action functionals of the relevant classical paths
are considerably larger than h̄. Both criteria justify the application of

6 For books on random-matrix theory, see e.g. [22]; for comprehensive reviews
of random-matrix theory see [23, 24] and, with respect to mesoscopic quantum
transport, [25].

7 See [31] for a broad overview of this subject with about 400 annotated references,
as well as the reprint book from the same reference.
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semiclassical approximations and, at the same time, render numerical
quantum calculations difficult, since one has to deal with highly excited,
complicated wavefunctions in a single-particle picture.

(ii) Mesoscopic systems are influenced by various effects such as temperature,
(weak) disorder, and electron–electron and electron–phonon interaction
which introduce further characteristic length scales: the thermal length
LT = h̄vFβ/π (vF is the Fermi velocity and β = 1/kBT ), the elastic mean
free path l with respect to impurity scattering, and the phase-coherence
length ℓφ which accounts for inelastic processes.
In terms of energy scales, the microscopic quantum limit is reached for
kBT < ∆, where the temperature is low enough to enable the resolution of
individual levels (assuming quantum coherence, ℓφ ≫ a). The opposite,
macroscopic limit is reached if LT < a or kBT > Ec = h̄vF/a. For
ballistic systems, Ec is the energy conjugate to the time of flight through
the system. It represents the largest energy scale in the spectral density
arising from the finite system size. Hence, we can speak of the mesoscopic
regime if ∆ < kBT < Ec [38]. Therefore, for the study of thermodynamic
spectral quantities and certain aspects of transport properties it is often
not necessary to compute the spectral properties on scales below ∆. This
favors semiclassical methods, since trace formulas introduce a hierarchy of
energy scales according to spectral modulations related to classical paths
of different length. The shortest (periodic) paths give rise to structure in
the density of states on scales of Ec; the maximum path length included
governs the spectral resolution. Indeed, for some of the applications to
be discussed in this book only a few fundamental orbits are sufficient to
describe the essential physics.

(iii) As already mentioned, ballistic mesoscopic systems are ideal tools to
study the connection between classical dynamics and wave interference
phenomena. In particular, it has turned out that the quantum properties
of classically chaotic structures are often quite different from those of
regular, nonchaotic systems. In most cases, these differences have been
discussed for the density of states or, as in atomic physics, for photoab-
sorption. The spectral density of mesoscopic devices is usually not di-
rectly accessible, and hence other quantum quantities such as orbital
magnetism and quantum transport through open systems move into the
focus. One prominent area is phase-coherent transport through ballis-
tic cavities, where the quantum conductance can be related to classical
(chaotic) scattering of the electrons.8

The generic character of chaotic systems allows one to characterize quan-
tum corrections to averaged quantities by a single scale, whereas integrable

8 For reviews of ballistic quantum transport, including semiclassical aspects, see
[40,41,43]. Classical and quantum mechanical scattering, as well as a semiclassical
approach to the S-matrix, were reviewed by Smilansky in [12, 28], and are the
topics of [39].
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dynamics is usually reflected in a less uniform, system-specific behavior. Fur-
thermore, differences between regular and chaotic dynamics manifest them-
selves on the quantum level in a different dependence on h̄, which translates
into a parametric difference in the magnitudes of the corresponding quantum
features. We shall consider this point particularly in the context of orbital
magnetism [45]. Owing to the absence of a classical magnetic moment, differ-
ences in the quantum corrections are not masked by an additional classical
contribution (usually dominant in other cases).

Mesoscopic physics has intensified the interrelationships between the three
major theoretical frameworks in the context of quantum chaos and has
brought them closer together: supersymmetry techniques [8], random-matrix
theory, and semiclassics. For disordered systems, the equivalence between
random-matrix theory and the zero-dimensional σ model, deduced from su-
persymmetry, has already been known for some time. More recently, super-
symmetry models have also been extended to ballistic chaotic systems [46–48].
By associating the diffusion operator of disordered systems with the Perron–
Frobenius operator of general chaotic systems, level-density correlators of the
latter could be determined. It was argued [48], moreover, that the Bohigas–
Giannoni–Schmit conjecture, stating that in the classical limit the statistical
spectral properties of chaotic systems coincide with random-matrix theory,
has been proved using a new semiclassical field theory. This issue is still under
intense discussion and is not yet settled but shows the apparent convergence
of the different theoretical approaches.

1.1 A Few Examples

Before we enter into semiclassical theory we shall illustrate different facets of
electronic mesoscopic quantum phenomena with the help of a few examples.
The first two concern charge transport in high-mobility semiconductor het-
erostructures, namely experiments on “antidot crystals” and quantum dot bil-
liards, where quantum effects in the measured conductance exhibit signatures
of chaotic classical orbits. The third example represents mesoscopic enhance-
ment of orbital magnetism in ballistic quantum dots. It is followed by a semi-
classical analysis of the spectral properties of semiconductor–superconductor
structures, elucidating the role of classical dynamics in the formation of a
proximity gap in the density of states of the normal-conducting quantum
dot. We close the list of examples with a quantum–experimental comparison
of surface electron waves confined in Cu-“quantum corrals”.

1.1.1 Antidot Superlattices

The role of classical periodic orbits in the context of mesoscopic conductivity
has become evident in experiments on so-called antidot superlattices. These
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structures consist of a periodic array of nanometer-sized holes etched into
semiconductor sandwich structures. This procedure, shown in Figs. 1.1a,c,
results in a periodic potential landscape for the two-dimensional electron gas
(2DEG) at the interface of the heterojunction. The effective potential looks
similar to an egg carton (Fig. 1.1b). The electrons move at a constant Fermi
energy in between the periodically arranged potential posts. If the antidots
are steep, a unit cell of the antidot crystal may be regarded as an experimental
realization of the Sinai billiard, one of the most prominent systems used for
the theoretical investigation of classical and quantum chaos.

Fig. 1.1. Sketch of an array of periodically arranged holes etched into a hetero-
junction (a) and of the corresponding electrostatic antidot potential landscape (b)
probed by the conduction electrons in the 2DEG. (c) The electron micrograph dis-
plays the periodically arranged holes on top of the heterojunction as well as their
profile at a cleaved edge of the device. (From [52], by permission)

Such artificial lattices open up the possibility to investigate electrical
transport in an interesting regime, not accessible previously: the elastic mean
free path (MFP) l and the transport MFP9 lT are both considerably larger
(∼2–20 µm) than the lattice constant a. On the other hand, the Fermi wave-
length λF ∼ 40 nm is smaller than a. Hence, an antidot array can be con-
sidered as an artificial two-dimensional crystal with semiclassical electron
dynamics. Since λF is by far the shortest length scale in the system, semi-
classical transport approaches are justified.

The combined potential of the superlattice and an external magnetic field
B gives rise to a variety of peculiar phenomena which will be discussed in

9 This denotes the distance over which the electron momentum is randomized (see
Chap. 5 and Appendix A.3).
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Fig. 1.2. (a) Diagonal resistivity ρxx measured in the patterned (top curves) and
unpatterned (bottom curve) segment of the same sample for T = 0.4 K (solid lines)
and 4.7 K (dashed line). At low B and T = 0.4 K, the quantum oscillations discov-
ered for the antidot lattice are B-periodic, contrary to the usual Shubnikov–de Haas
oscillations of the unpatterned sample, which scale with 1/B. Left inset: ρxx(B) for
the antidot lattice up to 10 T. At high field, the emergence of Shubnikov–de Haas
oscillations reflects the quantization of essentially unperturbed cyclotron orbits. (b)
The triangles mark all 1/B positions of the ρxx minima. At high B the resistance
minima lie equidistant on the 1/B scale; at low B the spacing becomes periodic

in B. The solid, dashed and dotted lines are calculated reduced actions S̃(1/B) of
orbits (a), ( b), and (c), respectively. These orbits are shown for 1/B = 0.6 T−1

(top) and 1/B = 2.7 T−1 (bottom inset). (From [51], by permission; c©1993 by the
American Physical Society)

more detail in Sect. 3.1. Here we focus on measurements of the magneto-
resistivity at low temperature.

In Fig. 1.2a, the diagonal resistivities, ρxx(B), from both patterned and
unpatterned segments of the same sample, are compared. The upper curves
show ρxx(B) for the antidot pattern. ρxx(B) displays clear oscillations [51],
superimposed upon a broad resistivity peak (dashed line) which persists up
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to high temperature and can be explained within a classical resistivity model.
The temperature sensitivity of these oscillations – they are smeared out at
4.7 K – suggests that they are of a quantum nature. In the unpatterned part,
1/B-periodic Shubnikov–de Haas (SdH) oscillations reflect the Landau energy
spectrum of the two-dimensional bulk electron gas (bottom curve, shown on
a magnified scale × 25). The oscillations in the antidot segment reveal a quite
different behavior: they are B-periodic with a period corresponding to the
addition of approximately one flux quantum through the antidot unit cell.

Assuming that ρxx reflects density-of-state oscillations,10 the observed pe-
riodicity of these modulations could be semiclassically ascribed to quantized
periodic orbits [50, 51] of electrons in the antidot landscape. An analysis on
the basis of the Gutzwiller trace formula for the density of states, (2.27),
shows that under the conditions of the antidot experiment (temperature and
impurity broadening) only a few fundamental orbits play an essential role.
They are depicted in the two insets of Fig. 1.2b at different magnetic field.
The B dependence of the ρxx oscillations can be understood from the B
dependence of the (quantized) classical actions of these periodic orbits,

Spo(B) =

∮

(

m∗v +
e

c
A
)

dr = m∗

∮

vdr − e

c
BApo(B) . (1.1)

Here BApo(B) denotes the enclosed flux through a periodic orbit. For unper-
turbed cyclotron motion Apo(B) = πR2

c scales with 1/B2, and 1/B-periodic
resistance oscillations result. In an antidot lattice the orbits cannot expand
freely with decreasing field. To a first approximation the area enclosed by the
orbits (b) and (c) shown in the lower right inset of Fig. 1.2b remains constant,
Apo ∼ a2, causing the B-periodic oscillations with B ≈ h/ea2 displayed in
Fig. 1.2a. The triangles in Fig. 1.2b, which mark all 1/B positions of the
measured ρxx minima, lie exactly on curves representing the (reduced [51])
actions of the periodic orbits shown.

In Sect. 3.1 we shall give a quantitative description and a refined picture
based on a semiclassical approach to the Kubo transport theory. There we
shall see that the simple picture, invoked above, highlighting the role of a few
periodic orbits, is essentially correct.

1.1.2 Ballistic Weak Localization in Electron Billiards

The second example deals with charge transport through phase-coherent
quantum dots based on high-mobility semiconductor microstructures such
as that displayed in Fig. 1.3. The resistance in a two-probe measurement for
such a device is dominantly due to reflections of electrons at the walls of the
confinement potential: the transport can be considered as ballistic. Depend-
ing on the size of the connections to the quantum dot, its spectrum ranges

10 This may be inferred from the Shubnikov–de Haas oscillations of the pure 2DEG,
which show a similar temperature dependence and mirror the Landau-level den-
sity of states at moderate fields [49].
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from isolated resonances for small coupling to the exterior up to a regime of
strongly overlapping resonant features, known as Ericson fluctuations in the
context of nuclear physics [53].

Fig. 1.3. A lateral quantum dot made by confining electrons at a two-dimensional
interface between GaAs and AlGaAs by additional negatively charged surface gates
(light regions). The right figure shows a micrograph of such an electron billiard where
depletion around the gates (light regions) allows electrons to pass in and out of the
dot only through the two left leads (from [54], by permission)

In an initial key experiment Marcus and Westervelt probed such Ericson
fluctuations by measuring the related ballistic conductance fluctuations in
electron billiards with the shape of a circle and of a stadium, the arena for
chaotic dynamics [55].

Here, we focus on the weak-localization effect, a quantum enhancement of
the average magnetoresistance at small magnetic field. As originally proposed
by Baranger, Jalabert, and Stone [42,56], signatures of classical dynamics in
electron billiards should be observable in quantum properties of the conduc-
tance, e.g. in weak-localization line shapes when displayed as a function of
the magnetic field. Baranger et al. developed a semiclassical approach to the
Landauer formalism, which connects the apparently macroscopic concept of
conductance with microscopic scattering theory.

Semiclassically, the quantum transmission coefficient determining the cur-
rent through a quantum dot can thereby be expressed through sums over
pairs of phase-carrying trajectories. Constructive interference of an incoming
path which is scattered from the cavity walls back to the entrance with its
time-reversed partner contributes to the weak-localization enhancement of
the resistance at zero magnetic field. A magnetic field leads to a dephasing of
backscattered interfering waves traveling along time-reversed paths because
the flux enclosed and hence the Aharonov-Bohm-type phases are of opposite
sign.

The behavior of long multiply reflected trajectories and hence the mech-
anisms of accumulating flux differ for regular and generic chaotic geometries,
as will be discussed in Sect. 3.2.3. Invoking such different classical dynamics,
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semiclassical transport theory predicts a universal Lorentzian line shape of
the average resistance around B = 0 for geometries with pure chaotic classi-
cal dynamics. For integrable geometries the line shape is system-specific. For
a circular billiard a linear decrease of the average resistance is expected.

In a further key experiment, Chang et al. [44] could indeed verify these
predictions [56] by measuring the averaged resistance for ensembles of circular
and stadium-type quantum dots. Their results are depicted in Fig. 1.4. The
experiment of Chang et al. distinguishes between regular and chaotic quan-
tum dots and shows in an impressive way the imprint of classical dynamics
on a measured quantum effect.

Fig. 1.4. Measured magnetoresistance of an ensemble of stadium-shaped (top)
and circular (bottom) quantum dots. The different line shapes, Lorentzian for the
stadium, linear for the circle, reflect the different classical electron dynamics. (From
[44], by permission; c©1994 by the American Physical Society)

We see that semiconductor microstructures have become appropriate tools
for the experimental study of scattering properties of integrable and chaotic
systems. However, though semiclassics has provided the means to analyze and
interpret the weak-localization line shapes, a full, quantitative semiclassical
account of the quantum corrections to the conductance of ballistic systems is



1.1 A Few Examples 11

still lacking (see Sect. 3.3). Ballistic weak localization remains as a paradigm
of modern semiclassical theory.

1.1.3 Mesoscopic Orbital Magnetism

Quantum phenomena are particularly spectacular in the case of orbital mag-
netism in the mesoscopic regime. On the one hand, according to the Bohr–
van Leeuwen theorem, there exists no classical orbital magnetism which could
mask quantum corrections. On the other hand, the Landau diamagnetism of
a bulk electron gas is tiny. Hence one can expect clear and pronounced meso-
scopic quantum effects due to the confinement potential in quantum dots.
Nevertheless the orbital magnetic response of a quantum dot remains small
in magnitude and has challenged experimentalists to combine SQUID tech-
nology (to measure the magnetic behavior) with microstructure fabrication.
In this respect, the experiment by Lévy et al. [57], measuring the averaged
response of an ensemble of square quantum dots, can be regarded as a mile-
stone. Its main result, namely the enhanced magnetic susceptibility at small
magnetic field, is shown in Fig. 1.5. The experiment tells us that after par-
titioning a bulk 2DEG into an array of about 105 independent disconnected
squares, the orbital magnetism switches from the small diamagnetic Landau
bulk susceptibility to a paramagnetic response showing a drastic enhancement
by about a factor of 100!

Fig. 1.5. Measured orbital magnetic susceptibility as a function of magnetic field
for an ensemble of ∼ 105 square-shaped quantum dots with a mean size of 4 µm.
The dotted and dashed lines are empirical fits (from [57], by permission)

This experiment is comparable with the weak-localization measurements
above in so far as one detects a quantum mechanical enhancement of an
averaged quantity at zero magnetic field which decays on a magnetic-field
scale corresponding to approximately one flux quantum through the system.
While the weak localization can be understood in terms of long classical
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trajectories, the enhanced magnetism for the integrable squares is mainly due
to families of short flux-enclosing classical trajectories. However, an adequate
theoretical understanding of the experimental observations requires not only
a uniform semiclassical treatment of the dynamics in a billiard model, but
also the inclusion of disorder and interaction effects. The corresponding
semiclassical tools will be provided in Chaps. 4–6.

1.1.4 Andreev Billiards

As was illustrated above, measurements of the average conductance or mag-
netism can probe chaos in ballistic quantum devices. However, the mean den-
sity of states itself may also serve as an indicator of regular or irregular classi-
cal motion. As suggested by Beenakker and coworkers, this can be achieved by
bringing a normal-conducting mesoscopic device like a semiconductor billiard
into contact with a superconductor [58]. Such normal–superconducting hybrid
structures have recently attracted attention as a new system in which quan-
tum chaos can operate [25,59–62]. They were coined “Andreev billiards” [59]
because the ballistic motion is modified owing to Andreev reflection at the in-
terface with the superconductor. The proximity of the superconductor alters
the density of quasiparticle states d(E) of the normal conductor: it causes a
depletion of excited states close above the Fermi energy known as the prox-
imity effect. Beenakker et al. showed that a chaotic quantum dot, coupled
to a superconductor via a ballistic point contact, exhibits a pronounced gap,
whereas for an integrable rectangular structure the averaged density of states
increases linearly without a gap above the Fermi energy.

This behavior is illustrated in Fig. 1.6. The left panel shows the mean
density of states above the Fermi level, E = 0, for an Andreev billiard with
rough boundaries (as sketched in the inset) which give rise to ergodic mo-
tion. The right panel shows the level density of a rectangular billiard with
straight walls. The circles and full lines are results from numerical quantum
mechanical calculations [62]. The difference in d(E) for the two systems at
small quasiparticle excitations is evident. It clearly allows one to distinguish
chaotic and regular geometries.

Again semiclassics provides an explanation of this peculiar behavior.
Semiclassically, the proximity effect arises from the unusual classical dynam-
ics of paths which hit the interface between the superconductor and the
quantum billiard. Such trajectories undergo specular reflection at the normal
boundaries and Andreev reflection at the interface: the incoming electron-
like quasiparticle is converted to a hole which is retroreflected and travels
back along the path of the electron (see inset of Fig. 1.6). The density of
states can be expressed in terms of distributions of path lengths P (L) of
Andreev-reflected orbits through a Bohr–Sommerfeld-type expression [58]

d(E) ≃ 2w

A∆

∫ ∞

0

dL P (L)L

∞
∑

n=0

δ

[

EL

h̄vF
−
(
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1

2

)

π

]

. (1.2)
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Fig. 1.6. Averaged density of states of a normal-conducting billiard (N) coupled
to a superconductor (S in inset). The density of states is reduced close to the Fermi
energy, E =0, owing to the proximity effect. A chaotic Andreev billiard exhibits a
pronounced gap (left panel for the case of a billiard with rough walls as sketched in
the inset), while a rectangular billiard, representing integrable geometries, shows a
linear increase of the density of states at the Fermi level (right panel). Quantum
mechanical results (circles, and solid lines after averaging) are compared with a
semiclassical prediction based on (1.2) (dashed lines). The energy is in units of
ET = h̄vFw/2πA, where A is the billiard area and w the length of the interface
with the superconductor. (Adapted from [62])

Here w is the length of the interface, A is the area of the billiard, and ∆ the
mean level spacing. Equation (1.2) holds for energies well below the excitation
gap of the bulk superconductor, which is much larger than the energy scale
ET = h̄vFw/2πA in Fig. 1.6. Equation (1.2) can be derived either from the
Eilenberger equation [61] or in the framework of a semiclassical S-matrix
approach using the so-called diagonal approximation [62].

Different length distributions for regular and chaotic geometries lead to
the evident differences in the depletion of d(E). For the rough Andreev bil-
liard with ergodic dynamics, P (L) decreases exponentially, giving rise to an
exponentially increasing d(E) and the formation of a pseudogap. The rec-
tangular billiard exhibits a power-law length distribution for large L. Hence
the relatively large number of long orbits generates a linear increase in d(E).
The dashed curves in Fig. 1.6 show the corresponding semiclassical results,
which agree fairly well with the averaged quantal values.

Summarizing, superconductor–semiconductor hybrid structures provide a
new field for quantum chaos. These ideas open up the possibility, in principle,
of measuring chaos in a small conductor by probing it from the outside with
a superconducting tip.

1.1.5 Quantum Corrals

As the examples above have shown, information on quantum states in con-
fined microdevices is usually gained only indirectly, e.g. by measuring mag-
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netic or electric properties or statistical averages of these quantities; charge
densities of electronic wavefunctions are commonly not directly accessible. As
a last introductory example, where the latter is indeed achieved, we present
the quantum corrals of Crommie, Lutz, and Eigler [63], another fascinating
example of “quantum engineering” in mesoscopic electronic systems.

Fig. 1.7. Upper panel: an STM tip scanning the local density of states inside a
previously constructed quantum corral. Lower panel: comparison of theory (left)
and experiment (right) for a 76 atom stadium corral. (From [64], by permission)

Quantum corrals (Fig. 1.7) are made out of Fe adatoms which are indi-
vidually placed on a Cu(111) surface using the tip of a scanning tunneling
microscope (STM). The Fe atoms act as posts leading to scattering of (nearly
free) electrons at the Cu surface. When arranged like closed strings of pearls
the Fe adatoms can confine surface electronic states inside these geometries.
The STM tip then allows for the measurement of local densities of states,
d(r, E) =

∑

k |ψk(r)|2δ(E − Ek), of the electronic surface waves ψk(r). The
tip in this type of STM spectroscopy can also be viewed as a Green function
point source of electron amplitude. The induced amplitude is multiply scat-
tered at the corral adatoms before returning to the tip. The backscattered
amplitude results in an interference term in the local density of states. The
bottom panel of Fig. 1.7 shows the impressive agreement of the measured sur-
face wave pattern with the results from a parameter-free multiple-scattering
calculation for a stadium corral [64]. We see that these electronic objects have
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inherently mesoscopic features: they rely on phase coherence and show inter-
ference patterns with wavelengths much smaller than the confining device
dimension.

Crommie, Lutz, and Eigler originally arranged the Fe adatoms in circular
and stadium-shaped geometries with the intention of investigating features
of wave chaos in surface electron waves, e.g. eigenfunction scars. Though the
corrals turned out to be too leaky to produce quantum chaos, they instead
opened up a variety of other theoretical questions: quantum corrals and re-
lated surface structures, where targets can be arranged in a controlled way,
have become a new arena for scattering by microscopic objects and scattering
theory in two dimensions [65]. This direction, however, is beyond the scope
of this book.

1.2 Purpose of This Book and Overview

The purpose of this book is both to present the general concepts of modern
semiclassical theory and to put emphasis on their further development and
application to problems in mesoscopic physics. It is our intention to demon-
strate that semiclassical theory not only provides appropriate concepts to
deal with problems of quantum chaos in general but also provides powerful
tools to quantitatively compute mesoscopic quantities. To this end we review
various applications of semiclassical approaches in mesoscopic systems and
also compare the predictions with corresponding results from experiment or
numerical quantum calculations.

All the quantities to be considered can be deduced from the single-particle
Green function or its products. Hence its semiclassical representation in terms
of a sum over contributions from classical paths provides the common basis
of the work described here. The semiclassical evaluation of quantities such as
spectral density, conductance, and magnetization, to name a few, then de-
pends crucially on the character of the classical dynamics. It is on that level
that the striking differences in the quantum signatures of integrable and
chaotic systems enter. Typically, oscillatory quantum corrections are semi-
classically represented as trace formulas, which represent physically trans-
parent expressions of spectral or transport quantitites as sums over classical
paths.

The present book is organized as follows. In the next chapter we present
semiclassical techniques and expressions which serve as a general basis for
the subsequent chapters, where they are adapted to particular problems.
We briefly summarize trace formulas for the density of states and results
for spectral correlations. We then introduce semiclassical approximations to
thermodynamic quantities based on the spectral density and review a general
semiclassical approach to dynamic linear response functions and dynamic
susceptibilities.
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Chapters 3 and 4 provide a semiclassical treatment of two prominent
mesoscopic quantities: transport and orbital magnetism. Each chapter in-
cludes a brief but rather self-contained introduction to its respective area of
mesoscopic physics, where the semiclassical methods are integrated into the
general context.

In Chap. 3 we summarize the two complementary approaches to quantum
transport. The semiclassical approximation to the Kubo conductivity yields,
besides the classical part, quantum corrections in terms of a trace formula
involving periodic orbits. In the semiclassical evaluation of the Landauer
approach to conductance, interference between open classical orbits gives rise
to quantum corrections. As an application of the two semiclassical approaches
we discuss transport in antidot lattices [51, 66–68] and microcavities [33],
and compare the results with corresponding experiments. Furthermore, we
discuss the deficiencies which both approaches presently exhibit with regard
to a correct treatment of weak-localization effects.

Geometrical effects of orbital magnetism in clean systems [45] are compre-
hensively reviewed in Chap. 4. There we discuss the magnetic susceptibility
of singly connected geometries and the persistent current of ring-type geome-
tries [69,70]. We describe the fact that confinement does not essentially alter
the small Landau diamagnetic response but gives rise to additional, strong
quantum fluctuations in the magnetism of individual systems [71]. These fluc-
tuations even survive as a quantum correction after ensemble averaging. In
particular, these corrections are quite sensitive to the classical dynamics of
the system. Hence we treat separately the cases of chaotic, integrable, and
perturbed integrable classical behavior and compare them with numerical
quantum calculations.

Throughout most of the book we address effects in ballistic11 mesoscopic
systems. For most of the applications, for instance conductivity, it then proves
sufficient to treat particles in clean (disorder-free) systems and account for
weak disorder effects by including an energy-independent broadening of the
single-particle levels. This introduces an exponential damping of semiclassical
path contributions on the scale of the elastic mean free path, but the major
effects can still be related to the confinement potential.

The last two chapters are then devoted to a more thorough consideration
of further mesoscopic effects due to disorder and electron–electron interaction.
These sections are intended to give a more complete and realistic description
of ballistic quantum systems and to evaluate the applicability and validity
of the simple billiard models which are frequently used in studies of chaos in
quantum mechanics.

Therefore, in Chap. 5 we present a refined semiclassical treatment of weak
disorder [72, 73]. We study impurity effects on spectral correlation functions
arising from the interplay between disorder and boundary scattering in the

11 For reviews of semiclassical approaches devoted to diffusive systems we refer the
reader to, for instance, [7, 76,77].
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whole regime from diffusive to ballistic. For ballistic quantum dots we put
particular emphasis on the role of smooth disorder potentials. As an appli-
cation, we readdress orbital magnetism and discuss how disorder affects the
results from clean systems.

In Chap. 6, finally, we review semiclassical work on electron–electron in-
teraction effects in mesoscopic systems. This approach allows one to repro-
duce results from quantum diagrammatic perturbation theory in the diffusive

regime [74]. Moreover, a semiclassical perturbative treatment of interactions
in the ballistic regime shows that the character of the classical dynamics of
independent particles is reflected in the quantum properties of interacting
ballistic systems [75].

If not explicitly stated otherwise, we assume throughout the parts of the
work related to mesoscopic applications that the systems under consideration
are phase-coherent; i.e. the phase-coherence length ℓφ is supposed to be larger
than all other relevant length scales. Furthermore, we treat the electrons as
spinless particles and include instead a degeneracy factor gs = 2 whenever
needed.





2. Elements of Modern Semiclassical Theory

The foundation of modern semiclassical theory is the fundamental work by
Gutzwiller on the trace formula for the density of states of a chaotic quantum
system. In a series of papers beginning in 1967 he built the bridge between the
classical chaotic dynamics of a system and its quantum mechanical density
of states [78–80]. His derivation is based on a semiclassical evaluation of the
Feynman path integral in terms of saddle point approximations.

The trace formula has opened up a new field of physics: an overwhelming
and still growing number of articles have dealt with various aspects of semi-
classical physics in this general area. They span the whole range from more
mathematically oriented investigations of convergence problems of semiclas-
sical trace formulas to applications to various fields of physics and interpre-
tations of numerical and experimental data.

For recent overviews of the subject, which cover at least parts of the
literature, we refer the reader to the books by Gutzwiller [26], Ozorio de
Almeida [27], Reichl [29], and Brack and Bhaduri [30] and, furthermore, to
the collections of review articles in [12, 28]. A recent extensive overview by
Gutzwiller of publications in the field of quantum chaos is found in [31].

The present chapter is mostly intended to provide some general semiclas-
sical expressions which will be used as a platform for the subsequent chapters.
There they will be further developed in the context of the specific mesoscopic
applications addressed. Starting from the semiclassical Green function, we in-
troduce the trace formulas for integrable and chaotic systems. We then give
a brief summary of the success and shortcomings of semiclassical approaches
to spectral correlation functions in Sect. 2.2. We present thermodynamic
quantities in Sect. 2.3, which will serve as a basis of our approach to orbital
magnetism. In Sect. 2.4 we introduce semiclassical techniques to evaluate
linear response functions which involve the computation of matrix elements.
These concepts will be applied to describe mesoscopic quantum transport.

2.1 Green Functions and Trace Formulas

Throughout most of this book we shall deal with time-independent systems in
d dimensions described by a single-particle quantum Hamiltonian for spinless
electrons of the form
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Ĥ =
1

2m

(

p̂ − e

c
A(r̂)

)2

+ V (r̂) . (2.1)

A is the vector potential generating, for example, a magnetic field H. In the
mesoscopic context, the one-body potential V (r̂) may, for instance, describe
an electrostatic confinement potential, the mean field from other electrons,
or a disorder potential.

The energy-dependent Green function G(r, r′;E) provides a suitable
means for investigating mesoscopic properties. It will be used to calculate
transport quantities that are based on two-particle Green functions (prod-
ucts of single-particle Green functions for noninteracting systems), to deal
with weak disorder and interaction effects, and to study those cases where
a direct application of trace formulas is inappropriate, as will be discussed
below. The retarded (or advanced) Green function can be expressed quantum
mechanically as

G±(r, r′;E) =
∑

λ

ψλ(r) ψ∗
λ(r′)

E − Eλ ± iǫ
(2.2)

in terms of the eigenfunctions ψλ and eigenenergies Eλ of the Hamiltonian
Ĥ.

2.1.1 Semiclassical Green Function

Our basic starting point will be a semiclassical expression for the (retarded)
energy-dependent single-particle Green function. It is of the form [26]

Gsc(r, r′;E) =
∑

t

Gt(r, r
′;E)

=
1

ih̄(2iπh̄)(d−1)/2

∑

t

Dt(r, r
′) exp

(

i

h̄
St − iηt

π

2

)

. (2.3)

It is given as a sum over contributions Gt from all classical trajectories t
connecting the two fixed points r′ and r at energy E.

St(r, r
′;E) =

∫

Ct

p · dq (2.4)

is the classical action along a path Ct between r′ and r and governs the
accumulated phase. The semiclassical expression (2.3) can be derived from the
Feynman path integral [93] within the stationary-phase approximation. Gsc

is usually a good approximation to the exact Green function (2.2) provided
the classical actions St ≫ h̄. This condition may be considered as defining
the semiclassical regime.

The Maslov index ηt entering into the phase on the right-hand side of
(2.3) is equal to the number of conjugate points on the trajectory [26,81]. Its
calculation can be rather involved in practice.
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The classical amplitude Dt(r, r
′), describing the local density in position

space and energy of trajectories near Ct, can be written as the determinant

Dt(r, r
′) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2St

∂r∂r′

∂2St

∂r∂E

∂2St

∂E∂r′

∂2St

∂E2

∣

∣

∣

∣

∣

∣

∣

∣

∣

1/2

=
1

|q̇1q̇′1|1/2

∣

∣

∣

∣

∣

− ∂2St

∂qi∂q′j

∣

∣

∣

∣

∣

1/2

. (2.5)

Here the indices i=j=1 are excluded from the determinant on the right-hand
side. Usually the qi are chosen so as to span a local orthogonal coordinate
system, with q1 being a distance along and the other qi being distances per-
pendicular to the trajectory t at point r, as introduced by Gutzwiller in his
original derivation [79].1 Then q̇1 denotes the velocity along the orbit at r.

The squares of the moduli of the classical amplitudes Dt(r, r
′) can be

linked to classical distribution functions in the configuration space: If we keep
in the product Gsc[Gsc]∗ =

∑

t′,tGt′G
∗
t only pairs of identical paths, their

phases cancel and we are left with the classical contribution
∑

t=t′ |D̃t|2 ≡
1/(2πh̄3)

∑

t |Dt|2 (in two dimensions). This can be expressed as

∑

t:r′→r

|D̃t|2 =
1

2πh̄3

∫

dq δ(r − q)

∫

dE δ[E −H(p′, r′)]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂p′

∂q

∂p′

∂E

∂τ

∂q

∂τ

∂E

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.6)

where we have used ∂S/∂E=τ , the classical traversal time, and ∂S/∂r′=−p′

in Dt as given in (2.5). The determinant |Dt|2 acts as a Jacobian for the
transformation from E and q to to the new variables τ and p′. We then find,
for the following related quantity,

h̄

π(d̄/V )

∑

t:r′→r

|D̃t|2δ(t− τt)

=
1

h̄2π(d̄/V )

∫

dτ

∫

dp′δ(t− τ)δ[r − q(τ)] δ[E−H(p′, r′)] (2.7a)

=
1

h̄2π(d̄/V )

∫

dp′δ[r − q(t)]δ[E−H(p′, r′)]

= P (r′, r; t) . (2.7b)

The right-hand side represents the classical density of trajectories at r after
time t which begin at r′ with arbitrary momentum p′ on the energy shell.
Hence (2.7b) relates the weights |D̃t|2 occurring in the Green function product
to the classical probability P (r′, r; t) of propagating from r′ to r in time t.

1 Note, however, that the second equality in (2.5) holds in any coordinate system,
as was shown by Littlejohn (see Sect. III.C in [82] and Sect. III in [83]), a property
that sometimes can be employed to choose an appropriate local Poincaré surface
of section.
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The normalization of P contains the mean density of states d̄, (2.23), per
volume V (area in two dimensions).

All the classical entriesDt, St, and ηt in (2.3) usually have to be calculated
numerically. For billiards, i.e. systems with free motion inside a confining
geometry with a Dirichlet boundary condition, their computation is often
simplified. Quantum billiards will play a major role throughout this work.
First, they represent theoretically well-defined and thoroughly studied sys-
tems where, at least for some geometries, the classical dynamics can be proved
to be completely chaotic. Despite their conceptual simplicity they generally
exhibit complex classical and quantum behavior. Second, billiards constitute
well-suited models for the ballistic microstructures which are experimentally
realized. For billiards the magnitude p of the momentum is constant and it
is convenient to introduce the wave number

k =
p

h̄
=

√
2mE

h̄
. (2.8)

The time of flight and the action integral (in the absence of a magnetic field)
of a given trajectory can be simply expressed in terms of its length Lt as

τt =
m

p
Lt ;

St

h̄
= kLt . (2.9)

In billiard systems twice the number of reflections from the boundary
must be added to ηt in order to take into account the phase π acquired at
each bounce on the hard walls. We shall then still refer to ηt as the Maslov
index, although slightly improperly.

The semiclassical Green function G0,sc for a free particle in Euclidean
space takes the form [26]

G0,sc(r, r′;E) =
π

E

(

k

2πi

)(d+1)/2
exp(ik|r′ − r|)
|r′ − r|(d−1)/2

. (2.10)

This equation is exact only for d odd. For d=2, the case on which we shall
mainly focus throughout this book, it has the correct long-range asymp-
totic behavior of the exact free Green function G0(r, r′;E) = −im/(2h̄2)
H+

0 (k|r′ − r|), where H+
0 denotes the standard Hankel function. However,

the semiclassical amplitude in two dimensions,

Dt =
m

√

h̄k|r − r′|
, (2.11)

does not show the correct logarithmic singularity of H+
0 for r′ → r. Hence

refined techniques, presented below, are required to treat this limit.
One main advantage of semiclassical concepts in mesoscopic physics is

related to the fact that they allow us to account very efficiently for (small)
changes in the original Hamiltonian. Frequently their effect can be considered
to be negligible with respect to classical quantities but may be significant on
quantum scales. This opens up the possibility to treat changes in (potentials
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of) the Hamiltonian semiclassically as a perturbation although they may be
far beyond the range of applicability of quantum perturbation theory. The
idea of this semiclassical perturbative approach is to keep the unperturbed

paths C0
t and classical amplitudes D0

t (E) in the Green function and consider
merely the effect of the perturbation on the classical actions, as a variation
δSt;

St = S0
t + δSt . (2.12)

The related phase shift δSt/h̄ which – by means of the large factor 1/h̄ –
may be considerable, accounts for the changes on quantum scales. Later in
this book this approach will be applied in the following situations:

(i) For the case of a weak potential δV (r) affecting free motion at energy
E in a billiard, the correction term δSt is given, after expanding p =
√

2m[E − δV (r)] for small δV/E, by the integral

δSt = − 1

vF

∫

C0
t

δV (q) dq . (2.13)

This relation will be used in Chap. 5 to include the effect of a weak
disorder potential.

(ii) For closed orbits, which are relevant in Green function trace formulas,
one can employ a general result from classical mechanics [27,84]. This is
that the change in the action integral along a closed orbit at constant
energy under the effect of a parameter λ of the classical Hamiltonian H
is given by

(

∂S

∂λ

)

E

= −
∮

dt
∂H
∂λ

, (2.14)

where the integral is taken along the unperturbed trajectory. As an im-
portant case, to be used frequently in the remainder of this book, we
treat the effect of a small uniform static magnetic field H, which en-
ters by means of the vector potential A(r̂) into the Hamiltonian (2.1).
Classical perturbation theory then yields

δSt =
e

c
HA0

t , (2.15)

where A0
t is the directed area enclosed by the unperturbed orbit.

(iii) Similar expansions are usually applied to account for small changes in
energy, namely

St(E + ǫ) ≃ S0
t (E) +

∂S0
t

∂E
ǫ = S0

t (E) + τ0
t ǫ , (2.16)

where τ0
t (E) ≡ dS0

t /dE is the period of the unperturbed orbit.
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2.1.2 Density of States

The quantum mechanical density of states

d(E) = gs
∑

λ

δ(E − Eλ) , (2.17)

where gs = 2 denotes the spin degeneracy and Eλ the eigenenergies, is related
to the trace of the energy-dependent Green function G(r, r′;E) by

d(E) = −gs
π

Im G(E) ; G(E) =

∫

drG(r, r;E) . (2.18)

A semiclassical treatment of the Green function leads to a natural represen-
tation of the density of states as

d(E) = d̄(E) + dosc(E) . (2.19)

This decomposition into a smooth part (denoted by an overbar) and an os-
cillating part (denoted by the superscript “osc”) has a rigorous meaning only
in the semiclassical regime (E → ∞), for which the scales of variation of
d̄ and dosc decouple. We shall see that the decomposition into smooth and
oscillating terms is a typical feature of spectral quantities in the mesoscopic
regime.

The smooth part, d̄(E), is connected to contributions to the trace from
the Green function in the limit r → r′. Since the singularity of G(r, r′;E)
for r → r′ is logarithmic in two dimensions, it is not appropriate to use the
semiclassical Green function (2.10) in this limit. Instead it is convenient to
employ the Wigner transform of the Green function to compute the contri-
bution to the trace of direct paths for r → r′. The Wigner transform of an
operator Â is defined as [27,85]

AW(r,p) ≡
∫

dx e−ipx/h̄
〈

r +
x

2

∣

∣

∣Â
∣

∣

∣ r − x

2

〉

. (2.20)

To leading order in h̄ the Wigner transform of the Green function is [86]

GW(r,p, E) ≃ 1

E −H(r,p)
. (2.21)

In this form it accounts for “paths of zero length”. Using the relation

Tr Â =
1

(2πh̄)d

∫

dr dp AW(r,p) (2.22)

for the trace of the Green function, we find the familiar Weyl or Thomas–
Fermi part of the density of states:

d̄(E) =
gs

(2πh̄)d

∫

drdp δ [E −H(r,p)] . (2.23)
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This is the leading-order semiclassical expression for the smoothed part of
the density of states2 and may be regarded as stemming from orbits of “zero
length”. The Weyl term reflects the volume of accessible classical phase space
at energy E (divided by the quantum phase space cell).

Oscillatory terms in the density of states arise from contributions to
G(r, r;E) of paths of finite length closed in position space (r = r′), which
we shall refer to in the following as recurrent orbits. The standard route for
obtaining dosc is to evaluate the trace integral (2.18) by the stationary-phase
approximation. This selects those trajectories which are not only closed in
configuration space but also closed in phase space (r′ = r,p′ = p), i.e. pe-

riodic orbits. If they are well isolated the Gutzwiller trace formula [79] for
the density of states is obtained. 3 For integrable systems all recurrent or-
bits are in fact periodic since the action variables are constants of motion.
Hence, periodic orbits in integrable systems are organized in continuous fam-
ilies associated with resonant tori. In this case a proper evaluation of the
trace integrals leads to the Berry–Tabor [88, 89] or Balian–Bloch [90] trace
formula. We first present these trace formulas, which represent the two oppo-
site limiting cases of “hard chaos” and integrable dynamics, before discussing
their limitations.

2.1.3 Berry–Tabor Trace Formula

We discuss in some detail the Berry–Tabor trace formula for integrable sys-
tems since it will be used to derive magnetic properties of integrable mi-
crostructures in Sect. 4.6. Furthermore, it helps one to understand the struc-
ture of a similar trace formula for matrix elements to be employed in Sect. 2.4
in the semiclassical approach to linear response functions. Finally, we shall
consider in Sect. 4.4 modifications to the Berry–Tabor formula when the
integrability is broken owing to a perturbation.

A classical Hamiltonian H(r,p) is integrable if the number of constants
of motion in involution is equal to the number of degrees of freedom [26]. For
bounded systems, this implies that all trajectories are confined on invariant
tori. Each torus is labeled by the action integrals [91]

Ii =
1

2π

∮

Ci

pdr . (2.24)

For systems with two degrees of freedom the integrals are taken along two
independent paths C1 and C2 on the torus. Then it is convenient to perform a
canonical transformation from the original (p, r) variables to the action–angle
variables (I,ϕ), where I = (I1, I2) and ϕ = (ϕ1, ϕ2) with ϕ1, ϕ2 in [0, 2π].
Because I1 and I2 are constants of motion, the Hamiltonian expressed in

2 See also Sect. 4.2.2, where higher-order h̄ corrections are considered. For general
methods to calculate higher-order terms see [87].

3 See also [90] for the derivation of a related semiclassical trace formula.
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action–angle variables depends only on the actions, i.e. H(I1, I2). We call
νi = ∂H/∂Ii (i = 1, 2) the angular frequencies of the torus and α ≡ ν1/ν2
the winding number. A torus is called “resonant” if the winding number is
rational, i.e. α = u1/u2, where u1 and u2 are coprime integers. The orbits on
a resonant torus are periodic. Hence, the torus constitutes a one-parameter
family of periodic orbits, each member of the family having the same period
and action. The families of periodic orbits can be labeled by two integers
(M1,M2) = (ju1, ju2), where (u1, u2) specifies the primitive orbits and j is
the number of repetitions. The pair M = (M1,M2) represents the “topology”
of the orbits.

For two-dimensional systems, the Berry–Tabor trace formula for the os-
cillating part of the density of states can be written as [88,89]

dosc(E) =
∑

M ,ǫ

dM ,ǫ(E) (2.25)

=
gs

πh̄3/2

∑

M 6=(0,0),ǫ

τM

M
3/2
2

∣

∣g
′′

E(IM
1 )
∣

∣

1/2
cos

(

SM ,ǫ

h̄
− ηM

π

2
+ γ

π

4

)

.

In (2.25), the sum includes all families of closed orbits at energy E. They
are labeled by M , where M1 and M2 are positive. Except for self-retracing
orbits, the additional index ǫ specifies tori of the same topology, but related
to each other through time reversal symmetry. SM ,ǫ and τM are the action
integral and the period along the periodic orbits of the family M , and ηM

denotes the Maslov index.
The energy surface E in action space, which is implicitly defined through

H(I1, I2) = E, is explicitly given by the function I2 = gE(I1). The action
variables of the resonant torus with periodic orbits of topology M are denoted
by IM = (IM

1 , IM
2 ). They are determined by the condition

α = − dgE(I1)

dI1

∣

∣

∣

∣

I1=IM

1

=
M1

M2
. (2.26)

The first equality arises from the differentiation of H[I1, gE(I1)] = E with
respect to I1. The last contribution to the phase in (2.25) is given by γ =
sgn[g′′E(IM

1 )].
The first derivation of the Berry–Tabor trace formula [88] starts from an

EBK (Einstein, Brillouin, and Keller) quantization condition followed by the
application of the Poisson summation rule (4.4). It involves a stationary-phase
approximation valid in the semiclassical limit S ≫ h̄ with a stationary-phase
condition according to (2.26).

2.1.4 Gutzwiller Trace Formula

The density of states of a classically chaotic quantum system, where all pe-
riodic orbits are unstable and well isolated, can be semiclassically described
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in terms of Gutzwiller’s celebrated trace formula. The oscillating part of the
density of states can be approximated to leading order in h̄ as [26,79]

dosc(E) ≃ gs
πh̄

∑

po

∞
∑

j=1

τpo
∣

∣

∣det(M j
po−I)

∣

∣

∣

1/2
cos

[

j

(

Spo

h̄
−ηpo

π

2

)]

. (2.27)

The double sum is taken over contributions from all classical primitive
periodic orbits labeled “po”, and j denotes their multiple traversals. Spo is
the action (2.4) and τpo the period of a prime periodic orbit. The monodromy
matrix Mpo takes into account in a linearized way the phase space character-
istics on the energy shell close to each periodic trajectory. Mpo characterizes
the instability of an orbit in the chaotic case measured in terms of Liapunov
exponents. The Maslov index ηpo equals twice the number of complete rota-
tions of the eigenvectors of Mpo around a tangent vector of the orbit plus
twice the number of bounces off the walls for billiards. For systems with time
reversal symmetry the nonself-retracing orbits have to be counted twice.

The trace formula provides the basic connection between a pure quantum
property, namely spectral-density oscillations, and pure classical entities of
the corresponding chaotic dynamic system. Interference effects occur via the
semiclassical phases determined by the classical actions. The close similarity
of the trace formula to a Fourier series suggests using it as a basis for the spec-
tral analysis of complex spectra. In billiard systems, for example, the actions
scale linearly with wave vector, Spo/h̄ = kLpo. Hence a Fourier transform
with respect to k reveals peaks in the power spectrum of the density of states
at positions marked by the lengths Lpo of the periodic orbits (for an example
see Sect. 3.2.2, Fig. 3.7). Furthermore, the trace formula implies the compo-
sition of a quantum spectrum in a hierarchical manner: short periodic trajec-
tories produce long-ranged cosine-like spectral fluctuations. The longer the
orbits included are, the higher is the spectral resolution of a semiclassically
approximated quantum spectrum. Frequently, in particular in mesoscopics,
experimentally obtained spectra are smeared and of limited resolution. Then
the hierarchical structure of semiclassical trace formulas provides a means to
extract the main spectral information on the basis of a limited number of
(shorter) periodic orbits without performing a complete (quantum) compu-
tation of individual eigenstates of the system.

The literature on the trace formula (2.27) and its derivations has become
so abundant that we only briefly present and discuss it here. We refer the
reader to existing reviews [26–30,34,36,92] and references therein for further
aspects.

The semiclassical computation of the trace integral (2.18) leading to the
trace formula (2.27) can be regarded as a special case of the trace integral
(A.20) (with A(r′) ≡ 1, 〈A++

t 〉 = τt), which is calculated in Appendix A.1.
For an early detailed review of the derivation of the trace formula in the

framework of Feynman’s path integral see, for example, [93]. In addition,
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several alternative derivations have been proposed, of which we list a few
below.

In the work of the “Copenhagen school” of Cvitanović [34] the Gutzwiller
trace formula is embedded in a more general framework of dynamical zeta
functions and can be regarded as a semiclassical version of the latter. The zeta
function formalism provides an appropriate tool to account for the properties
of the underlying classical evolution in phase space. “Cycle expansions” allow
for a reordering of the entries in the trace formula in order to improve its
convergence [34,35].

Bogomolny [92] reduces the semiclassical solution of the Schrödinger equa-
tion to the transfer operator T , which acts as a semiclassical Poincaré map
on a subspace of the full phase space. T is constructed from semiclassical
Green functions containing (short) paths from one iteration of the Poincaré
map. The zeros of the related Fredholm determinant det(1−T ) coincide with
the poles of the Gutzwiller trace formula if the determinant is evaluated
semiclassically within the stationary-phase approximation. The approach of
Bogomolny has the advantage that it also in principle allows one to com-
pute “semiquantum” energies: in such a computation the semiclassical T is
used, but the Fredholm determinant is (numerically) calculated without fur-
ther approximation (see, e.g., [94]). Furthermore, the combination of Fred-
holm theory and Bogomolny’s approach provides a mathematically profound
scheme [95] for the ordering of periodic-orbit contributions in trace formulas
of chaotic systems.

The scattering formalism developed by Smilansky and coworkers [96] rep-
resents an alternative approach to the semiclassical spectral density. The den-
sity of states of a billiard is expressed in terms of traces of related S-matrices,
which are evaluated semiclassically.

We note that there exists, furthermore, an elaborate time-dependent semi-
classical treatment by Heller and Tomsovic [97]. By evaluating semiclassical
propagators in the time domain these authors avoid complications which
may arise owing to the additional semiclassical approximation involved in
the transformation to the energy Green function.

Three major issues arise in connection with the trace formula and have
received considerable attention in the literature over the last decade:

(i) Despite numerous approaches (e.g. [98–101]) the theory of the computa-
tion of semiclassical trace integrals is still incomplete for systems with
nonuniform, in particular mixed, phase space. This shortcoming is severe
since such systems represent the majority of nonintegrable systems. The
trace formulas cited above for integrable systems and “hard chaos” mark
only the two extreme limits of the broad spectrum of classical Hamil-
tonian dynamics. The “semiquantum” version of Bogomolny’s approach
is not restricted to either of these limits and can in principle deal with
mixed-phase-space dynamics; however, it then remains on the numerical
level. In the present work we mainly rely on the two limiting cases and
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enter into the intermediate regime in a perturbative approach starting
from the regular case.

(ii) The lack of convergence of trace formulas and Green function expressions
for chaotic systems at real values of energy. This divergence is related to
the property that the number Npo of periodic trajectories in ergodic sys-
tems (more precisely axiom A systems) increases exponentially with pe-
riod, i.e. Npo(τpo < τ) ≃ exp (hτ)/hτ , where h is the topological entropy.
The exponential proliferation of the orbits is not sufficiently compensated
by the corresponding decrease in the classical amplitudes. This issue has
become a research direction of its own in quantum chaos. Various tech-
niques have been employed to obtain appropriate analytical continuations
of the trace formula [33, 102]. We shall be not concerned with such con-
vergence problems, since, in typical mesoscopic applications, mechanisms
such as temperature smoothing, residual impurity scattering, and inelas-
tic processes usually lead to an additional natural damping of periodic-
orbit contributions as will be discussed. Though there exist several ex-
amples of hyperbolic systems where individual energy levels have been
obtained semiclassically with reasonable accuracy [33,35,101], the general
problem of computing the quantum density of states with a resolution
beyond the mean level spacing persists.

(iii) Related to this problem is the long standing issue of a semiclassical com-
putation of spectral correlation functions down to scales of the mean level
spacing. This will be discussed in the next section.

2.2 Spectral Correlations

Spectral correlation functions are important measures for describing density-
of-states properties of mesoscopic quantum systems. Correlation functions are
particularly helpful if one is interested in the statistical properties of energy
level spectra instead of computing individual energy levels. One prominent
tool is the two-point level-density correlator, which can be defined as

K(ǫ) =
1

d̄2

〈

d
(

E +
ǫ

2

)

d
(

E − ǫ

2

)〉

. (2.28)

The angle brackets stand for ensemble averaging in the case of disordered
systems or an average over an appropriate energy interval for a single chaotic
system. In this book we are mainly concerned with computing K(ǫ) and
related correlation functions for energy scales ǫ > ∆. The question of how
to treat this correlation function in a proper semiclassical way in the entire
ǫ range is not in the main focus of this book. However, since this question
represents one of the main issues of the present studies of quantum chaos4

we briefly make reference to some of the recent semiclassical developments in

4 For a recent collection of articles addressing this issue see [103].
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this area. Moreover, it enables us to introduce a few basic notions of averaged
spectral quantities.

The above correlation function has been studied by Altshuler and Shklovs-
kii in their seminal work [105] for noninteracting electrons in a disordered

system using diagrammatic perturbation theory. These authors found for
K(ǫ), besides the trivial mean part, the perturbative term

Kp(ǫ) = − 1

2απ2

∂2

∂ǫ2
ln[D(ǫ)] . (2.29)

D(ǫ) is the spectral determinant of the (classical) diffusion operator. In (2.29)
α = 2 for non-time-reversal-symmetric systems (corresponding to a random-
matrix ensemble denoted GUE) and α = 1 for time-reversal-symmetric sys-
tems (GOE).

Later, Argaman, Imry, and Smilansky rederived, extended, and inter-
preted the diagrammatic results by using a semiclassical method for the
diffusive regime [76] (see Sect. 5.5.1, Fig. 5.4). More recently, Andreev and
Altshuler [106] computed the nonperturbative, oscillatory “correction”. In-
triguingly, it is also expressed in terms of D(ǫ). For example, in the unitary
case, it reads

Kosc(ǫ) = −cos(2πd̄ǫ)

2π2
D(ǫ) . (2.30)

A semiclassical treatment of the level correlator K for a chaotic system
was originally performed by Berry in his seminal paper [107] on the Fourier
transform of K(ǫ), the form factor

K̃(τ) = d̄

∫ ∞

−∞

[K(ǫ) − 1] exp(2πi d̄ǫτ) dǫ . (2.31)

The standard semiclassical analysis of K and K̃ is based on the so-called
diagonal approximation. It involves considering only pairs of the same orbits
and pairs of symmetry-related orbits in the double sum of periodic orbits
which appears when using the Gutzwiller trace formula (2.27) for d(E) in
(2.28). Their dynamical phases Spo(E±ǫ/2)/h̄ ≃ (Spo(E)±τpoǫ/2)/h̄ nearly
cancel (up to τpoǫ/h̄) so that these contributions persist on (energy) average.
The corresponding diagonal contribution to K(ǫ) then reads

Kdiag(ǫ) =
2

T 2
H

∑

po

∞
∑

j=1

τ2
po

|det(M j
po − I)|

cos

(

jτpoǫ

h̄

)

, (2.32)

where

TH = 2πh̄d̄ (2.33)

denotes the Heisenberg time. Off-diagonal pairs of orbits which differ in their
actions and related phases are often assumed to average out. This is justi-
fied if the actions of different orbits are not correlated and the off-diagonal
contribution can be regarded as a sum of random phases.
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The remaining single sum (2.32) is usually further evaluated using the
Hannay–Ozorio de Almeida sum rule [27,108]

∑

po

Apo

|det(Mpo − 1)| ≃
∫

dτ A(τ)/τ . (2.34)

The evaluation of K or K̃ in the diagonal approximation using the above
sum rule requires long times τ such that the orbits explore the energy shell
uniformly. One then finds

Kdiag(ǫ) ≃ − 1

απ2d̄2ǫ2
. (2.35)

Here the difference in α between systems without and with time-reversal sym-
metry stems from the existence of pairs of time-reversed orbits in the latter
case.5 The corresponding diagonal term of the form factor increases linearly
with time: K̃diag(τ) ∼ τ/α. The form factor coincides with the random-
matrix GUE form factor for times smaller than TH. However, K̃diag deviates
strongly from the GUE result for τ ≥ TH (see e.g. Fig. 5.4). This fact implies
that contributions from off-diaogonal terms must be considered.

Agam, Altshuler, and Andreev [46] showed that, for chaotic systems, the
diagonal part Kdiag(ǫ) of K(ǫ) is of the same functional form (2.29) as Kp

(for diffusive systems), but with the spectral determinant D(ǫ) associated
with the squared modulus of the dynamical zeta function [34] of the chaotic
system. Correspondingly, they identified the diffusion operator of disordered
systems with the Perron–Frobenius operator [34] of clean chaotic systems and
thereby achieved a link between these two classes of ergodic systems. More
recently, this identification was confirmed by a field-theoretical approach to
chaotic systems [48]. See also [47] for a related approach.

Bogomolny and Keating [104,111] proposed a novel semiclassical method
to compute off-diagonal terms by relating them to the diagonal contribu-
tions. In this way they derived results close to those of [46]. At present, there
exists an ongoing intense theoretical activity which aims at a better semi-
classical understanding of nondiagonal contributions, a proper description
of the long-time limit, the inclusion of diffraction effects, and the study of
possible correlations between periodic orbits (e.g. [109, 110]). A final answer
to this outstanding problem in quantum chaos is still missing.6 Semiclassi-
cal methods remain very promising tools to resolve the question of how the
classical limit of quantum systems, which is well described by random-matrix
theory, is approached and how to incorporate system-specific corrections be-
yond random-matrix theory.

5 For a more careful analysis of the role of such action multiplicities in this context
see [104].

6 See also [103] for recent work on the relation between field-theoretical and
periodic-orbit approaches to spectral correlations.
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2.3 Thermodynamic Quantities

One main subject of the present book is the introduction of semiclassical
concepts into the thermodynamics of mesoscopic systems. Finite temperature
leads to a smoothing of spectral quantities and yields a natural cutoff in
semiclassical trace formulas due to a damping of contributions from long
trajectories on the scale of a thermal cutoff length LT .

Here, following [45], we deduce basic expressions for thermodynamic quan-
tities, e.g. the temperature-smoothed spectral density, the particle number
function, and the grand potential, from the quasiclassically calculated single-
particle density of states of noninteracting particles. These expressions will
serve as a convenient starting point for calculating some of the transport
properties in Chap. 3, as well as magnetic quantities in Chap. 4. To avoid
repetition, we shall consider here in some detail the thermodynamic proper-
ties and shall refer to the results obtained in this section whenever needed.

In the following we denote the chemical potential or Fermi energy by µ.
The corresponding Fermi velocity and wave vector are vF = v(µ) and kF =
mvF/h̄, respectively. Starting from the quantum mechanical single-particle
density of states d(E), (2.17), we define its related energy integrals, namely
the energy staircase function and the grand potential, at zero temperature
by

n(E) =

∫ E

0

dE′ d(E′) ; ω(E) = −
∫ E

0

dE′ n(E′) . (2.36)

At finite temperature the corresponding quantities (denoted by capital let-
ters) represent the number of particles in the grand canonical ensemble,

N(µ) =

∫ ∞

0

dE d(E) f(E−µ) , (2.37)

and the grand thermodynamic potential

Ω(T, µ,H) = − 1

β

∫

dE d(E) ln{1 + exp [β(µ−E)]} . (2.38)

Here, β = 1/kBT and

f(E − µ) =
1

1 + exp[β(E − µ)]
(2.39)

is the Fermi distribution function. Integration by parts leads to the equivalent
expressions

D(µ) = −
∫ ∞

0

dE d(E) f ′(E−µ) , (2.40a)

N(µ) = −
∫ ∞

0

dE n(E) f ′(E−µ) , (2.40b)

Ω(µ) = −
∫ ∞

0

dE ω(E) f ′(E−µ) , (2.40c)
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in terms of convolutions with the derivative of the Fermi function. This is a
convenient representation for a semiclassical treatment since the derivative f ′

contributes predominantly at energies µ where semiclassical approximations
are reliable.

According to the semiclassical decomposition (2.19) of the density of
states, the above thermodynamic expressions can also be separated in a nat-
ural way into smooth and oscillating parts. At this point we need not dis-
tinguish between the representations of dosc for integrable dynamics (Berry–
Tabor trace formula (2.25)) and chaotic dynamics (Gutzwiller trace formula
(2.27)) and we write

dosc(E) =
∑

po

dpo(E) ,

dpo(E) = Apo(E) sin

(

Spo(E)

h̄
+ νpo

)

, (2.41)

where “po” labels isolated periodic orbits and their multiples in the chaotic
case as well as periodic trajectories representing tori in the integrable case.7

Using the expression (2.41) for dosc in (2.36) one obtains the corresponding
quantities

nosc(E) =

∫ E

dE′ dosc(E′) ; ωosc(E) = −
∫ E

dE′ nosc(E′) . (2.42)

In a leading-h̄ calculation the energy integrations in (2.42) have to be ap-
plied only to the rapidly oscillating phase of each periodic-orbit contribution
dpo(E) and not to the amplitude Apo(E), which usually varies smoothly with
energy. Employing, moreover, τpo(E) ≡ dSpo/dE, one has

∫ E

Apo(E
′) sin

(

Spo(E
′)

h̄
+ νpo

)

dE′

= − h̄Apo(E)

τpo(E)
cos

(

Spo(E)

h̄
+ νpo

)

≡ − h̄

τpo(E)
d̃po(E) . (2.43)

The integration over energy merely amounts to a multiplication by (−h̄/τpo)
and a phase shift of π/2. We then get

nosc(E) =
∑

po

npo(E) ; npo(E) = − h̄

τpo(E)
d̃po(E) ; (2.44)

ωosc(E) =
∑

po

ωpo(E) ; ωpo(E) =

(

h̄

τpo(E)

)2

dpo(E) . (2.45)

7 The following discussion also holds true for sums over nonperiodic, recurrent,
orbits, which will also be under consideration later.
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The thermodynamic functionsDosc(µ),Nosc(µ), and Ωosc(µ) are obtained
from (2.40a)–(2.40c) by replacing the full functions by their oscillating com-
ponents. The resulting integrals are of the form

I(T ) =

∫ ∞

0

dE A(E) exp

[

i

h̄
S(E)

]

f ′(E − µ) . (2.46)

They involve the convolution of the functions dosc(E), nosc(E) and ωosc(E),
oscillating around µ with a typical frequency 2πh̄/τpo(µ), with the derivative
of the Fermi factor f ′(E − µ). The above integral is conveniently solved by
using a Matsubara representation of the Fermi function and contour integra-
tion. To leading order in h̄ and β−1, but without any assumption concerning
their relative values, one finds8

I(T ) = I0R(τ/τT ) . (2.47)

I0 ≡ I(T =0) is the zero-temperature result of (2.46) (with f ′ = −δ(E−µ)):

I0 = −A(µ) exp

[

i

h̄
S(µ)

]

. (2.48)

The temperature dependence enters by means of the reduction factor

R(x) =
x

sinhx
; x =

τ

τT
. (2.49)

Here τ(E) is the orbit period and

τT =
βh̄

π
(2.50)

defines a thermal cutoff time. For systems without a potential, e.g. billiards,
the period of the trajectory is related to its length L by τ(µ) = L/vF. R(x)
can then be written as R(L/LT ) with the thermal length LT defined as

LT =
h̄vFβ

π
. (2.51)

The convolution with the derivative of the Fermi function yields a damping
of the oscillating periodic-orbit contributions. At very low temperature one
obtains the Sommerfeld expansion

R(x) ≃ 1 − 1

6
x2 . (2.52)

For long trajectories or high temperature,R yields an exponential suppression

R(x) −→ 2x e−x for x −→ ∞ , (2.53)

and therefore the only trajectories contributing significantly to thermody-
namic functions are those with τ ≤ τT .

8 See Appendix A in [45] which is a generalization of the standard computation
in [112].
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By using (2.47) we get expressions for the respective thermodynamic func-
tions in terms of the semiclassical density of states [45]:

Dosc(µ) =
∑

po

Dpo(µ) ; Dpo(µ) = R

(

τpo

τT

)

dpo(µ) (2.54a)

Nosc(µ) =
∑

po

Npo(µ) ; Npo(µ) = R

(

τpo

τT

)(

− h̄

τpo

)

d̃po(µ) (2.54b)

Ωosc(µ) =
∑

po

Ωpo(µ) ; Ωpo(µ) = R

(

τpo

τT

)(

h̄

τpo

)2

dpo(µ) . (2.54c)

These expressions will be used frequently throughout this work. Summarizing,
they are obtained by consistently solving all intermediate integrals for the
Green function, trace, etc. to leading order in h̄.

Temperature smoothing suppresses the higher harmonics of the oscillating
parts of thermodynamic quantities which are associated with long classical
orbits in a semiclassical treatment. In contrast, finite temperature has no
effects on the mean quantities (for a degenerate electron gas, βµ≫ 1). Hence,
temperature is the tuning parameter for passing from d(E) at T = 0 to
D̄(E) = d̄(E) at large temperatures.

Equation (2.54c) provides the semiclassical approximation of the oscillat-
ing part of the grand canonical potential. In Sect. 4.2.3 we present a method
to calculate the free energy and related quantities within the canonical ensem-
ble, which turns out to be of relevance when considering mesoscopic ensemble
averages.

2.4 Semiclassical Linear Response

Usually, electronic properties of mesoscopic quantum systems, such as their
density of states or spectral correlations, are not directly accessible. Instead,
the system’s properties are typically investigated by exposing the system to
external fields and studying its response as a function of external and internal
parameters. In fact, a considerable number of the effects which have been
observed in mesoscopic physics do not rely on strong external fields. Small
test fields suffice to provide insight into a variety of mesoscopic phenonema:
prominent examples include the following:

(i) Properties related to transport through systems coupled to reservoirs
exhibiting a small potential difference. This includes both the Kubo
bulk conductivity and conductance through phase-coherent devices in
the framework of Landauer theory.

(ii) Closed quantum dots in external constant magnetic and electric fields.
(iii) The dynamic response of mesoscopic particles in frequency-dependent

potentials. This includes, for example, far-infrared or high-frequency
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absorption in quantum dots and induced (persistent) currents in ring
geometries due to a time-dependent flux.

Linear response theory has proven to be an appropriate framework for
the theoretical treatment of the above-mentioned situations. The aim of this
section will be to establish a connection between semiclassical approaches
and linear response theory. We therefore focus on intrinsic complex effects
in mesoscopic devices in a regime where linear response theory holds. The
description of mesoscopic phenomena directly related to a possible nonlinear
coupling due to strong external fields, for example photon-assisted transport
through quantum dots [113], is therefore beyond the scope of this section.

In Chap. 3 we shall apply the general semiclassical approach [114] to
dynamic response functions presented here to quantum transport in antidot
superlattices.

2.4.1 Basic Quantum Mechanical Relations

There has been an ongoing discussion in the literature on the question of
how to include inelastic processes in linear-response formulas for mesoscopic
systems [115–117], especially if the systems are finite. For instance, the Kubo
formula for the real part of the frequency-dependent conductivity reads, in
the absence of any inelastic effects,

Re[σ(ω)] =
2πe2

ωV

∑

n,m

[f(En) − f(Em)] |Jnm|2 δ(Em−En−h̄ω). (2.55)

V is the volume of the system and Jnm the matrix element of the current
operator. Such a formula and its derivation are valid for an infinite system
with a continuous spectrum, which allows for real transitions at energy h̄ω.
For finite systems, the levels |n〉 are discrete and the response is nonzero only
when h̄ω equals exactly an energy-level difference, i.e. it is zero for almost
all frequencies. It was then argued by Imry and Shiren [116] and others that,
in order to achieve absorption of radiation from the field, the finite system
has to be coupled to an external bath to which the absorbed energy can be
transferred. This is accompanied by a finite level width γ, which then allows
for real transitions to take place. As originally proposed by Czycholl and
Kramer [115], it has therefore become a frequently used procedure [116,118] to
introduce an inelastic width iγ into (2.55) “by hand”, leading to a broadening
of the δ functions into Lorentzians

δγ(ǫ) =
1

π

γ

ǫ2 + γ2
. (2.56)

Trivedi and Browne [117] reexamined this problem with particular empha-
sis on an accurate treatment of additional terms in the conductivity due
to induced currents in ring structures exposed to a time-dependent field.
They performed their linear-response derivation in the framework of a master
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equation for the reduced density matrix. This includes, besides free propa-
gation according to the Liouville equation, a relaxation term which provides
a driving of the system towards equilibrium. Such a term is essential in a
linear response theory, since it provides and defines an equilibrium state as
a reference from which linear deviations (of the density matrix) can be stud-
ied. The results of Trivedi and Browne exhibit the same Lorentzian behavior
for the Kubo-type conductivity (2.55) as proposed above. Their approach,
including terms specific to a ring topology, were recently applied by Reulet
and Bouchiat [119] to the AC conductivity of disordered rings.

In all the above-mentioned approaches dissipation is included on a rather
heuristic level which has proven useful and sufficient for the majority of meso-
scopic phenomena. Here, we proceed along these lines and thus exclude ques-
tions concerning a more elaborate treatment of dissipation and the possible
limits of linear response theory.

Before introducing our semiclassical concepts, we provide the necessary
quantum mechanical dynamic response functions. We start from the dynamic
susceptibility for noninteracting quasiparticles in terms of single-particle lev-
els |n〉. Its imaginary part is given by [120]

R(µ;ω) ≡ −Im
gs
πV

∑

n,m

[f(En) − f(Em)] |〈n|Â|m〉|2
Em − En − h̄ω + iγ

(2.57a)

=
gs
V

∑

n,m

[f(En) − f(Em)]|Anm|2δγ(Em − En − h̄ω) . (2.57b)

Here f(E) is the Fermi function (2.39) and δγ(ǫ) is a Lorentzian as defined

in (2.56). The functions Anm are, as usual, matrix elements 〈n|Â|m〉 of an
operator Â giving rise to transitions between different states. Here we focus
on the imaginary part of the dynamic susceptibility since this is relevant for
conductivity and absorption expressions. Introducing an additional energy
integration gives

R(µ;ω) (2.58)

=
gs
V

∫

dE
∑

n,m

[f(En) − f(Em)]|Anm|2δ(E − Em)δγ(Em − En − h̄ω).

In order to take into account effects of weak disorder one has to perform
averages, denoted by 〈. . .〉, and one finds9

RΓ (µ;ω) ≡ 〈R(µ;ω)〉 ≃ gs

∫

dE[f(E − h̄ω) − f(E)]CΓ (E,ω) . (2.59)

Here, Γ stands for a level broadening due to disorder and

CΓ (E,ω) ≡ 〈C0(E,ω)〉 (2.60)

9 The replacement of En and Em by E−h̄ω and E in the Fermi function is possible
since the inelastic broadening γ can be absorbed into the disorder broadening if
the latter is, as usual, significantly larger [121].



38 2. Elements of Modern Semiclassical Theory

with

C0(E,ω) =
1

V

∑

n,m

|Anm|2 δ(E − Em) δ(Em − En − h̄ω) . (2.61)

In the following we shall provide the equivalent response formulas in terms
of traces of products of single-particle Green functions. Such representations
are most appropriate for including the averaging over weak disorder. Writing
the matrix elements in (2.61) in the position representation,

Anm =

∫

dr ψ∗
n(r) A(r) ψm(r) , (2.62)

and using the fact that the δ functions in (2.61) can be expressed through
differences between retarded and advanced Green functions (2.2), one finally
has

C0(E,ω) = − 1

4π2V
[A++

0 (E;ω) +A−−
0 (E;ω)

−A+−
0 (E;ω) −A−+

0 (E;ω)] (2.63a)

= − 1

2π2V
Re[A++

0 (E;ω) −A+−
0 (E;ω)] . (2.63b)

Here the functions A±±
0 denote traces

A±±
Γ (E;ω) ≡ Tr[Â G±(E + iΓ ) Â G±(E − h̄ω + iΓ )] (2.64a)

=

∫

dr ′

∫

dr A(r′) G±(r′, r;E + iΓ )

×A(r) G±(r, r′;E − h̄ω + iΓ ) (2.64b)

for Γ = 0. The formula (2.63b) follows from (2.63a) by means of

G±(r, r′;E + iΓ ) = [G∓(r′, r;E + iΓ )]∗ . (2.65)

To account for weak disorder one has to evaluate the average 〈. . .〉 which
enters into (2.60) over products of Green functions. The semiclassical treat-
ment of such disorder averages is described in detail in Chap. 5. Here we
shall be mainly interested in spectral features in the regime of ballistic dy-
namics resulting from geometrical effects of the confinement potentials. We
shall thus include weak residual disorder only in order to account for the
related damping of signals of the clean system; we are not particularly inter-
ested in weak-localization-like effects due to disorder in the diffusive limit.
Thus, vertex corrections giving rise to, for example, weak localization can be
neglected and we replace 〈G± G±〉 by 〈G±〉〈 G±〉 in the disorder average of
(2.64a).10

10 Under the additional assumption of δ-like disorder this factorization leads, for
instance, to the correct Drude conductivity, with the transport mean free path
(see Appendix A.3) equal to the elastic mean free path.
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The impurity average of the single-particle Green functions within the
Born approximation causes a disorder broadening related to the self-energy
Γ , which is assumed to be constant (see Chap. 5):

〈G±(E)〉 ≃ G±(E + iΓ ) . (2.66)

Γ = h̄/2τ , where τ is the single-particle relaxation time. The corresponding
elastic mean free path is l = vτ . With these approximations we then find for
the disorder-averaged response function

CΓ (E,ω) = 〈C0(E,ω)〉 = − 1

2π2V
Re[A++

Γ (E;ω) −A+−
Γ (E;ω)] , (2.67)

with A±±
Γ as defined in (2.64a). Reexpressing the traces over Green functions

in terms of matrix element sums by means of (2.2), one obtains

CΓ (E,ω) =
1

V

∑

n,m

|Anm|2 δΓ (E − Em) δΓ (Em − En − h̄ω) . (2.68)

This relation is a generalization of (2.61) in the presence of weak disorder. It
enters, via (2.59), into the dynamic response function RΓ .

2.4.2 Semiclassical Approximation: Overview

The broadening Γ and the temperature average via the Fermi functions intro-
duce a natural smoothing of the spectral properties entering into mesoscopic
response functions. This is the most favorable situation for a semiclassical
treatment since the related trace formulas in terms of classical phase-carrying
paths then exhibit a natural cutoff. The formulas are expected to be conver-
gent as long as the smearing is larger than the mean spacing ∆.11

To my knowledge, Wilkinson [122] was the first to perform a semiclas-
sical evaluation of matrix element sums of the type given in (2.61) for the
chaotic case. This type of matrix element sum has been thoroughly investi-
gated in [86,123–127]. Related semiclassical approaches to the static conduc-
tivity in terms of semiclassical Green functions were used in [52, 66, 67, 128].
More recently, the above semiclassical approaches have been generalized by
Mehlig and Richter to a semiclassical treatment of dynamic linear response
functions for integrable and chaotic ballistic quantum systems at finite fre-
quency and finite temperature [114,121]. This approach represents the basis
of the analysis in the following section. Similar dynamic response functions
were presented in [129] for the integrable case and in [130] for hyperbolic
systems.

As already discussed with regard to the density of states in Sect. 2.1, an
appropriate semiclassical approximation has to account for the characteristics

11 On a more formal level, the exponential damping of the orbits must exceed h/2
(h being the topological entropy) in order to shift the regime of convergence of a
semiclassical trace formula such that it is absolutely convergent for real energies.
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of the classical dynamics, i.e. whether the classical motion of a mesoscopic
quantum system is regular or chaotic. Nevertheless, semiclassical dynamic
response formulas exhibit a similar overall structure in both cases.

First, to lowest order in h̄ they contain a purely classical part (correspond-
ing to the Weyl part of the density of states) varying smoothly as a function
of energy or other external parameters. This will be expressed in terms of
averages over correlation functions of the Weyl symbols, the classical analogs
of the operators Â. For chaotic systems this average is just the microcanon-
cial average over the energy shell; for integrable systems the average ranges
over invariant tori.

Secondly, quantum fluctuations are expressed, to leading order in h̄,
through trace formulas over periodic-orbit contributions. The periodic or-
bits consist of isolated unstable orbits for chaotic systems and representative
periodic paths on resonant tori for integrable systems, respectively. Their h̄
dependence is different for chaotic and integrable systems.

One can follow two equivalent approaches for a semiclassical evaluation
of response functions of the form of RΓ (µ;ω): either by starting from (2.68),
which then involves a semiclassical computation of matrix element sums [122,
126], or by using the representation (2.67) in terms of Green functions and
evaluating the trace integrals (2.64a) semiclassically. We pursue the latter
approach for systems with chaotic dynamics and then briefly illustrate the
former for the integrable case at the end of this section.

2.4.3 Chaotic Case

Smooth Part

A semiclassical representation of the disorder-averaged response function
CΓ , (2.67), is obtained by introducing into the trace integrals A+−

Γ , A++
Γ in

(2.64b) the semiclassical expressions (2.3) for the Green functions G+(r′, r)
and G−(r, r′) or G+∗

(r′, r), respectively (using (2.65)). The Green function
products gives rise to double sums over trajectories t and t′ between r and
r′.

For diagonal pairs of identical paths t = t′ entering into A+−
Γ the phases

cancel up to a remaining phase ωτt. These pairs constitute the classical con-
tribution C0

Γ to the response function. Combining the prefactors, we have

C0
Γ (E,ω) =

1

4(πh̄)3V
Re

∫

dr dr′ A(r) A(r′)

×
∑

t=t′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2St

∂r∂r′

∂2St

∂r∂E

∂2St

∂E∂r′

∂2St

∂E2

∣

∣

∣

∣

∣

∣

∣

∣

∣

exp
(

iωτt −
τt
τ

)

. (2.69)

At this point it is convenient [66, 67, 128] to transform the r′ integral into
an integral over initial momenta as in (2.6): for a given initial point r one
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may either perform the spatial integration over r′ or integrate over all ini-
tial momenta p on the energy shell δ[E − H(r,p)] and, for a given direc-
tion, along the then uniquely defined trajectory. The latter integration can
be represented as a time integral which additionally involves the Weyl sym-
bols A[r(t)], A[r′(t′)]. The Jacobian of this transformation of the integration
variables is exactly provided by the determinant in (2.69), the square of the
classical phase space density. As the result one finds

C0
Γ (E,ω) =

1

4(πh̄)3V

×
∫

dr dp

∫ ∞

0

dt A(0)A(t) cos(ωt) e−t/τδ[E −H(r,p)] . (2.70)

This is conveniently expressed as

C0
Γ (E,ω) =

d̄(E)

(πh̄)V gs

∫ ∞

0

dt〈A(0)A(t)〉pr cos(ωt) e−t/τ , (2.71)

where we have introduced the microcanonical phase space average (for chaotic
systems)

〈B〉pr ≡ gs
h2d̄(E)

∫

dr dp B(r,p) δ[E −H(r,p)] . (2.72)

In the above equations d̄(E) is the mean density of states including spin.
C0

Γ is usually a smooth function of energy or other external parameters.
It represents the leading-order h̄ contribution to the smooth part of CΓ ,
similarly to the Weyl part, the leading-order term for the smooth part of the
density of states.12 In the semiclassical limit the classical term C0

Γ yields the
dominant contribution to the overall response function CΓ .

The smooth part of the dynamic response function, R0
Γ (µ;ω), is obtained

by integrating over the Fermi functions. Assuming C0
Γ (E;ω) ≃ C0

Γ (E+h̄ω;ω),
we can expand the Fermi function in the integral (2.59) according to f(E −
h̄ω) ≃ f(E) + h̄ωδ(E − µ) and find [114]

R0
Γ (µ, ω) ≃ ω

d̄(µ)

πV

∫ ∞

0

dt〈A(0)A(t)〉pr cos(ωt) e−t/τ . (2.73)

Quantum Oscillations

In order to account for quantum mechanical contributions to response func-
tions one has to include nondiagonal terms corresponding to different paths.
For contributions of pairs of paths to A++

Γ (E;ω) and of pairs of different
paths to A+−

Γ (E;ω), a net phase remains in CΓ , (2.67): these terms give
rise to quantum corrections to the Weyl part owing to interference effects.

12 We note, however, that the Weyl term can be related to “paths of zero length”,
while C0

Γ stems from finite-length trajectories.



42 2. Elements of Modern Semiclassical Theory

Both trace integrals can be computed in the stationary-phase approxima-
tion assuming chaotic classical dynamics. The details of the calculation for
A++

Γ (E;ω) and A+−
Γ (E;ω) can be found in Appendix A.1.

(i) Contributions from G+G− Terms. The oscillatory part of A+−
Γ (E;ω)

depends on products of advanced and retarded semiclassical Green functions
related to different path lengths. The resulting expression reads (see Appen-
dix A.1.3, (A.30))

(A+−
Γ )osc(E;ω) ≃ 1

h̄2

∑

po

C+−
po τpo (2.74)

×
∞
∑

j=1

B(j)
po exp

[

j
τpo

2

(

iω − 1

τ

)]

cos

[

j

(

Spo

h̄
− ωτpo

2
− ηpoπ

2

)]

.

The sum runs over all unstable primitive periodic orbits of the system.
Spo(E) =

∮

Cpo
p dq is the classical action, τpo the period, and ηpo the Morse

index of each periodic orbit. The index j counts higher repetitions. The pref-
actor

B(j)
po =

∣

∣det(M j
po − 1)

∣

∣

−1/2
(2.75)

accounts for the classical (in)stability of the orbits given by the monodromy
matrix Mpo. The functions C+−

po denote Fourier transforms

C+−
po (E;ω) ≡

∫ ∞

0

dt eiωt−t/τ C̃po(t) (2.76)

of classical autocorrelation functions

C̃po(t) =
1

τpo

∫ τpo

0

dt′A(t+ t′)A(t′) (2.77)

of A(r) along each prime periodic orbit. The weak-disorder average leads to
an exponential damping13 of each periodic-orbit contribution on the scale of
jτpo/2τ .

Except for the correlation functions, the formula (2.74) has the same
structure as Gutzwiller’s trace formula (2.27) for the density of states. How-
ever, here the periodic-orbit contributions represent pairs of nonclosed paths
(up to infinite length) both lying on the same periodic orbit: the trajectories
begin and end at the same point on the periodic orbit but differ in j, by their
number of full traversals around the periodic orbit. The quantum oscillations
appearing in (A+−

Γ )osc(E;ω) are thus related to interference between open
paths with phase differences ∼ jSpo/h̄.

13 A refined semiclassical treatment of the disorder average in Chap. 5 shows in fact
that the number of repetitions enters quadratically (∼ j2) into the exponent. This
is of minor importance in the present calculation, since temperature provides the
predominant cutoff.
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(ii) Contributions from G+G+ Terms. Quantum oscillations arising
from the trace over the product of two retarded (or advanced) Green func-
tions are given, to leading order in h̄, by (see Appendix A.1.2, (A.21))

(A++
Γ )osc(E;ω) (2.78)

≃ − 1

h̄2

∑

po

τpo

∞
∑

j=1

C++
po B(j)

po exp
(

−j τpo

2τ

)

exp

[

ij

(

Spo

h̄
− ηpoπ

2

)]

.

In this case the Fourier-like transform of the orbit correlation function is
defined as

C++
po (E;ω) =

∫ jτpo

0

dt eiωtC̃po(t) . (2.79)

In the static limit this takes the form

C++
po (E;ω ≡ 0) =

1

τpo
〈A〉2po , (2.80)

where 〈A〉po is the average of A(r) along the periodic orbit. In many applica-
tions this average is indeed zero, see e.g. Chap. 3, and the G+G+ contribution
disappears in the static case. However, it should be pointed out that, con-
trary to diffusive dynamics, physically relevant contributions from G+G+

terms may exist in the ballistic regime, especially at finite ω.

(iii) Trace Formula. To elucidate the role of periodic orbits in the response
at finite frequencies it proves convenient to expand the autocorrelation func-
tion C̃po in (2.77), which is periodic in τpo, into a Fourier series

C̃po(t) ≡
∞
∑

m=−∞

α(m)
po e−iωmt with ωm =

2πm

τpo
. (2.81)

The Fourier coefficients α
(m)
po are real and α

(0)
po =0 owing to the symmetry of

the correlation functions. One then finds, from (2.76) and (2.79) [121],

C+−
po (E,ω) = i

∞
∑

m=−∞

α
(m)
po

h̄(ω − ωm) + 2iΓ
, (2.82a)

C++
po (E,ω) = 2 sin

(

j
ωτpo

2

)

exp
(

−ij
ωτpo

2

)

∞
∑

m=−∞

α
(m)
po

h̄(ω − ωm)
. (2.82b)

Upon combining the real parts of (A+−
Γ )osc(E;ω), (2.74), and (A++

Γ )osc(E;ω),
(2.78), one obtains for the quantum corrections to the disorder-averaged re-
sponse function CΓ (E,ω) ((2.67)), to leading order in h̄,

Cosc
Γ (E,ω) (2.83)

≃ −1

π2h̄2V

∑

po

τpo

∞
∑

j=1

B(j)
po exp

(

−j τpo

2τ

)

cos

[

j

(

Spo

h̄
− πηpo

2
− ωτpo

2

)]

×
∞
∑

m=−∞

α(m)
po

2Γ

[h̄(ω − ωm)]2 + (2Γ )2

[

cos

(

jωτpo

2

)

− sin (jωτpo/2)

(ωm − ω)τ

]

.
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For the calculation of the corresponding oscillatory part of the response func-
tion RΓ (µ;ω), (2.59), the related integral over the Fermi function has to be
evaluated. The classical contribution is obtained by expanding the Fermi
function as f(E − h̄ω) ≃ f(E) + h̄ωδ(E − µ). We point out that this expan-
sion yields incorrect results when simply applied to the oscillatory contribu-
tions.14 Instead, the integral can be evaluated analytically in a leading-order
h̄ approximation using the relation (2.47). Together with the classical “Weyl”
contribution (2.73) the overall semiclassical dynamic response is then given
by [114]

RΓ (µ;ω) ≃ R0
Γ (µ;ω) +Rosc

Γ (µ;ω)

≃ R0
Γ (µ, ω) − 2gs

πh̄V

∑

po

∞
∑

j=1

B(j)
po R

(

jτpo

τT

)

exp
(

−j τpo

2τ

)

× cos

[

j

(

Spo(µ)

h̄
− πηpo

2

)]

sin

(

jωτpo

2

)

×
∞
∑

m=−∞

{

α(m)
po

2Γ

[h̄(ω − ωm)]2 + [2Γ ]2

×
[

cos

(

jωτpo

2

)

− sin (jωτpo/2)

(ωm − ω)τ

]}

. (2.84)

This represents the main result of this section. In a semiclassical representa-
tion, the dynamic susceptibilities are composed of a (dominant) classical part
and oscillatory quantum corrections. Equation (2.84) establishes for both the
smooth part R0

Γ and the oscillatory part Rosc
Γ the leading-order semiclassical

expansion of a dynamic response function of the type given in (2.59). The
expression provides a means to calculate or analyze transport coefficients or
susceptibilities in the semiclassical regime. It accounts for finite frequency
and finite temperature in the presence of weak disorder.

We complete this section with a few further remarks concerning the prop-
erties and limitations of the semiclassical response formula.

The Lorentzian functions entering into the oscillatory part make the un-
derlying physical processes rather transparent: if the frequency ω of the ex-
ternal time-dependent field is close to the eigenfrequency ωm = 2πm/τpo of
a periodic orbit, the response function exhibits a resonance, indicating, for
example, a peak in the absorbed power.

The impurity average gives rise to an exponential damping on a time scale
of τ . For large Γ , corresponding to τ ≪ τpo, the periodic-orbit contributions
are damped out. On the other hand, the semiclassical approximations are
only reliable as long as ∆ < Γ .

We note that in the limit of small Γ one can easily verify that the oscilla-
tory contributions vanish to lowest order in h̄ [121]. Hence in clean systems
one does not expect periodic-orbit contributions to the dynamic response at

14 This procedure has apparently been used in [130].
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this level of approximation. This fact stems from the difference of the Fermi
functions and is not observed in the literature that deals with pure matrix
element formulas.

In (2.84), temperature effects are included through the function R(x) =
x/ sinhx and give rise to an exponential damping of contributions from orbits
with τpo > τT = h̄β/π, see (2.50). Hence, typically only a few periodic
orbits suffice to describe the quantum response in the mesoscopic regime. At
temperatures such that τT is smaller than the period of the shortest periodic
orbit, the quantum oscillations disappear and only the classical contribution
remains.

The semiclassical derivation of (2.84) relies on the expansion Spo(E +
h̄ω) ≃ Spo(E) + h̄ωτpo. Hence, this semiclassical expression is applicable for
frequencies such that h̄ω ≪ µ. This is the usual situation in mesoscopic sys-
tems in the semiclassical regime. The expression is generally not suited to de-
scribe, for example, frequency-dependent excitations from low-lying states in
atoms or molecules. For such applications, corresponding semiclassical meth-
ods have been developed which appropriately take into account the coupling
between a well-localized ground state and an extended excited state [131].

2.4.4 Integrable Case

The integrable case differs from the chaotic one with regard to the meth-
ods used to evaluate the trace integrals in the response formula (2.67): the
stationary-phase approximation as was used in Appendix A.1 for the case of
isolated orbits is not applicable. However, the overall final response formula
is of similar structure and we briefly summarize the result. It can be obtained
by making contact with existing semiclassical approximations for matrix el-
ement expressions for integrable classical dynamics without disorder, which
are of the form (2.61) for C0.

To this end one first expresses CΓ , which enters into the integral (2.59) of
the response function RΓ , in terms of C0 by means of two convolutions [114]:

CΓ (E,ω) =
1

V

∑

n,m

|Anm|2 δΓ (E − Em) δΓ (Em − En − h̄ω) (2.85)

=

∫

dǫ

∫

dω′ δΓ (E − ǫ) δΓ [ǫ− E + h̄(ω − ω′)] C0(ǫ;ω
′) .

Semiclassical expansions for C0(E;ω) have been studied for the chaotic
case in [86, 123, 124] and for the integrable case in [126]. Here, we cite the
leading-order semiclassical approximation of the response function C0 for the
latter case:

C0(E;ω) ≃ C0
0 (E;ω) (2.86)

+
1

πh̄3/2
Re

{

∑

M

CM τM BM exp

[

ij

(

SM

h̄
− ηMπ

2
+ γ

π

4

)]

}

.
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Note the close correspondence to the Berry–Tabor trace formula (2.25) for the
density of states. The sum in (2.86) is over rational tori, labeled by the topol-
ogy vector M . The BM are the same as in the Berry–Tabor formula. The
functions C0

0 (E;ω) and CM (E;ω) are in the present case Fourier transforms
of classical autocorrelation functions on tori [126], similar to those discussed
for the chaotic case.

The dynamic response function RΓ is obtained by evaluating the integrals
on the right-hand side of (2.85) and the Fermi integral (2.59) to leading order
in h̄ by complex contour integration. As a result, one recovers the structure
of the semiclassical response function (2.83) for the chaotic case [114, 121],
although the classical entries are now those for the integrable case.

After these rather technical sections we now turn to applications of this
semiclassical approach to dynamic susceptibilities, and then to transport in
the next chapter.

2.4.5 Dynamic Susceptibilities

The absorption of radiation and the polarizability of small conducting par-
ticles represent one field of direct application15 of the semiclassical linear-
response formalism. These systems played an important role in the early,
seminal work by Gorkov and Eliashberg [135] on quantum effects in the
polarizability. Their work can be regarded as pioneering in the context of
quantum chaos: it already invokes random-matrix theory to account for the
effect of different spectral statistics on the polarizability. Absorption of radia-
tion provides a further means to study quantum chaos in mesoscopic physics.
Contrary to transport, one probes finite closed systems and their optical
properties. Today’s optical experiments on mesoscopic systems span a wide
range from atomic metal clusters to high-mobility semiconductor devices of
reduced dimensionality like quantum dots. They allow the observation of the
quantum size effects mentioned above (e.g. [136–138]).

In [114,139] the semiclassical dynamic response function RΓ (µ;ω), (2.84),
has been employed to compute the far-infrared absorption in small ballistic
particles. Here we summarize only the main results. The coefficient α(ω) for
frequency-dependent absorption of radiation is directly related to RΓ (µ;ω)
via α(µ;ω) = (πe2ωV/2E2

0)RΓ (µ;ω), where E0 denotes the amplitude of the
external field. Hence the absorption coefficient can be decomposed into

α(µ;ω) ≃ α0(µ;ω) + αosc(µ;ω) . (2.87)

In the approach of [114] the effect of Coulomb interactions has been con-
sistently incorporated into the semiclassical framework by using a Thomas–
Fermi approximation for frequencies below the plasma frequency [140]. Then

15 Reviews of the extensive literature documenting the long history of studies on
the polarizability and absorption of small particles can be found, for example,
in [132–134].
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the screened effective potential of the radiation field enters as a perturbation
A(r) into the response functions RΓ . In [114] α(µ;ω) has been calculated
for the case of two-dimensional disks both semiclassically and quantum me-
chanically. Semiclassics predicts a classical optical absorption profile α0(µ;ω)
with pronounced peaks at frequencies where the classical correlation functions
exhibit resonances. On these are superimposed lower-order (in h̄) oscillatory
quantum corrections αosc. The semiclassical results are in very good quantita-
tive agreement with the numerical quantum results for different temperatures
and (weak) disorder damping. Details can be found in [114].





3. Ballistic Quantum Transport

The study of electronic transport through small conductors is one of the
most prominent research areas in mesoscopic physics. The particular interest
in transport during most of the last two decades can be related to the fact
that mesoscopic devices show a variety of effects which may appear surprising
from a macroscopic point of view. These phenomena are related to quantum
interference at low temperatures and therefore give rise to nonohmic behav-
ior. Phase coherence effects were first observed in transport through metal
conductors: a well-known example is conductance fluctuations in disordered
samples. Since the variance of these oscillations is practically independent of
system size, disorder, or material, they are termed universal [2]. A second out-
standing phenomenon is a quantum correction to the averaged conductance,
the weak-localization effect, and its magnetic-field dependence.

Mesoscopic transport was orginally focused on small metal devices with
diffusive electron motion. However, with the advent and development of high-
mobility semiconductor heterostructures the regime of ballistic transport be-
came accessible. In this limit impurity scattering is strongly reduced. Hence,
the electron dynamics can be controlled by lithographically imposing addi-
tional electrostatic potential barriers. If the elastic mean free path is consid-
erably larger than the system size the conductance will reflect the geometry
of the microstructure. The question which naturally arises is one of quantum
phenomena in the ballistic regime and their relation to the interference of
electron waves multiply reflected in the artificial potential landscapes of such
systems [3].

Progress in ballistic microcavities, moreover oriented interest towards
questions of how electron dynamics that is classically regular or chaotic shows
up in the properties of ballistic quantum transport [42,51,55,56]. Three types
of experiments have been generally used to investigate this issue:

(i) A whole sequence of experiments deals with phase-coherent transport
through microconductors, lithographically designed as billiard-like elec-
tron cavities, attached to leads [44,55,68,141–150]. These “quantum bil-
liards”, an example of which was given in the introduction, enable one
to study the effect of the geometry on quantum transport. It was shown,
both theoretically and experimentally, that chaotic ballistic cavities ex-
hibit a universal behavior for the conductance fluctuations and weak
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localization, characterized by a single scale. On the contrary integrable
structures show nongeneric behavior.

(ii) In a second class of experiments, electron transport through artificial lat-
erally defined superlattices studied [51,151–156] (see the example in the
introduction). These antidot lattices, which consist of arrays of period-
ically arranged repulsive pillars, can be regarded as macroscopic since
they are not entirely phase-coherent. Their size is much larger than the
phase coherence length ℓφ. However, the lattice constant, the relevant
internal length scale, is typically of order of 50–300 nm and therefore
much smaller than both the elastic mean free path l and ℓφ. This enables
the observation of quantum effects in these systems also as will be dis-
cussed in this section. The combined potential of the superlattice and an
external magnetic field H gives rise to a variety of peculiar phenomena,
including effects of the classically chaotic electron motion.

(iii) More recently, a third class of transport experiments, which address ques-
tions related to chaos in mesoscopic quantum systems, has been per-
formed. In these experiments, transport through relatively large quan-
tum wells, weakly coupled through tunneling barriers to the leads, has
been studied [157]. An additional, tilted magnetic field gives rise to a
mixed classical phase space structure inside these resonant tunneling
diodes. The measurements show oscillations in the tunneling current
which clearly reflect periodic-orbit effects. In particular, states localized
along short periodic orbits which connect the two tunnel barriers play
a prominent role in the electron transport. The original semiclassical
approach (for a review see [158]) has been refined in the meantime by
a number of different groups. In [159, 160] the current has been calcu-
lated using a semiclassical evaluation of Bardeen-type tunneling matrix
elements [161]. The results again point towards the importance of cer-
tain types of periodic orbits. Furthermore the role of bifurcations [162]
and complex “ghost” periodic orbits [163] has been pointed out in order
to achieve a quantitative understanding of the experimental results. For
more details on this specific branch of semiclassical transport we refer
the reader to the publications cited above and references therein.

Interference phenomena in quantum electron transport through micro-
structures are usually described theoretically within two complementary
frameworks. The Landauer–Büttiker formalism [3] describes transmission
through single phase-coherent devices. The current is directly related to trans-
mission properties of the sample and expressed in terms of conductance co-
efficients between channels in the various attached leads. On the other hand,
the Kubo linear response theory [120] has proved useful in the treatment of
bulk transport properties of samples with a size exceeding the phase-breaking
length.

A semiclassical picture relating wave interference to possibly complicated
boundary-reflected paths in the ballistic regime seems physically appealing. In
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this spirit a semiclassical approach to the conductance within the Landauer–
Büttiker framework has been used in [42,43,56], expressing the conductance
coefficients in terms of interfering electron paths. This approach will be dis-
cussed in Sect. 3.2.1.

The more recent experiments on magnetotransport in antidot structures
revealed the lack of a corresponding semiclassical approximation for the Kubo
bulk conductivity [51,144]. As a result, such an approach has been indepen-
dently developed by Richter [66] and by Hackenbroich and von Oppen [67]. It
can be regarded as a specific (static) case of the semiclassical linear response
formalism presented in the previous section and will be described below. In
particular, we focus on its use to describe quantum transport in superlattices,
which can be considered as the main application so far.

We note that a quasiclassical approach to transport in disordered systems
was originally proposed by Chakravarty and Schmid [7]. They studied inter-
ference between diffusive electron paths in random δ-like potentials, focusing
especially on the description of weak-localization mechanisms. More recently,
a comprehensive semiclassical treatment of one-dimensional disordered sys-
tems, including aspects of localization, has been presented by Dittrich [77].

3.1 Bulk Conductivity

We first present the semiclassical approach to quantum transport. After a
brief account of the main experimental findings for antidot lattices we then
use the semiclassical formalism to describe these experiments and summarize
the corresponding quantum calculations.

3.1.1 Semiclassical Approach

As the first application of the semiclassical linear response formulas presented
in Sect. 2.4 we derive semiclassical expressions for the magnetoconductivity
tensor within the Kubo formalism [66,67]. A related semiclassical evaluation
of the Kubo conductivity with emphasis on weak-localization effects has been
performed by Argaman [128].

Within the Kubo formalism the static conductivity for a Fermi energy µ
and temperature T is given by

σij(µ,H;T ) = gs

∫ (

− df

dE

)

〈σij(E,H)〉dE . (3.1)

f(E) is the Fermi function (2.39) and 〈. . .〉 denotes an average over weak
residual disorder. The diagonal and Hall conductivities are conveniently ex-
pressed as [167]
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σxx =
πe2h̄

V
Tr
{

v̂x δ̂(E − Ĥ) v̂x δ̂(E − Ĥ)
}

, (3.2a)

σxy =
e

V

∂n(E,H)

∂H
(3.2b)

+
i

2

e2h̄

V
Tr
{

v̂xG
+(E)v̂y δ̂(E − Ĥ) − v̂x δ̂(E − Ĥ)v̂y G

−(E)
}

.

Here, the v̂i are velocity operators, and n(E) the number of states below E
(see (2.36)).

Chaotic Systems

We begin with the evaluation of the diagonal conductivity. Neglecting vertex
corrections, we replace the disorder-average of σxx in (3.1) by the product

of disorder averaged δ̂ operators in (3.2a) (see also the discussion preceding
(2.67)). Then we have

σxx(µ,H;T ) =
gsπe

2h̄

V

∫

dE

(

− df

dE

)

Tr
{

v̂x δ̂Γ (E−Ĥ)v̂x δ̂Γ (E−Ĥ)
}

.(3.3)

This equation is, up to prefactors, equivalent to the static limit of the re-
sponse function RΓ given by (2.59) and (2.68). Accordingly, the semiclassical
expression for the diagonal conductivity is conveniently decomposed into

σxx(µ,H) = σ0
xx(µ,H) + σosc

xx (µ,H) . (3.4)

The smooth classical part, yielding the leading-order h̄ contribution, reads,
according to (2.71),

σ0
xx(µ,H) =

e2d̄(µ)

V

∫ ∞

0

dt 〈vx(t)vx(0)〉pr exp(−t/τ) . (3.5)

The microcanonical phase space average 〈. . .〉pr is defined in (2.73). τ is the
elastic scattering time1 and d̄(µ) is the mean density of states at the Fermi
energy; d̄(µ) = gsV/(2πh̄

2) in two dimensions. The expression (3.5) represents
the generalization of the Drude conductivity to systems with arbitrary chaotic
phase space dynamics.

To compute the leading-order quantum corrections σosc
xx to the static con-

ductivity, it is more convenient to employ the semiclassical expressions (2.74)
and (2.78), which enter into CΓ and hence RΓ , than to use the final equation
(2.84) for the dynamic response. For the case of the static conductivity, the
contribution A++

Γ vanishes since the correlation function (2.80) turns out to
be zero: 〈vx〉po ≡ 0. Therefore, the quantum correction to σxx is given solely
by (A+−

Γ )osc. Combining the prefactors, it reads [66,67]

1 A proper inclusion of ladder diagrams in the treatment of disorder would give a
damping according to τtr = vF/lT, where lT is the transport MFP (see Appendix
A.3).



3.1 Bulk Conductivity 53

σosc
xx (µ,H) =

2gs

V

e2

h
(3.6)

×
∑

po

τpoCpo
xx

∞
∑

j=1

R(jτpo/τT ) exp(−jτpo/2τ)
∣

∣

∣det(M j
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∣

∣

∣

1/2
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[

j

(

Spo

h̄
− ηpo

π

2

)]

.

Quantum corrections to the Kubo conductivity are semiclassically expressed
in terms of a sum over contributions from classical periodic orbits (po)
and their higher repetitions j. Temperature enters via the function R(x) =
x/ sinh(x), (2.49), with τT = h̄β/π, (2.50). The weights

Cpo
xx =

1

τpo

∫ ∞

0

dt e−t/τ

∫ τpo

0

dt′ vx(t′) vx(t+ t′) (3.7)

are velocity correlation functions along the periodic orbits. Apart from the
Cpo

xx the formula (3.6) for σosc
xx is essentially the same as Gutzwiller’s trace

formula (2.27) for the density of states.
The Hall conductivity (3.2b) in the representation by Str̆eda [167] is de-

composed into a magnetization term and a term similar to σxx. The former
is obtained in the leading-order semiclassical approximation by using (2.54b)
for the thermodynamic particle number and applying the H-field derivative
only to the rapidly varying phase. The semiclassical evaluation of the second
contribution to σxy follows by proceeding precisely along the same lines as
for σosc

xx . The smooth contribution to σxy is of the same structure as (3.5)
but for velocity correlations between vx and vy. The oscillatory part of the
semiclassical Hall conductivity reads, to lowest order in h̄ [66],

σosc
xy (µ,H) =

2gs
V

e2

h

∑

po

∞
∑

j=1

(

1

e

∂Spo

∂H
+ τpoCpo

xy

)

× R (jτpo/τT ) e−jτpo/2τ

∣

∣

∣
det(M j

po − 1)
∣

∣

∣

1/2
cos

[

j

(

Spo

h̄
− ηpo

π

2

)]

. (3.8)

Frequency-Dependent Conductivity

The semiclassical approach to the static magnetoconductivity can be gener-
alized to finite frequencies on the basis of the semiclassical dynamic response
formalism presented in Sect. 2.4. Using the relation σ(ω) = πe2RΓ (ω)/ω, the
frequency-dependent conductivity is given, according to (2.84), to leading
order in the smooth and oscillatory contributions as

σij(µ;ω) = σ0
ij(µ;ω) + σosc

ij (µ;ω) . (3.9)

This relation represents a generalization of related formulas for cyclotron
resonance in the bulk. Resonance phenomena will typically arise if the fre-
quency ω is close to one of the frequencies of the (quasi)periodic motion
involved. Recently, a classical frequency-dependent Kubo formula based on
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σ0
xx has been employed to describe microwave photoconductivity measured

in antidot arrays [168]. In such experiments the magnetoconductivity sig-
nal is studied as a function of the frequency of the microwave radiation ap-
plied. The observed deviations from the two-dimensional magnetoplasmon
resonance curve in the presence of an antidot lattice can be related to the
underlying classical mechanics [168]. To my knowledge, resonance phenomena
in quantum corrections σosc

ij (µ;ω) have not yet been experimentally detected.

Shubnikov–de Haas Oscillations

Before we apply the above results to describe the magnetoconductivity anom-
alies of antidot lattices, we note the related expression for the conductivity
of a free 2DEG. In the unmodulated case, in the presence of a homogeneous
perpendicular magnetic field, the electrons perform cyclotron motion with
frequency ωcyc = eH/m∗c. Their dynamics is integrable. Hence, the above
trace formula in terms of isolated periodic orbits does not directly apply.
However, we can make use of the Berry–Tabor-like linear-response expres-
sions (2.86) derived for the integrable case in Sect. 2.4.4. The corresponding
computation for the diagonal magnetoconductivity reads [66]

σSdH
xx (µ,H) =

nse
2τ

m∗

1

1 + (ωcycτ)2
(3.10)

×







1 + 2

∞
∑

j=1

(−1)j R

(

j2πrcyc

LT

)

cos

(

j
2πµ

h̄ωcyc

)

exp

(

−j π

ωcycτ

)







,

with ns being the carrier density andm∗ the effective mass of the charge carri-
ers. For the simple case of cyclotron motion the velocity correlation function,
action, etc. could be evaluated analytically.

σSdH
xx (see Fig. 3.4) represents the semiclassical approximation for the

Shubnikov–de Haas (SdH) oscillations in terms of a sum over cyclotron orbits
and their higher repetitions.

An expression corresponding to (3.8) exists also for the semiclassical Hall
conductivity. However, for the case of a free 2DEG the two terms in the sum
in (3.8) nearly cancel and second-order h̄ corrections have to be considered
to reproduce Hall plateaus in σSdH

xy and ρSdH
xy [169].

The expression (3.10) coincides with the quantum mechanical result for a
constant scattering time τ [49]. In the case of a high-mobility 2DEG (ωcycτ ≫
1) with a pronounced Landau-level structure the use of an energy-dependent
self-energy and scattering time is usually required. This leads, for example,
to a quadratic dependence of the SdH oscillations on the density of states of
each Landau level. However, for the antidot arrays to be considered below, the
superlattice potential strongly mixes the Landau levels and smooths out the
spectral density (Fig. 3.5). Thus the use of an energy-independent scattering
time is justified.



3.1 Bulk Conductivity 55

3.1.2 Antidot Lattices: Experiments

As already illustrated in Fig. 1.1 in the introduction, a periodic array of
nanometer-sized holes in a semiconductor heterostructure results in a peri-
odic potential landscape for the two-dimensional electron gas (2DEG), i.e. an
antidot superlattice. The electrons move at the Fermi energy in between the
periodically arranged antidots. In these systems the elastic mean free path
(MFP) l and the transport MFP lT are both considerably larger than the lat-
tice constant a. On the other hand, the Fermi wavelength λF is smaller than
a. Hence semiclassical approximations for electron transport are justified.

The combination of the superlattice and a perpendicular magnetic field
H leads to a number of peculiar effects,2 of which we note a few:

(i) The diagonal magnetoresistivity ρxx(H) exhibits pronounced peaks at
moderate fields H < 1 T, contrary to the unpatterned 2DEG. This be-
havior is displayed in Fig. 3.1 for three antidot lattices differing in the
ratio d/a of the effective antidot diameter d to the lattice constant. The
number of resolved peaks in ρxx and steps in ρxy (not shown) depends
critically on the ratio d/a. The wider the antidots, the fewer peaks are
observable in the resistivity. The peaks were assigned to cyclotron orbits
fitting around certain numbers of antidots [152]: for instance, for the sam-
ple 3 shown in Fig. 3.1 all peaks are located at field strengths such that
the corresponding cyclotron radius rcyc = cvF/eH is commensurate with
the lattice: peaks were resolved up to orbits encompassing 21 antidots.

(ii) Measurements of ρxx at low temperature (T ∼ 0.4 K) displayed ad-
ditional oscillations superimposed upon the low-H resistance anomalies
[51], as already mentioned in the introduction. The corresponding data
for an antidot lattice with d/a ∼ 0.5 (sample 1 in Fig. 3.1) were shown
in Fig. 1.2, Sect. 1.1. There, ρxx from both patterned and unpatterned
sample segments is compared. In the unpatterned part, 1/H-periodic
Shubnikov–de Haas oscillations reflect the Landau energy spectrum. The
oscillations in the antidot segment reveal quite different behavior: they
are H-periodic with a period corresponding to the addition of approx-
imately one flux quantum through the antidot unit cell. At 4.7 K, the
quantum oscillations are smeared out, while the characteristic ρxx peak
at 2rcyc = a persists.

This temperature sensitivity implies that the effects are of a quantum
nature. However, they cannot be attributed to interfering electron waves tra-
versing the whole antidot array, as discussed in previous work [166], since
the samples are too large to maintain phase coherence. In the introduction
it was shown that the observed periodicity of these modulations could be
semiclassically described by quantized periodic orbits [51], assuming that
ρxx reflects density-of-states oscillations. This picture will be refined in the

2 For experimentally oriented reviews see, for example, [52,164,165].
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Fig. 3.1. Magnetoresistivity anomalies at low magnetic field for three samples
differing in the ratio d/a of the antidot diameter to the lattice constant. For smaller
d/a more structure in ρxx evolves. The peaks, e.g. in the curve 3, appear exactly at
field strengths which correspond to the cyclotron radii rcyc of commensurate orbits
around 1, 2, 4, 9, and 21 antidots, as sketched in the inset. The corresponding rcyc/a
values are marked by arrows. The occurrence of the resistivity peaks is explained
in Sect. 3.1.1. The dashed arrow at curve 2 marks the position of an unperturbed
cyclotron orbit around four antidots. The shift of the corresponding resistance peak
towards lower H indicates the deformation of the orbit in a “soft” potential [170]
(from [152], by permission; c©1991 by the American Physical Society)

following section, where we present a uniform treatment of the two character-
istic transport anomalies in antidot crystals: the broad classical enhancement
of the magnetoresistance and the quantum oscillations.

3.1.3 Antidot Lattices: Conductivity Calculations

The transport anomalies in antidot lattices can be explained both within a
numerical quantum mechanical approach [176, 177] and within the semiclas-
sical framework presented above. We shall take the semiclassical route in the
following and refer to the related quantum approaches afterwards.

Classical Dynamics

Fleischmann, Geisel, and Ketzmerick [170] were able to explain the classical

magnetotransport anomalies observed, namely the strong peaks shown in
Fig. 3.1, by accounting for the nonlinear classical electron dynamics in antidot
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lattices. As a classical model Hamiltonian for the motion of electrons at the
Fermi energy under the effect of a magnetic field and the antidot lattice, they
introduced

H = µ =
1

2m∗

(

p − e

c
A
)2

+ U0

[

sin
(πx

a

)

sin
(πy

a

)]β

. (3.11)

Here, the vector potential A generates the magnetic field and the parameter β
governs the steepness of the antidots. Within a classical Kubo-type approach,
Fleischmann et al. used for the conductivity

σcl
ij = pc

nse
2

kBT

∫ ∞

0

exp (−t/τ)〈vi(t)vj(0)〉pr dt , (3.12)

where the angle brackets denote averaging over phase space. 0 < pc < 1
denotes the (chaotic) part of phase space in which particles can participate
in transport. For an isotropic system the magnetoresistivity tensor is then
obtained by means of

ρxx =
σxx

σ2
xx + σ2

xy

, ρxy =
σxy

σ2
xx + σ2

xy

. (3.13)

A corresponding numerical classical simulation [170] indeed reproduces most
of the features of the classical magnetoanomalies shown in Fig. 3.1. The
prominent resistivity peaks for rcyc ≃ a/2 can be related to electrons tem-
porarily trapped on orbits which encompass an antidot in an irregular man-
ner. This motion leads to structure in the classical velocity correlation func-
tions which is reflected in the resistivity.3

Indeed, (3.12) corresponds precisely to the smooth classical part (3.5) of
the magetoconductivity obtained within the semiclassical approach. This is
expected as the classical linear-response treatment should be included as the
classical limit in the general semiclassical framework. For low temperatures
the prefactor nse

2/kBT in (3.12) has only to be replaced by e2d̄/V .

Quantum Corrections

In the following we address the quantum oscillations observed in antidot
experiments at low temperature (see Fig. 1.2). We shall show that they just
reflect leading order h̄ quantum corrections to the conductivity given by the
semiclassical trace formula (3.6). A correct application of such trace formulas
requires a detailed knowledge of the classical phase space structure. This is
displayed by means of Poincaré surfaces of section in Fig. 3.2.

The Y coordinate in the figure denotes the diagonal (11) direction in
a repeated unit cell of the antidot lattice (see, e.g., Fig. 3.3). The surface-
of-section plots monitor the Y position and the velocity in the Y direction
each time an orbit hits the diagonal. The three panels show the phase space

3 Also, trajectories “hopping” through the array, sometimes denoted as runaway
trajectories, can contribute to an increased resistivity; see [52, 154,171,172].
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Fig. 3.2. Poincaré surfaces of section for the antidot model Hamiltonian (3.11) for
β = 2 and field strengths H = 0.5, 1.5, and 4 T, from the left to the right panel.
The normalized width of the antidots is d/a = 0.5. The surface of section is defined
by the diagonal, the (11) direction in the lattice

structure of the Hamiltonian (3.11) for three different magnetic field strengths
H = 0.5, 2, and 4 T and a steepness parameter β=2. V0 is determined through
the normalized width d/a of the antidots at the Fermi energy. Here we use
d/a = 0.5. At large H the classical motion is dominated by the magnetic
field. The dynamics is quasi-regular and organized on tori. It turns out that
in the regime below H = 1.5, where the quantum oscillations are observed,
most of the classical phase space is chaotic, with a few embedded islands of
stable motion which vanish with decreasing magnetic field. Below ∼ 1 T (left
panel in Fig. 3.2) the dynamics is practically completely chaotic, i.e. most of
the periodic orbits are unstable.

In order to calculate σosc
xx (H) numerically it is convenient to expand the

prefactors in (3.6) into geometrical series and to perform the sum over j to
obtain the following form [66]:4

σosc
xx (µ,H) =

4gs

V

e2

h
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(3.14)

with

t(k,l)
po = (±1)k exp
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Spo
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− π

2
ηpo

)]

× exp

[

−
(

k +
1

2

)

λpo − (2l + 1)
τpo

τT
− τpo

2τ

]

. (3.15)

Here, λpo = iγpo, with γpo real, is the winding number and k a semiclassical
quantum number for a stable orbit. λpo is the Liapunov exponent in the case

4 This resummed trace formula allows for a consistent summation of periodic-
orbit contributions up to a given length. Such a representation is appropriate
for applying periodic-orbit summation techniques like the cycle expansion in a
regime where the trace formula is not absolutely convergent; see e.g. [35].
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of an unstable orbit ( λpo > 0 and real). The “−” sign in (3.15) applies only
to unstable inverse hyperbolic orbits.

Fig. 3.3. Fundamental periodic orbits in a model antidot potential (3.11) which
enter into the numerical evaluation of the trace formula (3.14)

In the following we compare the calculations with the experimental re-
sults. The experimental data for σxx, shown in the top panel of Fig. 3.4, were
obtained by inverting the resistivity tensor (3.13) and by subtracting the
nonoscillatory part of the conductivity, taken at higher temperatures. Under
the experimental conditions (T = 0.4 K, ωcycτ ≈ 2 at 2rcyc ≃ a [51]) only
the shortest periodic orbits contribute significantly to σosc

xx since the terms
from longer orbits (τpo > 2τ or τpo > τT ) are exponentially small. These
damping mechanisms select a limited number of relevant orbits which suffice
to quantitatively describe the quantum oscillations. For the calculations the
fundamental orbits shown in Fig. 3.3 were considered. Their stability expo-
nents, actions, periods, and velocity correlation functions were numerically
obtained for the model Hamiltonian (3.11).

The result for σosc
xx (at 0.4 K) as a function of magnetic field is shown

as the solid line in the middle panel of Fig. 3.4: σosc
xx oscillates with the

same frequency as the measured diagonal conductivity. The period of the
oscillations is nearly constant with respect to H, in contrast to the 1/H-
periodic behavior of ordinary Shubnikov–de Haas oscillations (see (3.10)).
The latter are shown in bottom part of Fig. 3.4 for an unmodulated 2DEG
under the same conditions. In the light of the semiclassical trace formula, the
H-periodic behavior in certain antidot arrays has a simple physical origin:
each periodic orbit causes a modulation of σxx(µ,H) with a phase given by
its H-dependent action

Spo(H) =

∮

(

m∗v +
e

c
A
)

dr = m∗

∮

v dr − e

c
HApo(H) , (3.16)

where Apo(H) denotes the enclosed area. With decreasing H, periodic orbits
in certain antidot potentials cannot expand as is the case for free cyclotron
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Fig. 3.4. Top panel: oscillatory part ∆σxx = σxx(0.4K) − σxx(4.7K) of the mag-
netoconductivity σxx (see (3.13)) of an antidot array from experiment [51]. Inter-
mediate panel: semiclassically calculated σosc

xx , (3.14), for T= 0.4 K (solid line), 2.5
K (dotted line), and 4.7 K (dashed line). Bottom panel: Shubnikov–de Haas oscil-
lations, (3.10), for an unmodulated 2DEG under the same conditions as for the
antidot lattice. (From [66], by permission)

orbits. Hence, Apo(H) remains constant (approximately of the order of the
unit cell for the fundamental orbits), and the magnetic field enters linearly
into the semiclassical phase [51]. This behavior is characteristic of “soft”,
broad antidot potentials, while in lattices with more space between the anti-
dots the oscillations are, rather, 1/H-periodic, again in agreement with the
corresponding semiclassical approximation [51,173].

The semiclassical curves in the middle panel of Fig. 3.4 also exhibit the
correct magnitude of the quantum oscillations and a temperature dependence
in accordance with experiment: owing to the damping R(τpo/τT ) the periodic-
orbit oscillations decrease for T = 2.5 K (dotted line in the middle panel of
Fig. 3.4) and nearly disappear at 4.7 K (dashed curve) as in the experiment.
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Temperature is the main damping mechanism; the results do not depend
strongly on the elastic scattering time τ [66].

We note that the amplitude of the Shubnikov–de Haas oscillations, repre-
senting the integrable case, is considerably larger than that of the oscillations
from isolated periodic orbits in the antidot array exhibiting chaotic classical
dynamics.5 This reflects the difference of

√
h̄ between the two-dimensional

integrable and chaotic cases.
In summary, interference effects due to summation over different periodic

orbits, resulting in an amplitude modulation of the σxx oscillations, are clearly
manifested in both experimental (top panel of Fig. 3.4) and calculated traces
(middle panel of Fig. 3.4) for an antidot array.

Quantum Mechanical Calculations

Quantum mechanical calculations of magnetotransport in antidot lattices are
far from being an easy task. They are rather involved owing to the strong
coupling between the lattice potential and the magnetic field in the presence
of weak disorder. Different approaches have been proposed: the self-consistent
Born approximation on the basis of Green functions [175] or appropriately
chosen eigenstates of the magnetotranslation group [176, 177], the recursive
Green function technique [178], and an S-matrix formalism [179], to name a
few. Quantum transport in antidot structures has been recently reviewed by
Ando et al. [180] and Suhrke and Rotter [181]. Figure 3.5a displays results
from elaborate quantum calculations [176] of the energy spectrum for different
directions in the magnetic Brillouin zone of a soft antidot potential. Figure
3.5b shows the corresponding density of states. The insertion of the antidots
into the 2DEG leads to a complex magnetic band structure. The rich, spiky
structure in the density of states at T = 0 (thin solid line in Fig. 3.5b) is
smoothed out for finite temperature (thick solid line). H-periodic oscillations
remain as predicted by the semiclassical trace formula for the density of
states.

The quantum calculations account for both classical and oscillatory terms
in the antidot anomalies of the conductivity tensor. For soft antidot potentials
the anomalies are indeed found to be periodic in H [181]. However, we note
that quantum calculations for rectangular lattices reveal a phase shift in the
oscillatory part of σxx with respect to the oscillations in the density of states
that cannot yet be accounted for in the present semiclassical picture [182].
Quantum mechanically, the phase shift can be ascribed to the different roles
of band and scattering conductivity, a concept which is beyond today’s semi-
classical approaches. Related differences have been reported as a result of a
direct comparison between semiclassical computations and numerical quan-
tum calculations [175, 179]. These differences at small H were assigned to

5 For a semiclassical treatment of integrable superlattices see e.g. [174].
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Fig. 3.5. Band structure (a) and corresponding density of states (b) of electrons
in an antidot lattice calculated for B = 0.41 T, a = 200 nm, and β = 2 by
Silberbauer [183]. The density of states is shown for T = 0 (thin solid line) and for
T = 1.5 K (thick solid line)

possible couplings between the periodic orbits, mediated by nonclosed skip-
ping orbits.

Furthermore, the use of a constant self-energy, as in the present semiclas-
sical approach, is no longer justified for superlattices with pronounced band
structure, i.e. variations in the density of states. Hence, a corresponding fur-
ther refinement of the present semiclassical periodic-orbit transport theory is
desirable.

3.2 Transport Through Phase-Coherent Conductors

The transport phenomena of the “macroscopic” superlattices discussed above
reflect a bulk-like, though peculiar, behavior since the size of the devices ex-
ceeds the phase-coherence length ℓφ considerably. Therefore, it was hoped to
detect specific signatures of phase-coherent transport in antidot lattices with
dimensions smaller than ℓφ [144,185]. A corresponding measurement in which
a finite array of antidots was placed in a micron-sized two-dimensional cav-
ity [144] displayed resistance fluctuations very similar to those first observed
by Marcus et al. [55] in transport experiments through billiard-like nanostruc-
tures of different geometries. These and related experiments have addressed
the question of interference in phase-coherent ballistic nanostructures giving
rise to conductance fluctuations [55,141–143] and quantum corrections to the
average conductance [44,145,148].
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Fig. 3.6. Total transmission coefficient (as a function of wave vector k, in units
of the mode number in the leads of width W ) corresponding to the conductance
through a phase-coherent ballistic cavity. The fluctuating line is the full quantum
transmission Tqm, and the straight solid line is the classical transmission Tcl. The
dashed and dotted lines denote the averaged transmission Tqm at small magnetic
field H = 0 and HA/φ0 = 0.25. The smoothed Tqm are substantially smaller than
Tcl by an H-dependent amount 〈δT 〉 (from [41], by permission)

The main features of ballistic transport through microstructures are sum-
marized in Fig. 3.6 [41, 43]. The figure displays results for the numerically
calculated total transmission coefficient for an asymmetric stadium cavity
with two leads of width W attached. The following effects are visible:

(i) The classical transmitted flux, obtained from the shooting in an appropri-
ate distribution [186] of classical particles and counting the transmitted
ones, increases linearly as a function of wave number.

(ii) The quantum transmission exhibits strong oscillations with a size of order
unity: ballistic conductance fluctuations.

(iii) The averaged quantum transmission increases roughly linearly with the
same slope as the classical transmission, but lies below the classical line.
This is predominantly due to mode effects from confinement in the leads;
note the stepwise increase of the quantum transmission on the scale of
kW/π. However, part of the offset is sensitive to a weak magnetic field H.
The reduction of quantum transmission is strongest for zero field. This
illustrates the weak-localization effect.

The main underlying picture, to be developed in the following, is that
quantum effects in ballistic transport as depicted in Fig. 3.6 can be ascribed
to interference among complicated boundary-reflected paths in the cavity.

3.2.1 Semiclassical Approach to Landauer Conductance

A semiclassical approach represents the natural theoretical tool to incorpo-
rate this picture into a theory of the transmission. The Landauer formalism
serves as an appropriate general framework to deal with phase-coherent trans-
port and to provide a link between transmission and conductance [10, 187].



64 3. Ballistic Quantum Transport

A corresponding semiclassical version of Landauer transport theory has been
developed mainly by Baranger, Jalabert and Stone [42, 43, 56]. It is partly
based on work by Blümel and Smilansky [188] on the related problem of
chaotic scattering and on early pioneering work by Miller [259] introducing
semiclassical reaction theory.6 The semiclassical concepts introduced for bal-
listic quantum transport have proven rather useful for both the understand-
ing of related experiments and the development of the connection between
classical and quantum properties for open systems.

We only briefly sketch the main steps in the derivation of a semiclassi-
cal formula for the conductance. For comprehensive reviews of semiclassical
aspects of ballistic quantum transport see [41, 43]. To illustrate the semi-
classical approach, we consider ballistic conductance fluctuations and weak
localization. As a specific application we present a comparison with trans-
port experiments on finite antidot arrays, making contact with the preceding
section. The treatment of the weak-localization effect in terms of coherent
backscattering of paths shows the advantages but also the limitations of
present semiclassical transport theory, which will be addressed in Sect. 3.3.

According to the Landauer formalism the conductanceG through a phase-
coherent sample attached to two leads is simply proportional to the total
transmission T at energy E. For leads of width W that support N current-
carrying modes the conductance reads

G = gs
e2

h
T = gs

e2

h

N
∑

n,m=1

|tnm|2 . (3.17)

The tnm(E) denote transmission amplitudes between incoming channels m
and outgoing channels n in the leads. Without backscattering the conduc-
tance increases by gse

2/h each time a new mode opens. This effect is still
apparent in the conductance of more complicated scatterers, as the residual
staircase structure of the quantum transmission in Fig. 3.6 shows.

The amplitudes tnm in (3.17) can be written in terms of the projections
of the Green function onto the transverse modes φn(y′), φm(y) in the leads
(at x and x′, respectively):

tnm = −ih̄(vnvm)1/2

∫

dy′
∫

dy φ∗n(y′)φm(y) G(x′, y′, x, y;E) , (3.18)

where the vn denote longitudinal velocities. The integrals are taken over the
cross sections of the (straight) leads at the entrance and the exit.

The semiclassical approximation enters on two levels: first, by replac-
ing G(x′, y′, x, y;E) in (3.18) by the semiclassical Green function (2.3) in
terms of classical paths; second, by evaluating the projection integrals for
isolated trajectories within the stationary-phase approximation. For leads
with hard-wall boundaries the mode wavefunctions are sinusoidal, φm(y) =

6 This theory, developed for atom-exchange reactions in molecular scattering, ex-
hibits a close formal relationship to the Landauer formalism.
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√

2/W sin(mπy/W ). Hence the stationary-phase condition for the y integral
requires

(

∂S

∂y

)

y′

= −py ≡ −mh̄π
W

, (3.19)

with m = ±m. The stationary-phase solution of the y′ integral yields a
corresponding “quantization” condition for the transverse momentum py′ .
Thus only those paths which enter into the cavity at (x, y) with a fixed angle
sin θ = ±mπ/kW and exit the cavity at (x′, y′) with angle sin θ′ = ±nπ/kW
contribute to tnm(E). There is an intuitive explanation: the trajectories are
those whose transverse wave vectors on entrance and exit match the wave
vectors of the modes in the leads.

One then obtains for the semiclassical transmission amplitudes

tnm = −
√

2πih̄

2W

∑

t(n,m)

sgn(n) sgn(m)
√

At exp

[

i

h̄
S̃t(n,m; k) − i

π

2
µ̃t

]

. (3.20)

Here, the reduced actions are

S̃t(n,m; k) = St(k) + h̄ky sin θ − h̄ky′ sin θ′ (3.21)

(k =
√

2mE/h̄), which can be considered as Legendre transforms of the orig-
inal action functional. The phases µ̃t contain both the usual Morse indices
and additional phases arising from the y, y′ integrations. The prefactors are
At = |∂y/∂θ′|/(W cos θ′). The resulting semiclassical expression for the trans-
mission and thereby the conductance (see (3.17)) in chaotic cavities involves
contributions from pairs of trajectories t, t′. It reads [42,43]

T (k) =

N
∑

n,m=1

|tnm(k)|2 =
π

2kW

N
∑

n,m=1

∑

t,t′

F t,t′

n,m(k) , (3.22)

with

F t,t′

n,m(k) ≡
√

AtAt′ exp

[

i

h̄
(S̃t − S̃t′) + iµt,t′

π

4

]

. (3.23)

The phases µt,t′ account for the differences in the phases µ̃t and the sgn
factors in (3.20).

Equations (3.20), (3.22), and (3.23) may serve as a general starting point
in the following ways:

(i) as a semiclassical tool to analyze quantum mechanical transmission;
(ii) for a direct evaluation of the quantum conductance by summing the

different path contributions numerically;
(iii) for further approximations which enable the derivation of analytical semi-

classical predictions, e.g. for weak localization and correlations in the
conductance.
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3.2.2 Trajectory Analysis

We first proceed along the lines of (i) to extract hidden physical information
from experimentally or numerically obtained complex transmission spectra
such as that of Fig. 3.6 Usually a direct comparison of the strongly fluc-
tuating quantum and semiclassical transition amplitudes shows only little
correspondence [189]. The form of the semiclassical expression (3.20) for the
transmission amplitude, however, suggests that a Fourier transform of tnm(k)
should yield a power spectrum with peaks at the lengths Lt of the lead-
connecting trajectories, since the actions in billiards scale linearly with wave
vector, St(k) = kLt (at H = 0). Such a Fourier analysis has been carried
out in [189, 191] for the case of a circular billiard and in [192] for a circular
billiard with a tunnel barrier.

A result of a comprehensive analysis by Delos and coworkers [189] is dis-
played in Fig. 3.7. In the right panel the power spectra of the numerically
calculated quantum transmission amplitude t11(k) and of the corresponding
semiclassical transmission amplitude (based on 120 trajectories) are com-
pared. The agreement between the quantal and semiclassical results is re-
markable up to scaled lengths L ∼ 20. The lengths Lt of the orbits, shown
as insets above some of the peaks, precisely mark the locations of the peaks
on the length axis. To obtain the peak heights to such an accuracy, Delos et
al. did not employ the stationary-phase approximation for the integrals over
the cross sections, which becomes questionable for the low channel numbers
n = m = 1 used; instead they accounted for diffraction effects at the lead
apertures. This amounts to treating the initial wave front as circular and to
launching trajectories from the center of the lead mouth in all directions.

We note that a semiclassical analysis (e.g. [189, 191, 192]) and synthesis
[190]) of transition probabilities |tnm|2 instead of amplitudes is more involved
since one has to deal with orbit pairs and thus phases k(Lt − Lt′) arising
from their length differences in the Fourier transform.

3.2.3 Weak Localization

In the following we evaluate the expression (3.22) using further approxima-
tions to derive semiclassical estimates of statistical properties of conductance
oscillations and of the coherent backscattering from time-reversed paths. This
mechanism contributes to the quantum enhancement of the average magne-
toresistance near H=0 known as the weak-localization effect.

The semiclassical evaluation of the reflection coefficient R = N − T pro-
ceeds in much the same way as the derivation of T , but considers orbits being
backscattered to the entrance lead. The classical reflection coefficient is ob-
tained, as in the Kubo formalism, by pairing identical paths t = t′. Quantum
corrections δR to R are conveniently decomposed into a part diagonal in the
mode index and nondiagonal terms according to [43,56]:
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Fig. 3.7. Comparison of semiclassical and numerical quantum results for the power
spectrum of the transmission amplitude t11(k) for a circular geometry as shown in
the left panel. Each major peak corresponds to one classical path (shown in the
insets) between entrance and exit lead. (From [189], by permission; c©1996 by the
American Physical Society)

δR = δRD + δRND ≡ π

2kW
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. (3.24)

An approximate analytical evaluation can be given for the low-field depen-
dence of the ensemble-averaged diagonal part, 〈δRD〉. To this end we assume
that off-diagonal pairs of paths t 6= t′ with differences in their dynamical
phases ik(Lt − Lt′) 6= 0 average out. Only pairs consisting of a path and its
time-reversed partner are assumed to survive an ensemble (energy) average,
since their dynamical phases cancel.

This represents the semiclassical diagonal approximation.7 In the presence
of a small magnetic field these pairs retain a flux-dependent phase due to the
opposite signs of the enclosed flux. This phase is given by (St − St′)/h̄ =
2ΘH/φ0, where Θ = 2π

∫

t
A · dl/H is the directed enclosed “area” of a

backscattered orbit and φ0 = hc/e denotes the flux quantum.
In the semiclassical limit, the sum over the N reflection coefficients in

(3.24) may be converted to an integral over an angle, namely π/(kW )
∑

n →
∫

d(sin θ), and we obtain

〈δRD(H)〉 =
1

2

∫ 1

−1

d(sin θ)
∑

t(θ,θ),t(θ,−θ)

At exp

(

i2ΘtH

φ0

)

. (3.25)

Moreover, assuming that the escape time is larger than the time required to
uniformly cover the phase space of the chaotic scatterer, the distribution of

7 The diagonal approximation will be critically discussed in Sect. 3.3.
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outgoing particles is uniform in sin θ′. Then the integral over backscattered
paths contributing to 〈δRD〉 can be replaced by an average over injected
particles (the prefactor |At| acts as a Jacobian). Regrouping the backscattered
paths according to their effective area yields [42,56]8

〈δRD(H)〉 ∼
∫ ∞

−∞

dΘ N(Θ) cos

(

2ΘH

φ0

)

. (3.26)

Here N(Θ) denotes the distribution of enclosed areas of backscattered paths.
Hence, in the semiclassical diagonal approximation, the coherent-backscatte-
ring term of the average resistance is given by the cosine transform of the
corresponding area distribution function, a purely classical quantity. Assum-
ing that N(Θ) decreases exponentially, N(Θ) ∼ exp(−αclΘ), leads directly
to the semiclassical prediction of a universal Lorentzian H dependence of
〈δRD(H)〉 for chaotic systems [42,56]:

〈δRD(H)〉 ∼ R
1 + (2H/αclφ0)2

. (3.27)

R is the classical reflection coefficient. The width of the Lorentzian is system-
specific. It depends via

αcl ∼
√

γclW/Θ0 (3.28)

on the parameter Θ0, the typical area per circulation, and the classical escape
rate γcl [194] for trajectories to leave the cavity.

In contrast, the line shape of the average magnetoresistance for integrable
cavities is expected to be nonuniversal, in particular non-Lorentzian-like, be-
cause the area distribution typically decays with a system-specific power law.
This difference between regular and hyperbolic behavior, originally predicted
semiclassically in [56], has indeed been observed in experiments [44,145] when
comparing the magnetoconductance of an ensemble of ballistic stadia, sup-
posed to be chaotic, with that of a circular microstructure. This was shown
in Fig. 1.4 in the introduction. Further numerical quantum calculations have,
on the whole, confirmed these findings [184].

3.2.4 Finite Antidot Arrays

As a further application of this semiclassical approach we consider weak-
localization effects in quantum dots with internal structure: arrays of antidot
scatterers arranged in square cavities.

An electron micrograph of such a finite antidot array, fabricated by elec-
tron beam lithography and dry etching techniques, is displayed in Fig. 3.8.
The transport mean free path9 lT is ∼ 16 µm, which is considerably longer

8 A similar analysis has been performed in [193] in the context of microwave cav-
ities.

9 For a discussion of the transport mean free path see Appendix A.3 and Chap. 5.
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Fig. 3.8. Electron micrograph depicting one square-like microcavity containing 49
antidots with a lattice period a ≃ 300 nm. The transport mean free path of the
unpatterned device is larger by a factor of approximately 7 than the cavity length
L. The resistance is measured across an ensemble of cavities (top). (From [68], by
permission)

than the length of the squares, L ≃ 2.3 µm. In order to suppress conductance
fluctuations, which are observed for single antidot cavities, and to enable the
unperturbed observation of the weak-localization peak, the averaged resis-
tance of an arrangement of 52 cavities was measured [68]. The arrangement
is shown schematically in Fig. 3.8.

The left-hand side of Fig. 3.9 displays characteristic averaged resistance
peaks at small fields, centered at H=0. The phase coherence length ℓφ was
decreased (from top to bottom for the curves shown) by successive increases
of the bias current, which leads to current heating of the electrons. The line
shape of the weak-localization peak evolves correspondingly from a cusp-like
peak at the lowest temperature to a Lorentzian-like profile in the limit of
shorter ℓφ. This strong deviation from a Lorentzian line shape was rather
unexpected in view of the semiclassical prediction for chaotic cavities given
above.

The quantum mechanical properties of a finite array of antidot potentials
in a cavity are rather complex owing to the interplay between the remnants of
the band structure of the antidot lattice, boundary effects, and an external
magnetic field [196]. This is reflected in the level diagram for the spectral
density of the corresponding closed system, shown in Fig. 3.10. At small
fields, signatures of a band structure are still present, while precursors of
Landau levels are visible at strong fields.
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Fig. 3.9. (a) Measured magnetoresistance of an ensemble of square cavities con-
taining antidots (as in Fig. 3.8) for different bias currents (corresponding to different
temperatures). (b) Results from semiclassical simulations of quantum corrections to

the resistance, (3.26), as a function of the cutoff length L̃c = Lc/L (corresponding
to ℓφ). An offset has been added for clarity (adapted from [68], by permission)

Thus, to understand the experimental results at least qualitatively, the
use of semiclassical concepts seems appropriate. The averaged reflection co-
efficient was calculated according to (3.24) [68]. The area distribution N(Θ)
was numerically obtained by injecting ∼ 106 electrons into a cavity filled
with antidots as shown in Fig. 3.11a. The model potential (3.11) was used
as the antidot potential. In the numerical simulations a cutoff length Lc was
introduced as a crude means to account for the effect of the temperature-
dependent phase breaking. Lc defines the maximum length of paths con-
tributing to N(Θ). Figure 3.9b displays the evolution of the computed peak
profile on decreasing the normalized cutoff length L̃c = Lc/L from 30 to 1.
One finds a crossover from a cusp-like peak to a smooth, flat profile, very
similar to that observed in the experiment. By relating the simulations to
the experimental traces one can get a rough estimate of the phase-coherence
length of ℓφ ≈ 5L ≃ 12 µm at the lowest temperature.

The deviation from the Lorentzian peak profile expected for classically
chaotic systems is due to the coexistence of two types of trajectories, shown
in Fig. 3.11a: short paths of electrons directly reflected by the antidots near
to the cavity entrance or by the opposite cavity wall, and longer trajectories
where the electrons move diffusively through the array of scatterers before
leaving the cavity. Directly backscattered paths enclose small areas and thus
contribute to the area distribution N(Θ) as a peak at small Θ, which trans-
lates into a broad weak-localization peak, shown in the inset of Fig. 3.11. On
the other hand, the long chaotic trajectories show an exponential decrease of
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Fig. 3.10. Quantum mechanically calculated energy level diagram for an array of
antidots arranged in a closed square cavity as a function of an applied perpendic-
ular uniform magnetic field. The energy scale corresponds to that of the related
experiment. A complex spectral structure results from the competing effects of
confinement, lattice potential, and magnetic field

N(Θ) in accordance with chaotic scattering theory. They give rise to a narrow

resistance cusp, being very sensitive to changes in ℓφ. In summary, one can
conclude that in a typical chaotic system quantum transport phenomena usu-
ally reflect the coexistence of short-time dynamics of nonuniversal paths and

chaotic behavior on longer timescales. Therefore the generic chaotic feature of
a pure Lorentzian weak-localization peak appears to be quite exceptional. In
general the resistance profile is expected to be more complex and not unique.

3.2.5 Conductance Fluctuations

Other than the weak-localization effect, conductance fluctuations represent
the most striking quantum features of ballistic transport (see Fig. 3.6). These
irregular-looking oscillations are defined by the deviation of the quantum
conductance T from its average part, δT = T − T kW/π, where T is the
classical transmission (an asymmetrized system is assumed). δT as a function
of magnetic field or wave vector is conveniently characterized in terms of
correlation functions [43]:

C(∆H) ≡ 〈δT (k,H +∆H)δT (k,H)〉k , (3.29a)
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Fig. 3.11. (a) Model of a 7× 7 antidot cavity. In the classical simulation electrons
injected from the right lead are either directly backscattered by nearby antidots
(dashed line) or the opposite boundary (dotted lines), or follow paths in a diffusive
way through the array of scatterers (solid line). (b) Classical area distribution
N(Θ)/N0 for backscattered paths for the antidot “billiard” (solid line). The nearly
exponentially decreasing tail at larger directed areas Θ represents diffusive electron
motion. It is suppressed upon reduction of the cutoff length L̃c (dashed lines for

L̃c ≈ 30, 5, 2). Inset: decomposition of the weak-localization peak (see Fig. 3.9b)
into contributions from long chaotic orbits (Lorentzian-like spike, solid line) and
orbits shorter than 3L (dotted line) (from [68], by permission)

C(∆k) ≡ 〈δT (k +∆k,H)δT (k,H)〉k . (3.29b)

The semiclassical technique for evaluating these correlation functions follows
closely the approaches by Gaspard and Rice [194] and Blümel and Smilansky
for S-matrix correlations [188]. It is similar in spirit to the semiclassical treat-
ment of weak localization in Sect. 3.2.3 and is reviewed in detail in [41, 43].
Therefore we only summarize the main results. The correlation functions con-
tain products of δT and thus, semiclassically, contributions from four sets of
classical paths. Again wave vector averaging is performed within the diago-
nal approximation by pairing those trajectories where the sum of all phase
factors is canceled except those arising from differences ∆H or ∆k. As a
result one finds the following approximate correlation functions for ballistic
conductance fluctuations of chaotic systems [41,141]:

CD(∆H) ∼
[

1

1 + (∆H/αclφ0)2

]2

, (3.30a)

CD(∆k) ∼ 1

1 + (∆k/γcl)2
. (3.30b)

αcl was defined in (3.28) and γcl is the classical escape rate. While the agree-
ment with numerical quantum calculations is good [43], the agreement with
experimental results on semiconductor billiards may be considered as only
fair [55,142].
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The above results rely on the assumption that the scatterer is completely
hyperbolic, while in many realizations the confinement potentials give rise
instead to a mixed phase space structure where regular and chaotic regimes
coexist. The classical escape from such cavities usually follows a power law,
i.e. it is much slower than the exponential escape from an open chaotic sys-
tem. The power-law decay originates from the “trapping” of chaotic classical
orbits in the neighborhood of an (infinite) hierarchy of regular regions in
phase space. Assuming a power law P (t) ∼ t−β for the staying time in the
cavity and P (Θ) ∼ Θ−γ for the area distribution, the occurence of fractal

conductance fluctuations, which reflect the hierarchical phase space morphol-
ogy, was predicted [197]. The variance of conductance increments is expected
to scale for small magnetic fields as ∼ (∆H)γ . To measure such fractal struc-
tures is experimentally challenging since it amounts to resolving conductance
fluctuations on rather small scales. Moreover, a serious fractal analysis usually
requires the observation of a power law over at least two orders of magnitude
(in magnetic field). This has been recently achieved by Sachrajda et al. in an
experiment on ballistic conductance fluctuations in a soft-wall semiconductor
stadium [150].

In summary, semiclassics enables the study of transport for the three
classes of ballistic conductors with hyperbolic, regular, and mixed classical
dynamics.

3.3 Limitations of Present Semiclassical

Transport Theory

After the presentation of the semiclassical approximations within the frame-
work of the Kubo and Landauer transport formalisms in the preceding sec-
tions, a few remarks are due at this point. The approaches used above reflect
the advantages and power as well as some of the remaining problems of semi-
classical transport theory.

Semiclassical transport theory provides a simple and physically transpar-
ent tool to compute particular contributions to the full quantum conductance.
In particular, the semiclassical approach provides a means to deal with sys-
tems that exhibit both regular and chaotic dynamics. Moreover, as shown for
the finite antidot lattices, this method helps, at least qualitatively, to recover
universal signatures of a chaotic structure in quantum transport which are
masked by features from the short-time dynamics [191].

In this respect semiclassical theory exhibits advantages compared to
random-matrix theory. The latter has been proven very powerful for dealing
with transport phenomena in open chaotic systems [25, 198–201]. However,
by its very nature, it cannot deal with transport through nonchaotic struc-
tures. Also, classical system-specific parameters like αcl must be additionally
included, for example to predict the correct scales of weak-localization peaks.
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Since scattering systems generally exhibit coexisting regular and chaotic
regimes in phase space, a further development of semiclassical transport the-
ory is highly desirable.

With regard to the weak-localization effect, the semiclassical evaluation
of the coherent backscattering contribution in the Landauer formalism yields
characteristics of the average magnetotransport which only partly agree with
experiment and numerical quantum calculations. Semiclassical theory, as dis-
cussed above, correctly gives the width and line shape of the weak-localization
peak as a function of H. However, it fails in reproducing the correct peak
height: the error is of the same order as the effect itself! This semiclassical
approach relies on the diagonal approximation: only pairs of backscattered
paths with their time-reversed partners are included in the first sum of the
expression (3.24) for the averaged reflection coefficient. Moreover, it can be
shown that other off-diagonal contributions to the magnetoresistance pre-
cisely cancel the semiclassical term arising from time-reversed backscattered
paths [202].

The disappearance of the (leading-order!) quantum correction in this
semiclassical approximation can be seen most directly when considering the
conductance through a cavity in a form where the projection onto channel
wavefunctions of the leads has not yet been performed. In terms of the nonlo-
cal conductivity tensor σ(r, r′) the conductance of a two-terminal geometry
is given as [204]

G = −gs
∫

dy′
∫

dy x̂ σ(r, r′) x̂′ . (3.31)

Here the integrals are over the two cross sections of the incoming and outgoing
leads and x̂ and x̂′ are unit vectors normal to the cross sections. Expressing
σ(r, r′) through advanced and retarded Green functions, the conductance
(at zero temperature) reads [204]

G = −gse
2h̄3

8πm2

∫

dy′
∫

dy G+(r, r′;E)(
↔

D
∗

·x̂)(
↔

D ·x̂′)G−(r′, r;E). (3.32)

Here
↔

D is a double-sided derivative. If we replace the two Green functions
by their semiclassical approximations and evaluate the two surface integrals
by using stationary phase, similarly to the integrals in Appendix A.1, only
those pairs of paths which lie on a periodic orbit contribute [203]. However,
if the two surface integrals are taken over cross sections of two infinite leads
connected to the conductor, the two conditions that the paths have to start
and end at these cross sections and that they lie on a periodic orbit cannot
be simultaneously fulfilled. Hence this argument leads to the same result
as above: the absence of semiclassical contributions to quantum corrections
to the conductance. The failure of semiclassics is linked to the fact that
semiclassical transport theory in this approximation is not unitary. Unitarity
implies that the total current flowing through the sample is independent
of the locations of the two cross sections. They can also be put inside the
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cavity. However, with the argument based on (3.32), different contributions
are obtained for different positions of the cross sections: a clear sign that
current is not conserved semiclassically.

Nevertheless, despite these severe problems the qualitative agreement of
the semiclassical magnetoresistance profile with experiment and numerical
results suggests that the semiclassical coherent backscattering term reflects
at least partly the underlying physical mechanisms.

A situation comparable to that sketched above exists for the semiclas-
sical approximation within the framework of Kubo linear response theory
(see Sect. 3.1). The derivation, as presented in Sect. 2.4, cannot account for
quantum corrections to the average conductivity, i.e. weak localization in the
ballistic regime. It is not surprising that both semiclassical approaches ex-
hibit the same shortcomings: quantum mechanically, the Kubo and Landauer
approaches to transport are equivalent [204]. Both complementary semiclas-
sical derivations make use of the same approximations: Green functions are
expressed in terms of classical paths and (trace) integrals are evaluated in
the stationary-phase approximation.

This puzzle has led to the fundamental question of whether quantum weak
localization can be explained at all by interfering purely classical paths. There
exist suggestions that contributions from nonclassical paths possibly have to
be included for an adequate description [41, 43]. A resolution of these open
questions is still lacking. As argued by Argaman [128] and Aleiner and Larkin
[205], the semiclassical stationary-phase evaluation is too crude: trajectories
starting nearly but not completely parallel to each other have to be included
in a more appropriate manner.

In order to understand this idea consider a ballistic system with anti-
dots arranged on a regular lattice or at random. In this case standard weak-
localization theory for disordered systems is not valid: this theory is well
suited to describe coherent backscattering from (point-like) impurities where
the scattering is regarded as a quantum process [7]. In particular, this pro-
vides a quantum mechanism for the “splitting” of classical trajectories at
impurities, allowing the formation of pairs of flux-enclosing time-reversed
backscattered paths. Moreover, the electronic motion can be regarded as a
delta-correlated, diffusive process. Antidots with a diameter a considerably
larger than the Fermi wavelength λF act as classical scatterers. Hence bal-
listic (antidot) systems call for a generalization of weak-localization theory
beyond the diffusion approximation in order to account for correlations in the
ballistic classical dynamics. According to [128] and [205], it is the exponential
separation of initially close orbits in a chaotic system with classical scatterers
which provides a mechanism for a minimal wave packet of size λF to split
into two parts which then follow time-reversed paths before they interfere
constructively upon return. This backscattering mechanism is sketched in
Fig. 3.12 for a pair of returning paths with small differences in their initial
phase space coordinates.
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Fig. 3.12. Sketch of a pair of paths which contribute to coherent backscattering
in a chaotic system with classical scatterers. Orbits of a minimal wave packet of
size λF (small filled circle), which are initially close in phase space, separate on the
scale of the Ehrenfest time (3.33) up to a distance of the order of the size a of the
classical scatterers (Liapunov zone, marked as a dashed rectangle). This provides
a mechanism for the initial wave packet to split into two parts which then follow
time-reversed paths before they interfere constructively upon return

This approach introduces another relevant timescale for weak localization
in a chaotic system: the Ehrenfest time [206],

tE =
1

λ
ln

(

a

λF

)

, (3.33)

for the spreading of the wave packet over a distance of the order of the size
a of the antidots. Here λ denotes the mean Liapunov exponent of the clas-
sical system. In line with this semiclassical picture Aleiner and Larkin have
computed a weak-localization correction for ballistic systems. Their approach
accounts for correlations in the chaotic ballistic dynamics in the “Liapunov
region” (marked by dashed lines in Fig. 3.12) for timescales up to the Ehren-
fest time. This is technically achieved within a ballistic σ model by replacing
the diffusion operator by means of the regularized Liouville operator, the
Perron–Frobenius operator. For times larger than tE the classical mechanics
is assumed to be uncorrelated and is treated as diffusive again. The result
proposed for ballistic weak localization then reads [205]

∆σ = − e2

πh
exp

[

− tE
τφ

(

1 − λ2

λ2τφ

)]

ln
τφ
τ
. (3.34)

Here, τφ is the phase-breaking time and λ2 ∼ 〈δλ(t1)δλ(t2)〉 characterizes
fluctuations in λ. In (3.34), correlations in the chaotic dynamics are incor-
porated into the exponential prefactor, while the diffusive motion on longer
timescales is reflected in the logarithm. The standard weak-localization result
for a two-dimensional diffusive system is recovered by setting tE to zero.

A recently observed exponential temperature dependence of weak localiza-
tion measured in periodic and irregular arrays of antidots is indeed in line with
an analysis on the basis of (3.34) if one accounts for the temperature depen-
dence of τφ (due to electron–electron and electron–phonon scattering) [156].
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The unusual temperature behavior observed shows signatures of chaotic dy-
namics in weak localization. Interestingly, (3.34) may offer the possibility to
extract the Ehrenfest time and, in view of (3.33), the classical Liapunov expo-
nent of an electronic billiard from the quantum weak-localization correction.

The semiclassical picture behind the approach of Aleiner and Larkin is
certainly physically appealing; the method of evaluating the result (3.34),
however, makes use of semiclassical scatterers. It seems unclear whether it is
directly generalizable to generic chaotic systems where no disorder average is
involved.10 In recent work Whitney, Lerner, and Smith [207] have discussed
this point. They have analyzed in detail the contributions to the two-level
correlator of trajectory pairs of the type shown in Fig. 3.12. As they point out,
they could neither correctly reproduce Hikami boxes [208], regions in phase
space where quantum processes are important, nor obtain the corrections to
the diagonal approximation predicted by random-matrix theory.

To conclude, a complete semiclassical theory for quantum transport in
ballistic systems is still lacking.

10 The approach of Aleiner and Larkin has been applied to weak localization in
chaotic cavities in [209].
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4.1 Historical Backround and Overview

Mesoscopic quantum devices have usually been studied experimentally by
connecting them to metal leads and measuring conductance properties. When
operating under mesoscopic conditions at sufficiently low temperature their
transport behavior may be modified by quantum effects as discussed in
Chap. 3.

In the early nineties the first experiments on the magnetic response of
small isolated ring structures were carried out, which substantially differ from
transport measurements and allow for an alternative probe of density-of-
states properties. The observation of persistent currents in normal metal rings
[210,211], i.e. the orbital magnetic moment in multiply connected geometries,
opened up a whole new branch of mesoscopic physics, including mesoscopic

thermodynamics.
The existence of normal persistent currents in rings was already proposed

in the pioneering work of Büttiker, Imry, and Landauer in 1983 [212], which
demonstrated that in the presence of a magnetic flux the ground state of a
one-dimensional ring exhibits a current flow. The effect is based on a coherent
extension of the corresponding wavefunctions around the ring, even if the
electron motion is dominated by elastic impurity scatterers [5, 213]. This
was the regime of the original measurement in an array of 105 copper rings
[210]. The use of an ensemble, originally motivated by experimental reasons,
brought up important issues about the differences between the canonical
and grand canonical ensembles in the mesoscopic regime [214–216], which we
shall review in this chapter. The second early experiment mentioned above
achieved the observation of persistent currents in single disordered rings [211]
and was followed recently by a refined measurement [217].

These experiments and their surprising results have triggered considerable
theoretical activities during the last few years, especially because of a serious
disagreement between theory and experiment. This disagreement still persists
and remains to be understood in spite of important developments in the
theoretical understanding.1 We shall briefly review this issue in Sect. 6.3.2
when we discuss interaction effects in diffusive quantum systems and their

1 For recent reviews see [8, 218,219].
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role with regard to the persistent current. In this chapter we shall mainly
focus on magnetism in the ballistic regime within a picture of noninteracting
particles. (The role of electron–electron interactions in ballistic systems will
be addressed in Sect. 6.4.)

The semiclassical studies of orbital magnetism [45, 69–71, 221–223], on
which this chapter relies, were partly motivated by two later experiments on
an ensemble of square quantum dots [57] as well as individual ring microstruc-
tures [220] defined on high-mobility semiconductor samples operating in the
ballistic regime. There impurity scattering is suppressed, which suggests the
use of clean models, implying that the electron motion is governed by the
confinement potential and geometrical effects play a major role. The exper-
iment on the array of squares showed an unexpectedly large paramagnetic
response at zero field (see Fig. 1.5 and discussion in the introduction), which
will be addressed in this chapter, too.

In related experiments on individual transition metal and rare-earth el-
ement quantum dots, shell effects in the magnetic moment have been ob-
served [224].

The study of orbital magnetism in extended systems as well as the inves-
tigation of confinement effects has a long history and goes back to the 1930s
with the pioneering work of Landau [112,225]. He demonstrated the existence
of a small diamagnetic response in an electron gas at weak fields H and low
temperatures T such that kBT exceeds the typical spacing h̄ωcyc. Landau’s
work was only slowly accepted, for the following reasons [45]: first, it gives a
purely quantum result that can be expressed as a thermodynamic relationship
without an explicit h̄ dependence. In contrast to this, the Bohr–van Leeuwen
theorem [226] establishes the absence of magnetism for a system of classical
particles. For finite systems the boundary currents can be shown to exactly
cancel in a subtle way the diamagnetic contribution from cyclotron orbits
of the interior. Second, boundary effects, which were essential in obtaining
the correct classical behavior, did not enter into Landau’s derivation. Third,
Landau diamagnetism for standard metals yields a small effect (one-third of
the Pauli spin paramagnetism), making its experimental observation rather
difficult.

The restriction of the electron gas to two dimensions does not open up any
new conceptual difficulty [227, 228], but the confinement of the electron sys-
tem to a finite volume introduces the typical level spacing ∆ as a new energy
scale into the problem. This leads to a modification of the Landau suscep-
tibility. The latter point has therefore been the object of a long sequence of
conflicting studies (reviewed in [229, 230]). The theoretical investigation of
finite-size corrections was motivated by experiments on small metal clusters
and dealt with various model systems: thin plates [231], thin cylinders [232],
confinement by quadratic potentials [233, 234], circular boxes [235], and rec-
tangular boxes [236,237].
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Similarly to the transport properties discussed in the previous chapter,
finite-size effects and corrections to bulk magnetism obviously depend on the
relation between the typical size a of the system and other relevant length
scales [38]: the thermal length LT , the elastic mean free path l, and the phase
coherence length ℓφ. Most of the above-mentioned studies neglect scattering
mechanisms other than that by the boundaries and deal with the macroscopic
high-temperature case LT ≪a. In this limit the response is dominated by its
smooth component, for which only tiny corrections to the the diamagnetic
bulk susceptibility are found [238–240]. Oppositely to the macroscopic limit,
there have been studies in the quantum limit kBT < ∆ [241, 242]. In this
regime the magnetic susceptibility is dominated by irregular fluctuations that
complicate its unequivocal determination. The purpose of the present chapter
is to review studies of size corrections in the mesoscopic regime, LT /a>1>
β∆, intermediate between the two previous limits.

A central conclusion of the work [38, 45, 71, 222,223,243] on orbital mag-
netism in the ballistic regime, reviewed here, is that finite-size corrections to
the magnetic susceptibility in the ballistic regime can be orders of magni-

tude larger than the bulk values. In order to illustrate this effect imagine a
mesoscopic square quantum well of size a connected to an electron reservoir
with chemical potential µ. A numerical diagonalization of the correspond-
ing Hamiltonian in the presence of a magnetic field yields a diagram of the
energy levels as a function of the magnetic flux ϕ as shown in Fig. 4.1. In
between the two separable limiting cases ϕ = 0 and ϕ −→ ∞ the spectrum
exhibits a complex structure, typical of a nonintegrable system whose classi-
cal dynamics is at least partly chaotic. Figure 4.2 displays the corresponding
numerically obtained magnetic susceptibility (solid curve).

In the high-field region (2rcyc<a) characteristic de Haas–van Alphen os-
cillations are obtained, although not with the amplitude expected from cal-
culations for the bulk (see (4.14)). For lower fields a striking discrepancy is
observed between the numerical results, showing pronounced quantum oscil-
lations, and the constant bulk Landau diamagnetism (of order 1 in Fig. 4.2).
Thus, the confinment strongly alters the orbital response of an electron gas.
As will be shown, the whole curve is well reproduced by a finite-temperature
semiclassical theory (dashed line) that takes into account only a few funda-
mental periodic orbits.

The problem of orbital magnetism from a quantum chaos point of view
was first addressed by Nakamura and Thomas [246] in their numerical study
of the differences in the magnetic response of circular and elliptic billiards
at zero temperature. Since then the question how the character (integrable
or chaotic) of the classical dynamics affects magnetic quantities has become
a frequently addressed issue. The relevant semiclassical literature, mainly
assuming the dynamics of a clean geometry [45,70,71,221–223,243,245], will
be discussed in the following sections.
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Fig. 4.1. Diagram of the first 200 energy levels of one symmetry class (see Appendix
A.2) of a clean square billiard in a uniform magnetic field H as a function of the
normalized flux ϕ = Ha2/φ0 with φ0 = hc/e. The energies are scaled such that the
zero field limit gives E = n2

x + n2
y. (From [45], by permission)

The purpose of this chapter is to review a semiclassical theory of the or-
bital magnetic properties of noninteracting, spinless electrons in the ballistic
regime. We restrict ourselves to the clean limit, where the different behav-
iors of the magnetic response arise as a geometrical effect (the shape of the
microstructure). In Chaps. 5 and 6 we refine the idealized model of clean
systems by including disorder and interaction effects.

This chapter, which follows essentially the lines of a related review [45], is
organized as follows. We begin with a brief review of bulk magnetic properties
showing that Landau diamagnetism is also present in a confined geometry at
arbitrary fields. We then present the appropriate thermodynamic formalism
to be used in the mesoscopic regime. In Sect. 4.3 we address the magnetic
response (susceptibility and persistent current) in chaotic systems, deriving a
universal semiclassical line shape for the averaged magnetization. In Sect. 4.4
we compare these results with results for generic integrable structures, sys-
tems whose integrability is broken by the effect of an applied magnetic field.
In Sect. 4.5 we present, as a related example, calculations of the magnetic
susceptibility for the experimentally relevant case of the square quantum well.
The magnetic response of systems such as ring billiards that remain integrable

at arbitrary magnetic field is addressed in Sect. 4.6.
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Fig. 4.2. Susceptibility oscillations of a square as a function of the magnetic
flux. Solid curve: numerical quantum calculations from the energy-level diagram
in Fig. 4.1 at finite temperature at an energy corresponding to ∼1100 occu-
pied independent-particle states. The susceptibility exhibits pronounced oscillations
which are strongly enhanced with respect to the bulk value χL. They are accurately
reproduced by analytical semiclassical expressions (dashed line) based on families
of quantized flux-enclosing electron orbits, which are shown in the upper insets for
the different magnetic-field regimes. (From [45], by permission)

4.2 Basic Concepts

We first present the basic thermodynamic relations and definitions and briefly
review some results for the bulk electron gas before introducing specific con-
cepts of mesoscopic magnetism.

4.2.1 Definitions

Let us consider a noninteracting electron gas in a volume A (area in two
dimensions) at temperature T subject to a static magnetic field H. The
magnetic moment of the system in statistical equilibrium is given by the
thermodynamic relation

M = −
(

∂Ω

∂H

)

T,µ

, (4.1)

where Ω(T, µ,H) is the thermodynamic potential (2.38) and µ the chemical
potential of the electron gas. The differential magnetic susceptibility is defined
by

χGC =
1

A

(

∂M
∂H

)

T,µ

= − 1

A

(

∂2Ω

∂H2

)

T,µ

. (4.2)
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A notation with the superscript GC is used in order to emphasize the fact
that we are working in the grand canonical ensemble. The choice of the en-
semble in the macroscopic limit of N and A → ∞ is a matter of convenience.
However, as is well known by now [214–216], the equivalence between the en-
sembles may break down in the mesoscopic regime. This effect is one promi-
nent characteristic of mesoscopic thermodynamics and will be thoroughly
discussed in this chapter. For the following discussion of bulk properties it
is, however, appropriate to work in the grand canonical ensemble (at fixed
µ) and make use of the simple form of the grand potential (2.38) in terms
of the single-particle density of states d(E) = gs

∑

λ δ(E − Eλ). The mag-
netic susceptibility is directly extracted from the knowledge of the density of
states.

We shall neglect the Zeeman-splitting term due to the electron spin. It can,
however, be incorporated easily when spin–orbit coupling is negligible [247].
Furthermore, orbital magnetism typically dominates over the spin paramag-
netic susceptibility; this is usually the case in doped semiconductors.

4.2.2 Bulk Properties: de Haas–van Alphen Effect
and Landau Diamagnetism

The case of a free electron gas is particularly simple since the electron eigen-
states are Landau states with energies

Ek = h̄ωcyc (k + 1/2) k = 0, 1, 2, . . . (4.3)

and degeneracies gsφ/φ0, where φ = HA is the flux through an area A, and
φ0 = hc/e is the elemental flux quantum.

The magnetic response of a bulk electron gas is characterized by two main
features: an overall small diamagnetic response and the well-known de Haas–
van Alphen oscillations for magnetic fields H such that the energy scale of the
corresponding cyclotron frequency ωcyc = eH/mc is larger than the thermal
smearing. The computation of the diamagnetism of a free-electron system
dates back to Landau’s work in 1930 [225]. The derivation, being based on
the quantization condition (4.3), can be found for the three-dimensional case
in standard textbooks [112,227]. The two-dimensional case [228–230], where
the magnetic field is perpendicular to the plane, follows the same lines and
will be sketched here. To this end we employ the Poisson summation

∞
∑

k=−∞

g(k) =

∞
∑

j=−∞

χ(j) . (4.4)

Here, χ(σ) is the Fourier transform of g(s): χ(σ) =
∫

ds g(s) exp(−2πisσ).
The density of states related to the quantization condition (4.3) can be

rewritten by means of (4.4) as

d(E,H) = gs
mA

2πh̄2



1 + 2
∞
∑

j=1

(−1)j cos

(

j
2πE

h̄ωcyc

)



 . (4.5)
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This decomposition is frequently interpreted as coming from the Weyl term
and the strongly field- and energy-dependent contribution of cyclotron orbits.
However, at the bottom of the spectra, from which the Landau diamagnetic
component originates, this distinction is essentially meaningless.

Landau Susceptibility

For a degenerate electron gas in a weak field such that h̄ωcyc ≪ kBT ≪ µ,
the energy integral (2.38) gives

Ω(µ) ≃ Ω̄(µ) = −gs
mA

2πh̄2

µ2

2
+ gs

e2

24πmc2
AH2

2
, (4.6)

where Ω̄ denotes the smooth part of the thermodynamic potential (2.38).
Upon taking magnetic-field derivatives we thus obtain the two-dimensional
diamagnetic Landau susceptibility

−χL = − gse
2

24πmc2
. (4.7)

We note that the diamagnetic response stems from the integral of the rapidly
oscillating term of the density of states (4.5) and survives even at high tem-
peratures.

The above derivation explicitly employs the structure of the spectral den-
sity in terms of bulk Landau states. In the following we consider the problem
from a more general point of view without assuming a specific form of the den-
sity of states. This allows us to treat also the magnetic response of confined
systems at arbitrary (even weak) magnetic fields. Our semiclassical deriva-
tion relies neither, on the quantum side, on the existence of Landau levels,
nor, on the classical side, on boundary trajectories or the presence of circular
cyclotron orbits fitting into the confinement potential.

In Sect. 2.3 we showed that the various quantum mechanical (i.e. d(E),
n(E), ω(E)) and thermodynamic (i.e. D(µ), N(µ), Ω(µ)) spectral proper-
ties of a mesoscopic system can be decomposed into smooth and fluctuating
parts. In the semiclassical limit, each of these quantities allows an asymptotic
expansion in powers of h̄. For most purposes it is sufficient to consider only
leading-order terms, and higher-order corrections must be added only if the
former vanish for some reason. This is the case for the smooth part Ω̄(µ) of
the grand potential. It is the dominant term at any temperature, but it is
magnetic-field-independent to leading order in h̄ as can be seen in (4.6) for
the bulk example. This is the reason for the absence of orbital magnetism
in classical mechanics. The computation of field-dependent higher-order h̄
corrections is presented in [45]. It is based on the notion of the Wigner trans-
form (2.20) [85,250] of the Hamiltonian, which is appropriate to studying the
smoothed spectral quantities.2

2 Analogous results can be found in [238, 251]. The Wigner distribution function
was also previously used by Kubo [252] in the study of bulk Landau diamag-
netism.



86 4. Orbital Magnetism

To observe a field dependence, one must consider the leading-order field-
dependent correction to the Wigner transform, Ω̄W(µ), of the grand potential.
It reads [45]

Ω̄1(µ) =
µ2

BH
2

6
D̄W(µ) . (4.8)

In the grand canonical ensemble, the above equation readily gives the sus-
ceptibility

χ̄GC = −µ
2
B

3A
D̄W , (4.9)

where D̄W is the Weyl part of the thermodynamic density of states (2.40a).
Using the relation D̄W = dN̄W/dµ, one recognizes the familiar result of
Landau [225]. For systems without a potential (bulk or billiard systems) it
gives, in the degenerate case (µ≫ kBT ) in two or three dimensions,

χ̄GC
2d = − gse

2

24πmc2
, χ̄GC

3d = − gse
2kF

24π2mc2
. (4.10)

The susceptibility reads, in the nondegenerate limit,

χ̄GC = −µ
2
B

3A

N

kBT
, (4.11)

where N is the mean particle number. The Landau contribution is domi-
nant at high temperatures: it is temperature-independent in the degenerate
regime and shows a 1/T decay in the nondegenerate limit, while additional
oscillatory contributions, to be studied in the remainder of this section, are
then exponentially damped by temperature.

The Landau diamagnetism is usually derived for free electrons or for a
quadratic confining potential [112, 227]. The derivations in [45, 238] provide
generalizations to any confining potential (including systems smaller than
the cyclotron radius) since the confining potential V (r) does not enter into
the leading-order field-dependent terms of Ω(µ). This shows that the Landau
susceptibility is a property of infinite systems as well as mesoscopic devices.
The Landau diamagnetic response is the same in the canonical case. The
contribution from electron interactions can be neglected (see Chap. 6).

De Haas–van Alphen Oscillations

So far we have discussed the magnetic response at high temperature. Consider
now the oscillating contributions to the density of states, (4.5), of infinite
systems at low temperatures such that kBT ≪ h̄ωcyc. The energy integral
(2.38) over the rapidly oscillating component is not negligible. Using a relation
similar to (2.47) this integral gives

Ωosc =
gsmA

πh̄2

∞
∑

j=1

(−1)j

(

h̄ωcyc

2πj

)2

cos

(

2πjµ

h̄ωcyc

)

R

(

2πjrcyc

LT

)

. (4.12)
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The temperature-dependent damping factor (2.49) containing the thermal
cutoff length LT (see 2.50) reads in this case

R

(

j2πrcyc

LT

)

=
2π2jkBT/h̄ωcyc

sinh (2π2jkBT/h̄ωcyc)
. (4.13)

Combining both Landau and de Haas–van Alphen contributions, the orbital
magnetic susceptibility for the clean bulk reads [45]

χGC

χL
= −1− 24

(

µ

h̄ωcyc

)2 ∞
∑

j=1

(−1)j cos

(

j
2πµ

h̄ωcyc

)

R

(

j
2πrcyc

LT

)

.(4.14)

The second term exhibits the characteristic oscillations with period 1/H and
is exponentially damped with temperature.

The effect of weak random disorder on the de Haas–van Alphen oscilla-
tions will be computed in Sect. 5.3. There we also compare the result with a
susceptibility measurement of a 2DEG by Eisenstein et al. [248]. We note that
for high fields one cannot in principle separate the orbital and spin effects.

4.2.3 Thermodynamics in the Mesoscopic Regime

While going from the bulk two-dimensional case (macroscopic regime) to the
constrained case (ballistic mesoscopic regime) two important changes take
place: the confining energy appears as a relevant scale and (4.3) no longer
provides the quantization condition; furthermore, since we are not in the
thermodynamic limit of N and A→ ∞, the constraint of a constant number
of electrons in an isolated microstructure is no longer equivalent to having a
fixed chemical potential. Referring to the second point, we shall present the
thermodynamic framework and introduce semiclassical concepts which deal
appropriately with this situation.

In contrast to an infinite system or the situation (in transport) where a
mesoscopic device is connected to a reservoir of particles with chemical po-
tential µ, the number N of particles inside an isolated microstructure is fixed,
although it may be rather large (of order 105) in actual quantum dots. It is
essential in some cases, namely when considering the average susceptibility
of an ensemble of microstructures, to take into account explicitly this con-
servation of N and to work within the canonical ensemble. For such systems
with a fixed number of particles, the relevant thermodynamic function is the
free energy F , the Legendre transform of the grand potential Ω:3

F (T,H,N ) = µN +Ω(T,H, µ) . (4.15)

Then, the magnetization M of an isolated system of N electrons, which for
ring geometries is usually expressed in terms of the persistent current I, is
given by the thermodynamic relation

3 For a justification of this relation in the mesoscopic context, see [45].
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I =
c

A
M = −c

(

∂F

∂φ

)

T,N

(4.16)

and the canonical magnetic susceptibility is defined as

χ = − 1

A

(

∂2F

∂H2

)

T,N

. (4.17)

Throughout this book we shall denote the energy- or size-averaged per-
sistent current and susceptibility of an ensemble of mesoscopic structures by
I and χ, respectively. The typical current and susceptibility are defined as

I(t) =
√

I2 ; χ(t) =

√

χ2 . (4.18)

These quantities apply to the case of repeated measurements on a given
microstructure, when variations in kF are obtained by some kind of pertur-
bation, and serve as a measure of the variance in the magnetic response. For
additional disorder averages (discussed in Chap. 5) we use the notation 〈· · ·〉.

In Sect. 2.3 we derived semiclassical expressions for the smoothed (single-
particle) density of states D(µ), the staircase function N(µ), and the grand
potential Ω(µ), which provide a natural starting point for calculating the
mesoscopic orbital magnetic response. While the grand canonical quantities
follow directly from derivatives of Ω(µ), the semiclassical calculation of the
free energy is not obvious. To achieve this we follow [45], which is based on
Imry’s derivation for persistent currents in ensembles of disordered rings [215].
The only important difference is that we shall take averages over the size and
the Fermi energy of ballistic structures instead of averages over impurity
realizations.

As mentioned above, the defining equation (4.17) of the canonical sus-
ceptibility χ is equivalent to χGC (see (4.2)) up to corrections of order 1/N
(i.e. h̄). Therefore, in the mesoscopic regime of small structures with large
but finite N we have to consider such corrections if we want to take advan-
tage of the computational simplicity of the grand canonical ensemble (GCE).
The difference between the two definitions is particularly important when the
GCE result is zero, apart from the Landau diamagnetic contribution, as is
the case for the ensemble average of χGC as shown below. The computation
of the correction terms can be achieved from the relationship (4.15) between
the thermodynamic functions F (N) and Ω(µ) and the relation N(µ) = N .
In the case of finite systems the previous implicit relation is difficult to in-
vert. However, when N is large we can use the decomposition of N(µ) into
a smooth part N̄(µ) and a small fluctuating component Nosc(µ), (2.54b).
This allows for a perturbative treatment of the previous implicit relation.
The contribution of a given orbit to dosc is always of lower order in h̄ than d̄,
as can be checked by inspection of the various semiclassical trace formulas.
However, since there are infinitely many such contributions, dosc and d̄ are of
the same order when adding them up. Indeed, this must be the case since the
quantum mechanical d(E) is a sum of δ peaks. Hence one cannot simply use
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dosc/d̄ as a small expansion parameter. However, finite temperature provides
an exponential cutoff in the length of the trajectories contributing to Dosc,
so that only a finite number of them must be taken into account. Therefore,
Dosc is of lower order in h̄ than D̄, and in the semiclassical regime it is possi-
ble to expand the free energy F with respect to the small parameter Dosc/D̄.
The use of a temperature-smoothed density of states therefore justifies this
approach.

In order to perform the perturbative expansion sketched above we define
a mean chemical potential µ̄ by introducing the condition

N = N(µ) = N̄(µ̄) . (4.19)

Figure 4.3 illustrates this relation for the two-dimensional (potential-free)
case where D̄ is constant. The expansion of the above relation to first order
in Dosc/D̄ gives, employing the fact that dN/dµ = D,

∆µ ≡ µ− µ̄ ≃ − 1

D̄(µ̄)
Nosc(µ̄) . (4.20)

The interpretation of ∆µ is seen in Fig. 4.3: the shaded area represents the
number of electrons in the system and it is equal to the product D̄µ̄.

D

N

D

µµ

Fig. 4.3. Sketch of the decomposition of the thermodynamic density of states
D(µ) (solid line) into a smooth part D̄ (dashed line) and an oscillating component.
The total number of electrons N is indicated by the shaded area, and equal to the
product of D̄ and µ̄. (From [45], by permission)

Expanding the relationship (4.15) to second order in ∆µ gives

F (N) ≃ (µ̄+∆µ)N +Ω(µ̄) −N(µ̄)∆µ−D(µ̄)
∆µ2

2
. (4.21)

Upon using the decomposition of Ω(µ̄) and N(µ̄) into mean and oscillating
parts, (2.54b) and (2.54c), and eliminating ∆µ (4.20) in the second-order
term, one obtains the expansion of the free energy to second order in Dosc/D̄
[45, 215,216]

F (N) ≃ F 0 +∆F (1) +∆F (2) , (4.22)
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with

F 0 = µ̄N + Ω̄(µ̄) , (4.23a)

∆F (1) = Ωosc(µ̄) , (4.23b)

∆F (2) =
1

2D̄(µ̄)
[Nosc(µ̄)]

2
. (4.23c)

The terms ∆F (1) and a ∆F (2) can be expressed through the oscillating part
of the density of states by means of (2.54b) and (2.54c). The first two terms,
F 0 and ∆F (1), yield the magnetic response calculated in the GCE at the
effective chemical potential µ̄. ∆F (2) represents the leading-order difference
between the grand canonical and canonical results. It is of grand canonical
form since it is expressed in terms of an integral of the density of states
(2.37) for a fixed chemical potential µ̄. It is convenient to use the expansion
(4.22) in the calculation of the magnetic susceptibility of a system with a
fixed number of particles, because the leading h̄ contribution to N = N̄(µ̄)
has no magnetic-field dependence, independent of the precise system under
consideration. At this level of approximation, keeping N constant in (4.17)
when taking the magnetic-field derivative amounts to keeping µ̄ fixed.

The term F (0) contains only the small diamagnetic Landau susceptibility
arising from a higher-order h̄ expansion, as shown in the preceding section.
Hence, the weak-field susceptibility of a given mesoscopic sample will be dom-
inated by ∆F (1). However, when considering ensembles of mesoscopic devices
with slightly different sizes or electron fillings, ∆F (1) and its associated sus-
ceptibility contribution average to zero owing to their oscillatory behavior.
This will be explicitly demonstrated in the next sections. In that case the
next-order term ∆F (2) has to be considered and the averaged magnetic-
response quantities (persistent current and susceptibility) read

I(µ, φ) ≃ − c

2D̄(µ̄)

∂

∂φ
[Nosc(µ̄, φ)]2 , (4.24a)

χ(µ,H) ≃ − 1

2AD̄(µ̄)

∂2

∂H2
[Nosc(µ̄,H)]2 . (4.24b)

In the following we compute semiclassical expressions for∆F (1) and∆F (2) for
the different cases of systems with chaotic and integrable classical dynamics.

4.3 Chaotic Systems

We begin our analysis of the magnetic properties of ballistic quantum systems
with those possessing classically chaotic dynamics. Each of these systems ex-
hibits certain specific properties depending on size and geometry, which enter,
for instance, into the (absolute) magnitude of its magnetic response. However,
the fact that their classical dynamics is supposed to be completely chaotic
implies generic features which characterize uniquely and rather generally a
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broad class of mesoscopic structures. Here we outline a semiclassical theory
which, on the one hand, aims at the generic character in terms of universal
magnetic correlation functions. These are determined by evaluating semiclas-
sical trace formulas using statistical assumptions for the periodic orbits. On
the other hand, this approach allows one to incorporate specific knowledge
of classical phase space properties to obtain even (nonnormalized) absolute
results.

According to (4.23c) and its magnetic-field derivatives, the averaged mag-
netic response probes directly the flux sensitivity of quantum fluctuations in
the particle number (Nosc)2 of a quantum dot at low temperatures. These
fluctuations are closely related to two-point correlations in the density of
states (2.28). The magnetic response functions for chaotic systems therefore
represent a prominent and physically relevant class of universal parametric
correlation functions, to be discussed below.

The outline of this section is as follows: after a brief review of the present
semiclassical approaches to orbital magnetism of ballistic chaotic systems
we focus on persistent-current and susceptibility correlation functions. The
resulting semiclassical predictions for ensembles of chaotic structures will
be compared with corresponding exact quantum calculations performed for a
cylinder geometry with classical chaotic dynamics [70]. The system considered
allows one to access a regime of large Fermi momenta kF and enables one to
address issues of “self-averaging” [254] and the relation between individual
chaotic systems and ensembles of (disordered) systems [46]. In the remainder
of this section we generalize the results to the case of singly connected ballistic
quantum dots [45], compare these with the diffusive case, and discuss possible
experimental implications.

4.3.1 Semiclassical Approaches

The concept of employing magnetic properties in order to characterize clean
mesoscopic systems with chaotic dynamics has been addressed in several pub-
lications during the last few years: Nakamura and Thomas [246] were the first
to investigate orbital magnetism from a quantum chaos point of view. They
studied numerically the differences in the magnetic response of circular and el-
liptic billiards. The former remain integrable, while the latter develop chaotic
behavior at finite magnetic fields. These authors found a reduction compared
to the bulk susceptibility and strong fluctuations with varying magnetic field
and observed that both effects were stronger for the elliptic billiard. The dif-
ficulty of these studies at zero temperature consists in the existence of strong
fluctuations arising from exact crossings or quasi-crossings of energy levels
(depending parametrically on the magnetic field) where the susceptibility di-
verges. These fluctuations mask the generic differences between integrable
and chaotic systems related to a different h̄ dependence, to be discussed in
Sect. 4.4.2. In this quantum limit of very low temperatures, which no longer
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provide a cutoff in orbit lengths, one is moreover faced with convergence prob-
lems of the trace formulas as mentioned in Sect. 2.1.4. Agam [222] therefore
introduced Berry–Keating resummation techniques [255] and calculated the
susceptibility of individual systems on the basis of rearranged semiclassical
expressions for the density of states.

Berry and Keating [245], using semiclassical asymptotics, computed the
flux- and energy-averaged autocorrelation function

C(φ) = d̄2

∫ 1

0

dφ0

〈

dEn

dφ
(φ0 + φ)

dEn

dφ
(φ0)

〉

(4.25)

for ring geometries threaded by a flux. This function was originally introduced
by Szafer and Altshuler [257]. It correlates level velocities at flux values dif-
fering by φ. By evaluating related semiclassical trace formulas and employing
certain statistical properties of the classical orbits and their winding numbers,
they found the uniform approximation

C(φ) ≈ − sin2(πφ) − 1/n∗2

[sin2(πφ) + 1/n∗2]2
, (4.26)

where n∗ is the RMS winding number of orbits with periods of the Heisenberg
time. For large φ (4.26) reaches the asympthotic form C(φ) ≈ −1/π2φ2

derived by Szafer and Altshuler [257].
The function C(φ), correlating levels at different fluxes, differs, however,

from magnetic response functions which are based on flux derivatives of the
thermodynamic relations (4.23b) and (4.23c). A semiclassical analysis of the
latter was performed by several authors: treating periodic orbits statisti-
cally, Serota [256] derived expressions for the averaged and typical persistent
currents at zero temperature. Von Oppen and Riedel [243], calculating the
persistent current of a single Sinai billiard, pointed out the different paramet-
ric dependences of its magnitude on kF for systems with mixed and purely
chaotic phase space.

Related concepts were used to compute the magnetic response at finite
temperature for Aharonov–Bohm geometries enclosing a flux line [70] as well
as chaotic systems in a uniform field [45,222]. In the following, these analytical
computations will be presented and compared with accurate numerical cal-
culations. In particular, we discuss the role of temperature smoothing in the
flux correlation functions and suggest it as a natural and physically relevant
parameter for studying (experimentally) the signatures of different semiclas-
sical timescales in smoothed spectral correlation functions. Contrary to the
analysis of Berry and Keating, who estimated off-diagonal contributions to
C(φ) to be negligible, we observe the onset of the breakdown of the semi-
classical diagonal approximation for a smoothing smaller than the mean level
spacing ∆.

Let us consider systems where all the periodic orbits are sufficiently iso-
lated that the trace of the semiclassical Green function (2.18) can be evalu-
ated within the stationary-phase approximation. In this case the Gutzwiller
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trace formula (2.27) provides the appropriate starting point for calculating
the oscillating part of the density of states, dosc(E,H). This enters into the
expressions for Nosc and Ωosc, (2.54b) and (2.54c), which are required for the
calculation of the averaged (4.24a) and typical (4.18) magnetic response.

All the classical quantities in the oscillating contributions dpo(E,H) given
by (2.27) associated with periodic orbits generally depend on energy and
magnetic field. However, owing to the structural stability of chaotic systems,
small changes in H will generally not change the phase space properties and
the orbits involved; the system will remain hyperbolic. The zero-field behavior
is therefore not substantially different from that at finite fields as far as the
stability of the dynamics is concerned. Therefore, we do not need to restrict
ourselves to weak fields. In this respect chaotic geometries have the same
conceptual simplicity as systems which remain integrable at arbitrary fields
to be studied in Sect. 4.6.

The field dependence of each contribution dpo(E,H) to the oscillating
part of the density of states appears essentially because of the modifica-
tion of the classical actions since they enter, multiplied by the large factor
1/h̄, as rapidly varying phases. To leading order in h̄, the other classical en-
tries such as periods and stability factors can thus be regarded as effectively
field-independent. According to classical perturbation theory and (2.15), we
represent changes in the action due to the change δH of the field (to first
order) by

∂Spo(H)

∂H
=
e

c
Apo(H) , (4.27)

where Apo(H) is the directed area enclosed by the periodic orbit at the field
considered. Within this approximation taking the field derivative of terms in
periodic-orbit trace formulas (2.27) essentially amounts to a multiplication
by factors ±(e/ch̄)Apo.

In the special case of the magnetic response to a weak field one can employ
time reversal invariance and express dpo(E,H) in terms of the characteristics
of the orbits at zero field: grouping together each (nonself-retracing) orbit
with its time-reversed counterpart yields (see also (4.95))

dpo(E,H) ≃ d0
po cos

(

2π
HA0

po

φ0

)

. (4.28)

Here, d0
po is the contribution of the unperturbed orbit obtained from (2.27) at

H = 0, and A0
po is its enclosed area. φ0 = hc/e stands for the flux quantum.

For ring geometries the above relations are exact since the magnetic field
is considered only to create a flux which affects the phases of quantum objects
but not the related classical dynamics. In the following we shall first study
semiclassically and quantum mechanically persistent currents in rings and
then also present results for susceptibilities of general quantum billiards in
uniform fields.
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4.3.2 Persistent Currents

For ring topologies it is convenient to measure the flux enclosed by a periodic
orbit in terms of its winding number npo counting the net number of revolu-
tions around the ring: HApo = npoφ. The classical action (of a particle in a
ring billiard) is then given by

Spo(E,ϕ) = h̄(kLpo + 2π npo ϕ) (4.29)

with ϕ = φ/φ0 and Lpo being the orbit length.
The dominant (grand canonical) contribution to the persistent current of

a single ring of radius r is obtained by taking the flux derivative of ∆F (1)

(given by (4.23b) and (2.54c)):

I(1)

I0
= − c

I0

∂∆F (1)

∂φ
(4.30)

=
gs
π

∑

po

npoR(Lpo/LT )

(jpoLpo/r) |det(Mpo − I)|1/2
sin

(

Spo

h̄
− σpo

π

2

)

.

The persistent current is measured in units of I0 = evF/2πr, the current of
electrons in a one-dimensional clean ring. jpo is the number of repetitions
that each periodic orbit includes. I(1) can be paramagnetic or diamagnetic
with equal probability. The same holds for integrable rings (see Sect. 4.6.1).
The function R(Lpo/LT ) (see (2.49)) accounts, as usual, for temperature
smoothing, leading to a suppression of contributions of long paths on the
scale of LT .

The energy-averaged response of an ensemble of ring structures is given by
means of (4.24a) through the flux derivative of ∆F (2) = [Nosc(µ̄)]2/2D̄(µ̄),
since the grand canonical contribution I(1), containing phases kFLpo ≫ 1 in
the semiclassical limit, averages to zero.

Using (2.54b) for Nosc(µ̄), its flux derivative is a double sum over all pairs
of orbits:

∂

∂ϕ
(Nosc)2 =

2gs
2

πφ0

∑

po′,po

npo R(Lpo/LT )R(Lpo′/LT )

jpojpo′ |det(Mpo − I)det(Mpo′ − I)|1/2

×
[

sin

(

Spo − Spo′

h̄
− (σpo − σpo′)

π

2

)

+ sin

(

Spo + Spo′

h̄
− (σpo + σpo′)

π

2

)]

. (4.31)

Here we neglect, as our major approximation, contributions from off-diagonal
pairs of orbits that are not related to each other by time reversal sym-
metry. We therefore assume that they do not survive ensemble averaging.
As discussed in Sect. 2.2, the diagonal approximation is justified as long as
timescales larger than the Heisenberg time do not play a role (for example
as a result of a temperature cutoff). However, without such a cutoff, near-
degeneracies in the actions of long nonidentical orbits may appear owing
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to the exponential proliferation of the number of periodic orbits in chaotic
systems and possible correlations between their actions [109]. Those contri-
butions do not average out, as we shall see below when comparing the results
of the theory with numerical calculations for low temperatures.

Among the diagonal contributions which persist upon ensemble averag-
ing, only pairs consisting of an orbit po and its time-reversed partner T (po)
contribute to the persistent current: they enclose an effective flux 2ϕ. One
then finds, using (4.31),

∂

∂ϕ
(Nosc)2 ≃ −4gs

2

π

∑

po

R2(Lpo/LT )

j2po |det(Mpo − 1)| |npo| sin (4π|npo|ϕ) ,(4.32)

where each element of the sum refers to the pair contribution of two periodic
orbits po and T (po).

For temperatures such that the thermal length LT entering the cutoff
function is comparable to the system size, the persistent current is dominated
by a few of the shortest periodic orbits. It therefore exhibits system-specific
features. However, for lower temperatures (increasing LT ) an exponentially
increasing number of trajectories will contribute to Ī. This allows for a sta-
tistical treatment of the sum in (4.32) and the derivation of a universal line
shape for the averaged persistent current. For sake of clarity, we refer in the
following to the case of billiard-like structures, but the following approach
can be generalized to systems with (smooth) potentials. The statistical as-
sumptions enter on two levels.

First, assuming a uniform distribution of the periodic orbits in phase
space, the Hannay–Ozorio de Almeida sum rule [27] (see (2.34)) enables one
to replace the sum (4.32) by an integral over periods or orbit lengths.

The second ingredient is the distribution of areas enclosed by long tra-
jectories. Since this distribution has a generic form [193, 258] for arbitrary
chaotic billiards, we first discuss it in general and then consider the specific
case of ring geometries. This result follows from a general argument [193]:
with a convenient choice of the origin, the “area” swept by the ray vector
between two successive bounces on the billiard boundary follows a distrib-
ution with zero mean value and a width σN . For a strongly chaotic system
successive bounces can be taken as independent events. Thus, the probability
PN (Θ)dΘ for a trajectory to enclose an accumulated algebraic area between
Θ and Θ + dΘ after N bounces follows from a random-walk process. It is
then given by

PN (Θ) =
1√

2πNσN

exp

(

− Θ2

2NσN

)

. (4.33)

Owing to the central limit theorem the variance is of order
√
N . Denoting

by L̄ the average distance between two successive reflections and normalizing
with σL = σN/L̄, one finds the same Gaussian law as (4.33) but with N
replaced by L. For systems of ring topology Θ is conveniently expressed in
terms of winding numbers (Θ = nπr2). The corresponding distribution reads
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PL(n) =
1√

2πLσ
exp

(

− n2

2σL

)

(4.34)

for trajectories of a given length L in a chaotic ring billiard.
For temperatures sufficently low that the contributing orbits are long

enough to cover phase space uniformly and fulfill the Gaussian winding-
number law, one can replace the sum (4.32) by the following integral ex-
pression (neglecting higher repetitions jpo):

∂

∂ϕ
(Nosc)2 ≃ −4gs

2

π

∫ ∞

0

dL
R2(L/LT )

L

∞
∑

n=−∞

PL(n)n sin (4πnϕ) . (4.35)

In a final step, the Poisson summation formula is applied to the sum over
winding numbers. Insertion into (4.24a) yields a semiclassical expression for
the averaged persistent current of a chaotic system [70]:

I

I0
≃ gs
π2

∆

kBT
aσ

∞
∑

m=−∞

(2ϕ−m)

∫ ∞

0

dξ R2(ξ) exp [−gm(ϕ, ξ)] . (4.36)

Here, ξ=L/LT ,

gm(ϕ, ξ) = 2π2(2ϕ−m)2LTσ ξ , (4.37)

and a = 2πr denotes the circumference of the ring.
A corresponding semiclassical expression for the typical current I(t) =

[(I(1))2]1/2 can be derived along the same lines from (4.30). The result reads

I(t)

I0
a ≃ gs√

2π

{

a2σ

LT

∞
∑

m=−∞

∫ ∞

0

dξ
R2(ξ)

ξ2
(4.38)

×
[

[1 − gm(0, ξ)]e−gm(0,ξ) − [1 − gm(ϕ, ξ)]e−gm(ϕ,ξ)
]}1/2

.

The range of validity of this expression for I(t) is smaller than that for I
owing to the ξ−2 factor, which strongly suppresses long orbits. It diverges at
short lengths, where the statistical assumptions made in the derivation begin
to break down. Indeed, comparisons with quantum calculations show that
the introduction of a short length scale L< ≃ a, cutting off contributions to
the integral for L < L<, is required to obtain reasonable agreement.

In the following we compare the semiclassical predictions, derived above
for the averaged current with quantum calculations for the case of a billiard as
depicted in Fig. 4.4b closed to form a cylinder of height w and circumference
a (Fig. 4.4a). The two semidisks give rise to strongly chaotic classical dy-
namics. In the actual calculation they are larger than indicated in the figure
in order to prevent direct, marginally stable flux-enclosing paths. Fig. 4.4c
shows a comparison of numerically obtained classical winding-number distri-
butions (histograms) with the Gaussian distributions (according to (4.34))
for two different trajectory lengths. The variance σ of the Gaussian curves
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Fig. 4.4. (a) Schematic illustration of a mesoscopic system with the topology of
a hollow cylinder threaded by a magnetic flux φ in the axial direction. (b) The
model system: the two sides of a ballistic billiard with two semidisk scatterers
(giving rise to chaotic motion) are attached to each other to form a cylinder. (c)
Distribution PL(n) of the winding numbers n of classical trajectories for the billiard
in (b). Classical simulations (histograms) are compared with Gaussian distributions
(dashed lines) obtained from (4.34) for two different trajectory lengths L/w = 20
and 90. (From [70], by permission)

was determined from a numerical calculation of the classical diffusion con-
stant D of the system using σ = Dm/h̄ka2 [70,261]. The excellent agreement
justifies the Gaussian winding-number assumption used in (4.34). Although
the overall law is universal, the particular value of the diffusion constant D,
governing the accumulation of flux, introduces a system-specific scale.
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Fig. 4.5. Energy-averaged persistent currents as a function of the magnetic flux
ϕ = φ/φ0 for chaotic ballistic rings of the same topology (shown in Fig. 4.4) but with
slightly differing disk radii. The system is not self-averaging for a energy window
corresponding to about 200 levels. (Adapted from [70], by permission)
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Quantum mechanical energies as a function of flux are obtained to high
accuracy by solving a secular equation for the S-matrix within a scatter-
ing approach to quantization [70, 261]. Particle number fluctuations Nosc(µ)
are obtained by computing N(µ̄) (see (2.37)) and subtracting the mean part
N̄(µ̄). The magnetic response is then calculated from (4.24a). It turns out
that a pure energy average over a window [µ̄ − ∆µ, µ̄ + ∆µ] corresponding
to up to 200 eigenstates is not sufficient to obtain a unique averaged persis-
tent current: as shown in Fig. 4.5, distinct differences in the energy-averaged

persistent current Ī(ϕ) appear for samples of the same topology but with
slightly differing radii of the semidisks (keeping effectively the same clas-
sical dynamics, i.e. the same variance σ). Similar differences are observed
when considering Ī as a function of µ̄. This indicates that the system is not

self-averaging (on an energy scale which is classically small). This oberva-
tion supports a point raised recently by Prange [254], who argued that the
form factor is not self-averaging. We can therefore infer that, at least for
this system, differences occur between the spectral correlation functions of
an energy-averaged single chaotic system and a disorder ensemble average.
This behavior does not support recent statements on the equivalence between
individual chaotic systems and ensembles of (disordered) systems [46].

In order to obtain unique averaged quantum magnetic response functions
we have performed an additional average 〈. . .〉 over about 30 geometries with
slightly differing semidisks. In Fig. 4.6 the results for the averaged quantum
mechanical persistent current (full lines) are compared with the semiclassical
prediction (dashed lines, (4.36)) over one period of the magnetic flux. The
different pairs of curves belong to different temperature smoothings kBT/∆
between 0.25 and 4 (the curves with the lowest maximum belong to the
highest T ). We observe an excellent agreement down to temperatures of about
half a level spacing. We stress that we are comparing here absolute (not
normalized) spectral correlation functions free of any adjustable parameters.
The semiclassical theory presented here provides universal persistent-current
line shapes. Unlike random-matrix theory, it further allows one to include
information on the classical dynamics of the specific system via the diffusion
constant σ. In the present case, σ is the sole parameter which determines the
absolute heights and widths of the correlation functions.

For the present system (Fig. 4.4) the relation (2.51) between the thermal
cutoff length and temperature smoothing can be expressed as

LT

a
≃ αkFw

2π2

∆

kBT
, (4.39)

where α ≃ 0.5 is the ratio of the area of the semidisks to the billiard area
aw. The good agreement with the quantum results at rather high tempera-
tures kBT/∆ ≃ 4 indicates that the statistical assumptions entering into the
semiclassical approach hold up to rather short corresponding cutoff lengths
LT ≃ a.
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Fig. 4.6. Averaged persistent current for an ensemble of chaotic ballistic rings (see
Fig. 4.4) over one period of the magnetic flux ϕ = φ/φ0 for different temperatures
(kBT/∆ = 0.25, 0.5, 1, 2, 3, 4 from the top, for the left maximum) at kFw ≃ 90.
Semiclassical results (dashed lines) from expression (4.36) are compared with those
from exact quantum calculations (full lines). (From [70], by permission)

In addtition, the low-temperature limit is of special theoretical interest
since it allows one to study the gradual breakdown of the semiclassical diago-
nal approximation for large trajectory periods. Indeed, we observe significant
deviations from the persistent-current quantum results at kBT/∆ ∼ 0.25. In
order to study the temperature dependence in more detail, as well as the de-
pendence on the Fermi energy, it is more convenient to consider the averaged
magnetic susceptibility 〈χ〉 (representing a thermodynamic measure of level
curvatures) since the latter is nonzero at zero flux.

4.3.3 Magnetic Susceptibilities

To make contact with the preceding section we first present results for the
susceptibility of rings (referring to the system in Fig. 4.4) and then discuss
the magnetic response of singly connected chaotic billiards.

Ring Topologies

By taking a second flux derivative one obtains from (4.36) the averaged sus-
ceptibility (defined in (4.24b)) for a chaotic cylinder in the semiclassical ap-
proximation [70]:

χ

χL
≃ 12

π

a

w
LT σ

∞
∑

m=−∞

∫ ∞

0

dξ R2(ξ)[1 − 2gm(ϕ, ξ)] exp [−gm(ϕ, ξ)]. (4.40)

Here, the gm are as defined in (4.37) and χ is normalized with respect to the
Landau susceptibility −χL, (4.7). Figure 4.7 depicts the quantum mechanical
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(full lines) and semiclassical (dashed lines) results for the flux-dependent aver-
age susceptibility of the chaotic cylinder (at different temperature smoothings
kBT/∆ = 0.5, 1, 2, 4). The same ensemble is used as in the previous section.
We find reasonable quantitative agreement for the paramagnetic behavior
at small fluxes and the crossover to a diamagnetic response, for the differ-
ent temperatures. The deviations near φ = φ0/4 can be traced back to the
fact that the semiclassical result at φ = φ0/4 stems from the difference of
two nearly equal contributions in the integral (4.40), leading to an enhanced
relative error.
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Fig. 4.7. Ensemble-averaged susceptibility 〈χ〉 of an ensemble of chaotic ballistic
rings (see Fig. 4.4) over one period of the magnetic flux ϕ = φ/φ0 for different
temperatures (kBT/∆ = 0.5, 1, 2, 4 from the top for the maximum at φ = 0) at
kFw ≃ 90. Semiclassical results (dashed lines, (4.36)) are compared with exact
quantum calculations (full lines)

The ϕ=1/2 periodicity of 〈χ〉 follows from the “false time reversal symme-
try breaking” at half-integer fluxes. The corresponding maximum is semiclas-
sically related to the constructive interference of contributions from periodic
orbits and their time reversal counterparts at ϕ=1/2.

The temperature dependence of the line shape can be understood as fol-
lows: the smaller the temperature, the larger is LT and the longer are the
typical orbits contributing to 〈χ〉. The variance in the distribution of the
areas enclosed by these orbits increases, making them more sensitive to the
magnetic field and thus yielding a larger susceptibility at zero field and a
smaller peak width, since time reversal invariance is more rapidly destroyed.

For ϕ= 0 and LTσ ≫ 1/π2, i.e. in the limit of large kF, the integral in
(4.40) can be solved analytically, giving a linear dependence of χ on LT and
kF, namely

χ(ϕ≡0)

χL
≃ 2

π

a

w

(

π2LTσ − 2
)

. (4.41)
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Fig. 4.8. Ensemble-averaged susceptibility 〈χ〉 of chaotic ballistic rings as a func-
tion of kFw (kF is the Fermi momentum, w the width of the structure) at zero
flux and normalized to the Landau susceptibility χL. The overall linear increase of
〈χ〉 obtained from exact quantum mechanical calculations (full lines) follows the
semiclassical predictions (dashed lines, (4.40)) for different temperature smoothings
kBT/∆ = 1, 2, 4 (from the top). (From [70], by permission)

Figure 4.8 shows the zero-flux susceptibility as a function of kFw for dif-
ferent temperatures kBT/∆ = 1, 2, and 4. The quantum results (full lines)
show on the whole a linear increase with kFw, in agreement with the semiclas-
sical prediction (dashed lines) from the equation above. However, even after
energy and ensemble averaging, as described above, an oscillatory structure
persists in the quantum results. Its origin, which is not yet completely un-
derstood, is beyond the present semiclassical treatment. It may be related to
the possiblity that the variations in the disk radii in the ensemble used were
still too small and off-diagonal products of contributions from different short
periodic orbits persist.

As mentioned above, temperature provides a natural parameter for study-
ing smoothing effects on mesoscopic spectral correlations. Figure 4.9 focuses
on the temperature dependence: the averaged susceptibility at ϕ = 0 and
kFw ≃ 90 is shown as a function of the cutoff length LT ∼ 1/kBT (see
(4.39)). The quantum mechanical result (full line) exhibits reasonable agree-
ment with the semiclassical approximation (dashed line) for intermediate
cutoff lengths 0.5 ≤ LT /a ≤ 4, which correspond to temperatures of the
order 0.7 ≤ kBT/∆ ≤ 5.

The deviations at small LT indicate the limit of the statistical assump-
tion, the winding-number distribution, used in the semiclassical approach:
for LT ≤ a the function R(ξ) in the integral (4.40) exponentially suppresses
longer orbits and only a few fundamental periodic orbits will contribute to
the magnetic response. Owing to the ring topology the minimum length Lmin

of flux-enclosing orbits must be larger than a. We find Lmin ≃ 1.5a for the
present geometry. This allows one to predict the functional dependence of
〈χ〉 for high temperatures to be exponential, according to the temperature
damping function R2(Lmin/LT ) ≃ (Lmin/LT )2 exp(−2Lmin/LT ). The inset
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Fig. 4.9. Temperature dependence of the ensemble-averaged susceptibility (at
ϕ = 0, kFw ≃ 90): 〈χ〉 is shown as a function of the thermal cutoff length
LT ∼ ∆/kBT (see (2.51)) normalized to the circumference a of the cylinder. The
semiclassical approximation (dashed line) reproduces the quantum mechanical re-
sults (full lines) reasonably well up to LT /a ≃ 4 or kBT/∆ ≃ 0.7. At low T sig-
natures from off-diagonal contributions emerge (see text). Inset: high-temperature
(low-LT ) regime in semilogarithmic representation: the exponent of the quantum
results follows precisely a semiclassical estimation (dashed line) according to the
temperature damping function R2(Lmin/LT ) ≃ (Lmin/LT ) exp(2Lmin/LT ). (The
semiclassical prefactor (y offset in the log representation) was fitted.) (From [70],
by permission)

of Fig. 4.9 depicts semilogarithmically this damping function (dashed line)
in comparison with the full quantum results (full line) as a function of a/LT .
The (damping) exponent of the high-temperature susceptibility is well repro-
duced as −2Lmin/LT , confirming the semiclassical picture.

In the case of LT /a > 3 (corresponding to a temperature smoothing
kBT < ∆) the increasing difference between the semiclassical and quantum
results in Fig. 4.9 indicates the onset of the breakdown of the diagonal approx-
imation: off-diagonal terms related to pairs of nonidentical periodic orbits,
which may exhibit correlations in their actions and stability factors which
enter into (4.31), presumably cause the deviation of 〈χ〉 from the linear LT

dependence.4 In this respect, the issue of whether one can find for this system
deviations from random-matrix theory at large but finite kF deserves special
interest.

4 Strictly speaking, the relation (4.24b), associating the averaged magnetic re-
sponse with fluctuations in the particle number, is justified only for kBT ≥ ∆.
However, our numerical calculations, comparing the canonical response with that
obtained from (4.24b) for a square billiard, and independent work by Mathur et
al. [247] show its validity even for temperatures kBT ≤ ∆.
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Singly Connected Billiards

For completeness we summarize some results [45] for singly connected chaotic
quantum dots in uniform fields: the susceptibility of an individual system is
approximated by the field derivatives of ∆F (1) (see (2.54c)), which again
are applied (to leading order in h̄) only to the rapidly varying phases. As a
consequence, the second derivative of the contribution of a periodic orbit to
∆F (1) merely amounts to a multiplication by a factor (eApo)

2/(ch̄)2. This
gives, for a billiard of area A,

χ(1)

χL
=

24πmA

gs

∑

po

R(Lpo/LT )

τ2
po

(Apo

A

)2

dpo(µ) , (4.42)

where dpo is given by (2.27).
The response of an ensemble of structures follows from ∆F (2) according

to (4.23c) and (2.54b). It can be calculated semiclassically as a double sum
over all pairs of orbits. The origin of the magnetic weak-field response of an
ensemble is again a consequence of time reversal symmetry: off-diagonal terms
involving an orbit and its time reversal have actions which differ solely by
their flux contributions. They survive the averaging process and contribute

to χ(2) since they enclose directed areas of opposite sign. One finally obtains,
by pairing time-reversal-related terms [45],

χ(2)

χL
= 24

∑

po

R2(Lpo/LT )

j2po|det(Mpo − I)|

(

2Apo

A

)2

cos

(

4πApoH

φ0

)

(4.43)

with the values of all classical entries taken at H=0. At zero field, the cosine
in (4.43) for the surviving terms is one and the prefactors are positive. This
fact explains the general paramagnetic character of the susceptibility of an
ensemble. The dephasing of time reversal orbits due to the perturbing mag-
netic field necessarily induces on average a decrease of the amplitude of the
susceptibility. Following equivalent lines to those used for ring geometries, i.e.
invoking a Gaussian distribution PL(Θ) of enclosed areas, the semiclassical
averaged susceptibility of singly connected structures takes the form

χ(2)
D

χL
= 96ΛF(γ) (4.44)

with Λ = σLLT /A
2. The function F(γ) is defined as

F(γ) =

∫ ∞

0

R2(ξ) (1 − 4γ2ξ) exp(−2γ2ξ) dξ ; γ =
2πH

φ0

√

σLLT . (4.45)

Note that this result corresponds to the m = 0 component of (4.40). The
maximum of F(γ) is F(0) = π2/6 and the half-width ∆γ ≃ 0.252. A numerical
solution of the quadrature gives a universal line shape curve [45] similar to
that depicted in Fig. 4.7 for ϕ < 1/4.
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4.3.4 Systems with Diffusive Dynamics

For completeness we briefly summarize a semiclassical approach by Arga-
man, Imry, and Smilansky [76] to persistent currents in diffusive mesoscopic
systems5 and compare it with the above results. These authors express cor-
relation functions for the averaged and typical persistent currents of the type
(4.31) for T =0 in terms of the semiclassical form factor (2.31), the Fourier
transform of the spectral two-point correlator, which they derive to be

K(E, t) ≃ 2|t|
(2πh̄)2

dΩ

dE
P (t) . (4.46)

P (t) is the classical return probability for periodic motion and dΩ/dE
the volume of the energy shell. For thin rings of perimeter a the dynam-
ics of returning particles obeys a one-dimensional diffusion law P (na) ∼
1/
√

4πD|t| exp (−n2a2/4D|t|), where n denotes the winding number. Fur-
ther evaluation leads to a final expression for the averaged persistent current
which is equivalent to the expression (4.36) derived for ballistic chaotic sys-
tems. This close relation can be traced back to the following fact: although
the return probability for a closed chaotic system is constant (P (t) = dE/dΩ,
contrary to diffusive systems), a one-dimensional diffusion law determines the
accumulation of areas, while in the diffusive case it determines the dynamics
itself. Thus, in spite of the different origins of the diffusion processes involved,
the overall results for diffusive one-dimensional rings and chaotic ballistic bil-
liards are of the same form. However, diffusive singly connected systems in
uniform magnetic fields behave differently. There, two-dimensional diffusive
motion determines P (t), and the conditional distribution for enclosed areas
is not Gaussian but of the form [76]

PL(Θ) =
π

2Dt[1 + cosh(πΘ/Dt)]
. (4.47)

4.3.5 Relation to Experiments

To our knowledge, two experiments on ballistic mesoscopic structures have
been performed so far: measurements of persistent currents in rings [220] and
of the susceptibility of semiconductor square quantum wells [57]. However,
the classical motion of electrons in both experiments can be considered to be
regular; and these will be addressed in Sects. 4.6.1 and 4.5, where integrable
ring and square billiards are treated.

An experimental observation of the persistent-current or susceptibility
line shapes (see (4.36) and (4.44)) would be desirable as a confirmation of
the applicability of the semiclassical picture developed here (besides the com-
parison with the quantum results). Although a clear-cut verification of the

5 We note, however that the models of Argaman et al. based on noninteracting
electrons, cannot explain the present experiments on diffusive metal rings (see
Sect. 6.3.2).
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precise functional form of the line shape may be too difficult, the charac-
teristic dependence of the magnitude and line shape of the universal orbital
magnetic response functions on temperature should be observable. Since to-
day experiments can be performed at rather low temperatures corresponding
to cutoff lengths of order LT /a ≃ 5 [220], they can access the LT region
where the statistical assumptions about the behavior of long orbits are ful-
filled, leading to universal features in the magnetic response.

However, one should keep in mind that the above quantum and semiclas-
sical analysis holds for noninteracting systems. Interaction contributions to
the magnetic response in chaotic ballistic systems are estimated in Sect. 6.5
and have to be added.

In addition, as will be discussed in detail in Chap. 5, the effect of smooth
disorder has to be considered. This is characteristic of the GaAs/AlGaAs
heterostructures with which this kind of experiment is performed. As a re-
sult, an average over weak disorder will actually favor the cancellation of
the nondiagonal terms without affecting the diagonal contribution presented
above. The effects of nondiagonal contributions should therefore be less im-
portant in actual systems than it might appear in a clean model.6 However,
for rather clean devices it may even be possible to experimentally approach
the regime of the breakdown of the diagonal approximation where the meso-
scopic quantum magnetic response can be expected to be strongly influenced
by correlations between nonidentical classical periodic paths.

Furthermore, new experiments with microwave cavities are in progress
[262] which allow one to study the breaking of time reversal symmetry in “per-
sistent current like” correlation functions of frequency-dependent microwave
absorption spectra. The symmetry breaking is achieved there by using me-
dia which, upon magnetization, induce field-dependent phase shifts in waves
undergoing reflection. These kinds of measurements probe the independent-
particle response and should be sensitive to semiclassical off-diagonal contri-
butions.

4.4 Perturbed Integrable Systems: General Framework

The preceding section was devoted to the magnetic response of chaotic sys-
tems, which are assumed to show generic behavior: they exhibit universal
features representing a wide, common class of systems. One example is the
line shape of the weak-field magnetization profile as derived in Sect. 4.3.7

In this section we discuss for integrable geometries the generic situation in

6 The variance in the disk radii of the chaotic cylinders in the quantum mechan-
ical ensemble average performed in Sect. 4.3.3 was kept small enough that off-
diagonal terms persisted.

7 Nevertheless, system-specific features generally coexist in chaotic systems, at
least for properties related to shorter timescales. However, they can be reduced
by an appropriate choice of the model system.
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which a perturbation, in our case an external magnetic field, breaks the in-
tegrability. We therefore shall refer to the weak-field behavior because only
this regime is affected by the integrability of the dynamics at zero field. The
symmetry-breaking effect of the magnetic field is therefore twofold: besides
the breaking of time reversal symmetry, an additional symmetry of the field-
free Hamiltonian (giving rise to its integrable character) is affected.

The aim of the present section is to present the more general implications
for the related quantum response on the basis of a semiclassical perturbation

theory. We shall discuss the consequences for magnetic properties of ballistic
quantum dots first on a general level. In the subsequent section we then
treat as an application the magnetism of square billiards, which represent
experimentally relevant prototypes of generic integrable geometries. The case
of systems which remain integrable at arbitrary field strength owing to their
special geometry will be discussed in Sect. 4.6.

On the basis of the field derivatives of the thermodynamic functions∆F (1)

and ∆F (2), we shall compute in the following the magnetic response of nonin-
teracting, two-dimensional integrable systems perturbed by a weak magnetic
field. The equations (2.54b), (2.54c), and (4.23a)–(4.23c), which relate ∆F (1)

and ∆F (2) to the oscillating part, dosc(E), of the density of states, are gen-
eral relations which also apply in particular here. The main difficulty is to
obtain semiclassical uniform approximations for dosc(E) in the perturbative
regime: the periodic orbits which play the central role in the semiclassical
trace formulas are the most strongly affected by the perturbation. Accord-
ing to the Poincaré–Birkhoff theorem [91] all resonant tori, i.e. all families
of periodic orbits, are instantaneously broken as soon as the magnetic field
is turned on, leaving only two isolated periodic orbits (one stable and one
unstable). It is therefore no longer possible to use the Berry–Tabor trace for-
mula (2.25), suitable for integrable systems, to calculate dosc(E,H), since it
is based on a sum over resonant tori which do not exist any longer. One has
therefore to devise a semiclassical technique allowing one to interpolate be-
tween the zero-field regime, for which the Berry–Tabor formula applies, and
higher fields (still classically perturbative, however), at which the periodic
orbits which persist under the perturbation are sufficiently well isolated to
use the Gutzwiller trace formula (2.27).

Such an approach is presented in more detail in [45]. It is related to a
semiclassical treatment of the density of states in the nearly integrable regime
by Ozorio de Almeida [27,263].8 Here, we briefly summarize the basic results
of this semiclassical treatment in the framework of classical perturbation
theory for small fields and then deduce the grand canonical and canonical
contributions to the susceptibility.

In the integrable zero-field limit each closed trajectory belongs to a torus
IM and we can replace r in the trace integral (2.18) by angle coordinates

8 A general approach based on that by Ozorio de Almeida was also recently used
by Creagh [264].
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Θ1 specifying the trajectory within the one-parameter family and by the
position Θ2 on the trajectory. For small magnetic fields the classical orbits
can be treated as being essentially unaffected, while the field acts merely on
the phases in the Green function in terms of the magnetic flux through the
area AM (Θ1) enclosed by each orbit of the family M . The evaluation of
the trace integral (2.18) along Θ2 for the semiclassical Green function of an
integrable system leads in this approximation to a factorization of the density
of states [45]:

dosc(E) =
∑

M 6=0

CM(H)d0
M(E) . (4.48)

d0
M (E) stands for the density-of-states contribution (given by the Berry–

Tabor formula (2.25)) in the integrable zero-field limit. Furthermore,

CM(H) =
1

2π

∫ 2π

0

dΘ1 cos

[

2π
HAM(Θ1)

φ0

]

. (4.49)

At zero field we obviously have CM(0)=1.
The functions AM(θ1), and therefore CM(H), are system-dependent. Fol-

lowing again Ozorio de Almeida, it is convenient to write AM(θ1) as a Fourier
series

AM =

∞
∑

n=0

A(n)
M sin(nθ1 − γ(n)) . (4.50)

If AM is a smooth function of θ1, the coefficients A(n)
M usually rapidly decay

with n. For systems where one can neglect all harmonics higher than the first
one, the integral (4.49) can be performed. To this end one has to consider two
different situations: namely whether the torus is time-reversal-invariant (e.g.
a square geometry) or has a partner in phase space which is its counterpart
under time reversal transformation (e.g. a circular geometry). Here we note
the result for the former case [45]:

CM (H) ≃ J0

(

2πHA(1)
M

φ0

)

. (4.51)

As was shown in [45] for the case of the square billiard, representing a generic
integrable system, this is an excellent approximation to the exact form (4.64)
to be calculated in the next section.

4.4.1 Magnetic Susceptibility

From the expression (4.48) for the oscillating part of the density of states the
contributions χ(1) and χ(2) to the susceptibility are obtained by the applica-
tion of (2.54b), (2.54c), and (4.23a)–(4.23c), which express ∆F (1) and ∆F (2)

in terms of dosc(E,H). Taking the field derivative twice according to (4.17)
and introducing the dimensionless quantities
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C′′
M(H) ≡

(

φ0

2πA

)2
d2CM

dH2
, (C2)′′M(H) ≡

(

φ0

2πA

)2
d2C2

M

dH2
(4.52)

(A is the total area of the system), one obtains for the grand canonical con-
tribution to the susceptibility

χ(1)

χL
= −24πmA

gs

∑

M

R(τM/τT )

τ2
M

d0
M(µ) C′′

M(H) . (4.53)

R(x) determines the temperature damping on the scale of the time τT , (2.50).
Equation (4.53) is the basic equation for the susceptibility of an individ-

ual microstructure. As for chaotic systems in the last section, we describe an
ensemble of ballistic systems by performing an energy average. Related vari-
ations in kF lead, by means of the contributions kFLM to the actions SM/h̄
in a billiard, to large variations (> 2π) in the phases which enter into (4.53)
via the semiclassical expression (2.18) for the density of states. Thus, χ(1)

vanishes upon ensemble averaging. Therefore, the typical susceptibility χ(t)

(see (4.18)) and the averaged susceptibility χ (see (4.24b)) will be considered
as relevant measures.

Assuming that there are no degeneracies in the lengths LM of orbits from
different families M , one obtains for χ(t), using (4.53),

(

χ(t)

χL

)2

=

(

24π

gs
mA

)2
∑

M

R2(τM/τT )

τ4
M

d0
M(µ)2

(

d2CM

dH2

)2

. (4.54)

In calculating χ, the contribution from ∆F (1) vanishes upon energy aver-
aging. The canonical correction ∆F (2) in (4.22) gives, in the semiclassical
approximation [45],

χ(2)

χL
= −24π2h̄2

gs2

∑

M

R2(τM/τT )

τ2
M

[d0
M(µ)]2 (C2)′′M(H)

= −12

h̄

∑

M

R2(τM/τT )

M3
2 |g′′µ(IM )| (C2)′′M(H) . (4.55)

The field-dependent component of χ(2) in the limit H → 0 is given by

(C2)′′M(H=0) = − 1

2πA2

∫ 2π

0

dθ1A
2
M(θ1) . (4.56)

It is always negative. Therefore, for an ensemble of integrable structures
the magnetic response is always paramagnetic at zero field, in close corre-
spondence to the result (4.43) obtained for an ensemble of chaotic ballistic
systems.
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4.4.2 Integrable Versus Chaotic Behavior

Let us summarize the similarities and differences in the orbital magnetic
response of chaotic and integrable systems with respect to the treatment as
well as to the results.

The qualitative behavior of the magnetic response is quite the same for
generic chaotic and integrable systems: the susceptibility of a single structure
can be paramagnetic or diamagnetic and changes sign with a periodicity in
kFa of the order of 2π. The most remarkable similarity is the paramagnetic
character of the average susceptibility of an ensemble of microstructures.
Equations (4.43) and (4.55) show that the susceptibility is positive at zero
field, independent of the kind of dynamics considered. Equation (4.23c) states

that ∆F (2) is, up to a multiplicative factor, the variance of the temperature-
smoothed particle number for a given chemical potential µ. As a basic mech-
anism for both integrable and chaotic systems, the magnetic field reduces
the degree of symmetry of the system, which lowers this variance. Therefore

∆F (2) necessarily decreases when the magnetic field is applied.
For chaotic systems the paramagnetic character of the ensemble suscep-

tibility arises as naturally as the negative sign of the magnetoresistance in
phase-coherent microstructures, see Sect. 3.2.3. The reasoning is similar to
a random-matrix argument, where the ensembles describing the fluctuations
of time-reversal-invariant systems are known to be less rigid: the fluctuations
in the number of states in any given interval of energy are larger than in
the case where time-reversal invariance is broken. The transition from one
symmetry class to the other can be explained on the basis of generalized
ensembles, whose validity can be justified semiclassically [84]. We must, how-
ever, point out that even for the chaotic case we do not have the standard
GOE–GUE transition [23], since (4.23c) involves integration over a large en-
ergy interval. For higher temperatures, this characterizes the nonuniversal
“saturation” regime where [Nosc(µ)]2 is given by the shortest periodic orbits.

There are some differences worth considering:

(i) For chaotic systems the only symmetry existing at zero field is the time
reversal invariance, while for integrable systems the loss of time reversal
invariance and the breaking of invariant tori together reduce the ampli-
tude of Nosc(µ). This difference arises from the lack of structural stability
of integrable systems under a perturbing magnetic field.

(ii) We derived in Sect. 4.3 for chaotic systems at low temperatures, such that
a large number of orbits contribute to the susceptibility, universal curves
for the field-dependent magnetization similar to the weak-localization
effect in electric transport. This is not possible for integrable systems,
which do not naturally lend themselves to a statistical treatment.

(iii) The main difference between integrable and chaotic noninteracting sys-
tems is related to the magnitude of the magnetic response. The contri-
bution of an orbit to the Gutzwiller formula for two-dimensional systems
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is smaller by
√
h̄ than a term in the Berry–Tabor formula for the inte-

grable case. More generally, in the case of d degrees of freedom, the h̄
dependence of the Berry–Tabor formula is h̄−(1+d)/2. It is the same as in
the semiclassical Green function. The Gutzwiller formula is obtained by
performing the trace integral of the Green function by stationary phase
in d− 1 directions, each of which yields a factor h̄1/2. This results in an
overall h̄−1 behavior independent of d for a chaotic system. Important
consequences therefore arise for the case of two-dimensional billiards of
typical size a at temperatures such that only the first few shortest orbits
significantly contribute to the free energy. The different h̄ dependence
gives rise to different parametric kFa characteristics of integrable and
chaotic systems.

While the magnetic response of chaotic systems results from isolated peri-
odic orbits, the existence of families of flux-enclosing orbits in quasi-integrable
or partly integrable systems is reflected in a parametrically different depen-
dence of their magnetization and susceptibility on kFa (or

√
N in terms of

the number of electrons). The difference is especially drastic for ensemble
averages, where we expect a kFa–independent response χ̄ for a chaotic sys-
tem, while the averaged susceptibility for integrable systems increases linearly
in kFa. This will become more transparent when considering explicitly the
example of an ensemble of square potential wells.

A complete comparison between the magnetic responses of integrable and
chaotic systems, including the effect of electron–electron interactions, will be
given in Chap. 6. There, the different kFa behaviors of the susceptibility for
individual systems as well as ensemble averages is displayed in Table 6.1.

4.5 Perturbed Integrable Systems:

Square Quantum Wells

In the preceding section perturbation theory for generic integrable systems
was presented and uniform approximate (but general) expressions were de-
rived for the weak-field magnetic response. In this section we treat explic-
itly the case of a square billiard, which can be considered as the prototype
of a generic integrable structure. Because of the simplicity of its geometry,
the trace integrals over the Green function can be performed exactly for
weak magnetic fields and yield uniform analytical expressions. In order to
obtain semiclassical results for the susceptibility of individual and ensembles
of squares we proceed as outlined in Sect. 4.2.3: we calculate the density of
states and use the decomposition of the susceptibility according to (4.22) into
contributions corresponding to the field derivatives of ∆F (1) and ∆F (2). The
semiclassical computations will be compared with precise numerical quantum
calculations.
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The square geometry deserves special interest since it was the first mi-
crostructure experimentally realized for measuring the magnetic response in
the ballistic regime [57]. A semiclassical approach to the magnetism of clean
square billiards was first used by Ullmo, Richter, and Jalabert [45, 71] and
von Oppen [223]. The treatment in this section assumes clean squares in or-
der to accentuate the physical mechanisms leading to the magnetic response.
Effects of residual disorder and electron–electron interactions will be treated
in Chaps. 5 and 6. In Sect. 6.6 we are then in a position to compare the
results with the experimental findings of [57].

4.5.1 The Weak–Field Density of States

Following [45] closely, we calculate in the first step the oscillating density of
states, dosc(E), from the trace of the semiclassical Green function. To start
with, we consider a square billiard of side a in the absence of a field. Each
family of periodic orbits can be labeled by the topology M = (Mx,My),
where Mx and My are the numbers of bounces occurring on the bottom and
left sides of the billiard (see Fig. 4.10). The length of the periodic orbits for
all members of a family is

LM = 2a
√

M2
x +M2

y . (4.57)

The action along the unperturbed trajectory is S0
M/h̄ = kLM (see (2.9)),

where k is the wave number. The Maslov indices are ηM = 4(Mx +My). We
shall omit them from now on since they yield only a dephasing of a multiple
of 2π.

a

a) b)

-A

xx

y

(1,1) (2,1)

0

+

Fig. 4.10. (a) Representative orbits from the family (1,1) of the square billiard.
The abscissa x0 of the intersection of the trajectory with the lower side of the
square labels the trajectories inside the family. s ∈ [0, L11] further specifies a par-
ticular point of a given trajectory. (b) Orbit of the family (2,1), illustrating the
flux cancellation occurring for a whole class of periodic trajectories. (From [45], by
permission)
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Fig. 4.11. Schematic illustration of the method of images: the Green function
G(q, q′) is constructed from the free Green function G0 by placing a source point
at each mirror image qi of the actual source q. With each of the resulting mirror
images is associated a classical trajectory (solid line). This latter is obtained from
the straight line joining qi to q′ (dashed) by mapping it back onto the original
billiard. (From [45], by permission)

It is convenient to use the method of images, as illustrated in Fig. 4.11,
to express the exact Green function G(q, q′;E) for a square in terms of the
free Green function G0(q, q′;E) as [79,90]

G(q, q′;E) = G0(q, q′;E) +
∑

qi

ǫiG
0(qi, q

′) . (4.58)

Here the qi represent all the mirror images of q obtained by any combination
of symmetries across the sides of the square, and ǫi = +1 or −1, depending
on whether one needs an even or odd number of symmetry operations to
map q to qi. The semiclassical approximation to G0(q, q′;E) is discussed
in Sect. 2.1.1 and given in (2.10); in two dimensions, it does not reproduce
the logarithmic behavior, for q → q′ but exhibits the correct long-range
asymptotic behavior, which can be used for all images qi 6= q′.

The determinant entering as a prefactor into the contribution from one
trajectory to the Green function reduces in the zero-field limit to

DM =
m√
h̄kLM

. (4.59)

In the limit of weak magnetic fields, we make use of the same approach
as in the previous sections, keeping in (2.3) the zeroth-order approximation
of the prefactor DM and using the first-order correction δS to the action,
which is proportional to the area enclosed by the unperturbed trajectory. As
in the generic case the enclosed area varies within a family, contrary to the
circular or annular geometries to be discussed in Sect. 4.6.
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The contribution to the density of states of the family of recurrent tra-
jectories, which for H→0 tends to the family of the shortest periodic orbits
with nonzero enclosed area, plays a dominant role in determining the mag-
netic response, as already recognized in [57]. For H =0, this family consists
in the set of orbits shown in Fig. 4.10a, which hit the bottom of the square
at 0 ≤ x0 ≤ a. As configuration space coordinates we use the distance x0

which labels the trajectory, the distance s along the trajectory, and the index
ǫ = ±1 which specifies the direction in which the trajectory is traversed. In
this way, each point q is counted four times, corresponding to the four sheets
of the invariant torus. The enclosed area Aǫ(x0, s) is independent of s. It
reads

Aǫ(x0) = ǫ 2 x0 (a− x0) . (4.60)

The contribution of the family (1,1) to dosc(E) is d11(E) = −(gs/π)·
Im G11(E). Inserting (4.60) and (2.15) into the integral of (2.18) one finds [71]

G11(H) =
1

ih̄

1√
2iπh̄

(4.61)

×
∫ L11

0

ds

(

dy

ds

)∫ a

0

dx0

∑

ǫ=±1

D11 exp

[

ikL11 + i
2eǫ

h̄c
Hx0(a− x0)

]

.

As shown in the previous section for the general case, the contribution to the
density of states of the family (1,1) factorizes into an unperturbed (Berry–
Tabor-like) term and a field-dependent factor:

d11(E,H) = d0
11(E) C(H) . (4.62)

For the square these factors read

d0
11(E) ≡ d11(E,H=0) =

4gs
π

ma2

h̄2(2πkL11)1/2
sin
(

kL11+
π

4

)

(4.63)

and

C(H) =
1

a

∫ a

0

dx0 cos

(

2e

h̄c
Hx0(a− x0)

)

=
1√
2ϕ

[cos(πϕ)C(
√
πϕ) + sin(πϕ)S(

√
πϕ)] . (4.64)

Here

ϕ =
Ha2

φ0
(4.65)

is the total flux through the square measured in units of the flux quantum.
In (4.64) C and S stand for the cosine and sine Fresnel integrals [265].

The field dependence of dosc in (4.64) reflects the detuning of phases
between time-reversal families of orbits and the field-induced decoherence
of different orbits within a given family. When ϕ is of the order of one, the
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Fresnel integrals in (4.64) can be replaced by their asymptotic value 1/2. This
amounts to evaluating the integral C(ϕ) using stationary phase and yields [71]

CS(ϕ) =
cos(πϕ−π/4)√

4ϕ
. (4.66)

For any nonzero field only the two trajectories corresponding to x0 = a/2
remain periodic (one stable, one unstable, according to the two possible di-
rections of traversal). For ϕ > 1 the dominant contribution to C(ϕ) comes
from the neighborhood of these two surviving periodic orbits, and the oscil-
lations of C(ϕ) are related to the successive dephasing and rephasing of these
orbits. Indeed, using the Gutzwiller trace formula with a first-order classical
perturbative evaluation of the actions and stability matrices just gives CS(ϕ).
It, however, diverges when H→0, while the full expression (4.64) reduces to
C(0) = 1.

In order to take into account the contribution dM of longer trajectories, we
write (Mx,My) as (jux, juy), where ux and uy are coprime integers labeling
the primitive orbits and j is, as usual, the number of repetitions. The effective
algebraic area enclosed by a long periodic trajectory in the square is small
owing to cancellations. Simple geometry shows that, keeping x0 as a label
of the orbit (with x0 ∈ [0, a/ux] to avoid double counting), the total area
enclosed by the trajectory (jux, juy) is

AM =







0 ux or uy even

j
Aǫ(uxx0)

uxuy
ux and uy odd

. (4.67)

Here, Aǫ(x0) is given by (4.60). Using the above equation, the density-of-
states contribution (4.62) for the orbit (1, 1) can be generalized to orbits of
topology M and reads

dM (E,H) = d0
M (E) CM (ϕ) , (4.68)

where

CM (ϕ) =







1 ux or uy even

C
(

rϕ

uxuy

)

ux and uy odd
. (4.69)

Here, C(ϕ) is as defined in (4.64) and d0
M ≡ dM (H = 0) is given by (4.63),

but with L11 replaced by LM .

4.5.2 Susceptibility of Individual Samples and Ensemble Averages

Semiclassical Results

On the basis of the semiclassical expressions (4.62)–(4.64) for the density of
states, we shall compute the magnetic response of square quantum dots and
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compare it in the next subsection with corresponding results from numerically
exact quantum calculations.

We begin with the calculation of the semiclassical susceptibility contri-
bution of the family (1,1) of the shortest flux-enclosing orbits only. This
corresponds to the temperature regime of the experiment [57], where the
characteristic length LT (2.49) is of the order of L11. In Sect. 4.5.2 we shall
generalize this to arbitrary temperature by taking into account the contribu-
tion of longer orbits.

Using the expressions (4.62) and (4.63) for the contributions of the fam-
ily (1, 1) to dosc(E,H), one can compute the corresponding contribution to
∆F (1) (see (2.54c) and (4.23b)). Taking the derivatives with respect to the
magnetic field, we obtain from ∆F (1) for LT ≃ L11 [45]

χ(1)

χ0
= sin

(

kFL11 +
π

4

)

∫ a

0

dx0

a
A2(x0) cos[ϕA(x0)] (4.70)

with A(x0) = 4πx0(a− x0)/a
2 and

χ0 = χL
3

(
√

2π)5/2
(kFa)

3/2R(L11/LT ) . (4.71)

R(L11/LT ) is the temperature-dependent reduction factor of (2.49).
The susceptibility of an individual square displays pronounced oscillations

as a function of the Fermi energy and can be paramagnetic or diamagnetic,
as shown Fig. 4.12a. Since we use only one kind of trajectory the typical sus-
ceptibility χ(t) (4.18) is proportional to the prefactor of χ(1) and hence of the
order of (kFa)

3/2χL. This is much larger than the Landau susceptibility χL.
The susceptibility oscillations have a similar origin to the shell effects [30]

in metal clusters. Indeed, related oscillations in the magnetic moment of
individual transition-metal dots have been experimentally observed [224] and
theoretically explained within a semiclassical shell model [266].

Figure 4.12b shows (solid line) that χ(1) also exhibits oscillations as a
function of the flux at a given number of electrons in the square. The sus-
ceptibility obtained from CS (dashed line) diverges for small flux but proves

to be a good description of χ(1) for ϕ
>∼ 1.

For an ensemble of squares of different sizes a, χ(1) vanishes under averag-
ing if the dispersion of kFL11 across the ensemble is larger than 2π. Then the
average susceptibility is given by the contribution to ∆F (2) from the (1, 1)
family, (4.23c). Proceeding in a similar way to that for the first-order term,
the contribution of the family (1, 1) to the integrated density Nosc is given
by (2.54b) as

N11(µ̄, ϕ) = −gs
(

23a3

π3L3
11

)1/2

(kFa)
1/2 (4.72)

× cos
(

kFL11+
π

4

)

C(ϕ) R

(

L11

LT

)

.
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(a)

(b)

Fig. 4.12. Orbital magnetic response of a single square billiard. (a) χ as a function
of kFa from numerical calculations (dotted line) at zero field and at a temperature
equal to 10 level spacings. The number of electrons is N = gs(kFa)2/(4π). The
full line shows the semiclassical approximation (4.70) taking into account only the

family (1,1) of the shortest orbits. The period π/
√

2 of the quantum result indicates
the dominance of the shortest periodic orbits enclosing nonzero area with length
L11 = 2

√
2a. (b) χ as a function of the normalized flux through the sample (at a

Fermi energy corresponding to N ∼ 400) from (4.70) (solid line) and from numer-
ical calculation (dotted line). The susceptibility arising from the stationary-phase
integration CS (4.66), shown as the dashed line diverges as ϕ → 0. (From [45], by
permission)

In order to compute χ(2) we have to evaluate ∆F (2) = (Nosc)2/2D̄, with
D̄ = (gsma

2)/(2πh̄2). In particular, the term from the family (1, 1) reads

[N11(µ̄, ϕ)]2

2D̄
=

gsh̄
2(kFa)

(
√

2)3π2ma2
cos2

(

kFL11 +
π

4

)

C2(ϕ) R2

(

L11

LT

)

. (4.73)

The above term is of lower order in kFa than ∆F (1). However, its sign does
not change as a function of the phase kFL11, and hence the square of the
cosine survives the ensemble averaging.9 After taking the derivatives with
respect to ϕ one finds (in the regime LT ≃ L11) [45]

χ(2)

χL
= − 3

(
√

2π)3
kFa

d2C2

dϕ2
R2(L11/LT ) . (4.74)

9 Possible contributions from the orbits (1,0) and (0,1), which are even shorter
than (1,1), are discussed in Sect. 4.5.3.
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The overall averaged susceptibility of an ensemble of noninteracting squares
is therefore

χ = −χL + χ(2) .

Here, the diamagnetic (bulk) Landau contribution, −χL, arising from h̄ cor-
rections to F 0, has been added. In the regime L ≃ LT that we are considering

here, χL is negligible with respect to χ(2) as h̄ → 0. Hence one can approx-

imate χ ≃ χ(2). In the limit LT ≪ L, (4.70) and (4.74) remain valid, but
χ(1) and χ(2) are exponentially suppressed. In this case χ and χ reduce to
the Landau susceptibility, which is independent of the underlying classical
dynamics.

The field-dependent function C has its absolute maximum at ϕ=0. Hence
the average zero-field susceptibility is paramagnetic with a maximum value
of [71,223]

χ(2)(ϕ=0) =
4
√

2

5π
kFa χL R

2(L11/LT ) . (4.75)

The linear dependence of the average susceptibility on kF is shown in Fig.
4.13a. For small fields the average susceptibility (thin solid line, Fig. 4.13b)
decays on the whole as 1/ϕ and additionally oscillates on the scale of one
flux quantum through the sample. The period of the field oscillations of the
ensemble average is half of that of the corresponding individual systems (see
Fig. 4.12b), similarly to the disordered case [214]. This behavior can be traced
to the C2 dependence that appears in (4.74), in contrast to the simple C
dependence of (4.70).

With regard to the experiment of [57] representing an ensemble with a
wide distribution of lengths, an average 〈· · ·〉a on a classical scale (i.e.∆a/a 6≪
1) rather than on a quantum scale (∆(kFa) ≃ 2π) is required. Hence the
dependence of C on a through ϕ has additionally to be considered. Since the
scale of variation of C with a is much slower than that of sin2 (kFL11) we
can effectively separate the two averages. The total mean is introduced by
averaging the local mean as

〈χ〉a =

∫

da χ P (a) . (4.76)

Here, the quantum average χ is given by (4.74) and P (a) is the probability
distribution of sizes a. For a Gaussian distribution P (a) with a 30% dispersion
one obtains the thick solid line of Fig. 4.13b. While the zero-field behavior
remains unchanged, the low-field oscillations with respect to ϕ are suppressed
under the second average.

Comparison with Quantum Mechanical Results

In order to check the validity of the semiclassical predictions for the suscep-
tibility, precise quantum calculations have been performed [71] based on a
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(a)

(b) 〈χ〉

Fig. 4.13. Magnetic susceptibility of an ensemble of squares of different sizes. (a)
Averaged susceptibility as a function of kFa for three temperatures (kBT/∆ = 8, 6,
and 4 for the three triplets of curves, from bottom to top) and a flux ϕ = 0.15. Dashed
curves: average of the numerically calculated full canonical susceptibility. Solid and
dotted curves: average of χ(2) calculated semiclassically according to (4.74) and
numerically, respectively. (b) Flux dependence of the susceptibility (normalized to
χN = χLkFaR2

T (L11)) at kFa ≃ 70 from the semiclassical expression (4.74) (solid)
and numerical calculations (dashed). The thick solid and dashed curves denote av-
erages of the semiclassical and numerical results, respectively, over an ensemble
with a large dispersion of sizes, which is denoted by 〈χ〉 (see text). The shift of
the numerical results with respect to the semiclassical results reflects the Landau
susceptibility and effects from bouncing-ball orbits (see Sect. 4.5.3) not included in
the semiclassical trace. (From [45], by permission)

diagonalization of the Hamiltonian of noninteracting electrons in a square
quantum well subject to a uniform magnetic field (see Appendix A.2).

A typical energy-level diagram of one symmetry class ((Pπ, Pπ/2) = (1, 1))
as a function of the magnetic field is shown in Fig. 4.1 (Sect. 4.1). In between
the two separable limiting cases ϕ = 0 and ϕ −→ ∞, where the levels merge
into Landau states, the spectrum exhibits a complex structure typical of a
nonintegrable system.

From the single-particle energies obtained we calculated both the grand
canonical and the canonical orbital magnetic response without relying on
the free-energy expansion (4.22). As an example the numerically calculated
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susceptibility of a single square well for a given Fermi energy is depicted (as
the dotted line) in Fig. 4.2. The pronounced oscillations at intermediate and
strong flux will be analysed in Sect. 4.5.3. Here we focus on the magnetic
response at weak fields.

The numerical results for the susceptibility of individual and ensembles of
squares are displayed as the dashed lines in Figs. 4.12 and 4.13. These results
are in excellent agreement with the semiclassical predictions of Sect. 4.5.2.
Figure 4.12a shows the numerical quantum result for the canonical suscep-

tibility and the semiclassical leading-order contribution, χ
(1)
11 , at zero field

as a function of kFa (or
√

4πN/gs in terms of the number of electrons). As
expected semiclassically (see (4.70)), the quantum result oscillates with a pe-
riod π/

√
2. This behavior indicates the pronounced effect of the fundamental

orbits of length L11 = 2
√

2a. The semiclassical amplitudes (solid line) are
slightly smaller than the numerical results because only the shortest orbits
are considered.

The flux dependence of χ for a fixed number of electrons, N ≈ 1100gs,
is displayed in Fig. 4.12b. The semiclassical prediction ((4.70), solid curve)
is again in considerable agreement with the quantum result, while the an-
alytical result ((4.66), dashed line) from stationary-phase integration yields
an (unphysical) divergence for ϕ → 0 as discussed in Sect. 4.5.1. For the
numerical calculations the size averages on the quantum scale (thin dashed
line, Fig. 4.13b) and the classical scale (thick dashed line) were obtained by
taking a Gaussian distribution of sizes with a small or large ∆a/a disper-
sion, respectively. Figure 4.13a depicts the kFa dependence of χ assuming a
Gaussian distribution of lengths a with a standard deviation ∆a/a ≈ 0.1 for
each of the three temperatures kBT/∆ = 2, 3, 5. The dashed curves are the
ensemble averages of the quantum mechanically calculated entire canonical
susceptibility χ. The dotted lines are the exact (numerical) results for the

averaged term χ
(2)
qm = (Nosc

qm)2/2∆. They are nearly indistinguishable (on
the scale of the figure) from the semiclassical approximation of (4.74) (solid
line). The precision of the semiclassical approximation based on the funda-
mental orbits (1,1) is striking. The difference between the results for χ and

χ(2) allows one to estimate the precision of the thermodynamic expansion
(4.22) used. The semiclassical result for the average on the classical scale has
been shifted additionally by −χL to account for the Landau diamagnetism.
It is again in close agreement with the numerical results for the averaged
susceptibility χ̄.

Lévy et al. [57] measured the orbital magnetic response of an array of 105

microscopic quantum billiards of square geometry on a high-mobility GaAs
heterojunction. They observed a huge paramagnetic peak of the magnetic
susceptibility at zero field, decreasing on a scale of approximately one flux
quantum through each square (see Chap. 1, Fig. 1.5). The peak maximum was
of the order of ≈ 100χL. Although our theoretical results for clean square wells
with noninteracting particles also give a paramagnetic response with a peak
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height in reasonable agreement with experiment at low temperatures, we shall
give a more detailed comparison with experiment after having considered
disorder and interaction effects in Chaps. 5 and 6.

Contribution of Longer Orbits

Although the above comparison with quantum calculations have already
shown that at finite temperatures orbits of the family (1,1) yield the dom-
inant contribution to the susceptibility, we discuss here the effect of longer
recurrent orbits. In the low-temperature limit or, more generally, if one is
interested in results valid at any temperature, it is a priori necessary to take
them also into account. Following exactly the same lines as for the contri-
bution of the family (1,1), one obtains from (4.68) the contribution of the
family M = (Mx,My) = (jux, juy) (where ux and uy are coprime) to ∆F (1):

∆F
(1)
M (H) =

gsh̄
2

m

(

23a

π3L5
M

)1/2

(kFa)
3/2

× sin
(

kFLM +
π

4

)

CM (ϕ)R

(

LM

LT

)

, (4.77)

where CM (ϕ) is as defined in (4.69). LM and the function C(ϕ) are given
by (4.57) and (4.64), respectively. In order to find χ(1) we have to take the
second derivative of CM with respect to the magnetic field. This gives zero
if either ux or uy is even and a factor j2/(uxuy)2 if both are odd. The result
then reads [45]

χ(1)

χL
= − 3

π5/2
(kFa)

3/2 (4.78)

×
∑

j

∑

ux,uy

sin(kFLM + π/4)

j1/2(u2
x + u2

y)5/4(uxuy)2
C′′

(

jϕ

uxuy

)

R

(

LM

LT

)

,

(ux, uy odd), which is valid at arbitrary temperature. The corresponding low-
temperature result for χ(2) follows essentially along the same lines. As shown
in [45], one obtains for the canonical correction to the susceptibility

χ(2)

χL
= − 3

π3
kFa

×
∑

j

∑

ux,uy

R2(LM/LT )

j [(ux/e)2 + (uye)2]
3/2

(uxuy)2
(C2)′′

(

jϕ

uxuy

)

(4.79)

with ux, uy odd. The average is taken over rectangles of horizontal and verti-
cal lengths ae and a/e to exclude the possibility of degeneracies in the lengths
LM = 2a

√

(Mx/e)2 + (Mye)2 of different orbits, which may appear in the
special case of a square.

Inspection of (4.78) and (4.79) shows that even at zero temperature the
strong flux cancellation, which is typical for rectangular geometries, results
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in a tiny prefactor. For instance, for the second shortest contributing prime
orbit, M = (1, 3), one finds for χ(1) a damping of 1/(9×105/4) ≃ 0.0062. For

χ(2) the multiplicative factor is even smaller. In practice only the repetitions
(jj) of the family (11) will contribute significantly to the susceptibility, and
one can use (4.78) and (4.79) keeping only the term ux = uy = 1 of the
second summation. As a result, any possible complications due to the de-
generacies in the orbits’ lengths for the square are of no practical relavance,
and (4.79) restricted to ux = uy = 1 can be used for the square with e = 1.

As depicted in Fig. 4.14 for χ(2), the repetitions of the orbit (11) lead to
a diverging susceptibility at zero field when the temperature goes to zero.
However, they barely affect the result for finite H, even as T → 0, since then
the contributions of higher repetitions no longer add coherently.

0.0 1.0 2.0 3.0 4.0 5.0
ϕ

-0.4

0.0

0.4

χ
χ Ν

Fig. 4.14. Low-temperature limit of the average susceptibility χ(2) of an ensemble
of squares, shown as the solid line and given by (4.79). Dashed curve: contribution
of the family (1,1) to this result. (From [45], by permission)

4.5.3 Bouncing-Ball Magnetism

So far we have discussed effects due to a weak magnetic field such that the
classical cyclotron radius rcyc is large compared to the typical size a of the
system: rcyc/a = ch̄ k/(eH a) ≫ 1. In that regime, the bending of the elec-
tron trajectories due to the magnetic field can be neglected and the main
effect of the magnetic field is a change in the semiclassical actions according
to the enclosed flux. This semiclassical perturbative approach is valid up to
much higher magnetic fields than a corresponding quantum mechanical per-
turbation theory, as visible in Fig. 4.2 in Sect. 4.2.3. First-order quantum
perturbation theory is typically valid up to magnetic fluxes where the first
avoided level crossings arise. The figure shows that low-field oscillations of
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χ for a single square are well described by semiclassical perturbation the-
ory using unperturbed orbits of the family (11) (left inset in Fig. 4.2) up to
field strengths ϕ ≈ 10. This is orders of magnitude larger than the flux scale
relevant to the breakdown of the quantum perturbative approaches. Since
the “small” classical parameter is a/rcyc ∼ H/kF, the semiclassical regime of
“weak” fields grows with increasing Fermi energy.

On the basis of recent work [45] we present in the following an approach
which goes beyond the classically perturbative regime and includes the bend-
ing of the classical orbits at larger fields. In that regime, orbital magnetism
reflects quantum mechanically the interplay between the scale of the confining
energy and the scale of the magnetic-field energy h̄ωcyc.

Figure 4.2 depicts a whole scan of the magnetic susceptibility for the
square geometry up to a flux ϕ = 55, corresponding to 3rcyc ≈ a. Three
different field regimes can be distinguished: weak (a ≪ rcyc), intermediate
(a ≃ rcyc), and high (a ≥ 2rcyc) fields.

The high-field regime is classically characterized dominantly by orbits
which perform cyclotron motion as long as they do not hit the boundary.
One finds the well known de Haas–van Alphen oscillations as in the bulk sus-
ceptibility. However, as we shall show, the destruction of part of the cyclotron
orbits due to reflections at the boundaries can be semiclassically taken into
account. By that means one can describe the crossover regime where 2rcyc/a
is smaller than one but not yet negligible.

While the classical dynamics at high field is in general quasi-integrable,
the classical phase space in the intermediate-field regime is always mixed:
Both chaotic and regular motion coexist. Only particular systems with ro-
tational symmetry, which remain integrable independent of the magnetic
field, (Sect. 4.6) are an exception. Contrary to the weak-field regime, the
intermediate-field regime is characterized by the complete loss of time rever-
sal symmetry. As demonstrated in Fig. 4.2 there appear – besides the weak-
field oscillations due to orbits (1,1) – pronounced susceptibility oscillations in
the intermediate field regime (2rcyc > a). These reflect quantized bouncing-

ball periodic orbits (second inset), periodic electron motion due to reflection
between opposite boundaries. These oscillations are specific to structures for
which the boundary contains at least pieces of parallel straight lines.

We shall review results for this field regime quantitatively again for the
case of square microstructures, although the results to be reported are of
quite general nature. We refer to individual squares and hence work within
the grand canonical formalism.

The quantum mechanically calculated susceptibility of a single square bil-
liard with ∼2100 enclosed electrons is shown as the full line in Fig. 4.15a for
small and intermediate fluxes at a temperature such that kBT/∆ = 8. The

corresponding semiclassical result χ
(1)
(11) from the family (1,1) (see (4.70)) is

depicted (with negative offset) as the dashed–dotted line in Fig. 4.15a. De-
viations from the quantum result with respect to phase and amplitude begin
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(a)

(b)

(c)

Fig. 4.15. Susceptibility of a single square potential well as a function of magnetic
flux. The full lines always denote the quantum mechanical results. (a) χ/χL cal-
culated at a Fermi energy of 2140 enclosed electrons at a temperature kT/∆ = 8.
Dashed and dotted lines: semiclassical result due to bouncing-ball orbits from (4.86)
with action S10 according to (4.81) and (4.87). Dashed–dotted line: susceptibility
contribution from family (1,1) from (4.70) with offset of −80 for reasons of repre-
sentation. (b) As (a) but for 1440 electrons and kT/∆ = 7. The semiclassical result
(4.88) from bouncing-ball orbits is shown as the dashed line. (c) As (b) but for
temperature kT/∆ = 2. (From [45], by permission)

to appear at ϕ ≈ 8 (rcyc ≈ 2a). They indicate the breakdown of the straight-
line approximation for the orbits included. With further increase of the flux
a regime is reached where the nonintegrability of the quantum system mani-
fests itself in a complex-structured energy-level diagram (see Fig. 4.1). On the
classical level this corresponds to a mixed classical phase space [274] charac-
terized by a variety of coexisting isolated stable and unstable periodic orbits.
In particular, there remains a family of orbits with specular reflections on
opposite sides of the square only. They are known as “bouncing-ball” orbits
in the theory of billiards without a magnetic field. According to the coding
introduced in Sect. 4.5.1 they are suitably labeled by the numbers of bounces
(Mx, 0) and (0,My) at the bottom and left sides of the square, respectively.
Since these orbits form families one expects that their corresponding suscep-
tibility contribution should exhibit a parametric dependence on kFa, strongly
dominating the contributions of coexisting isolated periodic orbits.
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To begin with, we summarize a semiclassical calculation [45] of the sus-
ceptibility contribution from bouncing-ball orbits for the primitive periodic
orbits (Mx, 0) = (1, 0). The results are then easily generalized to the case
of arbitrary repetitions. We start with the computation of the semiclassical
Green functions, where we now have to consider the full field dependence of
the classical motion. A recurrent path starting at a point q on a bouncing-ball
orbit contributes to the diagonal part of the Green function through

G10(q, q′ = q;E,H) =
1

ih̄
√

2πih̄
D10 exp

[

i

(

S10

h̄
− η10

π

2

)]

. (4.80)

The classical entries such as length, enclosed area, and action follow from
simple geometry:

L10(H) =
2aζ

sin ζ
; A10(H) = −(2ζ − sin 2ζ) r2cyc ;

S10

h̄
= k

(

L10 +
A10(H)

rcyc(H)

)

. (4.81)

The angle ζ between the tangent to a bouncing-ball orbit at the point of
reflection and the normal to the side is given by

sin ζ =
a

2rcyc
. (4.82)

The Maslov index η10 is 4 and will therefore be omitted. The prefactor D10

was derived in [45]:

D10(q, q′ = q) =
1

v

√

h̄k cos ζ

2a
(4.83)

with v = h̄k/m. For the contribution of the whole family (1,0) we must per-
form the trace integral (2.18), and obtain for the bouncing-ball contribution
to the density of states d10 = −(gs/π) Im G10 [45]

d10(E,H) = − 2gs
(2πh̄)3/2

l(H)L10D10 sin

(

S10

h̄
+
π

4

)

, (4.84)

where the length factor

l(H) = a

(

1 − tan
ζ

2

)

(4.85)

denotes the field-dependent effective range for the lower reflection points of
bouncing-ball trajectories (1,0). l(H) vanishes for magnetic fields correspond-
ing to 2rcyc = a.

For the contribution χ
(1)
10 to the (grand canonical) susceptibility one first

calculates ∆F
(1)
10 , by performing the energy integral (2.54c), and then takes

the field derivative twice. A leading-h̄ calculation gives [45]
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χ
(1)
10

χL
=

3(kFa)
3/2

8π1/2

√
cos ζ(sin ζ + cos ζ − 1)

ζ

[2ζ − sin(2ζ)]2

sin4 ζ

× sin

(

S10

h̄
+
π

4

)

R

(

L10

LT

)

. (4.86)

Figure 4.15a displays as the dashed line the entire bouncing-ball suscep-

tibility (χ
(1)
10 +χ

(1)
01 )/χL = 2χ

(1)
10 /χL according to the above equality At fluxes

up to ϕ ≈ 15 it explains the low-frequency shift in the oscillations of the
quantum result. Hence, the entire susceptibility at small fields is well approx-
imated by χ11 + χ10 + χ01. The magnetic response is entirely governed by
bouncing-ball periodic motion at fluxes between ϕ ≈ 15 and ϕ ≈ 37, the limit
where rcyc = a/2 and the last bouncing-ball orbits vanish. The agreement
between the semiclassical and the full quantum result is excellent.

In order to illustrate that this agreement is not an artefact of the par-
ticular number of electrons chosen, we show in Fig. 4.15b semiclassical and
quantum bouncing-ball oscillations for kBT/∆ = 7 and at a different Fermi
energy corresponding to ∼1400 electrons. Upon decreasing the Fermi energy,
the upper limit rcyc = a/2 (or kFa/(2πϕ) = 1/2) of the bouncing-ball oscil-
lations is shifted towards smaller fluxes (ϕ ≈ 30 in Fig. 4.15b). Moreover, the
number of corresponding oscillations decreases.

The flux dependence of the action S10 (see (4.81)), which is generally
rather complicated, exhibits in the limit a/rcyc = 2πϕ/(kFa) ≪ 1 a quadratic
dependence on ϕ [45]:

S10

h̄
≃ 2 kF a

[

1 − 1

24

(

2πϕ

kFa

)2
]

. (4.87)

Using this expression for S10 in the susceptibility formula (4.86) gives the
dotted curve in Fig. 4.15a. It gets out of phase with the full line at a flux cor-
responding to a/rcyc > 1. While the period of the χ11 small-field oscillations
is practically constant with respect to ϕ, we find a quadratic ϕ characteristic
for the oscillations in the intermediate regime. In the strong-field regime, to
be discussed in the next section, the oscillations exhibit a 1/ϕ behavior.

So far we have presented the magnetic response of the family of primitive
orbits (1,0) and (0,1). It accurately describes the intermediate-field regime at
rather high temperatures corresponding to a temperature cutoff length of the
order of the system size. At low T one has to include higher repetitions (j, 0),
(0, j) along bouncing-ball orbits. The result of a corresponding calculation
reads [45]:
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χ(1)

χL
=

1

χL

∞
∑

j=1

(

χ
(1)
j0 + χ

(1)
0j

)

=
3

4π1/2
(kFa)

3/2

√
cos ζ(sin ζ + cos ζ − 1)

ζ

[2ζ − sin(2ζ)]2

sin4 ζ

×
∞
∑

j=1

j−1/2 sin

(

j
S10

h̄
+
π

4

)

R(j L10/LT ) . (4.88)

The susceptibility at the same Fermi energy as in Fig. 4.15b but at a signifi-
cantly lower temperature kBT/∆=2 is displayed in Fig. 4.15c. The quantum
mechanical bouncing-ball peaks are now much higher. Moreover, new peaks
related to long periodic orbits differing from bouncing-ball trajectories ap-
pear. One finds that the bouncing-ball peak heights and even their shape,
which is now asymmetric and no longer sinusoidal, is well reproduced by the
analytical sum (4.88), showing the correct temperature characteristic of the
semiclassical theory.

Bouncing-ball-type modulations should exist in general in microstructures
in which parts of opposite boundaries are parallel and also, in particular, in
circularly symmetrical microstructures such as a disk.

4.5.4 De Haas–van Alphen-Like Oscillations

Figure 4.1 shows that at strong field strengths or at small energy the spectrum
of a square potential well exhibits the Landau fan corresponding to bulk-like
Landau states almost unaffected by the system boundaries. In addtion, sur-
face affected states fill the gaps between the Landau levels. They condense
successively into the Landau channels with increasing magnetic field. These
spectral features give rise to susceptibility oscillations which emerge with in-
creasing amplitude for fluxes corresponding to rcyc < a/2, for instance for
ϕ > 40 in Fig. 4.2. These oscillations are shown in more detail in Fig. 4.16.
The full line depicts the numerical quantum result. The susceptibility oscilla-
tions exhibit the same period ∼ 1/H as bulk de Haas–van Alphen oscillations
but differ in amplitude, because here the cyclotron radius is not negligible
compared to the system size.

In the extreme high-field regime rcyc ≪ a, where quantum mechanically
the influence of the boundaries of the microstructure on the position of the
quantum levels can be neglected (corresponding to the bulk case), the oscil-
lations of the susceptibility are given by (4.14). Here, we summarize a semi-
classical approach [45] which gives this equation and allows one moreover to
include boundary effects.

In the high-field case only one type of primitive periodic orbit exists,
namely the cyclotron orbits. Their length, enclosed area, and action are
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Fig. 4.16. High-field de Haas–van Alphen-like oscillations of the susceptibility of
a square at magnetic fluxes corresponding to rcyc < a/2 for ∼ 2100 electrons at
kT/∆ = 8. Full line: quantum calculations; dotted line: analytical semiclassical
result from cyclotron orbits according to (4.93). (From [45], by permission)

Lcyc(H) = 2πrcyc ,

Acyc(H) = −πr2cyc ,

Scyc(H)

h̄
= kLcyc +

e

ch̄
HAcyc = kπrcyc . (4.89)

Since the trajectory passes through a focal point after each half traversal
along the cyclotron orbit, the Maslov indices are ηn = 2n and the diagonal
part of the semiclassical Green function reads, omitting the Weyl part of G,

G(r, r′=r) =
1

ih̄
√

2πih̄

∑

n

(−1)nDn exp(inπkrcyc) . (4.90)

A direct evaluation of the amplitude Dn in configuration space is difficult,
since all trajectories starting at some point r refocus precisely at r (a focal
point). Therefore, the usual representation (2.5) for the prefactors Dn is
divergent and cannot be used. A method to overcome this problem by working
with a Green function G̃(x, y; p′x, y

′) in the momentum representation for the
x′ direction instead of G(x, y;x′, y′) is described in Appendix E of [45]. It
yields

Dn

ih̄
√

2πih̄
=

m

ih̄2 . (4.91)

The oscillating part of the density of states is obtained after inserting the
above expression into (4.90). It reads

dosc(E;H) =
∑

n

dn(E,H) =
gsAm

πh̄2

∑

n

(−1)n cos(nπkrcyc) . (4.92)

From this relation one finds the de Haas–van Alphen susceptibility (4.14)
for infinite systems upon taking the field derivatives. The contribution of
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cyclotron orbits to the susceptibility (4.14) has to be modified by the intro-
duction of a multiplicative factor s(H) when rcyc is not negligible compared
to a. This accounts for the fact that the family of periodic cyclotron orbits
(not affected by the boundaries), which can be parametrized by the positions
of the orbit centers, is diminished with decreasing field. One then obtains for
a billiard-like quantum dot [45]

χGC
cyc

χL
= −6s(H) (kFrcyc)

2
∞
∑

n=1

(−1)nR

(

2πnrcyc

LT

)

cos (nπkFrcyc) . (4.93)

Here s(H) is, for the case of the square,

s(H) =
(

1 − 2
rcyc

a

)2

Θ
(

1 − 2
rcyc

a

)

, (4.94)

where Θ is the Heaviside step function. Cyclotron orbits no longer fit into the
square at a field corresponding to rcyc = a/2, i.e. s(ϕ) = 0. In Fig. 4.16 this
is the case near ϕ ≈ 38. The dotted line in the figure shows the semiclassical
expression (4.93). It is in good agreement with the related numerical results.
In particular, it accounts for the decrease in the amplitudes of the de Haas–
van Alphen oscillations when approaching ϕ(rcyc = a/2) from the strong-field
limit. This behavior is specific to quantum dots. Corresponding de Haas–van
Alphen oscillations in the two-dimensional bulk exhibit (nearly constant)
amplitudes on the order of χ/χL ≈ 3000, when studied under the same
conditions as for the curves in Fig. 4.16.

The energy-level diagram corresponding to the flux regime covered in
Fig. 4.16 shows a complex variety of levels between the Landau manifolds
(see Fig. 4.1). Hence it may appear surprising that the semiclassical curve in
Fig. 4.16, reflecting only the contribution from unperturbed cyclotron orbits,
agrees with the numerical curve, representing the complete system. Owing
to finite temperature and the fact that angular momentum is not conserved
in square billiards, the corresponding whispering-gallery or edge orbits are
mostly chaotic and do not show up in the magnetic response. The strong
de Haas–van Alphen-like oscillations may be considered as a manifestation
of the dominant influence of the family of cyclotron orbits. We note that
Sivan and Imry [271] observed additional high-frequency oscillations related
to whispering-gallery orbits superimposed on the de Haas–van Alphen oscil-
lations when studying the magnetization of a circular disk (where angular
momentum is conserved) in the quantum Hall regime.

4.6 Systems Integrable at Arbitrary Fields:

Ring Geometries

In Sect. 4.4 we addressed the generic situation where an applied magnetic
field breaks the integrability of a system with regular dynamics at zero field:
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the resulting orbital magnetic properties of such systems were derived and
then illustrated for the case of the square in the preceding section.

There also exist “nongeneric” systems where the classical dynamics re-
mains integrable in the presence of the magnetic field. A prominent example
is the motion of a particle in a two-dimensional parabolic potential well in a
uniform magnetic field. This potential is frequently used to model electronic
properies of small quantum dots. The behavior of the energy levels as a func-
tion of the magnetic field was obtained analytically by Fock in 1928 [267]
and its orbital magnetism was computed by Denton [233]. Other examples
are disks and rings, geometries used in persistent current experiments, which
belong, owing to their rotational symmetry, to the category of systems inte-
grable at arbitrary field. The magnetic susceptibility of the circular billiard
can be calculated from its exact wave mechanical solution in terms of Bessel
functions [232, 235, 269]. The magnetic response of long cylinders [213, 268]
and narrow rings [213], which represent the two nontrivial generalizations
of one-dimensional rings, can be calculated by neglecting the curvature of
the circle and solving the Schrödinger equation for a rectangle with periodic
boundary conditions.

In these cases, and similarly for regular structures threaded by an Aha-
ronov–Bohm flux, the Berry-Tabor trace formula (2.25) provides the appro-
priate means to calculate semiclassically the oscillating part of the density
of states dosc, including its field dependence. Then the free-energy terms
∆F (1) and ∆F (2), and their corresponding contributions to the magnetic re-
sponse, can be deduced. Such a semiclassical calculation was first performed
in [45, 69, 71] and will be summarized here. It provides an intuitive and uni-
fying approach to the orbital magnetism of circular billiards and rings of
any thickness, which allows one to establish the range of validity of previous
studies. We add that an alternative approach to the magnetic susceptibility of
various integrable geometries within the linear-response theory was presented
in [276].

In [45] it was shown that the typical and average susceptibilities of cir-
cular billiards exhibit a large enhancement with respect to the bulk values
by powers of kFa, which should allow for an experimental detection of these
finite-size effects. However, to our knowledge there have not been any mea-
surements of the magnetic response of electrons in disks so far. In the follow-
ing we shall therefore place the corresponding findings for ring geometries in
the foreground. They are of particular interest owing to recent experiments
on the persistent current in regular ballistic rings [220].

4.6.1 Persistent Currents

Since we are dealing with integrable systems, the Berry–Tabor formula for
the density of states ((2.25) introduced in Sect. 2.1.3), provides the natural
starting point for a semiclassical treatment. The magnetic response at finite
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values of the perpendicular magnetic field can be obtained, at least in prin-
ciple, from the calculation of the various classical entries in the Berry–Tabor
formula at finite fields. This requires knowledge of the dependence of the
classical dynamics on the magnetic field including, for example, the bending
of classical orbits [275].

Here we again refer to the weak-field regime, where classical perturbation
theory can be used to account for the modifications of the zero-field periodic
trajectories. The most sensitive change is through the classical action and
is given by δS = (e/c)HA, where A is the algebraic area enclosed by the
unperturbed orbit. In an integrable system the action is the same for all
periodic orbits on a resonant torus. Hence, the fact that a system remains
integrable at finite field implies that all the orbits of a family M enclose the
same absolute area AM, unlike, for example, to the case of the square. Using
moreover the fact that the system is time-reversal invariant at zero field, and
grouping pairs of time-reversal trajectories in (2.25), the density of states at
weak fields reads

dM(E,H) = d0
M(E) cos

(

2πAM

φ0

)

. (4.95)

The field dependence is cosine-like, contrary to the generic integrable case,
which is described by (4.48) and (4.51) in terms of a Bessel function and
therefore decays with increasing field. This decay was related to the dephasing
in the actions of orbits of the same family enclosing different areas.

The characteristics of the zero-field periodic orbits remain to be incor-
porated. For the case of two-dimensional ring billiards there are two types
of periodic orbits as sketched in the insets of Fig. 4.17: orbits which do not
touch the inner disk (type I) and those which hit it (type II).

Let us denote by a and b, respectively, the outer and inner radii of the
ring. Type I and type II orbits are conveniently labeled by the topology
M=(M1,M2), whereM1 is the number of circuits of the ring before returning
to the initial point after M2 bounces on the outer circle, and M2 ≥ M̂2 =
Int(M1π/ arccos r) with r = b/a. The length and area of type I trajectories
with topology M are

LM = 2M2a sin δ , AM =
M2a

2

2
sin 2δ , (4.96)

where δ = πM1/M2. For type II trajectories one finds [45]

L̃M = 2M2a
√

1 + r2 − 2r cos δ , ÃM = M2ab sin δ . (4.97)

Following Keller and Rubinow [270], the action integrals I = (I1, I2) and
the function gE which enter into the Berry–Tabor trace formula (2.25) were
calculated in [45]. The contributions to the zero-field density of states from
trajectories of type I and type II and topology M then read

d0
M (E) =

√

2

π

gsmL
3/2
M

h̄2k1/2M2
2

cos

(

kLM +
π

4
− 3π

2
M2

)

, (4.98a)
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Fig. 4.17. Persistent current in a single ring (r=b/a=0.9) for a field corresponding
to a flux of φ0/4. The typical current is shown by the upper horizontal line. Upper
and lower insets: type I and type II trajectories (from [69], by permission)

d̃0
M (E) = 4

√

2

π

gsa
2m

h̄2(kL̃M )1/2
sin
(

kL̃M +
π

4

)

×
[

(1 − r cos δ)(r cos δ − r2)
]1/2

. (4.98b)

The persistent current in a ring was defined in (4.16) as I=−c(∂F/∂φ)T,N .
We use the area A= πa2 of the outer circle as the defining area: φ = AH.
Applying (2.54c) and (4.23b), the persistent current of a ring billiard can be
expressed as the sum of two contributions corresponding to both types of
trajectories [69]:

I(1)

I0
= gs(kFa)

1/2
∑

M1,M2≥M̂2

[

I(1)
M ,I sin

(

eH

h̄c
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)

R

(

LM

LT

)

+I(1)
M ,II sin

(

eH

h̄c
ÃM

)

R

(

L̃M

LT

)]

, (4.99)

with

I(1)
M ,I = 2

√

2

π

1

M2
2

(AM/a2)

(LM/a)1/2
cos

(

kFLM +
π

4
− 3π

2
M2

)

, (4.100a)

I(1)
M ,II =

√

2

π

(ÃM/a2)

(L̃M/a)5/2

[

(1 − r cos δ)(r cos δ − r2)
]1/2

× sin
(

kL̃M +
π

4

)

(4.100b)

where I0 = evF/2πa.
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In Fig. 4.17 we show the persistent current according to (4.99) for a ther-
mal length LT = 10a and a magnetic fieldH = φ0/(4A). We are thus focusing
on the first harmonic of I, and the whole sum can be obtained by keeping
only the M1 = 1 terms. Even for other fields, the higher winding numbers
(M1 > 1) are strongly suppressed at the temperatures of experimental rele-
vance because LM is roughly proportional to M1. The persistent current of
a given sample can be paramagnetic or diamagnetic, with a characteristic
period in k given by the circle perimeter L = 2πa.

In order to characterize the typical value I(t) = [(I(1))2]1/2 of the mag-
netic response we average I2 over a kFa interval containing many oscillations,
but negligible on the classical scale. This gives the upper horizontal line of
Fig. 4.17. At finite temperatures and for a sufficiently large integration in-
terval ∆k, the nondiagonal terms of I2 involving two different families of
trajectories are unimportant and one gets [69]

I(t)

I0
≃ gs(kFa)

1/2
∑

M1,M2≥M̂2

[

(

I(t)
M ,I

)2

sin2

(

eH

h̄c
AM

)

R2(LM/LT )

+
(

I(t)
M ,II

)2

sin2

(

eH

h̄c
ÃM

)

R2(L̃M/LT )

]1/2

, (4.101)

where (I(t)
M ,I)

2 and (I(t)
M ,II)

2 are obtained from (4.100a) and (4.100b) simply

by replacing the average of cos2(kFLM+π/4−3M2π/2) and sin2(kFL̃M+π/4)
by 1/2.
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Fig. 4.18. Typical persistent current in rings of different thickness (r = b/a) for
cutoff lengths LT =30a (circles), 6a (diamonds), and 3a (triangles). Filled symbols
denote the total current and lie approximately on a straight line approaching the
asymptotic limit (see (4.103), indicated by arrows). Unfilled symbols represent the
contributions from both types of trajectories and are joined by dotted (type I) and
dashed (type II) guide-to-the-eye lines. (From [69], by permission)
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In Fig. 4.18 we present the typical persistent current and its two contribu-
tions for various ratios r = b/a and cutoff lengths LT for the first harmonic

(M1 =1). The contribution I(t)
M ,I of type I trajectories dominates for small r

(where the inner circle is not important and we recover the magnetic response
of the circular billiard), while type II trajectories take over for narrow rings.
The crossover value of r depends on temperature through LT owing to the
different dependences of the trajectory length on M (see (4.96) and (4.97))
for the two types of trajectories.

Here we have presented results for the typical current; at present these
are of more relevance than the related results for the average current, which
can be found in [45].

Thin Rings

Thin rings (a≃b, r≃1) are particularly interesting since they are the config-
uration used in the experiment of [220], and further approximations can be
performed on (4.100a) and (4.100b) using (1− r) as a small parameter. This
gives a more compact and meaningful expression for the typical persistent
current.

Since M̂2 ≃ π/[2(1 − r)]1/2 ≫ 1, for M2 ≥ M̂2 the length and area of
contributing orbits can be approximated by LM ≃L=2πa and AM ≃ÃM ≃
A= πa2. For type II trajectories we have L̃M ≃L for M2 ≃ M̂2, and L̃M ≃
2M2(a − b) when M2 ≫ M̂2. Even if the main contributions (IM ,II)

2 come

from M2 ≃ π/[51/6(1−r)2/3]≫ M̂2, their associated L̃M are still of the order
of L (to leading order in 1 − r). One finds [69]
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= gs(kFa)

1/2




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)
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(
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]1/2

. (4.102)

Since M̂2 ≫ 1 we can convert the previous sums into integrals. To leading
order in 1− r the persistent current is dominated by type II trajectories and
is of the form

I(t)

I0
=
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π
√

3

√
N
[

∑

M1

1

M2
1

sin2

(

2πM1
φ

φ0

)

R2

(

M1L

LT

)

]1/2

, (4.103)

consistent with the result of [213].

Comparison with Experiment

In the experiment by Mailly, Chapelier, and Benoit [220] persistent currents
were measured in a single thin semiconductor ring (with effective outer and
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inner radii a = 1.43 µm and b = 1.27 µm). The experiment was in the bal-
listic and phase-coherent regime (l = 11 µm and Lφ = 25 µm). The number
of occupied channels was N ≃ 4. The quoted temperature of T = 15 mK
makes the temperature factor irrelevant for the first harmonic (LT ≃ 30a,
R(L/LT ) ≃ 1). The magnetic response exhibits an hc/e flux periodicity and
changes from diamagnetic to paramagnetic on changing the microscopic con-
figuration, consistent with (4.99)–(4.100b). Unfortunately, the sensitivity was
not high enough to be able to test the signal averaging with these microscopic
changes. The typical persistent current was found to be 4 nA, while (4.103)
and [213] would yield 7 nA. However, the difference between the theoretical
and measured values is not significant, given the experimental uncertainties
as discussed in [220].

As in the case of the susceptibility of squares, residual disorder effects (see
Chap. 5) and interaction effects (see Chap. 6) must be considered for a more
detailed comparison with the experiment. Nevertheless, new experiments on
individual rings and on ensembles of ballistic rings are desirable as a test of
the semiclassical approach of this section.



5. Disorder Effects

Part of the sustained interest during the last decade in the physics of two-
dimensional electron gases and mesoscopic systems stems from the high elec-
tron mobilities that can be achieved at low temperatures. The limiting factor
for the mobility in this regime, namely impurity scattering, can be strongly
reduced in state-of-the-art semiconductor heterojunctions. These technolog-
ical achievements have motivated theoretical approaches where the actual
microstructure is approximated by clean quantum billiards ignoring impurity
scattering completely.

Within these simple models of a particle-in-a-billiard, important differ-
ences have been predicted for instance in the transport through chaotic and
integrable cavities, as well as for their orbital magnetism as discussed in the
previous chapters.

When addressing the issue of observable signatures of chaotic and inte-
grable dynamics for actual microstructures, the role of residual impurities
has to be considered since small amounts of disorder are unavoidable. It has
been shown that even weak disorder can be strong enough to mix energy lev-
els, influence spectral statistics [278, 279], and affect related thermodynamic
quantities [283]. Indeed, any perturbing potential, such as the one provided by
the disorder, immediately breaks the integrable character of the classical dy-
namics. Therefore, the question of whether or not integrable behavior should
be observed naturally arises. It is hence of interest to establish whether the
differences between chaotic and integrable clean geometries persist beyond
the particle-in-a-box model. Therefore we shall address in this section meso-
scopic effects arising from the interplay between confinement and disorder
potentials.

5.1 Characterization

We begin with a characterization of the disorder. The two opposite limits are
the clean case, where the dynamics is completely governed by the nonrandom
confinement potential, and the diffusive regime, where the electron motion
equals a random walk between the impurities. In the latter, confining effects
are not important, at least on timescales smaller than the Thouless time, the
time a particle needs to diffuse across the system. The disorder in the diffusive
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case is characterized by two length scales. The elastic mean free path (MFP)
l is associated with the total amplitude diffracted by the disorder [280]. It is
related to the single-particle relaxation time [281]. The transport mean free

path lT denotes the mean distance over which the electron momentum is
randomized. In a more formal approach, l is given by the impurity average of
the one-particle Green function, while lT is related to the two-particle Green
function. Hence, lT has a classical meaning, while l is a quantum mechanical
quantity.

The condition lT ≪ a defines the diffusive limit. When lT is of the order
of the typical size a of the microstructure, confinement and disorder are
relevant. The ballistic regime is defined for lT > a, where electrons traverse
the structure with a small drift in their momentum traveling along almost
straight lines. Then their dynamics is mainly given by reflections at the walls
of the confining potential and the underlying classical mechanics still depends
on the geometry. In this regime we shall investigate the different roles of
disorder in integrable and chaotic geometries.

For short-range impurity potentials, as are typically found in metallic
samples, the scattering is isotropic and the momentum is randomized after
each collision with an impurity. Hence, lT ≃ l and there is only one length
scale characterizing the disorder. In high-mobility semiconductor heterojunc-
tions the modulation-doping technique allows the spatial separation of the
impurities and the conducting electrons, yielding a relatively smooth random
potential at the level of the two-dimensional electron gas (2DEG). As will
be shown, smooth-disorder effects, depending on the ratio between the finite
system size a and the disorder correlation length ξ, are specific to confined
systems which exhibit strong deviations from the bulk behavior. For smooth
impurity potentials the scattering is forward-directed and lT may be signifi-
cantly larger than l [280]. The regime lT > a > l is particularly interesting: it
is ballistic because the classical mechanics is hardly affected by disorder, but
the single-particle eigenstates are short-lived. Therefore both the confinement
and the impurities have to be considered.

The general purpose of this chapter is to study weak-disorder effects in
constrained geometries with noninteracting particles. This is a fundamental
problem since, contrary to the bulk, a disorder-averaged confined system is
not translationally invariant and one has to impose in quantum calculations
the correct boundary conditions of the geometry. The conventional techniques
used to deal with impurity scattering such as diagrammatic perturbation
theory efficiently describe the diffusive regime [105], but calculations become
rather involved when the confinement and the detailed nature of the impurity
potential have to be considered. Supersymmetry and random-matrix theories
have been widely used in recent studies of quantum chaos and disordered
systems [198–200]; however, they are not directly applicable to our regime
of interest, which includes the short-time behavior and disorder effects in
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regular geometries. There, disorder effects are expected to be most significant,
because the weak random potential perturbs the integrable dynamics.

In defining spectral correlation functions in the ballistic regime or, more
generally, for finite disordered systems, one has to distinguish between disor-
der averaging, which we denote by 〈. . .〉, and size or energy averaging which
we denote by an overbar. Pure disorder averaging corresponds to the ex-
perimental situation of an ensemble of weakly disordered microstructures of
the same size. Recent work has shown that for this case spectral correlation
functions contain, and often are dominated by structures that are strongly
oscillationg in energy on the scale of kFa, reflecting the presence of the con-
finement [278,283].

The consideration of spectral correlations after both energy and (inde-
pendent) disorder averaging corresponds to the experimental situation of an
ensemble of disordered systems with variation in their sizes. Then it is con-
venient to divide the two-level correlation function, K(ε1, ε2) (2.28), into two
separate terms [73,278]:

K(ε1, ε2;H) ≡ Kd(ε1, ε2;H) +Ks(ε1, ε2;H). (5.1)

Here

Kd(ε1, ε2) = [〈d(ε1)d(ε2)〉d − 〈d(ε1)〉〈d(ε2)〉] /d̄2 , (5.2a)

Ks(ε1, ε2) = 〈d(ε1)〉〈d(ε2)〉/d̄2 − 1 , (5.2b)

where d denotes the single particle density of states and d̄ its mean part. Kd

is a measure of disorder-induced correlations of the density of states, while
Ks is given by size-induced correlations. In a diffusive system, the disorder-
averaged density of states 〈d(ε)〉 is a constant ≃ d̄, so that Ks is vanishingly
small and Kd dominates. However, for l > a both correlation functions may
be relevant and, once l > a(kFa)

d−1, disorder-induced mixing of levels is
negligible and Ks prevails.

In this chapter we review a general treatment of disorder effects in nondif-
fusive confined systems employing semiclassical Green functions. In a semi-
classical picture two types of paths can be distinguished in such systems:

(i) Trajectories which exist also in the absence of disorder and hence con-
tribute to the Green function of the clean system. They yield size-induced
contributions to Ks which are damped upon impurity scattering.

(ii) Paths which explicitly result from impurity scattering. They contribute
to Kd and vanish in the clean limit.

In the ballistic case at finite temperature the former are of major im-
portance. On the basis of those paths, we study ballistic disorder effects
semiclassically in the next subsection. In Sects. 5.3 and 5.4 we illustrate the
results obtained by considering impurity effects on that part of the orbital
magnetism which is sensitive to size-induced spectral correlations as mea-
sured by Ks(ε1, ε2).
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In Sect. 5.5 we then consider disorder-induced correlations Kd from paths
of type (ii) and extend the semiclassical approach based on paths (i) to de-
scribe the complete crossover from the clean limit to the opposite diffusive
limit in constrained systems [73,282].

5.2 Semiclassical Treatment of Disorder

in the Ballistic Limit

Disorder has usually been studied for macroscopic metallic samples which are
self-averaging or for ensembles of mesoscopic samples where different struc-
tures present different impurity configurations. The possibility of measuring
a single disordered mesoscopic device poses a conceptual difficulty since there
is no averaging process directly involved. When discussing disorder effects on
the orbital magnetism of microstructures, it is therefore necessary to distin-
guish between the behavior of an individual sample and an ensemble [278].
Moreover, we have to distinguish the cases where the Fermi energy and the
size of the microstructures are kept fixed under impurity averaging from the
cases where these parameters change with the different impurity realizations.

These various averages, which will be discussed in the following, can be
expressed in terms of the impurity averages of one- and two-particle Green
functions. Following [72, 283], we begin in this section with a general treat-
ment of disorder effects in terms of semiclassical expansions of Green func-
tions (based on paths of type (i)). A similar semiclassical approach to smooth
disorder, but restricted to the bulk case, was developed in [284]. As an ap-
plication of this approach we study in Sect. 5.3 the case of a 2DEG in a
magnetic field in the presence of disorder and calculate disorder effects on
the susceptibility of quantum dots (Sect. 5.4.2). In particular, we demon-
strate that for integrable structures the effect of smooth disorder results in a
power-law damping instead of an exponential behavior.

5.2.1 The Disorder Model

We do not intend to calculate a disorder potential from realistic distribu-
tions of residual impurities in semiconductor heterostructures on the basis
of microscopic models (e.g. [285]). Instead, we assume in the following that
the disorder potential V dis(r) is spatially random and characterized by the
correlation function

C(|r − r′|) = 〈V dis(r)V dis(r′)〉 . (5.3)

The mean disorder strength is C0 ≡C(0) and the typical correlation length
is denoted by ξ. In order to allow for the derivation of analytical expressions
for disorder averages we shall use a Gaussian correlation function
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C(|r − r′|) = C0 exp

(

− (r − r′)2

4ξ2

)

. (5.4)

Disorder effects in the ballistic regime depend on different length scales:
the disorder correlation length ξ, the Fermi wavelength λF of the electrons,
and the system size a. In the bulk case of an unconstrained 2DEG we shall
distinguish between short-range (ξ < λF) and finite-range (ξ > λF) disorder
potentials. In the case of a microstructure a third, long-range regime for
ξ>a>λF has to be considered.

The disorder correlation function (5.4) may be regarded as being gener-
ated by a realization i of a two-dimensional Gaussian disorder potential given
by the sum

V dis(r) =

Ni
∑

j

uj

2πξ2
exp

(

− (r−Rj)
2

2ξ2

)

(5.5)

of the potentials of Ni independent impurities j. They are located at points
Rj and distributed uniformally over the area A. The strengths uj in the
above equality are uncorrelated: 〈ujuj′〉 = u2δjj′ . For this model, the disorder
strength (5.4) is

C0 =
u2ni

4πξ2
(5.6)

with ni = Ni/A. In Appendix A.3 quantum mechanical expressions for the
transport MFP lT and the elastic MFP l in terms of the parameters ni and
ui are provided. The white-noise case of δ-function scatterers, V dis(r) =
∑Ni

j ujδ(r−Rj), is reached in the limit ξ → 0.
The above model with a finite ξ is considered to appropriately account for

the smooth-disorder potentials existing in heterostructures. For the cleanest
samples used in today’s experiments the characteristic scale ξ can be on
the order of 100–200 nm [291]. Thus, these systems typically operate in the
finite-range regime a > ξ > λF.

The Gaussian disorder model will be helpful for some of the analytical cal-
culations and is used for numerical quantum simulations (see Appendix A.2).
Nevertheless, general results based on the correlation function C(|r − r′|) in
(5.4) do not rely on the particular choice of this disorder potential.

5.2.2 Effect on the Single-Particle Green Function

We begin with the investigation of disorder effects on the single-particle Green
function, given in the semiclassical representation (2.3) as a sum over classical
paths in a clean system. In the finite-range or long-range regime, where the
disorder potential is smooth on the scale of λF, a semiclassical treatment is
well justified (given a microstructure with size a≫ λF).

The classical mechanics of paths with length Lt ≪ lT is essentially un-
affected by disorder. The trajectories themselves as well as their classical
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amplitudes Dt and topological indices ηt can be considered as unchanged.
In the ballistic limit the dominant disorder effect on the Green function in
(2.3) comes from shifts in the semiclassical phases due to the modification of
the classical actions. According to the semiclassical perturbative approach in
Sect. 2.1 the classical action along a path Ct in a system with a weak disorder
potential (V dis ≪ E) can be written as (see (2.12) and (2.13))

Sd
t ≃ St + δSt ; δSt = − 1

vF

∫

Ct

V dis(q) dq . (5.7)

The action is given to leading order by the action St along the unperturbed

trajectory Ct of the clean system. The disorder enters via the correction term
δSt. In this approximation a disorder average 〈. . .〉 acts only on this term.
The impurity-averaged Green function then reads

〈G(r, r′;E)〉 =
∑

t

Gt(r, r
′;E) 〈exp [(i/h̄)δSt]〉 . (5.8)

Here Gt denotes the contribution of the path t to the Green function without
disorder.

For orbits of length Lt ≫ ξ disorder contributions to δS (according to
(5.7)) at trajectory segments which are separated by a distance larger than
ξ are uncorrelated. The accumulation of action along the path is therefore
stochastic and can be interpreted as being determined by a random-walk
process. This results in a Gaussian distribution of δSt(Lt). For larger ξ (Lt 6≫
ξ), the dephasing δSt can still be considered to follow a Gaussian distribution
law provided the disorder potential is generated by a sum of a large number of
independent impurity potentials. Given the Gaussian character of the δSt(Lt)
distribution, the disorder term in (5.8) can be written as

〈exp [(i/h̄)δSt]〉 = exp
[

−〈δS2
t 〉/(2h̄2)

]

. (5.9)

It is completely specified by the Gaussian variance

〈δS2
t 〉 =

1

v2
F

∫

Ct

dq

∫

Ct

dq′〈V dis(q)V dis(q′)〉 , (5.10)

which is the mean of the disorder correlation function C(|q − q′|) along the
unperturbed trajectory.

Bulk Case

We begin with the evaluation of the variance for the two-dimensional bulk
contribution to the Green function in (5.8). In the bulk case there is only a
single straight-line trajectory from r′ to r. If L = |r′ − r| ≫ ξ the limits of
the inner integral in (5.10) can be extended to infinity and we obtain for the
variance

〈δS2〉 =
L

v2
F

∫

dq C(q) . (5.11)
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In view of (5.9), the semiclassical average Green function for an unconstrained
system exhibits an exponential behavior [72,283,284]

〈G(r′, r;E)〉 = G(r′, r;E) exp (−L/2l) (5.12)

on length scales lT > L≫ ξ. The damping exponent can be associated with
an inverse elastic mean free path

1

l
=

1

h̄2v2
F

∫

dq C(q) . (5.13)

For a Gaussian correlation C(q) of the form given in (5.4) the elastic MFP
reads

l =
h̄2v2

F

ξ
√
πC0

. (5.14)

Using the mean disorder strength (5.6) for the potential of random Gaussian
impurities, we get

l =
4
√
πh̄2v2

Fξ

u2ni
, (5.15)

which relates l directly to the parameters ni, u, and ξ of the impurity poten-
tial.

As discussed in Appendix A.3, the semiclassical result (5.15) agrees as-
ymptotically to leading order in kFξ with the corresponding result ((A.46)
in Appendix A.3) for the elastic MFP obtained from quantum diagrammatic
perturbation theory for the bulk.

For small ξ, especially for ξ < λF, the semiclassical approach reviewed here
is no longer applicable. For white noise the self-consistent Born approximation
leads to an integral equation for the disorder-averaged single-particle Green
function [286]:

〈G+(r, r′)〉 = G+(r, r′) (5.16)

+
h̄

2πτ(d̄/A)

∫

dr′′ G+(r, r′′)〈G+(r′′, r′′)〉〈G+(r′′, r′)〉 .

In the bulk case 〈G+(r′′, r′′)〉 is given semiclassically in terms of “paths of zero
length”. The solution of the integral equation then leads to the exponential
disorder damping of the (free) Green function. Hence in this regime (5.12)
still holds, but with l = vFτ replaced by lδ given in (A.45) of Appendix A.3.
This damping can also be related to the (constant) self-energy occurring in
the averaged Green function (2.66) within the Born approximation.

Confined System

For confined systems further paths of finite length can in principle contribute
to 〈G+(r′′, r′′)〉 in (5.16). They can be semiclassically viewed as paths scat-
tered off the δ-like impurities, which may lead to additional corrections to
〈G+(r, r′)〉. These contributions are, however, of higher order in h̄ and 1/τ .
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We now consider (smooth) disorder effects in the presence of a confinement
potential in the ballistic regime where the tranport MFP lT is much larger
than the system size a. In Appendix A.3 it is shown that for finite ξ the
transport MFP is considerably larger than the elastic one. Thus, a ballistic
treatment is well justified, even if l is of the order of the system size.

Confinement implies that the semiclassical Green function G(r, r′;E) is
given as a sum over all direct and multiply reflected paths connecting r′

and r; the disorder potential modifies the corresponding actions according to
(5.7).

For short- and finite-range scatterers, (5.11) can be used, and therefore
the damping of each path contribution 〈Gt(E)〉 to 〈G(E)〉 is given by

〈G(r, r′;E)〉 =
∑

t

Gt(r, r
′;E) exp

(

−Lt

2l

)

. (5.17)

These expression is analogous to the bulk case (5.12), but L is now re-
placed by the trajectory length Lt > a ≫ ξ. We find an individual damping
exp(−Lt/2l) for each geometry-affected orbit contributing to 〈GE〉.

In the long-range case for ξ ≥ a correlations across different segments
of an orbit become important. Thus, the correlation integral (5.10) can no

longer be approximated by L
∫ +∞

−∞
dq C(q) (as for ξ ≪ Lt). Hence, the or-

bit geometry enters into the correlation integral and it generally cannot be
evaluated analytically. However, one can expand C(|r − r′|) for ξ ≫ a and
obtain for Gaussian disorder, to first order in ξ−2,

C(|r − r′| ≃ C0

[

1 − (r − r′)2

4ξ2

]

. (5.18)

Using this approximation in the integral (5.10) gives an exponent

〈δS2
t 〉

2h̄2 =
1

4
√
π

L2
t

l ξ

(

1 − 1

2

It
ξ2

)

, (5.19)

which governs the damping of the Green function. In the above equa-
tion It = (1/Lt)

∫

Ct
r2(q) dq can be regarded as the “moment of iner-

tia” of the unperturbed trajectory Ct with respect to its “center of mass”
(1/Lt)

∫

Ct
r(q) dq. The damping in the long-range regime has specific fea-

tures: according to (5.19) the damping depends quadratically on Lt, contrary
to the linear behavior in the finite-range and bulk cases. The length scale of
the damping is now given by the geometric mean of the bulk MFP l and ξ.
The leading damping term does not depend on the specific orbit geometry,
since it essentially reflects fluctuations in the mean of the smooth potentials
of different impurity configurations. Inclusion of higher powers of ξ−2 leads
to additional damping contributions from higher moments

∫

Ct
rn(q) dq.

The implications of the disorder average for the semiclassical density of
states are obvious. For instance, contributions from primitive periodic orbits
(ppo) in semiclassical trace formulas are exponentially damped according to
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(5.12) and (5.19) for the finite- and long-range regimes, respectively. Higher
repetitions j of a primitive periodic orbit exhibit a damping exponent ∼ j2,
since the path experiences j times the same disorder configuration. This
behavior is most easily seen from (5.9), with δSt = jδSppo. It plays a role in
the line shape of impurity-broadened Landau levels, which will be discussed
in Sect. 5.3.

The disorder damping of semiclassical single-particle Green functions has
already been used in the semiclassical trace formulas for the conductivity
(Chap. 3). There the quadratic damping (∼ j2) was neglected, since higher
repetitions were of minor importance owing to the additional temperature
cutoff. Further spectral implications of the disorder-damped single-particle
Green functions will be considered in Sect. 5.4.1.

5.2.3 Effect on the Two-Particle Green Function

Density correlation functions in general (see Sect. 2.2 and (5.1)) and spectral
quantities such as the typical susceptibility (4.24a) and the ensemble-averaged
susceptibility (4.24b) involve squares of the density of states. The latter can
be expressed in terms of the difference between retarded and advanced Green
functions (G+ −G−), giving rise to products of one-particle Green functions.
The cross products G+(r, r′) G−(r, r′) = G+(r, r′)G+∗

(r′, r) are of spe-
cial interest, because they survive the energy averaging and are sensitive to
changes in the magnetic field. Because the general two-particle Green func-
tion factorizes into a product of one-particle Green functions [287] in the
approach of noninteracting particles used in this section, we shall use the
former as a synonym for the latter.

We begin with a discussion of the underlying ideas of the semiclassical
average of products of single-particle Green functions. This will be quantita-
tively evaluated for the susceptibility of microstructures in Sect. 5.4.2.

Let us consider a typical product G(r, r′)G∗(r′, r). As for the ballistic
single-particle case, the effect of the disorder potential on each of the Green
functions can be approximated by using (5.7). Then the disorder-averaged
two-particle Green function, which contributes to Ks (see (5.2b)),1 is given
as a double sum over the averaged contributions from paths t and t′:

〈G(E)G(E)∗〉 =
∑

t

∑

t′

〈Gt(E) G∗
t′(E)〉

=
∑

t

∑

t′

Gt(E) G∗
t′(E)〈e(i/h̄)(δSt−δSt′ )〉 (5.20)

=
∑

t

∑

t′

Gt(E) G∗
t′(E) exp

[

−〈(δSt − δSt′)
2〉

2h̄2

]

.

1 Corresponding contributions to Kd will be discussed in Sect. 5.5.
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In the third equality we have made use of (5.9). For the evaluation of the ex-
ponent it is now necessary to take into account disorder correlations between
points on trajectories t and t′.

If t= t′ or the path is equal to its time reversal, the orbits acquire the same
phase shift and therefore 〈Gt(E) G∗

t (E)〉 = |Gt(E)|2: within the approxima-
tion that disorder enters only in the phases, the diagonal contributions t= t′

remain the same as for clean systems. This means in particular that the clas-
sical part of the conductivity, which stems from the diagonal terms, remains
unaffected by disorder. This behavior is not surprising, since it just reflects
our underlying assumption, namely that the transport MFP lT is much longer
than the trajectories involved. In order to obtain the disorder damping of the
conductivity one has to consider trajectories of the order of or longer than lT.
This implies that one allows for a deformation of the clean trajectories due to
small-angle scattering in the impurity potential. Mirlin et al. [284], following
such lines, indeed find within a related semiclassical approach a damping of
the two-point Green function on the scale of lT. To this end they have to start
from a product of time-dependent propagators and perform Laplace transfor-
mations (to obtain energy-dependent Green functions) simultaneously, going
beyond the stationary-phase approximation. Their approach works for the
bulk but, to our knowledge, cannot yet be generalized to (periodic) orbits in
confined systems.

In the opposite case, where two trajectories t, t′ in (5.20) are completely
uncorrelated, the disorder average in (5.20) factorizes: 〈Gt(E) G∗

t′(E)〉 =
〈Gt(E)〉 · 〈G∗

t′(E)〉, leading to single-particle damping behavior. This holds
typically for (long) trajectories in classical chaotic systems. Therefore nondi-
agonal contributions are exponentially suppressed in the presence of disorder.
A proper semiclassical treatment of these nondiagonal terms in clean systems
is an outstanding problem, as discussed in Sects. 2.2 and 3.2.1.

Orbits with a spatial separation larger than ξ are exponentially damped
in integrable systems, too. However, different orbits from the same family of
an integrable system which stay within a distance ≤ ξ are affected by smooth
disorder in a correlated way. In this case the behavior of 〈Gt(E) G∗

t′(E)〉 is
more complicated and depends on the confinement geometry. The damping
then typically shows an algebraic behavior [72,283] which will be illustrated
in Sect. 5.4.2 for the case of the disorder-averaged magnetic susceptibility.

5.3 High Landau Levels in a Smooth Disorder Potential

As the first example of impurity effects on a quantity based on a single-
particle Green function we briefly discuss the broadening of Landau levels
in a smooth random potential. This issue has received ongoing interest in
the past, owing in particular to its relation to the quantum Hall effect. The
earlier literature on this problem was reviewed in detail by Ando et al. [49]. A
more recent summary of the related theoretical approaches, including exact
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solutions for short-range disorder models, the use of the instanton method
and calculations in the framework of the self-consistent Born approximation,
can be found in [288].

Here we address the effect of a smooth random potential (ξ ≫ λF) on the
density of states and, hence, on the related de Haas–van Alphen oscillations
in the magnetization.

To this end we start from the semiclassical expression for the diagonal
part of the Green function for electrons in a homogeneous magnetic field H
in the disorder-free case. It is a sum over contributions from cyclotron orbits
and their repetitions j and reads, omitting the Weyl part (according to (4.90)
and (4.91)),

G(r, r′=r;E) =
∞
∑

j=1

(−1)j m

h̄2 exp

(

ij
Scyc

h̄
− i

π

2

)

. (5.21)

Here Scyc = 2πE/h̄ωcyc =πkrcyc is the action of a cyclotron orbit of radius
rcyc, and frequency ωcyc in the clean system. In the presence of a random
impurity potential each cyclotron orbit will be exponentially damped accord-
ing to (5.9). Upon taking the trace of the Green function and reincluding the
Weyl part we then find for the impurity-averaged density of states

d(E,H) = gs
mA

2πh̄2

×



1 + 2
∞
∑

j=1

(−1)j cos

(

2πjE

h̄ωcyc

)

exp

(

−j2 〈δS
2
cyc〉

2h̄2

)



 (5.22)

for a sample of area A. In this particular case of cyclotron motion the integral
(5.10) for the semiclassical damping term can be exactly evaluated. One finds,
for Gaussian disorder (see (5.6)),

〈δS2
cyc〉 =

2πniu
2

v2
f(κ) (5.23)

with

f(κ) ≡ κ e−κ I0(κ) . (5.24)

I0 is a modified Bessel function. In the above equation κ depends on the ratio
between the cyclotron radius and the correlation length and can alternatively
be expressed by means of the magnetic length

LH =
√

φ0/2πH : (5.25)

κ =
1

2

(

rcyc

ξ

)2

=
1

2
(LHk)

2

(

LH

ξ

)2

. (5.26)

Using the Poisson summation formula one obtains, after a few manipula-
tions [289],
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d(E,H) =
gsA

2πL2
H

∞
∑

k=0

(−1)k

√
2πΓ (E)

exp

[

− (E − Ek)2

2Γ 2(E)

]

(5.27)

with Ek = (k+ 1/2)h̄ωcyc. The density of states is given as a sum of Landau
levels with Gaussian (energy-dependent) widths of the form

Γ 2(E) =
niu

2

2πr2cyc

f(κ) =
1√
π

ξ

l
(h̄ωcyc)

2f(κ) . (5.28)

Here, l is the elastic MFP for smooth disorder (see (A.45) and (A.46)).
In the limit rcyc ≫ ξ we obtain from the asymptotic form of I0

Γ 2(E) =
(h̄ωcyc)

2

2π

rcyc

l
. (5.29)

In this case the width is proportional to E−1/4 since l scales as E and rcyc

is proportional to E1/2. This decrease of the width with energy results from
the effective averaging out of the random potential fluctuating along the
cyclotron orbit. The field dependence of the width is Γ ∼

√
H.

In the opposite limit rcyc ≪ ξ of ultrasmooth disorder the width is

Γ 2 =
(h̄ωcyc)

2

√
4π

r2cyc

lξ
. (5.30)

The change of the disorder potential along the cyclotron orbit is negligibly
small and the width Γ of the Landau levels is independent of energy and the
level index k. It is also independent of the H field. In this case the (inho-
mogeneous) broadening arises from the average of cyclotron orbits located at
regions which differ in the height of the random potential.

The disorder broadening of Landau levels is often addressed using quan-
tum diagrammatic approaches. In the case of δ-correlated disorder, calcula-
tions in the frame of the self-consistent Born approximation (SCBA) usually
rely on diagrams without self-intersections [49]. These approaches give the
known semielliptic shape of the Landau levels but, for example, do not re-
produce the Gaussian tails of Wegner’s exact solution [290] for the lowest
Landau level. The effect of a smooth random potential on high Landau levels
was recently studied by Raikh and Shahbazyan [288] on the basis of quantum
diagrammatic perturbation theory. These authors point out that for ξ ≥ LH

diagrams with self-intersections have to be considered. For ξ ≫ LH these au-
thors could perform the summation of all the diagrams and obtained exactly
(5.27). The present semiclassical treatment of the disorder broadening allows
a physically transparent and short independent derivation of this result. The
Gaussian shape is simply related to the fact that the disorder dephasing en-
ters with the square of the number of repetitions along a prime cyclotron
orbit.

The field derivative of the expression (5.22) for the single-particle den-
sity of states gives directly the susceptibility of a bulk 2DEG in a uniform
magnetic field in the presence of a smooth disorder potential:
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χGC

χL
= −1 − 24

(

µ

h̄ωcyc

)2

(5.31)

×
∞
∑

j=1

(−1)j cos

(

2πjµ

h̄ωcyc

)

R

(

j2πrcyc

LT

)

exp

[

−j2 2π2Γ (µ)2

(h̄ωcyc)2

]

.

In the above equality we have additionally included the semiclassical temper-
ature damping function R (2.49). The exponent Γ of the disorder damping
is given in (5.28).

The magnetization of a two-dimensional bulk heterostructure was mea-
sured by Eisenstein et al. [248].2 This experiment shows a Gaussian broad-
ening of the Landau levels with a

√
H dependence of the widths in complete

accordance with the above semiclassical expressions and the diagrammatic
results of [288].

We note that the present semiclassical approach to the de Haas–van
Alphen oscillations has been further extended in [284] to treat the corre-
sponding transport quantity, namely the Shubnikov–de Haas oscillations of
the diagonal magnetoconductivity.

5.4 Magnetic Susceptibility of Ballistic Quantum Dots

In the following we shall use the semiclassical approach to disorder averaging
in finite systems developed in Sect. 5.2 to study impurity effects on the sus-
ceptibility of quantum dots in the ballistic regime [72,283]. When discussing
ensemble averaging for quantum dots one has to distinguish two situations:

(i) A disorder average of an ensemble of structures for which the parameters
of the corresponding clean system, such as their geometry, size, and chem-
ical potential, remain fixed while considering different impurity realiza-
tions. This kind of average will be henceforth called a fixed-size impurity

average and will be studied below.
(ii) A combined energy (or size) and disorder average, which is experimentally

more relevant and will be treated in Sects. 5.4.2 and 5.5.3.

5.4.1 Fixed-Size Impurity Average

As shown in Sect. 5.2, oscillatory contributions to the single-particle Green
function from paths reflected at the boundaries of clean confined systems are
exponentially damped but, depending on the elastic MFP, are not completely
suppressed upon disorder averaging. As an observable quantity depending on
these contributions we first consider the impurity-averaged susceptibility 〈χ〉
2 For a recent magnetization measurement in the fractional quantum Hall regime

see [249].
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of an ensemble of billiards of the same size or of same clean-system Fermi
energy.

Disorder effects are expected to be most significant in systems with a
regular clean counterpart where the weak random potential perturbs the
integrable dynamics. We shall therefore focus on regular billiards at zero field
or small magnetic fields, where the integrability is approximately maintained.
In this case the grand canonical contribution χ(1) to the susceptibility of a
noninteracting clean structure is given by (4.49) and (4.53). In the presence
of disorder this general result formally persists up to the replacement of the
field-dependent part CM(H) (see (4.49)) by

〈CM(H)〉 =
1

2π

∫ 2π

0

dΘ1 cos

[

2π
HAM(Θ1)

φ0

]

exp

[

−〈δS2
M(Θ1)〉
2h̄2

]

. (5.32)

The damping exponent 〈δS2
M(Θ1)〉 is given by (5.10). The integrals therein

are performed along the orbits of the family M, which are parametrized by
Θ1.

In the finite-range case, a > ξ > λF, the disorder damping depends solely
on the orbit length. If, as in the case of billiards, all orbits of a family M are
of the same length, the family exhibits a unique disorder damping, giving a
susceptibility contribution

〈χ(1)
M 〉 = χ

(1)
M exp

(

−〈δS2
M〉

2h̄2

)

= χ
(1)
M exp

(

−LM

2l

)

. (5.33)

χ
(1)
M is the contribution of the family M to the susceptibility (4.53) without

disorder. In the long-range case a < ξ the damping 〈δSM(Θ1))
2〉 generally

depends on Θ1.
As a specific example we shall refer again to the case of square billiards.

As discussed in Sect. 4.5, the dominant susceptibility contribution at finite
temperature stems from the family M=(1,1) shown in the inset of Fig. 5.1.
x0 labels the different orbits of the family. In the presence of disorder the
susceptibility reads, in analogy with (4.70) [72],

〈χ〉
χ0

≃ 〈χ(1)
11 〉
χ0

(5.34)

≃
∫ a

0

dx0

a
A2(x0) cos[ϕA(x0)]

〈

sin

(

kFL11 +
π

4
+
δS(x0)

h̄

)〉

with χ0 given by (4.71).
In the finite-range regime, δS(x0) is the same for all orbits (1,1) and the

susceptibility is exponentially damped according to (5.33) with an exponent
L11/2l. Moreover, in the specific case of a square billiard δS(x0) turns out
to be also independent of x0 in the opposite long-range regime. Again, the
contribution from family (1,1) exhibits a unique exponential damping, given
by (5.19). In this case I11 entering into the damping exponent is the same
for all orbits (1,1), i.e. I11 = a2/12.
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0 ax x’
0 0

Fig. 5.1. Magnetic susceptibility 〈χ〉 (normalized with respect to the Landau sus-
ceptibility χL) of a square billiard as a function of kFa for the clean case (dotted)
and for the ensemble average of billiards of fixed size with increasing Gaussian dis-
order (ξ/a = 0.1) according to an elastic mean free path l/a = 4, 2, 1, 0.5 (solid lines
in order of decreasing amplitude). 〈χ〉 is calculated for H = 0 and kBT = 6∆. The
inset shows two representative orbits of family (1,1). (From [72], by permission)

As a test of the analytical approximations presented above, we shall com-
pare the semiclassical results with numerical quantum calculations described
in Appendix A.2. These are based on a diagonalization of the Hamiltonian for
noninteracting particles in a square billiard subject to a uniform perpendicu-
lar H field and a random disorder potential of the form of (5.5). For a given
selected correlation length ξ, elastic MFP lqm, and fixed Fermi momentum
kF, the product niu

2 is determined from (A.44) and (A.45) in Appendix A.3
and used as am entry in the quantum calculation.

For an individual square billiard and ξ < a each impurity configuration i
has a self-averaging effect. This arises from the differences in the impurity po-
tential V dis

i (r) across the structure. In an average over an ensemble of square
billiards, an additional damping appears owing to differences in the mean

impurity potential V dis
i = (1/a2)

∫

dr V dis
i (r) between different squares.

This damping effect is characterized by the variance (where η = a/2ξ):

〈V dis
2〉 =

u2ni

a2η2

[

η erf(η) +
1√
π

(

e−η2 − 1
)

]2

−→
{

u2ni/4πξ
2 for ξ/a −→ ∞

u2ni/a
2 for ξ −→ 0

. (5.35)

In the limit of ξ ≫ a variations in the mean potential V dis, according to the
above equation, dominate the damping: in this case the self-averaging effect
is negligible because the impurity potential is essentially flat across each
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single square and the clean susceptibility of an individual structure remains
practically unaffected by disorder.

In the opposite limit of white-noise disorder, the quantum calculations
show [72] that sample-to-sample fluctuations in the mean V dis are of minor
relevance. Self-averaging is the predominant process for an integrable system:
in the semiclassical picture different trajectories within the same family of
closed orbits are perturbed in an uncorrelated manner by white-noise disor-
der. Hence, for ξ ≪ a there are no significant differences between the suscep-
tibility of an individual disordered billiard of integrable geometry and that
of the corresponding ensemble. On the other hand, in a chaotic geometry
this self-averaging effect does not exist since orbits are isolated (for ξ not too
small, see end of Sect. 5.4.2). Thus in the case of chaotic billiards, distinct
differences between a single weakly disordered sample and an ensemble with
ballistic disorder are expected.

The results of numerical quantum simulations for the average suscep-
tibility 〈χ〉 of an ensemble of squares with fixed size but different disorder
realizations are shown in Fig. 5.1. The dotted line represents the disorder-free
case, showing the characteristic oscillations of χ in kFa which are dominated
by contributions from the paths of family (1,1) (see Sect. 4.5.2). The other
curves in the figure show the damping of the clean susceptibility with decreas-
ing elastic MFP l/a = 4, 2, 1, 0.5 for a fixed value of the correlation length
ξ/a = 0.1, typical of experimental realizations. We note that even for l ∼ a
the signature of the orbits (1,1) from the clean geometry persists.

A quantitative comparison of the disorder damping obtained from nu-
merical and analytical results is depicted in Fig. 5.2: the logarithm of 〈χ〉
normalized to the corresponding zero-disorder susceptibility χc is plotted as
a function of the inverse MFP for different correlation lengths ξ. The straight
lines represent the semiclassically predicted exponential damping according
to (5.33) for the short-range regime ξ=0 (full line) and according to (5.19) for
the long-range regime ξ > a (dotted lines for ξ/a =4, 2, 1 from the top). The
semiclassical predictions accurately agree with the corresponding quantum
results (symbols) for ξ/a = 4, 2, 1 and show small deviations for ξ=0. They
fail for intermediate correlation values ξ/a = 0.5, 0.2 (squares and diamonds)
which are outside the range of validity of the approximations used. We note
that the crossover from self-averaging-dominated damping in the limit ξ → 0
to a damping due to fluctuations in the mean V dis for ξ/a→ ∞ turns out to
be nonmonotonic.

5.4.2 Combined Impurity and Size Average

For the samples used in current experiments, disorder averages cannot be
performed independently from size averages. For instance, in an array of
lithographically defined semiconductor microstructures the individual sys-
tems typically vary in size and shape, at least on small scales. The basic
expression (5.34) for the susceptibility shows that changes in the size a lead
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Fig. 5.2. Logarithm of the ratio 〈χ〉/χc as a function of the inverse elastic MFP
a/l. The symbols indicate the numerical quantum results (from the top for ξ/a =
4, 2, 1, 0, 0.5, and 0.2). The dotted lines show the semiclassical analytical results for
ξ/a = 4, 2, 1 (from the top) according to (5.19). The full line is the semiclassical
result for ξ = 0 (see (5.12)). The quantum results for ξ = 0.5 (squares) and 0.2
(diamonds) are beyond the regime of validity of the analytical limits ξ/a ≫ 1 and
ξ/a ≪ 1. (From [72], by permission)

to rapid variations in the phases ∼ kFa and are equivalent to an energy or
kF average. We therefore address in the following the energy- and impurity-
averaged susceptibility 〈χ〉 describing the magnetic response of an ensemble
of microstructures with different impurity realizations and variations in size.
This describes, for instance, the experimental setup reported in [57].

As discussed in the context of clean systems, an energy average leads to
the vanishing of the oscillations from χ(1) shown, for example, in Fig. 5.1.
Instead, canonical corrections χ(2), which are related to the number variance
according to (4.24b), have to be considered. This variance is in turn related
to K(ε1, ε2;H) (see (5.1)) by integration of the level energies ε1, ε2 over the

energy interval. According to the decomposition K = Kd + Ks, the total
disorder- and size-averaged susceptibility is composed of

〈χ(H)〉 = 〈χd(H)〉 + 〈χs(H)〉 . (5.36)

In the following we study the contribution 〈χs(H)〉 and focus again on in-
tegrable structures. In order to obtain the semiclassical result for 〈χs(H)〉,
disorder averaging is incorporated into the formulas (4.55) for the disorder-
free case in an analogous way to that for 〈χ〉 in Sect. 5.4.1. One has to
include in the integral (4.56) for C′′

M a Θ1-dependent disorder-induced phase
exp(iδS(Θ1)/h̄). However, since we have to take the square of C′′

M before the
impurity average, cross correlations between different paths Θ1 and Θ′

1 on
the same torus M or between different tori have to be considered.

We discuss this effect, typical of integrable systems, again for the case
of the square billiard. For the sake of clarity we furthermore assume tem-
peratures such that only the contribution of the shortest closed orbits (1,1)
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has to be considered. Instead of (4.74) for the clean case, the contribution of
these orbits to the energy- and disorder-averaged susceptibility is now of the
form [72]

〈χs〉
χ0 =

1

2

∫ a

0

∫ a

0

dx0

a

dx′0
a

[

A2
− cos(ϕA−) + A2

+ cos(ϕA+)
]

f(x0, x
′
0) (5.37)

with

χ0

χL
=

3

(
√

2π)3
(kFa) R

2(L11/LT ) . (5.38)

A± = A(x0)±A(x′0) and A(x0) = 4πx0(a− x0)/a
2. The correlation function

f(x0, x
′
0) =

〈

exp

{

i

h̄
[δS(x0) − δS(x′0)]

}〉

(5.39)

= exp

{

− 1

2h̄2

[

〈δS2(x0)〉 + 〈δS2(x′0)〉 − 2〈δS(x0)δS(x′0)〉
]

}

accounts for the effect of disorder on pairs of trajectories x0 and x′0. The
disorder correlation length ξ, entering implicitly into f , leads to characteristic
features of the smooth-disorder damping as will be discussed below.

For short-range disorder, ξ ≪ λF, we reach the border of applicability of
the semiclassical approach. However, the semiclassical approach shows that
for ξ → 0 orbits with x0 6= x′0 remain disorder-uncorrelated. Hence, the
corresponding pair contributions are exponentially suppressed. This leads
to an overall damping of the average susceptibility, which reads (at finite
temperature, on the basis of the family (1,1))

lim
ξ→0

〈χs〉 = χ e−L11/lδ . (5.40)

The exponent for 〈χs〉 differs by a factor 1/2 from that for 〈χ〉 given by (5.33).
The kFa dependence of the ensemble-averaged susceptibility 〈χs〉, together

with 〈χd〉, will be compared with numerical quantum results in Sect. 5.5.3.
In the finite-range case, λF < ξ ≪ a, the phase shifts δS(x0) and δS(x′0)

entering into f(x0, x
′
0) are accumulated along the orbits in a correlated way, if

the spatial distance between the two orbits x0 and x′0 is smaller than ξ. In this
regime the product term 2〈δS(x0)δS(x′0)〉 in the exponent of f(x0, x

′
0) is given

by integrals as in (5.10) but with q and q′ running along the different paths.
Two trajectories x0 and x′0 of a family of orbits in a billiard can be regarded
as parallel straight lines with a distance between them of y = |x0 −x′0|/

√
2 if

one neglects the additional correlations occurring near the reflections at the
boundaries. Then the integral of type (5.10) can be evaluated analytically
and we have [72]

f(x0, x
′
0) = exp

{

−L11

l

[

1 − exp

(

− (x0 − x′0)
2

8ξ2

)]}

. (5.41)

Contributions from disorder-correlated trajectories separated by |x0−x′0| < ξ
are only weakly damped. In contrast, for orbits separated by |x0 − x′0| ≫ ξ
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individual random disorder leads to an uncorrelated detuning of the phases.
Thus they are exponentially suppressed: f(x0, x

′
0) ≃ exp(−L11/l).

In general, disorder averages in the finite-range regime lead, by means of
the correlation function f , to a nonexponential damping of the susceptibilities
for systems with families of periodic orbits.

We study this behavior more explicitly for the case of square billiards
where the corresponding integral (5.37) can be evaluated analytically at H=
0 in the limits of L11 ≪ l and L11 ≫ l. The size- and disorder-averaged
susceptibility at H = 0, for example, reads in the limit L11 ≫ l [72],

〈χs〉
χ

≃ 2
√

2π

(

ξ

a

) (

l

L11

)1/2

. (5.42)

This limit is particularly interesting since (5.42) expresses the fact that dis-
order correlation effects lead to a replacement of the exponential damping by
a power law.
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Fig. 5.3. Logarithm of the ratio between disorder-averaged and clean results for
ensemble-averaged 〈χs〉 susceptibilities as a function of increasing inverse elastic
MFP a/l for different values of ξ/a. The symbols denote the numerical quantum
results, the solid lines (for ξ > 0) the semiclassical integrals (5.37), and the dashed
lines asymptotic expansions (5.42) of the integrals for large a/l. (From [283]; c©1996
by the American Physical Society)

The numerical quantum mechanical and analytical semiclassical results
for the disorder averaged susceptibility of ensembles of square billiards are
summarized in Fig. 5.3 (at H = 0 and kBT = 2∆). It depicts, in semilog-
arithmic representation, 〈χs〉 as a function of the inverse elastic MFP for
different disorder correlation lengths ξ/a = 0.5, 0.2, 0.1, 0 (from the top).
The symbols denote the quantum results from the simulations described in
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the previous section. The full curves are semiclassical results from numerical
integration of (5.37). In the short-range limit ξ = 0 they reduce to (5.40)
and give an exponential decrease with exponent L11/l. This damping is also
found from the quantum simulations (circles).

The analytical expression (5.42), valid for L11 > l, is represented as dotted
curves in the limit a/l ≥ 1. This regime can still be considered as (deep)
ballistic since for finite ξ the transport MFP lT > l (see (A.47)). Therefore,
the semiclassical perturbative approach based on straight-line trajectories
remains justified. A similar overall behavior is found in [72] for the typical
susceptibility χ(t) = 〈χ2〉1/2.

5.4.3 Concluding Remarks

As pointed out, the interplay between confinement and a smooth random po-
tential leads to peculiar disorder-damping effects in quantum dots. The need
to consider different ensemble averages is inherent in ballistic nanostructures
which are sufficiently small, and therefore usually nonself-averaging, contrary
to the bulk. The different types of impurity averages studied in the previous
sections are summarized in Table 5.1 for the magnetic susceptibility of inte-
grable systems. The table distinguishes between the three regimes defined by
the correlation length of the impurity potential. The results can be summa-
rized as follows.

The fixed-size averaged susceptibility of an integrable structure, obtain-
able from the average of one-particle Green functions, is always exponentially
damped by disorder. In the short-range regime (ξ < λF) the damping is gov-
erned by the length L of the most relevant trajectories and the elastic MFP
lδ. This result persists in the finite-range regime (λF < ξ ≪ a), but with
an elastic MFP evaluated semiclassically. In the long-range regime (ξ > a)
the fixed-size averaged susceptibility depends exponentially on the product
(L/l)(L/ξ) and a correction containing the geometry of the periodic trajec-
tories.

For comparison with actual experiments one has to consider that different
impurity realizations are accompanied by a change in the Fermi energy and
the size of the structure. Therefore impurity- and size-averaged susceptibili-
ties, which are expressed by two-particle Green functions, are most relevant.
For the short-range case the only difference between one- and two-point Green
function quantities is the factor 1/2 of the exponential damping of the for-
mer. However, in the finite-range regime there appear important differences:
pairs of closed trajectories that remain at distances smaller than the corre-
lation length ξ give rise to a weak damping with a power-law dependence on
l/L and ξ/a for integrable microstructures. The disorder damping is affected
decisively by finite-size effects since it depends not only on bulk-like charac-
teristics of the disorder like the elastic MFP, but also on the ratio between
the size of the structure and the correlation length of the potential.
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Table 5.1. Summary of the different average susceptibilities considered in the
short-range (ξ < λF < a), finite-range (λF < ξ < a), and long-range (λF < a < ξ)
regimes at H = 0. The fixed-size impurity-averaged susceptibility 〈χ〉 is given by

the one-particle Green function; the average susceptibility 〈χs〉 is related to two-
particle Green functions involving both impurity and size averages. The different
average susceptibilities are normalized with respect to the corresponding quantities
of the disorder-free structures. The numerical factors are (for the square) c2 =

2
√

2π, d1 = 1/4
√

π, and d2 ≃ 6.5 × 10−5. (From [283])

Short-range Finite-range Long-range

〈χ〉/χ exp (−L11/2lδ) exp (−L11/2l) exp
{

−d1(L
2
11/lξ)[1−It/(2ξ2)]

}

〈χs〉/χ̄ exp (−L11/lδ) c2(ξ/a)(l/L11)
1/2 1 − d2a/l(a/ξ)9

The disorder damping discussed in the previous subsections is character-
istic of integrable geometries. The main damping effect in the finite-range
regime is related to a self-averaging mechanism: the random disorder phases
accumulated along the orbits of a family destroy the constructive interference
from in-phase contributions from all orbits of the family in a clean integrable
system. Hence, the large susceptibility of an ensemble of clean square billiards
is reduced accordingly. The disorder correlation length determines the spatial
regions over which trajectories within a family still accumulate a correlated
phase.

In clean chaotic geometries, periodic trajectories are usually isolated, re-
sulting in smaller oscillations of the density of states and a much weaker
magnetic response than in integrable systems. Introduction of disorder in
chaotic geometries is therefore less dramatic than in integrable systems, since
it merely changes the action of the relevant periodic trajectories instead of
producing dephasing within a family. Self-averaging effects do not exist.

At the end of the following section we shall compare disorder effects in
integrable and chaotic geometries and make contact with experiment after a
discussion of the disorder-induced spectral correlation Kd and related mag-
netic response 〈χd〉.

5.5 From Ballistic to Diffusive Dynamics

For the weak disorder in the ballistic regime that we have considered so
far in this chapter, the lowest-order approximation consists of the perturba-
tive modification of the classical actions by the impurity potential, keeping
the trajectories of the clean geometry. This modification gives rise to the
size-induced correlations Ks to the spectral two-point correlator K(ε1, ε2;H)
(5.1). With increasing disorder, however, both Ks and disorder-induced cor-
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relations Kd, contributions from scattering between impurities, have to be
considered. This is the aim of this section.

5.5.1 Spectral Correlations in the Diffusive Limit

We begin with the diffusive limit l ≪ a (of white-noise disorder), where
periodic-orbit contributions to Ks are strongly suppressed. In this limit, the
correlations Kd are dominant. The treatment of the disordered bulk by means
of diffusive trajectories was comprehensively reviewed by Chakravarty and
Schmid [7]. These authors showed that several quantum phenomena, such as
weak localization, can be understood in terms of coherent quantum super-
position of waves traveling along classical paths and being scattered at the
impurities.

A semiclassical analysis of spectral correlations of finite diffusive systems
with an interpretation of the diagrams in terms of classical paths was later put
forward by Argaman, Imry, and Smilansky [76]. These authors expressed the
spectral form factor K̃(E, t) (2.31), the Fourier transform of the two-point
correlation function, through classical return probabilities P (t) and found
K̃(E, t) ∼ |t|P (t) (see (4.46) and related discussion). The form factor, which
is sketched in Fig. 5.4, reveals different mesoscopic behaviors in various time
regimes. For timescales smaller than the ergodic or Thouless time,

terg ∼ a2

D
(5.43)

(D is the diffusion constant), the return probability is governed by diffusive
dynamics: P (t) ∼ (Dt)−N/2 in N dimensions and hence K̃(E, t) ∼ t1−N/2.
For times larger than terg the dynamics is assumed to be ergodic and the

return probablility is constant. Therefore K̃(E, t) ∼ t. For times larger than
the Heisenberg time TH = 2πh̄d the form factor saturates in the quantum
regime. A related semiclassical analysis in the same spirit has been reviewed
by Dittrich for one-dimensional disordered systems [77].

5.5.2 Spectral Correlations in Disordered Nondiffusive Systems

The scenario depicted in Fig. 5.4 holds true for the diffusive regime where
the mean free time τ is small compared to terg or l ≪ a. In the following we
review an approach [282] to finite disordered nondiffusive systems, where the
usual diagrammatic techniques for treating impurity scattering are not di-
rectly applicable. The combination of a diagrammatic perturbation approach
with semiclassical techniques allows us to calculate the disorder-induced part
Kd (5.2a) of the energy correlation function. In this quantum-semiclassical
hybrid approach, scattering at the impurity potentials, which are now as-
sumed to be δ-like, is treated quantum mechanically in a perturbation series
with respect to the disorder. Boundary effects are incorporated in a semi-
classical representation of the Green functions, which enter into the impurity
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Fig. 5.4. Sketch of the spectral form factor. The full line represents the orthogo-
nal random matrix result and the dashed lines the modifications for N -dimensional
diffusive systems. The different time regimes (diffusive, ergodic, quantum) are clas-
sified by the following transition times: the mean free time τ , the ergodic time
terg = a2/D, and the Heisenberg time TH = 2πh̄d̄. (From [76], by permission;
c©1993 by the American Physical Society)

diagrams, in terms of classical paths.3 This method, therefore, takes into
account in a systematic way contributions from (closed) trajectories which
involve both scattering at impurities and specular reflection at the confine-
ment potential. The approach, presented here for billiard systems, applies also
to systems with potentials whose effect is then incorporated into the semi-
classical Green functions. Together with the size-induced correlations (5.2b),
which stem from (damped) periodic-orbit contributions and were considered
in Sects. 5.2–5.4, the procedure allows us to study the complete crossover
from diffusive to clean confined systems.

We note that the spectral statistics of the crossover regime between bal-
listic and diffusive dynamics have been previously addressed by Altland and
Gefen [278]. These authors considered the case of a square with disorder and
devised a diagrammatic treatment to go beyond the common diffusion and
Cooperon approximation. A similar method was applied to cylinder geome-
tries [295]. Agam and Fishman [296] placed finite hyperspherical scatterers
in a torus-like system and studied the spectral form factor in the crossover
regime in terms of dynamical zeta functions4 of the associated classical sys-
tem. A nonperturbative approach for ballistic systems has been developed by
Muzykantskii and Khmelnitskii, the ballistic σ model [47]. It has been more
recently applied to the case of a clean disk with rough boundaries [297].

3 This approach has features of the “method of trajectories” originally devised for
superconducting films [294]. A similar method will be presented in Chap. 6 to
compute interaction effects in ballistic dots.

4 See Sect. 2.2 for the role of zeta functions in the level correlator.
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Diagrammatic Framework

We first review the diagrammatic ansatz used by Altland and Gefen [278] for
disorder-induced correlations and then perform the semiclassical evaluation.
We consider noninteracting electrons in a weak, perpendicular magnetic field
and a random impurity potential V dis, with a correlator (5.3) describing
white-noise disorder:

〈

V dis(r)V dis(r′)
〉

=
h̄

2πN(0)τ
δ(r − r′) . (5.44)

Here, τ is the mean elastic scattering time, l ≡ lδ = vFτ , and N(0) =
d̄/A. In terms of the retarded and advanced single-particle Green functions
G+(−)(r1, r2; ε;H), obeying the boundary conditions of the corresponding
clean system, the correlator Kd may be written as

Kd(ε1, ε2;H) ≈
(

∆2

2π2

)

Re
〈〈

TrG+(ε1;H)TrG−(ε2;H)
〉〉

. (5.45)

At this stage, the average is taken for a given system size over impurities only.
The symbol 〈〈. . .〉〉 implies the inclusion of connected diagrams only [282].

The correlator Kd can be expressed diagrammatically as [278]

Kd(ǫ1, ǫ2;H) =
∆2

2π2

∂

∂ǫ1

∂

∂ǫ2
Re

∞
∑

n=1

1

n

[

S(C)
n (ω;H) + S(D)

n (ω)
]

(5.46)

with ω = ε1 − ε2. We are particularly interested in the field-sensitive part

given by the Cooperon-type diagrams S(C)
n . These are defined by

S(C)
n (ω;H) = Tr

[

ζ(C)(ω;H)
]n

(5.47)

=





∫ n
∏

j=1

ddrj





n
∏

m=1

ζ(C)(rm, rm+1;ω;H)

with rn+1 ≡ r1 and

ζ(C)(r1, r2;ω;H) =
h̄

2πN(0)τ
〈G+(r1, r2; ε1;H)〉 〈G−(r1, r2; ε2;H)〉 . (5.48)

Here 〈G±〉 is the disorder-averaged Green function. The diffuson-type dia-

grams S(D)
n are defined and can be evaluated correspondingly.

An example, S(C)
4 , is shown schematically in Fig. 5.5a. The sum of the

diagrams S(C)
n yields the dominant contribution to the field-dependent part

of Kd in the nondiffusive regime.
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(b)(a)

Fig. 5.5. Sketch of the diagrams S(C)
n : (a) shows a schematic form of S(C)

4 , (b)

shows a pair of typical real-space trajectories which contribute to S(C)
4 . (From [282];

c©1999 by the American Physical Society)

Semiclassical Treatment

Owing to the lack of translational invariance in confined systems it is no
longer convenient to evaluate diagrams such as that in Fig. 5.5 in momentum
space. Instead we work in configuration space and compute the integrals
(5.47) invoking a semiclassical approximation. Following [282] we use the
semiclassical expression (5.17) for the impurity-averaged Green function. It
is given as the sum over all classical paths t from r1 to r2,

〈G+(r1, r2;E)〉 ≃
∑

t:r1→r2

D̃t exp (iSt/h̄− iπηt/2 − Lt/2l) , (5.49)

where D̃t = Dt/[2π(ih̄)3]1/2 (in two dimensions, with Dt given in (2.5)). This
was derived in Sect. 5.2.2. Weak disorder leads to damping on the scale of l,
leaving the trajectories unaffected, i.e. the sum is taken over the paths of the
corresponding clean system.

Using the semiclassical expression (5.49) in (5.48), the two-particle oper-
ator ζ(C)(r1, r2;ω;H) is then given in terms of a double sum over pairs of
classical paths. These pairs explicitly include the effect of boundary scatter-
ing. After energy or size averaging, the main contribution to the field-sensitive
part of Kd arises from diagonal terms obtained by pairing paths with their
time reverses (otherwise known as the Cooperon channel). For small H field
we can expand the actions of the paths as

1

h̄
St(ǫi;H) ≃ 1

h̄
St(EF;H=0) + (ǫi − EF)τt +

2π

φ0

∫ r2

r1

A · dr , (5.50)

where τt is the period of the trajectory and A is the vector potential. Within
the diagonal approximation ζ(C) then reads

ζ(C)(r1, r2;ω;H) =
∑

t:r1→r2

ζ̃
(C)
t (r1, r2;ω;H) , (5.51)

where

ζ̃
(C)
t (r1, r2;ω;H) ≃ vF|D̃t|2

2πN(0)l

× exp

(

−Lt

ℓφ
− Lt

l
+ iωτt + i

4π

φ0

∫ r2

r1

A · dr

)

. (5.52)
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We have also introduced a level broadening via ω → ω+ iγ. The level broad-
ening is implicit in the inelastic length ℓφ:

ℓφ
a

=
kFa

2π

∆

γ
. (5.53)

This may account either for damping of propagation due to inelastic scat-
tering or temperature smearing. Equation (5.52) depends, apart from l, only
on the system without disorder and holds for both integrable and chaotic
geometries in the whole range from clean to diffusive.

The propagator ζ(C) (5.51) is made up of a summation over all diagonal
pairs of paths, including boundary scattering, between any two given impu-
rities situated at r1 and r2. On taking the trace over n propagators ζ(C),
one sees, for example, that the field-sensitive part of Sn (5.47) consists of a
summation over flux-enclosing pairs of closed paths (in position space) in-
volving n impurities and an arbitrary number of boundary scattering events.

An example of a pair of paths contributing to S(C)
4 is shown in Fig. 5.5b.

Representative Examples

The diffuson and Cooperon contributions to the disorder-induced correlator
can be analytically computed only for certain confinement geometries. Here
we present results for the disordered square quantum dot, representing in-
tegrable geometries, and for generic chaotic geometries. For the square we
consider specular reflection at the boundaries and employ the extended zone
scheme discussed in Sect. 4.5.1 (Fig. 4.11) to write ζ(C)(r1, r2;ω;H) (5.51)

as a sum of propagators along straight-line paths ζ̃
(C)
t (r1, r

t
2;ω;H), of the

form (5.52), where the rt
2 are images of the position r2. The diagrams S(C)

n

(5.47) are then calculated by diagonalizing ζ(C). At zero magnetic field this
is analytically possible and one finds [278,282]

S(C,D)
n =

∞
∑

mx=0

∞
∑

my=0

[

λ
(mxπ

a
,
myπ

a

)]−n

(5.54)

with

λ(qx, qy) =
√

(1 + γτ − iωτ)
2

+ l2(q2x + q2y) . (5.55)

Together with (5.46) this gives the spectral correlation function Kd of a
disordered square for arbitrary l.

For systems with a generic chaotic, clean counterpart an analytical esti-
mate ofKd can be achieved under certain statistical assumptions with respect
to the classical trajectories involved. To this end we make use of the relation
(2.7b) in order to transform the sums over classical densities |D̃t|2 in (5.51)
into probabilities for propagating classically between impurities at r1 and r2

in time t. Let us assume that in the ballistic regime l, ℓφ ≫ a the conditional
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probability P (r1, r2; t|A) to accumulate an “area” A during the propagation
from r1 and r2 is independent of these points. Proceeding as in Sect. 4.3.2,
where we considered clean billiards, we find, from (2.7b) and (5.51),

ζ(C)(r1, r2;ω;H) ≃ 1

τ

∫ ∞

0

dt

∫ ∞

−∞

dAP (r1, r2; t|A)

× cos

(

4πAH
φ0

)

exp

(

−γt− t

τ
+ iωt

)

. (5.56)

We further assume that after several bounces off the boundary the area dis-
tribution P (r1, r2; t|A) becomes Gaussian with a variance σ independent of
l. Substituting the above expression for ζ(C) into (5.47) and performing the
r, t, and A integrals, we obtain the following closed approximate form for

S(C)
n [282]:5

S(C)
n (ω;H) ≃

(

8π2H2lσ

φ2
0

+ 1 + γτ − iωτ

)−n

. (5.57)

The same result holds for the S(D)
n with H = 0. Together, these yield the

disorder-induced correlations for a chaotic geometry used in (5.46).

5.5.3 Orbital Magnetism

In the following we apply the above formalism to compute the magnetic
response of ensembles of disordered billiards with regular and with chaotic
geometry.6 Employing (5.46) and the relation between 〈χ〉 and the density
correlator (see (5.36) and related text in Sect. 5.4.2), the disorder-induced
contribution to the average magnetic susceptibility is directly given by (with
ϕ = Ha2/φ0)

〈χd(ϕ)〉
|χL|

≃ − 6

π2

∂2

∂ϕ2

∞
∑

n=1

1

n
S(C)

n (ω = 0;ϕ) . (5.58)

Disordered Square Quantum Dots

We illustrate the method and present numerical results for the case of square
billiards again. For finite magnetic field the integrals over the magnetic vector
potential along the paths do not allow for an analytical diagonalization of ζ(C)

as in (5.54) for H = 0. However, we can use the fact that all the variations
of ζ(C) occur on classical length scales; rapid oscillations on the scale of
λF cancel out. This enables an efficient numerical computation. To this end
we discretize the configuration space of the square billiard using a lattice

5 It is now assumed that the S(C)
n in (5.58) contain diagonal terms only.

6 For diagrammatic approaches to disorder effects on the susceptibility of small
diffusive magnetic particles see [292,293].
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with a grid size greater than λF. By summing over all trajectories (up to a
length ≫ ℓφ) which connect two lattice cells we compute the corresponding
matrix elements of ζ(C) in this representation. After diagonalization we obtain
〈χd(H)〉 from (5.58). This method is not restricted to the square geometry
but can in principle be applied to any geometry. The technique, moreover,
covers the whole range from the diffusive regime to the clean limit.

We briefly summarize results the of [73] for the magnetic susceptibility at

zero field. Figure 5.6 shows 〈χd(0)〉 as a function of l for a typical experimental
value of kFa = 60 for the whole range from diffusive to ballistic. The lower
and upper curves are for ℓφ/a ≈ 10 and 25, respectively. The susceptibility
is large compared to χL and always paramagnetic. For l < a there is a linear
increase with l. This agrees with previous results for magnetism in diffusive
systems [292,293].

The occurence of the maxima in Fig. 5.6 may be related to the competition
between different effects of the impurity scattering on ζ(C) (5.52): while the
single-particle Green functions are exponentially damped with l, l enters as
l−1 into the prefactor. For larger l, in the regime a, ℓφ < l, the susceptibility
decays exponentially with both l/a and ℓφ/a.

The disordered-induced magnetic response of the square billiard has pre-
viously been studied by Gefen, Braun, and Montambaux [244]. The dashed
horizontal line shows their approximate result, predicting a paramagnetic
l-independent susceptibility.
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Fig. 5.6. Disorder-induced ensemble-average susceptibility 〈χd(0)〉 for a square
geometry as a function of the elastic mean free path l for kFa = 60 and two
strengths of inelastic scattering, ℓφ/a ≈ 10 (lower, which corresponds to γ/∆ = 1)
and ℓφ/a ≈ 25 (upper curve). The dashed horizontal curve indicates the result

from [244] for γ/∆ = 1. The inset shows 〈χd(0)〉 as a function of kFa for ℓφ/a ≈ 10.
From the top, the five curves are for values of l/a = 2, 4, 5, 1, and 10. (From [73],
by permission)
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The inset of Fig. 5.6 shows 〈χd(0)〉 as a function of kFa for ℓφ/a ≈ 10 for

different values of l/a. For all disorder strengths, 〈χd(0)〉 increases linearly
with kFa, in line with the results of [244].

Comparison of Semiclassical with Quantum Mechanical Results

We are now in a position to compare the combined semiclassical results for
〈χd(H)〉 and 〈χs(H)〉 with numerical quantum calculations (Appendix A.2).
In these calculations temperature smearing, rather than level broadening due
to inelastic effects, was introduced.

The full lines in Fig. 5.7 show the numerical quantum results for various
disorder strengths as a function of kFa. From the top, the elastic mean free
path is l/a = 8, 4, 2, 1. The dashed curves in Fig. 5.7 are data taken from the
semiclassical evaluation of the contribution of size-induced correlations to the
susceptibility, 〈χs〉 (see (5.37) and (5.41)). The contributions of the disorder-

induced correlations, 〈χd〉, were computed using the relation γ/∆ ≈ πkBT/∆.

The resulting semiclassical evaluation of the total susceptibility, 〈χs〉+ 〈χd〉,
is depicted as the dotted curves, showing that the combined semiclassical
contributions are indeed close to the quantum results.
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Fig. 5.7. Disorder- and size-induced contributions to the susceptibility. The mean
susceptibility is shown for various disorder strengths for small flux ϕ = 0.15 and
kBT/∆ = 2 (LT /L ≈ 2 at kFa = 70). From the top, the elastic MFP is l/a = 8, 4, 2, 1
(at kFa ≈ 70). The full and dashed curves are data from a quantum mechanical

calculation and from a semiclassical evaluation of the contribution 〈χs(H)〉. The
dotted curves represent the sum of the semiclassical disorder-induced contribution,

〈χd(H)〉, and the semiclassical data for 〈χs(H)〉. (From [282]; c©1999 by the Amer-
ican Physical Society)
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Chaotic Geometries

For systems with a generic chaotic clean counterpart we obtain an analytical

estimate for 〈χd(0)〉 from the results for S(C)
n (see (5.57)). The field-dependent

susceptibility has a paramagnetic maximum for zero field [73],
〈

χd(0)
〉

|χL|
≃

96σℓ2φ
L4(ℓφ + l)

. (5.59)

A corresponding approximation for 〈χs(0)〉 along the lines of Sect. 4.3.3 (see,
e.g., (4.44)) gives, for finite ℓφ,

〈χs(0)〉
|χL|

≃ 96σℓφl

L4(ℓφ + l)
. (5.60)

The two contributions (5.59) and (5.60) add up to an l-independent magnetic
response

〈χ(0)〉
|χL|

≃ 96σℓφ
L4

. (5.61)

This is the same as that for clean chaotic systems (see (4.44)) given the
assumption of an l-independent variance.

The susceptibility 〈χd(0)〉 as a function of ℓφ for l/a = 2 is shown as the
dashed–dotted line in Fig. 5.8. For comparison, the corresponding contribu-
tion for the square geometry is also presented in Fig. 5.8 (solid line). The ℓφ
dependence shows a close similarity between the disorder-induced susceptibil-
ities in the square and the chaotic geometry. This may be related to the fact
that for trajectories that are (multiply) scattered at impurities the character
of the clean geometry, namely regular or chaotic, is of minor importance.

Naturally, the square and the chaotic billiard show quite different behav-
iors for the size-induced susceptibilities. The short and long dashed lines in
Fig. 5.8 display the contributions 〈χs(0)〉 for the chaotic and square geome-
tries, respectively. The results imply that the order-of-magnitude difference
in the clean susceptibility according to the shape (chaotic versus integrable)
persists in the ballistic regime. For the square a crossover from domination
by disorder-induced to domination by size-induced correlations occurs for
ℓφ ∼ l2, which contrasts with chaotic geometries, where the crossover occurs
for ℓφ = l.

Relation to Experiment

Measurements of the orbital magnetism of ballistic systems, which are exper-
imentally realized as semiconductor microstructures, are still rare [57, 220].
In the measurement of the average magnetic susceptibility of an array of bal-
listic square billiards by Lévy et al. [57], the elastic MFP was estimated to
be l = 4.5–10 µm, corresponding to a value l/a =1–2. The estimated values
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Fig. 5.8. Semiclassical estimates for 〈χd(0)〉 (dashed–dotted line) and 〈χs(0)〉 (short

dashed line) for a generic chaotic geometry and for 〈χd(0)〉 (solid line) and 〈χs(0)〉
(long-dashed line) for square geometry. The normalization is χ0 = |χL| for the
square and |χL|a3/96σ for the chaotic geometry (kFa = 60 and l/a = 2; from [282];
c©1999 by the American Physical Society)

for the phase coherence length were ∼ (3–10)a and for the thermal cutoff
length LT /a ∼ 2. Therefore, the length scale ℓφ (5.53) is determined by the
shorter length LT . Figure 5.7 shows that for these experimental parameters
both the disorder- and size-induced correlations are relevant, however, the
latter contribution is dominant.

The above remarks hold for white-noise disorder. However, experimental
ballistic structures such as those of [57] are usually characterized by smooth
disorder potentials. Self-consistent calculations [291] indicate that the char-
acteristic disorder-potential correlation length for the heterostructures of the
experiment is of the order of ξ/a ≃ 0.1. The effect of smooth disorder on 〈χs〉
has been analyzed in Sect. 5.4.2 (see Fig. 5.3), implying that the reduction
of the clean contribution is not as strong as that for white noise disorder and
no longer exponential.7 We therefore expect that in the parameter regime
of the experiment the domination of the susceptibility by size-induced corre-
lations is further enhanced when considering smoothed disorder. This leads
us to conclude that disorder damping in currently realizable microstructures
is sufficiently weak to mask the large effects due to integrability. A more
quantitative comparison with experiment, including the consideration of ad-
ditional Coulomb interaction effects, is performed in the following chapter in
Sect. 6.6.

7 Smooth-disorder effects can in principle be incorporated into the calculation of
Kd by introducing an angle-dependent cross section for the impurity scattering
between two successive trajectory segments.
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So far we have studied mesoscopic phenomena on the basis of models of
noninteracting quasiparticles. Such models have been, in general, successfully
applied to a broad variety of observed mesoscopic effects, despite the fact that
the Coulomb interaction is neglected.

This concept has been followed for problems in static charge transport in
particular: prominent properties of both classical and quantum transport in
the mesoscopic regime appear to be rather insensitive to the Coulomb interac-
tion. Typical examples are the conductivity in (macroscopic) semiconductor
lattices (see Sect. 3.1), conductance fluctuations in disordered systems [2],
and transport through ballistic quantum dots (Sect. 3.2.1, [43, 141]). The
success of these models may appear surprising since in principle one is deal-
ing with a complicated many-body problem of interacting particles. However,
the structures addressed above have in common that they are either extended
and thus open, or, in the case of the quantum dots, have rather broad open-
ings at the entrance to the leads allowing for an efficient exchange of charge
carriers.

Interaction effects start to play an important role in and have to be consid-
ered for time-dependent transport phenomena such as frequency-dependent
conductance. This poses the challenging problem of computing the dynamic
response of an interacting mesoscopic system.1

Interaction effects in static transport gain importance upon reducing the
size of the quantum dots and the coupling to the leads, i.e. by changing from
open to nearly closed systems which are, for instance, weakly coupled to
leads via tunneling barriers. The most striking experimental feature of inter-
actions in this regime is a vanishingly small conductance between pronounced
conductance peaks due to the Coulomb blockade [13, 299]. The appearence
of nearly equidistant conductance peaks observed in the earlier experiments
could be explained by employing a simple charging model in terms of an ef-
fective capacitance where the total charging energy merely depends on the
total number of electrons in the dot.

Recently, a new generation of experiments on the Coulomb blockade in
ballistic and diffusive quantum dots has shown fluctuations in the conduc-
tance peaks with respect to both their heights [300] and their spacings [301].

1 For recent work on different aspects of this topic see, for example, [298].
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Related effects were reported in the nonequilibrium tunneling conductance
of ultrasmall metallic particles [302]. These observations are clear signatures
of the interacting many-body character of the quantum dots.

Naturally, the question arises of whether quantum chaos approaches,
which have proven very useful in understanding transport for noninterac-
ting particles in open quantum dots, can be generalized to systems with
many-body interactions. It appears obvious to employ random-matrix the-
ory (RMT) as one possible approach, since RMT was originally developed
and successfully applied to describe the complexity of many-body states in
nuclei [23,303].

Most of the features of the Coulomb blockade peak height statistics are
indeed well understood within RMT [304]. However, all measured [301] peak
spacing distributions resemble a Gaussian form, while the simple charging
model [299], which properly accounts for the average conductance peak spac-
ing, together with RMT, predicts Wigner–Dyson statistics. Moreover, the
observed fluctuations in the ground state energies of interacting quantum
dots are found to be considerably larger in most experiments than predicted
by RMT. These exciting experiments, which have recently triggered a num-
ber of theoretical studies [305, 306], suggest that the widths scale with the
charging energy rather than with the mean level spacing.

In addition, RMT approaches have recently been applied to the problem
of two interacting electrons, predicting an enhanced two-particle localization
length [307]. Such an enhancement has also been found numerically.2 The
theoretical studies have merged into the general topic of interaction and lo-
calization effects in disordered systems [311].

The development of semiclassical methods for interaction effects in trans-
port is still in its early stages [312] and thus will not be discussed here.

Instead we focus on the thermodynamic properties of isolated systems.
There interaction effects are considered to be of special relevance. For exam-
ple, measurements [210,211,217] of the persistent current of small metal rings
have shown an unexpectedly large magnetic response, incompatible with ex-
isting theories based on noninteracting particles.3 This serious disagreement
has attracted considerable theoretical activity investigating the role of inter-
action effects. In particular, the intriguing question was raised of whether
the interplay between disorder and interactions in mesoscopic systems [314]
may lead to the enhancement of the persistent current. In the next section we
shall address this issue on the basis of a semiclassical treatment of interacting
systems in the diffusive regime.

The situation is more satisfactory for ballistic microstructures. The semi-
classical theory outlined in Sects. 4.5 and 4.6, which is based on the nonin-
teracting particle model, is in line with the related experiments [57, 220] for
square and ring geometries with regard to the magnitude of the magnetic

2 See [308], [309] and the comment by [310] for a discussion of this issue.
3 For recent reviews see [8, 218,219].
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response at low temperature. However, the experimental temperature behav-
ior, in particular the nonvanishing susceptibility of the square quantum dots
observed at rather high T , cannot be accounted for in any known model us-
ing noninteracting particles. This is one motivation for a study of interaction
effects on orbital magnetism. Furthermore, the known relevance of Coulomb
interaction to the magnetism of disordered systems calls for an investigation
in the ballistic regime, too.

In addition, we wish to generalize the investigation of quantum chaos,
which has been predominantly addressed for noninteracting particles, to in-
teracting quantum systems. In particular, we shall consider the role of the
classical dynamics of the noninteracting system in the quantum properties of
its interacting counterpart. To this end, we assume a screened interaction and
use a corresponding quantum mechanical many-body perturbation theory as
a starting point. A semiclassical evaluation of the relevant diagrams of the
perturbation series for the thermodynamic potential allows one to express the
latter in terms of an essentially classical operator for the underlying noninter-
acting system. We pursue this approach for problems with both diffusive and
ballistic noninteracting dynamics. By making connection with the classical
dynamics the semiclassical approach provides an intuitive physical picture of
the interplay between the interaction and the disorder in diffusive systems
and between the interaction and the confinement potential in ballistic quan-
tum dots. As one main result, we show in the latter case that, intringuingly,
the thermodynamic properties scale differently with the Fermi energy for in-
teracting systems with chaotic and integrable counterparts. This difference,
which is a correlation effect, stems from the semiclassical off-diagonal path
contributions present in regular systems.

To make contact with the preceding two chapters we shall review results
for the orbital magnetic response of ensembles of diffusive and ballistic sys-
tems which were first obtained in [74, 75, 313]. In the next two sections we
semiclassically evaluate the relevant interaction diagrams. The spirit of this
approach is similar to that used to compute disorder-induced spectral corre-
lations in the preceding chapter.

In Sect. 6.3 we compute the interaction contribution to the persistent cur-
rent of metal rings and the susceptibility of singly connected two-dimensional
diffusive systems such as disordered quantum dots. We precisely recover some
results from quantum diagrammatic perturbation theory, showing that the
semiclassical approach is on the same level of approximation.

In Sect. 6.4 we study the susceptibility of integrable and chaotic ballis-
tic quantum dots. We again refer to the ensemble of square billiards as an
example for numerical calculations. In Sect. 6.5 we compare the interaction
contributions for chaotic and regular systems and close with a comparison
with experiment.
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6.1 Diagrammatic Perturbation Theory

We aim at the interaction-induced orbital magnetism of diffusive or ballistic
mesoscopic quantum systems. As we shall see below, the contribution to the
grand canonical potential due to electron–electron interactions, which we
denote by Ωee, does not average out under ensemble averaging. Therefore,
contrary to the noninteracting case (Sect. 4.2.3), we need not consider here
canonical corrections, which merely give higher-order h̄ corrections.

As discussed in Sect. 4.2.3, the magnetic moment of a ring-type structure
threaded by a flux φ = HA (where A is the enclosed area) is usually described
by the related persistent current I, while the magnetic response of a singly-
connected quantum dot will be measured in terms of its susceptibility χ. The
interaction contributions to both are then given by (A denoting the area of
the sample)

Iee ≡ −c∂Ω
ee

∂φ
; χee ≡ − 1

A

∂2Ωee

∂H2
. (6.1)

To calculate Ωee we start from the high-density expansion (random-phase
approximation (RPA)) of the thermodynamic potential. To obtain the inter-
action contribution to the magnetic response one has to extend the RPA series
by including additional interaction corrections from diagrams of the Cooper
channel [281]. This was originally pointed out and performed in the context
of superconducting fluctuations. The same procedure was later applied to
disordered normal metals [315–319]. The relevant series of Cooper-like terms
is shown in Fig. 6.1. If these diagrams are properly resummed, such expan-
sions usually yield reliable results even beyond the high-density limit. This
allows us to use this approach not only for disordered metal systems but also
for (semiconductor) quantum dots where the parameter rs= r0/a0, which is
small at high densities, is about 2. Here, πr20 is the average area per electron,
and a0 is the effective Bohr radius in the material.

++ +

Fig. 6.1. Leading Cooper channel diagrams for the interaction contribution to the
thermodynamic potential

A high-density approximation amounts to the use of a screened Coulomb
interaction U (wavy lines in Fig. 6.1), which we shall treat as local:

U(r − r′) = λ0N(0)−1δ(r − r′). (6.2)
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Here, N(0) denotes the density of states per unit volume and the book-
keeping index λ0 = 1 identifies the order of perturbation. The replacement
of the screened interaction by a local one can be justified for (disordered)
metal rings,4 but may appear questionable for two-dimensional semiconduc-
tor quantum dots, where screening is supposed to be weaker. However, as
we shall show in Sect. 6.4, the local approximation is justified for the cal-
culation of the averaged magnetic response. For the local interaction, the
direct and exchange terms differ only by a factor of minus two (owing to the
spin summation and an extra minus sign in the exchange term). Then, the
perturbation expansion for Ωee can be formally expressed as [316,317]

Ωee = − 1

β

∞
∑

n=1

(−λ0)
n

n

∑

ω

∫

dr1 . . . drnΣr1,r2
(ω) . . . Σrn,r1

(ω) (6.3a)

=
1

β

∑

ω

Tr
{

ln[1 + λ0Σ̂(ω)]
}

. (6.3b)

The sum is taken over the (bosonic) Matsubara frequencies ω ∼ ωm =
2mπ/β. The particle–particle propagator Σ̂(ω) is given in terms of products
of finite-temperature Green functions [281]

Σr,r′(ω) =
1

βN(0)

µ
∑

ǫn

Gr,r′(ǫn)Gr,r′(ω − ǫn) . (6.4)

Here, the sum runs over the (fermionic) Matsubara frequencies ǫn = (2n +
1)π/β. The frequency sum is cut off at the Fermi energy µ [317], which takes
care of the fact that the short-length (high-frequency) behavior is already
implicitly included in the screened local interaction.

The finite-temperature Green functions shown in Fig. 6.1 are given in
terms of retarded and advanced Green functions G± (of the noninteracting
system):

Gr,r′(ǫn) = Θ(ǫn)G+(r, r′;µ+iǫn) +Θ(−ǫn)G−(r, r′;µ+iǫn) . (6.5)

For ballistic systems they have to obey the boundary conditions of the con-
fining potential; for diffusive systems they include the presence of a disorder
potential.

6.2 Semiclassical Formalism

Following [74, 75] we now compute Σr,r′(ω) semiclassically. Accordingly, we
assume that the Fermi wave vector kF is small compared to the elastic mean
free path l in the diffusive case or the system size a for a ballistic quantum
dot. Furthermore, the magnetic field is assumed to be classically weak, i.e. the
cyclotron radius rcyc ≫ l or rcyc ≫ a, respectively.

4 For a discussion of short-range interactions see e.g. [317,319] and Sect. B of [218].
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As usual we employ the semiclassical approximation (2.3) for the retarded
Green function, given as the sum of the contributions

G+;j(r, r′;E) ≃ D̃j exp (iSj/h̄− iπηj/2) (6.6)

of all classical paths j from r to r′. The semiclassical representation allows one
to isolate the temperature-dependent (via the Matsubara frequencies) and
H-field-dependent parts in the finite-temperature Green function: employing
∂Sj/∂E ≃ tj (2.16) and ∂Sj/∂H ≃ (e/c)Aj (2.15), where tj and Aj are the
traversal time and area, we have [75]

G+;j(r, r′;µ+iǫn,H) (6.7)

≃ G+;j(r, r′;µ,H=0) × exp

(

−ǫntj
h̄

)

× exp

(

i2πHAj

φ0

)

.

As usual, temperature gives rise to an exponential suppression of long paths.
The semiclassical form of G− is obtained by using the relation G−(r, r′;E) =
[G+(r′, r;E∗)]∗.

Σr,r′(ω) in (6.4) represents semiclassically a sum over pairs of trajecto-
ries connecting r and r′. Contributions from products G+G+ and G−G−

as well as off-diagonal pairs (of different paths) in G+G− usually contain
highly oscillating contributions. They do not survive an ensemble (disor-
der) average and can be neglected.5 In contrast, in the diagonal terms of
G+G−, composed of a path j and its time reverse, the sum of the dynamical
phases exp[iSj(H=0)/h̄] cancels while retaining a magnetic-field dependence
exp(4πiHAj). Thus, terms involving such trajectory pairs persist upon aver-
aging. The behavior under averaging is one criterion for distinguishing semi-
classically relevant from irrelevant diagrams in the perturbative expansion
of Iee and χee (via Ωee). Furthermore, the relevant terms must be H-field-
sensitive and of leading order in h̄ ∼ 1/kFl or 1/kFa, respectively. A more
detailed analysis shows [75,313] that only the Cooper series shown in Fig. 6.1
obeys all these conditions. In particular, all terms in the Cooper series are of
the same order of h̄. Thus, the entire series has to be considered.

Combining (6.5), (6.6), and (6.7) with (6.4) yields for the diagonal part
of Σr,r′ , after performing the Matsubara sum [74,75],

ΣD
r,r′(ω) ≃ h̄

πN(0)

Lj>λF/π
∑

j:r→r′

|D̃j |2
R (2tj/τT )

tj
exp

(

i4πHAj

φ0

)

exp

(

−ωtj
h̄

)

.(6.8)

The sum runs over all trajectories longer than λF/π (corresponding to the
upper bound µ in the Matsubara sum in (6.4)). The temperature depen-
dence in (6.8) enters through the familiar function R(x) = x/ sinh(x), which
introduces the timescale (see (2.50))

τT =
h̄β

π
(6.9)

5 There are exceptional cases (integrable ballistic systems) where off-diagonal con-
tributions must be considered (as will be shown in Sect. 6.4).
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and (for billiard systems) the thermal length scale LT =τT vF.
As a result of (6.3a), Ωee is given as a sum over trajectory pairs which

visit successively the points rj , representing local interaction events, before
returning to the initial point. This is illustrated in Fig. 6.2 for the case of
a clean billiard. Typical pairs of equal paths are shown, contributing to the
diagonal Cooper channel to first and fourth order in the interaction. The
combined effect of a local interaction (at r) and the boundary already allows
for flux-enclosing paths to first order. In contrast, flux can be enclosed in the
bulk only with two and more interactions. We stress the following:

(i) The semiclassical framework enables us to reduce the original fully inter-
acting quantum problem to the evaluation of the quantity ΣD, which no
longer exhibits oscillations on the scale of λF but only varies on classical

length scales. This allows for an efficient calculation.
(ii) The semiclassical representation (6.8) of Σ̂ is rather general since we have

not yet made any assumption about the character of the underlying classi-
cal mechanics of the system. Therefore it applies, as it stands, to diffusive
as well as ballistic structures, and in the latter case irrespective of whether
the system is integrable or chaotic. This is related to the fact that ΣD

represents the “classical” part (apart from the flux-dependent phase) of
the averaged particle–particle propagator. Trace integrals, therefore, do
not involve stationary-phase integrations as for objects containing quan-
tum oscillations, which would yield a different h̄ dependence according
to the character of the classical dynamics.

r’

a) b)

r

A
r

Fig. 6.2. Sketch of (diagonal) pairs of equal flux-enclosing paths in a ballistic
quantum dot contributing to Ωee in first order (a) and fourth order (b) in the
interaction

On the basis of (6.8) we discuss two important applications, the orbital
magnetism of diffusive and ballistic devices. The character of the classical
dynamics enters via the amplitudes D̃j .

6.3 Orbital Magnetism of Interacting Diffusive Systems

For disordered systems it proves convenient to expressΣD in terms of classical
probabilities for diffusive motion. For that purpose we introduce an additional
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time integration in (6.8) in order to make use of the relation (2.7b), which
relates the weights |D̃j |2 to the classical probability for propagation from r

to r′ in time t. An nth order (diagonal) contribution to Ωee in (6.3a) contains
the joint conditional return probability P (r1, . . . , rn, r1; t1, . . . , tn|A) for suc-
cessively visiting the points ri and enclosing an area A (ti denotes the time
between ri and ri+1). For diffusive motion the probability is multiplicative,
namely

∫

dr1 . . . drnP (r1, . . . , rn, r1; t1, . . . , tn|A) =

∫

drP (r, r; ttot|A) (6.10)

with ttot =
∑

ti. Upon using (2.7b) and (6.10) in (6.8), the diagonal contri-
bution ΣD to Ωee then yields for diffusive systems [74]

Ωee,D =
∑

n

Ωee,D
n =

1

β

∫

dr

∫

dt coth

(

t

τT

)

K(t)A(r, t;H) . (6.11)

The coth(t/τT ) arises from the ω sum in (6.3a), and

K(t) ≡
∑

n

Kn(t) (6.12)

= −
∑

n

(−λ0)
n

n

{

∫ n
∏

i=1

[

dtiR(2ti/τT )

ti

]

δ(t− ttot)

}

,

A(r, t;H) ≡
∫

dA cos

(

4πHA

φ0

)

P (r, r; t|A) . (6.13)

The kernel K(t) contains system-independent temperature effects, while A
takes into account the system-specific classical return probability and the
H-field dependence. Equations (6.11)–(6.13) represent a convenient starting
point for computing the orbital response of disordered solids.

6.3.1 Disordered Rings

Consider a thin disordered ring of width b, radius r, and circumference a.
If a ≫ l, b we can use the one-dimensional diffusion approximation for the
motion of particles along the ring. D = vFl/d is the diffusion constant (in d
dimensions). The area enclosed is given in terms of the winding number k of
paths encompassing the magnetic flux. Therefore

P (r, r; t|A) =
1

σ

1√
4πDt

+∞
∑

k=−∞

exp

(

−k
2a2

4Dt

)

δ(A− πkr2) , (6.14)

where σ is the cross section of the ring. Owing to the disorder average the
classical return probability does not depend on r.

We first compute the first-order interaction contribution, Ωee,D
1 , to illus-

trate the main ideas. From (6.12) we have
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K1(t) = λ0
R(2t/τT )

2t
. (6.15)

After combining K1(t) with the coth function in (6.11) we find

Ωee,D
1 = λ0

ah̄

π

+∞
∑

k=−∞

cos

(

4πkφ

φ0

)

gk(T ) , (6.16)

with the temperature-dependent function

gk(T ) =

∫ ∞

0

dt
R2(t/τT )

t2
exp

[

−(ka)2/(4Dt)
]

√
4πDt

. (6.17)

The flux derivative (6.1) then gives the first-order interaction contribution to
the persistent current,

Iee
1 = λ0

ae

π

+∞
∑

k=−∞

k sin

(

4πkφ

φ0

)

gk(T ) . (6.18)

This first-order result was first obtained by Ambegaokar and Eckern [318]
using quantum diagrammatic techniques. It has also been derived semiclassi-
cally by Montambaux [320]. However, as pointed out above, the higher-order
terms of the Cooper series (Fig. 6.1) are of the same order in h̄ and must be
considered to get reliable quantitative results. Indeed, higher-order diagrams
lead to a renormalization of the coupling constant [315,317,319].

To show this semiclassically we have to incorporate the full kernel K(t)
into (6.11). Without going into the technical details we note that the full
kernel in (6.12) can be expressed in terms of K1(t):

6

K(t) ≃ 2

λ0 ln(kFL∗)
K1(t) (6.19)

with L∗ = min(vFt, LT /4). Therefore, the common effect of all higher-order
terms can be considered as a renormalization of the original coupling constant
λ0≡1 (for K1(t), see (6.15)) to 2/ln(kFL

∗).
Hence, the persistent current from the entire interaction contribution is

reduced accordingly, and reads [74]

Iee =
2ae

π ln(kFL∗)

+∞
∑

k=−∞

k sin

(

4πkφ

φ0

)

gk(T ) . (6.20)

For rings the length scale vFt is effectively given by the average length
Lk = vF(ka)2/4D of diffusive trajectories with winding number k. For low
temperature (LT ≫ Lk) λ0 ≡ 1 is replaced by 2/ln(kFLT /4). At higher
temperature (LT ≪ Lk) the coupling constant is renormalized to 1/ ln(kFLk).
The result (6.20) for the renormalized persistent current (including the full
Cooper series) is equivalent (for both limits discussed above) to a previous

6 See [313]. Equation (6.19) is valid if ln(kFL∗) ≫ 1, which holds true in the
diffusive regime for ln(kFl) ≫ 1.
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result by Eckern [319]. This was obtained using quantum perturbation theory
on the basis of the same Cooper series as above. As was pointed out in [318],
the temperature dependence of the kth harmonic is well approximated by
exp(−k2kBT/3Eerg) in the regime k2kBT < Eerg (where Eerg = h̄/terg is the
Thouless energy).

6.3.2 Relation to Experiments and Other Theoretical Approaches

Measurements of the persistent current of small metal rings have shown an
unexpectedly large magnetic response and have motivated a considerable
number of theoretical approaches in the past. In the first generation of ex-
periments, Chandrasekhar et al. [211] studied the magnetic response of a
single Au ring, while Lévy et al. [210] observed an average persistent cur-
rent in an array of 107 Cu rings. A more recent measurement by Mohanty et
al. [217] addresses the magnetic response of a small array of 30 isolated gold
loops. All experimental samples operate in the diffusive regime. In the latter
experiment, for instance, the rings have a diameter of 2.6 µm and a thickness
of 60 nm, while the elastic mean free path is l ≃ 100 nm. Thus the assump-
tion in the proceeding section of a thin ring with effectively one-dimensional
diffusive dynamics applies well.

One class of theoretical approaches uses models of noninteracting par-
ticles in the diffusive regime. They are based partly on numerical calcu-
lations [213, 214, 216], on diagrammatic Green function methods [216], on
semiclassical approximations [76] (as briefly discussed in Sect. 4.3.4), or on
supersymmetry techniques [8,321], to name a few. Typically, these approaches
give results nearly two orders of magnitude smaller than the measured per-
sistent currents.7

This discrepancy has pointed towards the importance of interaction ef-
fects. The results of the early work by Ambegaokar and Eckern [318, 319],
which were derived semiclassically above, give an amplitude of the first-order
average persistent current which is on the order of the measured value. How-
ever, the renormalization of the coupling constant reduces the full magnetic
response by a factor of ∼ 5. We note that the functional form of the tem-
perature dependence (exponential T damping [319]) is in line with recent
experimental results [217] although the exponent is a factor of ∼ 3 off.

Here, we do not intend to systematically review the numerous other
theoretical approaches based on interaction effects (for recent reviews see
[8,218,219]), but name only a few examples: in a comprehensive and detailed
work Müller-Groeling and Weidenmüller [218] studied the persistent current
in one- and two-dimensional rings, going beyond Hartree–Fock approxima-
tion. They showed that the interaction counteracts the suppression of the

7 In contrast, experimental results for the persistent current in the ballistic regime
[220] are of the same order as those of our noninteracting theory (see Sect. 4.6.1).
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persistent current by impurities. Several numerical studies, based on tight-
binding models, consider the one-dimensional case for both short-ranged [322]
and long-ranged (e.g. [323]) interactions. There also exist studies based on
continuous models [324] and numerical approaches including three dimen-
sions [325].

However, the approaches cited above yield different results depending on
the method used, the number of dimensions considered, the strength of the
disorder and the interaction potential, and the inclusion of spin. Therefore,
to my knowledge, a conclusive, precise calculation, which would account for
all experimental conditions of possible relevance, is still missing. This would
presumably amount to an extension beyond the Hartree–Fock approxima-
tion and would require the consideration of correlations (for more than one
dimension), spin effects, and finite-temperature effects. Despite the intense
theoretical efforts the observed magnitude of the persistent current is not yet
understood and remains as one of the open questions in mesoscopic physics.

6.3.3 Two-Dimensional Diffusive Structures

The exponential temperature dependence of Iee in rings can be traced back
to the fact that the shortest flux-enclosing orbits have a finite minimum
length given by the circumference. In singly connected systems such as the
disordered bulk and quantum dots, there exists no such finite length scale
imposed by the geometry. Thus, a different temperature behavior is expected.

We consider in the following a two-dimensional singly connected diffu-
sive quantum dot. To calculate the thermodynamic potential we follow [74]
and employ the general renormalization property (6.19) for diffusive systems.
Hence, Ωee,D for the entire Cooper series (6.11) can be represented as

Ωee,D =
1

β

∫

dr

∫

dt
1

ln(kFvFt)

τT
t2

R2

(

t

τT

)

A(r, t;H) . (6.21)

Here we have used the case L∗ = vFt in (6.19) since the R2 function causes
the main contribution to the integral to come from times smaller than τT .
The conditional return probability (4.47) for a given enclosed area in two
dimensions, which enters into A, is conveniently expressed in terms of its
Fourier transform:

P (r, r; t|A) =
1

8π2

∫

dk |k| exp (ikA)

sinh(|k|Dt) . (6.22)

Using this in (6.13) we find

A(r, t;H) =
1

4πD

R(t/τH)

t
, (6.23)

where the function R is of different origin than in (6.21). In the last equality
we have introduced the magnetic time
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τH =
φ0

4πHD
=
L2

H

2D
. (6.24)

This can be expressed through the square of the magnetic length L2
H (see

(5.25)), which is related to the area enclosing one flux quantum at a given
field strength H.

After introducing the expression (6.23) into (6.21) and taking the second
derivative with respect to the field, we find for the average susceptibility in
two dimensions (normalized to the Landau susceptibility of noninteracting
particles)

χee

|χL|
= −12

π
(kFl)

∫ ∞

τ

dt

t ln(kFvFt)
R2

(

t

τT

)

R′′

(

t

τH

)

. (6.25)

Here, R′′ denotes the second derivative of R and we have used D = vFl/2.
In the above time integrals the elastic scattering time τ = l/vF is intro-

duced as a lower bound since for backscattered paths with times shorter than
τ the diffusion approximation (6.22) no longer holds. Flux-enclosing short
paths with t < τ , which arise from (higher-order) interaction events, con-
tribute to the clean bulk magnetic response. This is, however, much smaller
than the disorder-mediated interaction contribution [326].

Furthermore, (6.25) holds true for a quantum dot of finite size a only as
long as the upper cutoff time t∗ ≡ min(τT , τH) is smaller than the ergodic or
Thouless time terg = a2/D (see (5.43)). For times larger than terg the classical
dynamics begins to behave ergodically and the diffusion approximation is no
longer valid.

For τ ≪ t∗ < terg the integral in (6.25) can be evaluated approximately: by
replacing R(t/τT ) and R′′(t/τH) by R(0) = 1 and R′′(0) = −1/3, respectively,
and introducing the upper cutoff t∗, the remaining integral gives

∫ t∗

τ

dt

t ln(kFvFt)
= ln

{

ln[kF vF min(τT , τH)]

ln(kFl)

}

. (6.26)

The log–log behavior related to the 1/(t ln t) form of the integrand reflects the
wide length and area distribution of contributing paths, with lengths ranging
from about vFτ up to vFt

∗. In contrast, in the ring geometry discussed in
the previous section the temperature dependence is exponential because the
minimum length of flux-enclosing trajectories is the circumference.

The interaction-induced averaged susceptibility of a diffusive two-dimen-
sional structure then reads [74]

χee

|χL|
≃ 4

π
(kFl) ln

{

ln[kF vF min(τT , τH)]

ln(kFl)

}

. (6.27)

As a consequence of (6.9) and (6.24) one thus finds a log–log T dependence
for τT < τH and a log-log H dependence for τT > τH . Furthermore, the
interaction contribution to the susceptibility of a diffusive quantum dot or
the (phase-coherent) bulk is paramagnetic and is enhanced in magnitude by
a factor kFl compared to the clean Landau susceptibility χL.
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Equation (6.27) agrees with results from Aslamazov and Larkin [315] and
Altshuler, Aronov, and Zyuzin [316, 317] obtained with quantum diagram-
matic perturbation theory. This agreement, which we also found in the pre-
vious section for the persistent current of ring structures, points towards the
equivalence of semiclassical and quantum mechanical approaches for the eval-
uation of interaction diagrams in diffusive systems. This observation may be
traced back to the fact that “quantum” diagrammatic perturbation theory
relies on the existence of the small parameter 1/kFl which can be viewed as
already being a semiclassical approximation.

6.4 Orbital Magnetism

of Interacting Ballistic Quantum Dots

In the previous section we showed how disorder enhances the interaction
contribution to the orbital magnetic response. Impurity scattering provides
a mechanism for backscattering and even first-order interaction diagrams
contain flux-enclosing returning orbits, thus contributing to the magnetism.
In contrast, in the clean bulk only terms in the Cooper series which include
three or more interaction events allow for flux-enclosing returning paths [326].

In ballistic quantum dots, however, the confinement already allows for
closed trajectories in the first order of the interaction. This will modify the
clean-bulk value considerably. Following [75], we present here such effects aris-
ing from the interplay between the confining and interaction potentials. The
usual techniques to deal with Coulomb interactions in solids, which rely on
translational invariance by working in momentum space, are not applicable
to finite-size systems. Hence, we use again semiclassical techniques in config-
uration space, similar to those used in Sect. 5.5 to compute disorder-induced
spectral correlations.

To be specific, we investigate the magnetic response of an ensemble of
ballistic quantum dots. To this end we consider the contribution from the
Cooper series (Fig. 6.1) which provides the leading-order diagrams relevant to
the orbital magnetism as discussed in Sect. 6.2. There we derived the general
semiclassical approximation (6.8) for the diagonal part of the particle–particle
propagator. As already stressed, ΣD is an essentially classical operator and
applies to any type of classical motion. The diagonal approximation Ωee,D of
the thermodynamic potential is obtained by using ΣD in the perturbation
expansion (6.3a). A calculation of the trace integrals appearing in it has
usually to be performed numerically since for ballistic dynamics we cannot
rely on properties such as (6.10) in the diffusive case.

Since ΣD contains no rapidly oscillating phases, trace integrals are per-
formed in the same way for both regular and chaotic dynamics and therefore
both types of classical behavior lead to the same h̄ dependence. Thus, thermo-
dynamic properties of integrable and chaotic systems based on the diagonal
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part of Σ exhibit the same parametric scaling with the Fermi energy. This in-
teraction contribution and the issue of renormalization in the ballistic regime
due to higher-order terms will be considered in this section.

However, in ensembles of systems with regular motion, additional off-

diagonal contributions to Σ persist which do not average out. These terms
will be discussed in Sect. 6.4.4. Their first-order interaction diagram is dom-
inant and therefore these terms are not renormalizable: a subtle property
which leads to a parametric difference between interacting systems with non-
interacting chaotic and regular behaviors.

r

a) b)

a

r

r

c)

Fig. 6.3. Typical pairs of flux-enclosing paths in a square contributing to the
average susceptibility. (a), (b) Pairs of equal trajectories belonging to the diagonal
channel to first and fourth order in the interaction. An orbit pair entering into the
nondiagonal channel is shown in (c)

6.4.1 Ensemble of Squares

In the following we consider again an ensemble of square quantum dots as
representing regular systems. This working example allows one to illustrate
the main physical effects and to make contact with experiment and the cal-
culations for the noninteracting case.

For the square, the classical amplitudes |D̃j |2, given by (4.59), merely
depend on the path lengths. Then the diagonal part of the particle–particle
operator reads

ΣD
r,r′(ω) ≃ 1

π

Lj>λF/π
∑

j:r→r′

R(2Lj/LT )

L2
j

exp

(

i4πHAj

φ0

)

exp

(

−ωtj
h̄

)

. (6.28)

All paths connecting r with r′ are most easily obtained by the method of
images, as discussed in Sect. 4.5.

Even for the simple geometry of a square billiard, the calculation of the
integrals Aj(r, r

′) of the magnetic vector potential along the paths does not
allow for an analytical treatment of the integrals (6.3a) leading to Ωee,D(H).
However, all variations of ΣD happen only on classical scales since oscilla-
tions on the scale of the Fermi wavelength are already averaged out. This
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allows for an efficient numerical computation. To this end, we discretize the
configuration space of the square billiard and calculate the matrix elements
of ΣD in the basis set representing the discretization. The susceptibility χee is
then obtained either by first taking analytically the flux derivatives in (6.3b),
followed by matrix operations, or by first diagonalizing ΣD and then taking
the H derivative of [75]:

Ωee,D(H) = − 1

β

∞
∑

n=1

(−λ0)
n

n

∑

ω

Tr[ΣD(ω,H)]n

= − 1

β

∞
∑

n=1

(−λ0)
n

n

N2

∑

k=1

[σk(ω,H)]n . (6.29)

Here, σk denotes the eigenvalues of ΣD for an N×N grid. For squares of size
a the length a/N of a cell used in the numerical calculations should be small
compared to a and LH , but may be larger than λF, since we are essentially
dealing with a classical operator.

6.4.2 First-Order Diagonal Channel

We begin with the treatment of the diagonal interaction contribution to χee

to first order in the coupling constant. As sketched in Fig. 6.3a, two types
of shortest flux-enclosing trajectories exist starting and ending at a single
interaction event, namely the usual periodic orbits of the family (1,1) and
parallelogram orbits, which may be labeled by (1,1/2). At low temperature
higher repetitions as well as closed orbits of other topology also contribute to
the magnetic response. The numerically calculated susceptibility contribution
χee,D

1 (H=0) from the n=1 term of the sum in (6.29) is depicted in Fig. 6.4
(full lines) as a function of kFa for different temperatures. It exceeds the
average susceptibility χ11 from the noninteracting model (dashed, see (4.75))

by more than a factor of 2. The dependence of χee,D
1 on temperature and Fermi

energy is the same as for χ11. In particular, the first-order susceptibility is
exponentially suppressed at high T (for LT ≤ a).

Before discussing the effect of higher-order interaction contributions we
employ the first-order calculations to study the validity of the model (6.2)
of a local interaction. To this end we compare the results from this model
with results where the δ-like interaction potential is replaced by the Thomas–
Fermi potential of the screened interaction. In two dimensions this reads, in
momentum representation,

Û(k) =
2πe2

k + kTF
, (6.30)

where kTF =
√

2rskF = 2πe2N(0) denotes the Thomas–Fermi screening wave
vector. A more detailed semiclassical analysis of the first-order Cooper dia-
gram for a nonlocal potential shows that the use of the screened interaction
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amounts to replacing the coupling constant λ0 =1 by the difference between
the (paramagnetic) Hartree and Fock contributions,

λ0

N(0)
−→ 2Û(|ki − kf |) − 1Û(|ki + kf |) . (6.31)

Here, ki and kf are the initial and final wave vectors of a given closed trajec-
tory at the center of the interaction potential. The first-order result for the
susceptibility based on the screened interaction is shown as dashed–dotted
lines in Fig. 6.4. The difference on the order of 10% shows that the use of a
δ-like interaction, which amounts to neglecting the momentum difference of
the Thomas–Fermi potential, is justified.
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Fig. 6.4. Comparison between kFa dependences of different contributions to the
averaged susceptibility. Shown are the first-order interaction contribution χee,D

1 for
a local (δ-like) interaction (full lines), a screened interaction as in (6.31) (dash–
dotted lines) and the contribution from the independent-particle model (dashed
lines). Each set of curves belongs to the three temperatures kBT/∆ = 2, 4, 8 (from
the top)

The replacement (6.31) takes the short-range part of the interaction ap-
propriately into account but does not account for possible contributions from
the long-range tail of the interaction, which in the RPA behaves asymptot-
ically as ∼ sin(2kFr)/r

2 [49]. Further semiclassical analysis shows that such
contributions either are of lower order in h̄ or do not survive the ensem-
ble averaging, owing to the appearence of Friedel oscillations and long-range
coupling between different trajectories.

6.4.3 Renormalization from Higher-Order Diagonal Contributions

As already seen for the diffusive case, higher-order diagrams are essential in
the diagonal Cooper channel since they exhibit the same h̄ dependence as
the first-order term.
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Fig. 6.5. Temperature dependence of the interaction contribution to the suscepti-
bility (solid line) of an ensemble of squares at kFa=50 and H =0. At low tempera-
tures the susceptibility is dominated by the contribution of the nondiagonal channel
from family (1,1) and repetitions (dashed line), which exceeds that of the diagonal
Cooper channel (dotted line); kBT0 = h̄vF/2πa. The inset shows the minima of the
curves on an enlarged scale (from [75]; c©1998 by the American Physical Society)

The main results of a numerical computation [75,313] (as described above)
of the full interaction-induced average susceptibility (6.29) of the square
billiard are summarized in Fig. 6.5. The zero-field diagonal contribution
χee,D(H=0) at kFa = 50, including all orders in the local interaction, is given
by the dotted curve. This curve exhibits three characteristic regimes [75]:

(i) At low temperature χee,D is paramagnetic. It decays on a scale kBT0 =
h̄vF/2πa, which corresponds to a thermal cutoff length LT0

= 2a. This
behavior reflects the properties of the first-order term related to closed
trajectories, as shown in Fig. 6.3a. Since their lengths are larger than 2a,
their contributions are exponentially suppressed for LT < 2a.

(ii) In an intermediate temperature range, χee,D is diamagnetic but small.
This regime may be considered to represent the effects of the second-
order terms: they are composed of closed paths consisting of two tra-
jectories connected by interactions. Since there is no minimum length of
these paths, the second-order term is less rapidly (and not exponentially)
suppressed by temperature. The sign is opposite to the first-order term,
explaining the the sign change in χee,D near T = T0.

(iii) In the limit of high temperatures χee,D is again paramagnetic, although
very small. In this regime, where LT ≪ a, third- and higher-order terms
take over. They represent bulk-like contributions [315, 326] since orbits
with more than two interactions may enclose flux without the assistance
of the boundary.
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However, the picture developed above needs refinement: in regime (i) the
magnitude of χee,D is significantly smaller than the pure first-order diagonal
contribution. Hence higher-order terms also play a role in this temperature
range, pointing towards a renormalization mechanism.

The renormalization of the coupling constant λ0 in diffusive systems is
clearly expressed by means of (6.19). For ballistic dynamics such a clear-cut
expression is lacking since one cannot employ properties such as (6.10). Nev-
ertheless, the following picture may suggest a renormalization property of
ballistic systems: at temperatures such that LT is larger than the shortest
periodic orbit the amplitudes entering into ΣD in (6.28) are dominated by the
1/L2

j dependence. This indicates that in an nth-order diagram, short path
segments between two successive interactions are favored. This leads, on the
one hand, to a tendency of the interaction events to cluster; on the other
hand, paths contributing to the susceptibility have to enclose a significant
amount of flux. This points towards the relevance of trajectories of the type
shown in Fig. 6.3b. Nearby higher-order interaction events may be considered
to act as one effective (renormalized) interaction. This rough picture can be
put on a more rigorous footing by introducing a renormalization scheme, as
was derived by Ullmo [75, 327]. This is achieved by regrouping the paths in
the perturbation expansion (6.29) for Ωee,D in such a way that short paths
(between successive interaction events) which are not affected by the bound-
ary are gathered into lower-order terms. For instance, the trajectory depicted
in Fig. 6.3b then contributes to a first-order term in the reordered perturba-
tion series where the short paths are incorporated in an effective interaction.
On the basis of this renormalization scheme one obtains a resummed pertur-
bation series for χee,D which can be interpreted as the same as the previous
one, but now with the renormalized coupling constant λ0 = 1 being replaced
by the renormalized coupling constant [75]

λ(a) ≃ 2

ln(kFa)
. (6.32)

In the semiclassical limit ln(kFa) ≫ 1 the perturbation series in λ(a) is now
well converging and can be terminated after the first few terms. The reordered
perturbation series for χee,D at T < T0 is now dominated by its first-order
contribution. In view of the smallness of λ(a) it is now obvious that this first-

order contribution is small compared to the original first-order term χee,D
1 for

λ0 =1. This explains the small amplitude of the χee,D in Fig. 6.5.

6.4.4 Nondiagonal Channel in Regular Systems

The use of the diagonal approximation in the semiclassical evaluation of Σ̂ω

is in general justified for chaotic systems at not too low temperatures,8 where

8 In the limit where the temperature smoothing is on the order of the mean level
spacing, corresponding to a cutoff at the Heisenberg time, off-diagonal terms
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different orbits are assumed to be uncorrelated. However, nondiagonal terms
in regular systems can persist after ensemble averaging and are of specific
relevance to the magnetic response of interacting systems [75].

As discussed in detail in Sect. 2.1.3, periodic orbits in integrable systems
are organized in families within which the action integral is constant. In
general two (different) orbits of the same family cross in configuration space.
If we associate the crossing point with the position of a first-order local
interaction the dynamical phases of the nondiagonal pair of these orbits may
cancel. This is illustrated in Fig. 6.3c for two orbits of the family (11) in the
square.

This nondiagonal first-order contribution to the susceptibility from the
family (1,1) and its higher repetitions k reads [75]

〈χee,ND〉
χL

= − 3kFa

2(
√

2π)3

∞
∑

k=1

1

k

d2C2(kϕ)

dϕ2
R2

(

kL11

LT

)

. (6.33)

Here, C(ϕ) is as defined in (4.64). As in the noninteracting case (Sect. 4.5.1),
χee,ND is linear in kFa and has a temperature scale given by R2.

This nondiagonal channel, specific to regular systems, gains its importance
from the fact that it is not renormalized by higher-order terms. A more
detailed analysis based on phase space arguments shows that higher-order
nondiagonal contributions are smaller by at least a factor 1/kFa.

For the case of square quantum dots the nondiagonal contribution of the
family (1,1) and its repetitions is shown as the dashed curve in Fig. 6.5. It
significantly exceeds the renormalized diagonal part and therefore gives the
main contribution to the overall susceptibility χee.

The existence of a nonrenormalized contribution in the nondiagonal chan-

nel for systems with integrable noninteracting dynamics leads to a qualitative

difference from interacting systems with chaotic noninteracting behavior. This
difference can be considered as a correlation effect since it stems from the ef-
fect of higher-order Cooper diagrams.

6.5 Comparison Between Integrable

and Chaotic Structures

After the treatment of the magnetic response of clean quantum dots in Sect. 4,
the study of the influence of disorder in Chap. 5, and the previous discussion
of interaction effects, we are now in a position to make rather general final
remarks about the orbital magnetism of mesoscopic quantum systems. In
particular, we contrast systems with chaotic and regular dynamics in the
corresponding noninteracting, clean counterparts.

may play a role in chaotic systems, similar to the effect of such terms in density
correlators of noninteracting systems (see Sect. 2.2).
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As discussed already in Sect. 4.4.2 on the level of a noninteracting model,
the magnetic response of clean billiard-like microstructures differs for systems
exhibiting families of periodic orbits (regular systems) and systems with only
isolated periodic orbits (chaotic systems). The different h̄ dependence of the
density of states is reflected in a parametrically different dependence of the
susceptibility on the Fermi energy or kFa: the energy- or size-averaged sus-
ceptibility χ of regular quantum dots scales ∼ kFa, while it is constant for
chaotic systems9 (see Table 6.1).

As discussed in the previous section, the quantum interaction contribution
to χ can be related (by using many-body perturbation theory) to the nature
of the classical motion of the corresponding noninteracting system. In this
case, families of periodic orbits give rise to nondiagonal terms in the Cooper
channel. The related susceptibility contribution χee,ND scales like kFa for
regular systems. In chaotic systems, this channel does not contribute and the
average susceptibility from the renormalized diagonal channel reads χee,D ∼
kFa/ ln(kFa). Hence, interacting and noninteracting terms in regular systems
have the same kFa dependence, while in chaotic devices interaction effects
yield the dominant contribution.

Table 6.1. Dependence on kFa of the noninteracting and interacting contribu-
tions to the magnetic response for billiard-like clean microstructures in the absence
(chaotic case) and presence (regular case) of families of periodic orbits. χ denotes
the averaged (over energy) susceptibility.

χ/χL χ/χL

Regular Chaotic Regular Chaotic

Noninteracting (kFa) (kFa)0 (kFa)3/2 (kFa)

Interacting (kFa) (kFa)/ ln(kFa) (kFa) (kFa)/ ln(kFa)

To conclude, an ensemble of regular structures shows a magnetic response
logarithmically larger than generic chaotic systems.

The parametric behavior for individual noninteracting systems was com-
puted in Sects. 4.3.3 and 4.5.2. It is also summarized in Table 6.1. The leading-
order interaction contribution for a single quantum dot is expected to be the
same as for an ensemble because it is related to the trace of the diagonal
part of Σ, which is a classical quantity. The trace integrals over oscillating
contributions, which do exist in individual systems, merely give rise to h̄ cor-

9 Here, the discussion of the kFa dependence is based merely on the h̄ dependence
of individual orbit contributions. At rather low temperature, the common effect
of the exponentially increasing number of longer periodic orbits in chaotic sys-
tems may change the overall kF characteristics of the magnetic response, as was
discussed in Sect. 4.3.3. The same holds true when including higher repetitions
of orbits in regular systems.
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rections to the contribution from Σ. A more detailed semiclassical study of
such terms is, nevertheless, desirable.

With regard to temperature, both interacting and noninteracting semi-
classical models yield an exponential decrease of the magnetic susceptibility
if the corresponding thermal cutoff length LT is of the order of the shortest
periodic orbit.

In conclusion, the orbital magnetism represents an appropriate property
for detecting differences in the quantum observables of classically integrable
and chaotic ballistic systems. This holds true even in the presence of weak
disorder, as was shown in Chap. 5.

6.6 Comparison with Experiment

The choice of square quantum dots as examples for studying orbital mag-
netism as well as for the investigation of disorder and interaction effects was
partly motivated by the experiment of Lévy et al. [57]. To my knowledge, this
experiment represents to date the sole measurement of the orbital magnetic
response of an ensemble of ballistic quantum dots.

In this experiment the magnetic response of an array of 105 isolated meso-
scopic billiards of approximately square geometry was measured. The squares
were lithographically defined on a GaAs heterojunction. Their sizes are on
average a = 4.5µm, but exhibit a wide variation of about 10 to 30% between
the center and the border of the array. The two electron densities considered
in the experiment were 1011 and 3 × 1011 cm−2, corresponding to approxi-
mately 104 occupied levels per square. Therefore a semiclassical treatment is
well justified.

The phase coherence length and elastic mean free path are estimated to
be between 15 and 40 µm and between 5 and 10 µm, respectively. Hence,
each square can be considered as phase-coherent and ballistic.

As the main experimental result in [57], a large paramagnetic peak at zero
field was observed, two orders of magnitude larger than the Landau suscepti-
bility, decreasing on a scale of approximately one flux quantum through each
square. The results from the related semiclassical calculations (see (4.74) and
(4.76)) and the full quantum calculations in the noninteracting model [45] are
shown in Fig. 4.13b as the thick full and dashed lines, respectively (denoted
by 〈χ〉 in the figure). Corresponding curves from interaction contributions,
not shown here, exhibit the same flux dependence. The theoretical curves de-
crease roughly on the same scale as observed in the experiment, see Fig. 1.5.
(The offset in the semiclassical curve with respect to the quantum mechani-
cal curve is due to the Landau susceptibility χL and additional effects from
bouncing-ball orbits (see Sect. 4.5.3) not included in the semiclassical curve.)

More quantitatively, the measured paramagnetic susceptibility at H = 0
gave a value of approximately 100χL (with an uncertainty of a factor of 4).
For a temperature of 40 mK the factor 4

√
2/(5π)kFaR

2
T (L11) from (4.75)
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for the clean noninteracting model gives zero-field susceptibility values of
60 and 170. In order to account for the effect of disorder we assume, as an
unfavorable estimate, an elastic mean free path l ≃ a. The disorder-potential
correlation length (5.4) can be estimated [72] to be of the order of ξ/a ≃ 0.1.
We then obtain, with respect to the clean noninteracting case, a disorder
reduction for the averaged susceptibility of 〈χs〉/χ ≃ 0.4 [72]. For l ≃ a and
the temperature used in the experiment, the disorder-induced contribution
〈χd〉 discussed in Sect. 5.5.3 and proposed in [244] is small. This shows that
the main features of the clean integrable system persist upon inclusion of the
disorder parameters of the experiment.

The interaction contribution is roughly given by (6.33) from nondiagonal
terms, which are a factor of 2 smaller than the result for the clean nonin-
teracting case. Accounting for the disorder reduction and combining both
contributions gives a susceptibility which is in line with the experimental
values at low temperatures.

However, the experimentally observed decrease of the susceptibility with
increasing temperature is less drastic than the theoretical predictions. In par-
ticular, the experimental T dependence is not exponential. The experiment
shows a nonvanishing magnetic response at rather “high” temperatures of
about 0.4 K, where theoretical approaches based on both noninteracting and
interacting models yield a negligible susceptibility. Hence, the question of the
experimental temperature behavior remains unsolved.

For completeness we note that the measurement of the persistent current
of a single ballistic ring by Mailly, Chapelier, and Benoit [220] is in line with
theory.



7. Concluding Remarks

In this book we have reviewed modern semiclassical approaches to mesoscopic
quantum systems. We started by presenting basic semiclassical relations for
spectral, thermodynamic, and transport properties. These expressions were
further developed and applied to a number of different mesoscopic phenom-
ena. We put particular emphasis on quantum transport and orbital mag-
netism. We treated in detail examples of current experimental relevance such
as the conductivity of microcavities and antidot superlattices, the magnetic
response of square quantum dots, and the persistent current of rings. The
work on quantum transport was based on the model of noninteracting qua-
siparticles, while we included interaction effects in the study of the orbital
magnetism.

The general picture which emerges from the semiclassical approach can
be summarized as follows: in the semiclassical limit, spectral and transport
quantities of an individual mesoscopic system are naturally decomposed into
a smooth part and quantum corrections, which are usually of higher order in
h̄. Both the smooth and the oscillatory contributions can be consistently ex-
panded in h̄. However, for most of the mesoscopic phenomena treated here the
corresponding leading-order term is sufficient. (The Landau diamagnetism
represents an interesting exception since the classical magnetic response is
zero.) The leading component of the smooth part yields the classical con-
tribution, which may already contain nontrivial, system-specific information.
Promiment examples are the resistivity anomaly of antidot arrays and pho-
toabsorption cross sections. The oscillatory part is semiclassically represented
as Fourier-type sums over classical paths, which are sensitive to disorder and
temperature. As important examples, we discussed quantum oscillations of
the magnetoconductivity observed in antidot experiments, which could be
semiclassically attributed in a physically transparent way to interference ef-
fects of periodic orbits in the antidot lattice. Related quantum oscillations
(as a function of the Fermi energy) were semiclassically predicted for the ab-
sorption of radiation in small ballistic particles and are precisely recovered
in numerical quantum calculations [114]. The same holds true for the oscil-
lations of the magnetic susceptibility in finite systems, extensively discussed
for the example of the square quantum well.
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With respect to average quantities the present situation of semiclassical
theory differs for thermodynamic and transport properties. The computation
of the magnetic response of an ensemble of quantum dots requires a canonical
treatment. Comparison with numerical quantum calculations reveals that the
average response is accurately described in terms of a semiclassical approx-
imation of the variance of the particle number. This quantum “correction”
due to the confinement dominates the small Landau diamagnetism in the
mesoscopic regime.

Concerning averaged quantum corrections in transport, the situation is
less clear. With regard to weak localization in ballistic cavities, we have shown
how a semiclassical diagonal approximation yields a coherent-backscattering
peak which can qualitatively explain quantum mechanical or experimental
results. However, a semiclassical theory which can quantitatively describe
average quantum transport is still missing.

One reason for the apparent differences between the semiclassical ap-
proaches to thermodynamic and transport properties is related to the way
temperature enters. Averaged quantities can usually be expressed in terms of
products of single-particle Green functions. Hence, a semiclassical evaluation
of the (energy) average is in principle faced with the problem of a proper
treatment of nondiagonal pairs of paths. For thermodynamic quantities such
as orbital magnetism, each individual Green function is convoluted with the
derivative of the Fermi function, yielding a cutoff in the lengths of contribut-
ing paths. Thus, in the mesoscopic regime (kBT > ∆) the semiclassical trace
formulas for the magnetic response are well behaved and averaged quantum
corrections are quantitatively obtained with high precision. In contrast to the
thermodynamic quantities, temperature enters into semiclassical expressions
for the averaged conductance as a suppression of pairs of paths, when the
difference in the path lengths exceeds the temperature cutoff length. Hence,
there is no clear-cut condition for a cutoff of long paths. This implies that
orbits with periods of the order of or even larger than the Heisenberg time
may enter and a proper inclusion of nondiagonal terms is required. However,
as discussed at the end of Chap. 3, the inclusion of off-diagonal parts seems
not to be sufficient to adequately account for quantum corrections. A re-
fined theory would have to go beyond the semiclassical approximations used
and would possibly have to account for nonclassical paths. Similar difficulties
were reported for the weak-localization correction within the framework of
the Kubo conductivity. Hence weak localization remains as a paradigm for the
success and the open problems of semiclassics. In spite of the achievements of
the present semiclassical formalism a quantitative and complete semiclassical
transport theory is still lacking and would be highly desirable to complete
our understanding of mesoscopic quantum transport.

A further general issue in quantum chaos which has guided our presen-
tation refers to the question as to what extent the quantum properties of
classically chaotic and nonchaotic systems differ. As shown, the semiclassical
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framework offers a suitable way to account for the different types of dynam-
ics and is in this respect superior to random-matrix theory. The short-time
dynamics usually exhibits nonuniversal features which may mask universal
characteristics of chaotic systems. The role of the classical dynamics was illus-
trated in detail in the context of orbital magnetism. The presence of families
of periodic orbits in regular systems makes their susceptibility parametrically
larger than that of chaotic systems: within the model of independent parti-
cles the average susceptibility for a regular structure increases linearly in the
large parameter kFa, while it is independent of kFa for a chaotic system.
This behavior has been quantitatively studied for various (integrable and
chaotic) systems. As for the density of states, a general semiclassical theory
for the transport and orbital magnetism of systems with mixed phase space
dynamics is lacking.

Moreover, for quantum systems with purely chaotic classical dynamics
the semiclassical theory of spectral correlations is far from being complete.
Though commonly believed, the Bohigas–Giannoni–Schmit conjecture of ran-
dom matrix theory for chaotic sytems remains to be proved. In this connec-
tion the deviations from random-matrix theory at finite energy are a topic
of current interest which constitutes one interface between semiclassical ap-
proaches, supersymmetric techniques and random-matrix theory.

A large number of the phenomena in ballistic mesoscopic systems pre-
sented here can indeed, at least qualitatively, be described by using clean
quantum billiards with independent particles as physical models. However,
ballistic nanostructures are much richer than pure billiards: they repre-
sent complex condensed-matter systems including additional effects from ap-
plied magnetic fields, temperature, electron–phonon scattering, disorder, and
electron–electron interactions.

At the very low temperature of most of the experiments considered here,
electron–phonon scattering is strongly reduced and the phase-breaking length
is much larger than the system size. In the example of transport through a
finite antidot array (Sect. 3.2.4) the finite ℓφ could be incorporated in a rough
way by means of a temperature-dependent cutoff length for the classical or-
bits involved. However, a rigorous theory which appropriately describes dissi-
pation in the mesoscopic context would be highly desirable. This would also
include questions of how finite-size effects in quantum coherent systems affect
or may help to control dissipative processes. In particular, mesoscopic devices
which are well controllable may serve as appropriate objects for studying the
interplay between quantum chaos and dissipation [329].

Throughout this book we generally used perturbative concepts to include,
for example, disorder and interaction effects or the effect of a small magnetic
field. We note that the combination of classical perturbation theory and semi-
classics is powerful because it is valid far beyond the range of quantum per-
turbation theory. This follows from the fact that semiclassical perturbation
theory allows one to separate the effect of the perturbation on the phases
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from that on the classical dynamics. The latter is affected only on rather
large classical magnetic-field scales.

Disorder effects are inherent in mesoscopic systems, though they can be
suppressed in the ballistic regime. We reviewed in detail a semiclassical ap-
proach to accounting for weak-disorder effects in finite systems, considering
observables related to the one-particle Green function (such as the magnetic
susceptibility of a given structure) and to the two-particle Green function
(such as the average susceptibility of an ensemble). We focused on the effect
of smooth disorder in integrable structures. We showed that the interplay
between finite size and a finite disorder correlation length results in a power-
law damping and not an exponential damping of the average susceptibility.
Indeed, the numerical and semiclassical studies of the effect of small resid-
ual disorder presented above show that, except for a possible reduction of
the magnetic response, the description of the orbital magnetism as a geo-
metrical effect in ballistic systems in terms of the orbits of the clean system
remains essentially unaltered. To approach the diffusive limit, one has to take
into account paths including scattering events. This can be rigorously per-
formed within a semiclassical approach in the framework of a diagrammatic
treatment of white-noise disorder: in this approach confinement effects in the
crossover regime are included in the semiclassical Green function in terms of
boundary-reflected paths.

A proper inclusion of electron–electron interactions in nanodevices is
probably one of the most challenging programs in mesoscopics. We reviewed
a semiclassical approach which rests upon a high-density perturbative expan-
sion of interaction contributions to the thermodynamic potential. In reducing
the average response of the interacting quantum problem to an essentially
classical operator, which includes the classical probability for particles to re-
turn, the semiclassical method allows for a unified treatment of both diffusive
and ballistic systems. Specifically, the orbital magnetic response in the bal-
listic regime is greatly enhanced over the Landau susceptibility owing to the
combined effect of finite size and interactions. A parametric difference in the
susceptibilities of regular and chaotic structures remains even when including
interactions: the interaction contribution to χ is proportional to kFa for regu-
lar geometries, while it is ∼ kFa/ ln(kFa) in the chaotic case. With regard to
interactions, the role of families of periodic orbits is rather subtle, since they
give rise to a nonrenormalizable additional nondiagonal contribution which
is not present in chaotic systems. This treatment shows furthermore that the
character of the classical dynamics of the noninteracting problem influences
the quantum properties of the system of interacting electrons.

This approach can be regarded as one contribution to the general question
of how chaos in a single-particle description is reflected in the properties of
the full, interacting many-body problem including electron correlations. This
open question fits into the general issue of how quantum chaos emerges in
many-particle systems. This requires the development of methods from the
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field of nonlinear dynamics in many-body systems and includes the problem
of higher-dimensional (quantum) chaos. Such methods seem appealing for
attacking problems of correlated electrons and strongly interacting systems.
Mesoscopic systems, which enable the confinement of interacting particles and
the manipulation of their density, appear destined to be tools to investigate
this challenging question of quantum chaos.





A. Appendices

A.1 Trace Integrals over Semiclassical Green Functions

In this section various useful trace integrals over products of Green functions
are calculated in the stationary-phase approximation. They are, for exam-
ple, helpful in the semiclassical computation of dynamic response functions
(Sect. 2.4) and conductivities (Chap. 3).

A.1.1 Auxiliary Integrals

Definitions

Our starting point is two-dimensional integrals of the form

I++
A (r1, r2) =

∫

dr G+(r2, r;E + iΓ ) A(r) G+(r, r1;E − h̄ω + iΓ ), (A.1)

I+−
A (r1, r2) =

∫

dr G+(r, r2;E + iΓ ) A(r) G−(r1, r;E − h̄ω + iΓ ). (A.2)

The self-energy Γ = h̄/2τ (assumed to be constant) accounts for disorder
damping of the single-particle Green functions on the timescale of the re-
laxation time τ (see Chap. 5). For a semiclassical computation of the above
integrals we express the Green functions according to (2.3) as sums over con-
tributions Gt from classical paths Ct between r and r′. In two dimensions,
the Gt are of the form

G+
t (r′, r;E − h̄ω + iΓ )

=
1

ih̄

1√
2iπh̄

Dt(r, r
′) exp

[

i

h̄
St(E − h̄ω + iΓ ) − iηt

π

2

]

. (A.3)

For small ω and Γ we expand the action:

i

h̄
St(E − h̄ω + iΓ ) ≃ i

h̄
St(E) − iωτt −

τt
2τ
. (A.4)

In the following, the functions A(r) in (A.1) and (A.2) are assumed to vary
slowly compared to the phases of order St/h̄ in the Green function contribu-
tions. In a leading-order semiclassical approximation the operators A(r) can
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then be replaced by their Weyl symbols and act as purely classical quantities,
for example they commute with the Green functions.

The evaluation of the integrals (A.1) and (A.2) will be performed using
local coordinates x along and y perpendicular to the trajectories C̄t which are
the stationary-phase solutions of the r integrals. The expansion of the action
St(r, r

′) near the stationary point r̄ then yields [277]

G+
t (r′, r;E − h̄ω + iΓ ) =

1

ih̄

1√
2πih̄

Dt (A.5)

× exp
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.

It is convenient to express the action derivatives in terms of the monodromy
matrix elements of the stationary path:

∂2St

∂y2
=
mt

11

mt
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;
∂2St

∂y′2
=
mt

22

mt
12

;
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. (A.6)

The prefactor is approximated by

Dt(r, r
′) ≃ D̄t(x, x

′) =

(

1

mt
12|ẋẋ′|

)1/2

. (A.7)

Integrals of the Type I
++

A

Inserting (A.5) into (A.1) yields a double sum over pairs of paths Cu(r1, r)
and Cv(r, r2). The stationary-phase condition for the integral I++

A is (for
small ω)

∂

∂y

[

S̄2(r, r2) + S̄1(r1, r)
]

= py,1 − py,2 ≡ 0 (A.8)

with (u, v) ≡ (1, 2). This condition reduces the double sum to a single sum
over combined smooth classical paths Ct from r1 to r2. The stationary-phase
y integration amounts to replacing the prefactors D1D2 by the new prefactor
(

1

m1
12m

2
12|ẋ1ẋ2ẋ2|

)1/2(
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2
12

)1/2

=

(

1

|ẋ1ẋ2ẋ2|
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)1/2

,

(A.9)

where m12 now denotes the off-diagonal element of the monodromy matrix
of the full paths from r1 to r2.

The x integrations along the trajectories Ct involve the smooth functions
A(r̄) and the velocity prefactor 1/|ẋ| from (A.9). They are suitably trans-
formed into the time integrals

〈A〉++
t (r1, r2;ω) =

∫ τ(r2)−τ(r1)

0

A[r(t′)]e−iωt′dt′ . (A.10)
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Combining (A.1), (A.5), (A.9), and (A.10), we retain a modified Green func-
tion structure

I++
A (r1, r2) =

1

ih̄

∑

t

〈A〉++
t (r1, r2;ω) G+

t (r2, r1;E + iΓ ) . (A.11)

Integrals of the Type I
+−

A

Employing G−(r′, r;E) = G+∗
(r, r′;E), the integral (A.2) to be calculated

is

I+−
A (r1, r2) =

∫

dr A(r) G+(r, r2;E+iΓ ) G+∗
(r, r1;E−h̄ω+iΓ ) . (A.12)

We exclude here the diagonal case where the two paths are identical (and
where their phases cancel), which leads to the classical Weyl contribution
discussed in Sect. 2.4. For r1 6= r2 we can solve the integral again within the
stationary-phase approximation, reducing the double sum over pairs of paths
to a single sum. The corresponding stationary-phase condition reads

∂

∂y
[S̄2(r2, r) − S̄1(r1, r)] = py,2 − py,1 ≡ 0 , (A.13)

resulting in two classical paths beginning at r1 and r2, respectively, and
ending at r with equal momenta. Therefore the shorter path lies entirely on
the longer one. The quadratic fluctuations of the combined action functional
are in this case
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After stationary-phase integration, the new prefactor then reads (using (A.7))
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The x integration gives, after transformation to the time domain,

〈A〉+−
t (ω, τ) =

∫ ∞

0

A[r(t′)]eiωt′e−t′/τ dt′ . (A.16)

Here r(t′ = 0) is equal to r1 if r1 is located on the path between r2 and r

and vice versa. r(t′) runs along the (common) shorter path. By combining
(A.5), (A.12), and (A.15) one finds

I+−
A (r1, r2) = − 1

2πih̄3

∑
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D̃t(r1, r2) 〈A〉+−
t exp
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St(E)− τt

2τ

]

. (A.17)
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The remaining phase is now given by the action of the trajectory connecting
r1 and r2 since we have combined G+ and G−. Depending on whether the
longer path belongs to G+(E+iΓ ) or G−(E− h̄ω+iΓ ) one has to distinguish
two cases for St for finite ω:

St(E) =

{

S2(r2, r1;E) for r1 between r2 and r ,
−S1(r1, r2;E)+h̄ωτ1(r1, r2) for r2 between r1 and r .

(A.18)

A.1.2 Integrals of Products of Two Retarded Green Functions

For the semiclassical calculation of the matrix element sums arising in linear
response theory (see Sect. 2.4) we have to compute trace integrals involving
operators A and products of two retarded Green functions, as well as products
of a retarded and an advanced Green function (in the noninteracting case,
where the two-particle Green functions factorize). We begin with the case
G+G+:

A++
Γ (E;ω)

≡ Tr[Â G+(E + iΓ ) Â G+(E − h̄ω + iΓ )] (A.19)

=

∫

dr′

∫

dr A(r′) G+(r′, r;E + iΓ ) A(r) G+(r, r′;E − h̄ω + iΓ ) .

Using (A.1) and (A.11), A++
Γ can be represented (to leading order in h̄) as

A++
Γ (E;ω) =

∫

dr′ A(r′) I++
A (r′, r′) (A.20)

≃ 1

ih̄

∑

t

∫

dr′A(r′)〈A〉++
t (r1, r2;ω) G+

t (r′, r′;E + iΓ )

with 〈A〉++
t as defined in (A.10).

A++
Γ (E;ω) can be considered as a generalized form of the trace integral

representation of the density of states. Therefore, as we shall show below, the
semiclassical computation of the integral will lead to a trace formula in terms
of unstable periodic orbits, similar to the Gutzwiller trace formula (2.27) for
the density of states.

In the following we focus on the chaotic case1 assuming a phase space
with only isolated periodic orbits. The trace integral (A.20) can be per-
formed again by the stationary-phase approximation, following essentially
the lines of Gutzwiller’s semiclassical derivation of the density of states. The
starting point is a representation of a closed (in configuration space) path
Ct(r

′, r′) in local coordinates (x, y) of a nearby periodic orbit which results
from the stationary-phase condition. Combining the factor arising from the
stationary-phase integration in the y direction with the prefactor Dt of the
Green function contribution Gt (see (A.7)) gives

√

2πih̄/mpo
12/|ẋ|. The veloc-

ity denominator is again used to transform the remaining x integral along

1 A similar treatment is possible for the integrable case.
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the orbit into a time correlation function of the classical function A(r) along
the periodic orbit. One finally obtains

A++
Γ (E;ω) (A.21)

≃ − 1

h̄2

∑

po

∞
∑

j=1

C++
po

e−jτpo/2τ

∣

∣

∣det(M j
po − 1)

∣

∣

∣

1/2
exp

[

ij

(

Spo

h̄
− ηpo

π

2

)]

.

Here, Spo(E,H) is the classical action, τpo the period, and ηpo the Morse
index of a primitive periodic orbit. Mpo denotes the monodromy matrix of

the orbit and j counts higher repetitions. The operators Â appear semiclassi-
cally via a Fourier-like transform of the correlation function of their classical
analogs (Weyl symbols) A along each primitive periodic orbit:

C++
po =

∫ jτpo

0

dt e−iωt 1

τpo

∫ τpo

0

dt′A(t+ t′)A(t′) . (A.22)

A.1.3 Integrals of Products
of a Retarded and an Advanced Green Function

Here, we evaluate trace integrals involving operators Â and a product of a
retarded and an advanced Green function of the form

A+−
Γ (E;ω)

≡ Tr[Â G+(E + iΓ ) Â G−(E − h̄ω + iΓ )] (A.23)

=

∫

dr′

∫

dr A(r) G+(r, r′;E + iΓ ) A(r′) G−(r′, r;E − h̄ω + iΓ ) .

We express A+−
Γ , analogously to the case of G+G+, by means of the auxiliary

integral (A.2):

A+−
Γ (E;ω) =

∫

dr′ A(r′) I+−
A (r′, r′) (A.24)

with I+−
A as defined in (A.17). Pairs of trajectories contributing to A+−

Γ (E;ω)
consist of paths of different length both beginning at r′ with the longer
one running through the point r′ at least once more than the shorter one.
Paths with the same length contribute to the Weyl part not considered here.
Depending on whether the longer path belongs to G+(E + iΓ ) or G−(E −
h̄ω + iΓ ), one has to distinguish for finite ω two contributions to the trace
integral with the actions given in (A.18):

A+−
Γ (E;ω) =

−1

2πih̄3

∑

t

∫

dr′A(r′) D̃t(r
′, r′)〈A〉+−

t e−τt/2τ (A.25)

×
{

exp

[

i

(

St(E)

h̄
− ηt

π

2

)]

+ exp

[

−i

(

St(E)

h̄
− ηt

π

2
− ωτt

)]}

.
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Here St is now the action along the closed orbit segment Ct(r
′, r′). Assum-

ing again chaotic phase space dynamics, the stationary-phase solutions of
the above integral are dominated by contributions from closed orbits in the
vicinity of a periodic orbit. Their actions are conveniently expanded in terms
of the action Spo of the periodic orbit using its local coordinates:

St = Spo +
1

2

(

∂2St

∂y′2
+ 2

∂2St

∂y′′∂y′
+
∂2St

∂y′′2

)

y′=y′′=0

y′
2

≡ 1

2
W (x′) y′

2
(A.26)

with

W (x) =

[

m11(x) +m22(x) − 2

m12(x)

]

y′=y′′=0

. (A.27)

By performing the stationary-phase integral one obtains, instead of D̃t (see
(A.15)), the new prefactor

D̄t ≡
D̃t

ẋ′

(

2πih̄

W

)1/2

. (A.28)

By denoting the monodromy matrix of the closed orbit by M and employing
the relation M2 = M1 · M between the monodromy matrices M2,M1 of
the (longer) path C2 and the (shorter) path C1, respectively, one can con-
siderably simplify the product of D̃t (A.15) and W−1/2 (A.27). After a few
manipulations one finds

D̄t =
2πh̄

ẋ′ |det(Mpo − 1)|1/2
. (A.29)

The classical stability amplitude of the pair of open trajectories is thus just
given by the corresponding periodic orbit. Hence, one obtains as the final
result

A+−
Γ (E;ω) ≃ 1

h̄2

∑

po

C+−
po (A.30)

×
∞
∑

j=1

exp [(iω − 1/τ)jτpo/2] cos [j(Spo/h̄− ωτpo/2 − ηpoπ/2)]
∣

∣

∣det(M j
po − 1)

∣

∣

∣

1/2
,

where the two contributions from (A.25) are included in a symmetrized way in
the cos function. The C+−

po are Fourier transforms of the correlation functions
of the classical operator A(r) along each primitive periodic orbit. They read

C+−
po =

∫ ∞

0

dt eiωt−t/τ 1

τpo

∫ τpo

0

dt′A(t+ t′)A(t′) . (A.31)

The trace integrals of the form Tr[A G+A G−] calculated above yield the
main contribution to the response functions discussed in Sect. 2.4.



A.2 Numerical Calculations for Susceptibilities

of Square Quantum Dots

This appendix deals with the numerical procedure for calculating quantum
mechanically the magnetic response of (disordered) square quantum wells at
arbitrary magnetic field [45]. The quantum results are based on the diag-
onalization of the corresponding Hamiltonian and an efficient algorithm to
calculate the canonical free energy. They are used to confirm the semiclassical
results presented in Sect. 4.5 and Chap. 5.

Consider non-interacting spinless particles in a disordered square poten-
tial well [−a/2, a/2] in a homogeneous magnetic field. Within the symmetric
gauge A = H(−y/2, x/2, 0) the corresponding Hamiltonian in scaled units
x̃ = x/a and Ẽ = (ma2/h̄2)E reads

H̃ = −1

2

(

∂2

∂x̃2
+

∂2

∂ỹ2

)

−iπ ϕ

(

ỹ
∂

∂x̃
− x̃

∂

∂ỹ

)

+
π2

2
ϕ2(x̃2 + ỹ2) + V dis(x̃, ỹ) . (A.32)

ϕ is the normalized flux defined as in (4.65) and V dis a weak disorder poten-
tial.

A.2.1 Clean Case

In order to employ for V dis ≡ 0 the invariance of the Hamiltonian (A.32)
with respect to rotations by π, π/2, we use linear combinations of plane waves
which are eigenfunctions of the parity operators P π, P π/2, respectively. These
combinations read, omitting the tilde,

√
2[Sn(x)Cm(y) ± iCm(x)Sn(y)] , (Pπ = −1) , (A.33)√

2[Cn(x)Cm(y) ± Cm(x)Cn(y)]√
2i [Sn(x)Sm(y) ± Sm(x)Sn(y)]

}

, (Pπ = +1) , (A.34)

with Sn(u) = sin(nπu), n even, and Cm(u) = cos(mπu), m odd, obeying
Dirichlet boundary conditions. In this representation the resulting matrix
equation is real symmetric and decomposes into four blocks representing the
different symmetry classes.

By diagonalization we calculated the first 3000 eigenenergies taking into
account up to 2500 basis functions for each symmetry class. A typical energy
level diagram of the symmetry class (Pπ, Pπ/2) = (1, 1) as a function of the
magnetic field is shown in Fig. 4.1.
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A.2.2 Weak Disorder

In order to study disorder effects (Chap. 5) we use as a random potential

V dis(r) =

Ni
∑

j

uj

2πξ2
exp

(

− (r−Rj)
2

2ξ2

)

, (A.35)

the sum of the Gaussian potentials (with impurity strength uj) of Ni inde-

pendent impurities located at points Rj with uniform probability. According
to (A.44) and (A.45) the mean impurity strength and impurity density can
be deduced from a given elastic mean free path. Because V dis destroys the
symmetry of the Hamiltonian of the clean case, the block structure is no
longer preserved and the Hamiltonian becomes Hermitian.

A.2.3 Thermodynamics

One obtains the grand canonical susceptibility (see (4.2) and, for example,
Fig. 4.2) from

χGC(µ) = − gs
a2

∂2

∂H2

∞
∑

i=1

ǫi
1 + exp[β(ǫi − µ)]

. (A.36)

Here gs accounts for the spin degeneracy and ǫi denotes the single-particle
energies.

In order to calculate ensemble-averaged quantities, such as the average
susceptibility of an ensemble of square billiards, one often has to work in the
canonical ensemble. At zero temperature the canonical free energy reduces
to the total energy. Then the canonical susceptibility (4.17) is given as the
sum over the curvatures of the N single-particle energies ǫi,

χ(T = 0) = − gs
a2

N
∑

i=1

∂2 ǫi
∂H2

. (A.37)

The susceptibility is therefore dominated by large paramagnetic singulari-
ties whenever the highest occupied state undergoes a level crossing with a
state of a different symmetry class or a narrow avoided crossing with a state
of the same symmetry. This makes T = 0 susceptibility spectra of quasi-
integrable billiards (with nearly exact level crossings) or of separable systems
with spectra composed of energy levels from different symmetry classes ap-
pear more erratic than those of chaotic systems, which possess stronger level
repulsion [246].

The peaks for T = 0 are compensated once the next higher state at a
(quasi) crossing is taken into account. Thus, these peaks disappear at finite
temperature, when the occupation of nearly degenerate states becomes almost
the same. Hence finite temperature regularizes the singular behavior of χ at
T =0. The canonical susceptibility at finite temperature is given by
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χ =
gs
a2β

∂2

∂H2
lnZN (β) . (A.38)

Here, the canonical partition function ZN (β) reads

ZN (β) =
∑

{α}

exp[−βEα(N)] (A.39)

with

Eα(N) =
∞
∑

i=1

ǫi n
α
i , N =

∞
∑

i=1

nα
i . (A.40)

In the above equation the nα
i ∈ {0, 1} label the occupation of the single-

particle energy levels.
A brute-force numerical computation of the canonical partition function

is usually extremely time-consuming at finite temperature. Thus, we first
approximate the infinite sum in (A.39), which runs over all occupation dis-
tributions {α} for N electrons, by a finite sum ZN (M ;β) over all possibilities
for distributing N particles over the first M levels with M ≥ N sufficiently
large. Following Brack et al. [330] we calculate ZN (M ;β) recursively by em-
ploying the relation

ZN (M ;β) = ZN (M − 1;β) + ZN−1(M − 1;β) exp(−βǫM ) (A.41)

and increase M until convergence of ZN (M,β) is obtained. The appropriate
initial conditions are

Z0(M ;β) ≡ 1 , ZN (N − 1;β) ≡ 0 . (A.42)

This algorithm reduces the number of algebraic operations required to calcu-
late ZN significantly. Furthermore it is fast and accurate even for kBT/∆ ≃
10. In such a temperature regime a direct calculation of ZN is usually not
possible.

A.3 Semiclassical and Quantum Results

for Bulk Mean Free Paths

In this appendix we compare the semiclassical results of (5.13)–(5.15) for
the elastic mean free path (MFP) in the ballistic regime with their counter-
parts obtained from quantum mechanical scattering theory and provide an
expression for the transport MFP [72].

In the standard perturbative diagrammatic approach the effect of a weak
random disorder potential is treated in the framework of the related Dyson
equation for scattering using the self-consistent Born approximation. The re-
sulting damping of the disorder-averaged single-particle Green function in a
random potential is of the same exponential form as in (5.12) [281]. This is
usually obtained by replacing the imaginary part of the self-energy in the
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Green function after impurity averaging, which is associated with the inverse
single-particle relaxation time, by the product of the density of states of the
unperturbed system and the disorder parameters niu

2. Here ni is the impu-
rity density and u the mean potential strength of a scatterer. The resulting
quantum mechanical elastic MFP lqm which occurs in (5.12) is related to the
total cross section σ by means of

1

lqm
= niσ , σ =

∫

dΘ σ(Θ) , (A.43)

with σ(Θ) being the partial cross section for scattering with an angle Θ.
For a Gaussian disorder potential of the form of (5.5) a calculation of the

cross section can be performed analytically and the corresponding inverse
MFP gives

1

lqm
=

1

lδ
I0[2(kξ)2] e−2(kξ)2 . (A.44)

Here, I0 is a modified Bessel function and

1

lδ
=

2π

h̄

niu
2

vF
N(0) =

niu
2

vF

m

h̄3 (A.45)

is the inverse MFP for the white-noise case of δ-like scatterers. vF is the Fermi
velocity and N(0) = m/(2πh̄2) is the density of states of a 2DEG [281].

In order to compare lqm with the semiclassical result, lqm(kξ) can be
expanded for large kξ:

lqm(kξ) ≃
√

4π (kξ) lδ

[

1 − 1

16(kξ)2

]

for kξ −→ ∞ . (A.46)

In the above equation the leading-order term is exactly the semiclassical
MFP (5.13) for the Gaussian disorder model (5.5). The agreement between
the semiclassical and diagrammatic approaches for the bulk can be related
to the fact that the semiclassical treatment of disorder corresponds to the
use of the eikonal approximation for each single scattering event, where the
scattering potential is assumed to modify only the phases but not the tra-
jectories themselves. The eikonal approximation is known to give the same
results as the Born approximation for large kξ.

For ξ < λF, the limit where the semiclassical description is no longer
valid, the mean free path lqm approaches lδ. This means that (5.12) can still
be used, but with the semiclassical l replaced by lδ.

The transport MFP lT is calculated quantum mechanically by including
a factor (1 − cosΘ) in the integral (A.43) for the scattering amplitude.2 We
find, for Gaussian disorder [72],

2 This can be shown rigorously within diagrammatic perturbation theory including
ladder diagrams [10].
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1

lT
=

1

lδ

{

I0[2(kξ)2] − I1[2(kξ)2]
}

e−2(kξ)2 (A.47)

≃ 1

lqm

1

4(kξ)2
for kξ −→ ∞ . (A.48)

According to this relation, lT can be considerably larger than lqm for λF < ξ.
This shows that in the case of a confined system and smooth disorder, the
system may behave ballistically even if the elastic MFP l is considerably
smaller than the system size.
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4. C. Rubio, N. Agräıt, and S. Vieira, Phys. Rev. Lett. 76, 2302 (1996).
5. R. Landauer, in Coulomb and Interference Effects in Small Electronic Struc-

tures, ed. by D.C. Glattli, M. Sanquer, and J. Trân Thanh Vân (Frontiers,
Gif-sur-Yvette, 1994).

6. G. Bergmann, Phys. Rep. 107, 1 (1984); P. A. Lee and T. V. Ramakrishnan,
Rev. Mod. Phys. 57, 287 (1985).

7. S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).
8. K. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University

Press, Cambridge, 1996).
9. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, New

York, 1997).
10. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University

Press, Cambridge, 1995).
11. D.K. Ferry and S.M. Goodnick, Transport in Nanostructures (Cambridge

University Press, Cambridge, 1997).
12. Mesoscopic Quantum Physics, ed. by E. Akkermans, G. Montambaux, J.-L.

Pichard, and J. Zinn-Justin (Elsevier, New York, 1995).
13. Single Charge Tunneling, ed. by H. Grabert and M.H. Devoret, NATO ASI

Series B, 294 (Plenum, New York, 1992).
14. Coulomb and Interference Effects in Small Electronic Structures, ed. by

D.C. Glattli, M. Sanquer, and J. Trân Thanh Vân (Frontiers, Gif-sur-Yvette,
1994).

15. Quantum Dynamics of Submicron Structures, ed. by H.A. Cerdeira,
B. Kramer, and G. Schön, NATO ASI 291 (Kluwer, Dordrecht, 1994).

16. Mesoscopic Electron Transport, ed. by L.L. Sohn, L.P. Kouwenhoven, and
G. Schön, NATO ASI Series E 345 (Kluwer, Dordrecht, 1997).

17. T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwerger,
Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1997).

18. J. Math. Phys. 37 (10) (1996).
19. Chaos, Solitons & Fractals 8 (7,8) (1997).
20. L.P. Kouwenhoven, C.M. Marcus, P.L. McEuen, S. Tarucha, R.M. Westervelt,

and N.S. Wingreen, Nato ASI Conference Proceedings, ed. by L.P. Kouwen-
hoven, G. Schön, and L.L. Sohn (Kluwer, Dordrecht, 1997).

21. K. Efetov, Adv. Phys. 32, 53 (1983).



208 References

22. M.L. Mehta, Random Matrices (Academic Press, New York, 1991); F. Haake,
Quantum Signatures of Chaos, (Springer, Berlin, Heidelberg, 1990).

23. O. Bohigas, in Chaos and Quantum Physics, ed. by M.-J. Giannoni, A. Voros,
and J. Zinn-Justin (North-Holland, New York, 1991).

24. T. Guhr, A.M. Müller-Groeling, and H.A. Weidenmüller, Phys. Rep. 299, 189
(1998).

25. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
26. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer,

Berlin, Heidelberg, 1990).
27. A.M. Ozorio de Almeida, Hamiltonian Systems: Chaos and Quantization

(Cambridge University Press, Cambridge, 1988).
28. Chaos and Quantum Physics, ed. by M.-J. Giannoni, A. Voros, and J. Zinn-

Justin (North-Holland, New York, 1991).
29. L.E. Reichl, The Transition to Chaos in Conservative and Classical Systems:

Quantum Manifestations (Springer, New York, 1992).
30. M. Brack and R.K. Bhaduri, Semiclassical Physics, Frontiers in Physics, 96,

(Addison-Wesley, Reading, 1997).
31. M.C. Gutzwiller, Am. J. Phys. 66, 304 (1998).
32. H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).
33. Chaos 2 (1) (1992).
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