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This paper determines upper and lower bounds on
the order behavior (as the number of nodes increases)
of throughput in an erasure network with transmit
and receive-side constraints. This model is a useful
abstraction of the network-layer behavior of a wireless
network. An upper bound on throughput is determined
for such a network, which is found to be achievable by
routing if the parameter that determines the decay of
channel quality with distance is greater than a critical
value.

I. INTRODUCTION

In this paper, we study the asymptotic relationship
between routing and coding as the number of nodes
in a random, extended erasure network increases.
Our network model is the wireless erasure network
[1], where each edge in a graph represents an in-
dependent erasure channel with a (possibly unique)
erasure probability. An erasure network is a useful
model for studying packetized communication in a
network. In addition, adding in transmit and receive-
side constraints allows us to capture both the broadcast
nature of the wireless medium as well as interference
in a wireless network.

In our setting, we allow each transmitting node to
broadcast one symbol across all of its outgoing edges
(so-called broadcast constraint on each transmitting
node). We consider two disparate settings on the
receive-side: One with no interference among nodes,
and the other with finite-field additive interference at
the receivers. The reasons these two models are of
great interest are as follows:

• An upper bound on throughput under the “no-
interference model” provides an upper bound on
throughput for a class of wireless channels with
interference. If Xi, 1 ≤ i ≤ m represent the input
to the channel, settings where the interference can
be decomposed into separate erasures on each
link producing Yi, 1 ≤ i ≤ m followed by an

interference mapping Z = g(Y1, . . . , Ym) with Z
being the channel output, the no-interference case
provides an outer bound on throughput. This is
because the receiver in the no-interference case
can “mimic” the interference function g, thus
making the maximum throughput for the inter-
ference case less than that of the no-interference
case.

• The finite field additive interference is intuitively
a pessimistic interference model. This is because
interference is traditionally thought to increase
the total received power (or equivalently, for finite
field inputs Xi ∈ F , the channel output Z
belongs to a field with alphabet size larger than
that of F ). Thus, restricting the output to belong
to the same (finite) field as each of the inputs
represents a “stringent” interference requirement.

Thus, the no-interference and finite-field interfer-
ence represent an optimistic and a pessimistic extreme
respectively, with many other interference settings
lying in between these two settings.

We have previously performed a similar analysis for
networks where the probability of a successful trans-
mission decays exponentially with distance between
transmitter and receiver [2] (the case of absorption).
This paper treats a power-law decay, where the proba-
bility of a successful reception decays polynomially
with order α. For a network where n nodes are
randomly placed in a square of area n (side length√

n ×
√

n), each node has independent information
which it desires to transmit to a unique randomly
assigned destination node.

Our main results in this paper are as follows:

• We show that for all α > 3, routing is order-
optimal. That is, we establish an upper bound on
the total throughput of the network that increases
as Θ(

√
n) within a poly-log factor, and that

Θ(
√

n) throughput growth is achievable using a



routing-only strategy. The upper-bounding tech-
nique that we use to do so is similar to that of
[3], where we use the fact that nodes and source-
destination are uniformly randomly located in
order to upper-bound the number of nodes that
are in a sense “close” to one another, and can
therefore achieve a greater throughput than nodes
that are situated further away from each other.

• In other words, we show that for α > 3 gains
from network coding in this model are sub-
polynomial when studied from point of view of
order behavior. For 2 ≤ α ≤ 3, further investi-
gation is required to determine if network coding
might potentially provide gains in throughput that
increase polynomially with n.

A large body of work, on both multicast and muliple
unicast systems (for example [4]) demonstrates that
network coding can provide gains in many network
settings. Our result is similar to that of [5] in that
we claim that the gains of network coding in our
models are order-wise negligible; however, we allow
a larger selection of transmit strategies as our analysis
is information-theoretic.

II. SYSTEM MODEL

In this paper, we study a class of wireless networks
on directed graphs which all fall under the classifica-
tion of random broadcast erasure networks:

• In a square of area n, n nodes are uniformly
randomly distributed. Each node is a source of
independent data, and is assigned a unique desti-
nation. We consider the total throughput achiev-
able by all node pairs.

• The term broadcast specifies that in each time-
slot, every node can choose only one symbol from
its alphabet to transmit, and must transmit that
identical signal along all outgoing edges.

• Each edge in the directed graph network acts as
an independent erasure channel.

• A fairly general set of interference models are
allowed.

Each of these characteristics are discussed in greater
detail below.

Distribute n nodes on the square with
√

n ×
√

n-
length sides, and then consider the complete directed
graph G = (V,E) formed of the n nodes and 2

(
n
2

)
directed edges. For each edge (i, j) (directed from the
node i to the node j) assign an erasure probability
εij . The erasure probability will describe the quality
of the link between nodes i and j. We assume that
the probability of a non-erasure event (i.e. a success-
ful transmission) decays polynomially with distance.
Specifically, if the physical distance between nodes i
and j is dij , then

εij = 1− 1
1 + dα

ij

where the parameter α determines the attenuation law.
In each time-slot t, each node i chooses a single

symbol Xi(t) from the finite field alphabet Fq. Each
edge acts as an independent erasure channel. That is,
each edge (i, j) produces the output X̃ij from the
alphabet {Fq, E} where

p(X̃ij = Xi) = 1− εij

p(X̃ij = E) = εij .

We call the X̃ij the edge channel outputs.
At the end of each time-slot, each node j receives

the channel output Yj . To allow for a general set
of interference models, we allow this output to be a
probabilistic function of all the edge channel outputs.
Specifically, we allow

Yj(t) = fj

(
{X̃ij(t)|(i, j) ∈ E}, Qj

)
(1)

where Qj are mutually independent random vectors.
We are most interested in two specific interference

models:
• The case of no interference, where Yj(t) is the

vector of all the incoming edges’ X̃ij . This model
is most similar to the wireless erasure network
model of [1].

• The case of finite-field additive interference,
where

Yj(t) =
∑

{i|(i,j)∈E and X̃ij(t) 6=E}

X̃ij(t).

Here the output is the sum of all unerased sym-
bols along incoming edges. We began the study
of such a model in [2].

We also note that the wireless broadcast additive
interference network model of [6] is a member of the
set of interference models described by Equation (1).

Every node in the network has an independent
source of data. We assign n source-destination pairs
(sl, tl) randomly, such that each node is the unique
destination for exactly one other node. We desire
to determine asymptotic upper and lower bounds on
the maximum common rate at which every source-
destination pair can simultaneously communicate reli-
ably.

III. UPPERBOUND

We prove the following converse result:
Theorem 1: For the set of random planar networks

described in Section II, with high probability, the sum
total throughput grow no faster than O(

√
n), within a

polylog factor, when the decay parameter α > 3.
This upperbound is valid for all of the broadcast

erasure networks where the channel output available
to each node is a composite function of the incoming
edge channel outputs available to that node. The
information-theoretic upper-bounding analysis allows



for the possiblilty of a wide variety of transmit and
coding strategies, including traditional network coding
and opportunistic network coding. [7]

Proof: We desire that all n source-destination
pairs reliably communicate at some minimum rate R.
That is, each source sl, l ∈ {1, . . . , n} chooses a
message wl independently and uniformly at random
from the set {1, . . . , 2TR}. We desire to determine the
maximum R such that each node can, with arbitrarily
small probability of error, identify which message was
chosen using T network timeslots.

We will consider the case of a network with no in-
terference, as described in Section II. The information
available to each receiver j in all other models is a
(possibly random) function of the vector of all edges’
X̃ij . Thus for each j, by the data processing inequality,
the mutual information between the channel outputs
and the set of all n source messages wl for the no
interference model –

I({X̃ij(t)|(i, j) ∈ E}; {wl|l ∈ 1..n})
≥I(Yj(t); {wl|l ∈ 1..n}) (2)

is greater than that of any other model. The no
interference model therefore provides an upper-bound
on the maximum possible rate R.

Our primary tool for calculating an upperbound
on R will be the cut-set bound, as described in, for
example, [8]. In [9], we prove the following lemma
for the wireless erasure network with no interference:

Lemma 1: For a wireless erasure network with no
receiver interference divided into two sets of nodes,
S and SC , the cut-set bound on the feasible sum rate
of data from S to SC evaluates to

Rcut ≤I(XS ;YSC |XSC )

≤
∑
i∈S

1−
∏

j∈SC

ε (dij)

 , (3)

where dij is the distance between the ith and jth

nodes.
(The difference between this lemma and the proofs

in [1] is that we consider the possibility of cycles,
while [1] limits their investigation to directed, acyclic
graph networks.)

As in [3], we consider a cut that divides the area
of the network in half, through the middle, into L and
R = LC . For any positive δ, with high probability,
between (1 − δ)/4 and (1 + δ)/4 of the source-
destination pairs will have sl ∈ S and tl ∈ SC .
Therefore, the sum-rate nR of the entire network is
upperbounded by no more than 4 time the upperbound
on sum-rate across the L −R cut.

Take the total area of the network n = r2 and divide
it into n sub-blocks of size 1. Let VL be the set of
nodes in the r =

√
n squarelets directly to the left of

the cut. We can then bound Equation (3), evaluated
over the L −R cut as

∑
i∈L

∑
j∈R

(1− εij) + |VL|

=
∑
i∈L

∑
j∈R

1
1 + dα

ij

+ |VL|

≤
∑
i∈L

∑
j∈R

1
dα

ij

+ |VL|. (4)

The contribution to the sum from nodes in the
r =

√
n squarelets in L on the boundary (i.e., nodes

in VL) is no greater than 1 for each node. Every
squarelet contains less than log n nodes with high
probability, so this component of the rate sum is less
than O(

√
n log n) w.h.p.

The left hand side of the sum in Equation (4) is
bounded by K

√
n, where K is a constant dependent

only upon α. The details of the mathematical proof is
given in the Appendix.

Thus, we have shown that the total sum-rate across
the cut, and therefore the total throughput, is bounded
to within a polylog factor by O(

√
n).

IV. ACHIEVABILITY

We prove the following theorem:

Theorem 2: For the random broadcast erasure
network with finite-field additive interference, Θ(

√
n)

sum total throughput is achievable, using a
routing-only strategy, when α > 3.

Proof: Our constructive strategy for achieving,
within a polylog factor, R=Θ(1/

√
n) throughput for

each node pair is similar to the constructive strategy
of Section IV of [10]. We will divide the network
into square cells (different from the squarelets of the
converse proof), this time of size ρ× ρ, where ρ is a
constant independent of n (but dependent on α) to be
determined later. With high probability, each cell will
have no more than ρ3 log n nodes.

We will operate the network on a TDMA scheme,
where each cell is allowed to have one node transmit
in each of c2 timeslots - either to a node in its own cell,
or to a node in an adjacent cell. Under this scheme,
the nearest simultaneously operating transmitter is at
least c − 1 cells away from the intended receiver, or
a distance of at least ρ(c − 1) away. The 8 closest
transmitters are all (at least) this distance from the
receiver. The next 16 operating transmitters are all at
least 2c− 1 squares away, and so on so that there are
8k transmitters at least a distance of (ck − 1)ρ from
the intended receiver, for all positive integers k.



The union bound on the probability that the symbol
from at least one of these transmitter is not erased,
Pint, is thus

Pint ≤
∞∑

k=1

8k ((ck − 1)ρ)−α (5)

The sum converges for α > 3, the range we
are interested in, and by choosing an appropriate ρ
(independent of n) the upperbound on the probability
Pint can be made less than 1. The probability of a
successful transmission between two nodes in adja-
cent cells (located no further apart than 2ρ, with no
interfering symbols simultaneously received, is then
better than

Rneighbor =
1

1 + (2ρ)α
(1− Pint) . (6)

Each node in the cell gets at least a 1/ρ2 log n
fraction of this rate; and the TDMA scheme allows
the cell to operate at 1/c2 fraction of the time.

As is argued in [10], straight-line routing, or for-
warding each transmission to the next cell closest
to the destination, requires no more than

√
n log n

paths share each node. Since each route must share a
(within a log factor) constant Rneighbor/(c2ρ2 log n)
rate available in each cell, the rate available to each
route is at least Θ(1/

√
n), to a polylog factor.

Clearly, any order of throughput which is achievable
in the network with interference is also acheivable for
the no-interference case.

Since each of the n source-destination node pairs
can achieve a minimum of Θ(1/

√
n) throughput, the

total throughput for the system is at least Θ(
√

n), to
a polylog factor.

V. CONCLUSION

We have shown that for a class of random erasure
networks that incorporate both broadcast constraints
and receiver interference, an upper bound on total
throughput grows as O(

√
n) in the total number of

nodes if α > 3. We also argue that finite-field additive
interference is, in an intuitive sense, a pessimistic no-
tion of interference for which Θ(

√
n) total throughput

is achievable. Thus for the setting under consideration
routing is sufficient to provide the correct order of
maximum throughput. That is, network coding in the
case α > 3 for an erasure network with broadcast
constraints with or without receive side constraints can
provide no more than a polylog factor improvement in
performance. For the case of 2 < α ≤ 3, we believe
that further research might demonstrate the possibility
of a larger increase in throughput with number of
nodes using network coding.

ACKNOWLEDGEMENTS

The authors would like to acknowledge funding
from National Science Foundation grants NSF CCF-
0448181, NSF CCF-0552741, NSF CNS-0615061,
NSF CNS-0626903, NSF CCR-0325673 and NSF
CNS-0519535.

APPENDIX

Here we demonstrate that Equation (4) is bounded
by K

√
n.

In every squarelet, there will be no more than log n
nodes. The left side of Equation (4) is thus bounded
by the expression

r/2∑
il=2,ir=1

r∑
jl,jr=1

2 (log n)2(
(il + ir − 2)2 + (jl − jr)

2
)α/2

(7)
by assuming that there are log n nodes in each
squarelet, and that they are all located at the minimum
source-destination distance possible for each pair of
squarelets under consideration (Figure 7 on page 32
in [3]. We consider the rate achievable with just two
nodes in each squarelet, and multiply it by the two
log n terms.

We bound Equation (7) by
r∑

il=0,ir=1

r∑
jl,jr=1

2 (log n)2(
(il + ir)

2 + (jl − jr)
2
)α/2

(8)

and break the summation into four cases:
• Case 1: il = 0 and jr = jl = j

r∑
j=1

r∑
ir=1

1
iαr
≤ r

∞∑
ir=1

1
iαr

=
√

nK1

when α > 1 and the final sum converges.
• Case 2: il ≥ 1 and jr = jl = j

r∑
j=1

r∑
il=1

r∑
ir=1

1
(ir + il)

α

≤r
∞∑

il=1

∞∑
ir=1

1
(ir + il)

α =
√

nK2

when α > 2 and the final sum converges.
• Case 3: il = 0 and jr 6= jl

r∑
ir=1

r∑
jr=1

r∑
jl=1,jl 6=jr

1(
i2r + (jr − jl)

2
)

α/2

which we will show is bounded by
√

nK3 when
α > 2.

• Case 4: il ≥ 1 and jr 6= jl



r∑
il=1

r∑
ir=1

r∑
jl=1

r∑
jl=1,jl 6=jr

1(
(il + ir)

2 + (jl − jr)
2
)α/2

which we will show is bounded by
√

nK4 when
α > 3.

A. Summary of Case 3

Bound
r∑

ir=1

1(
i2r + (jr − jl)

2
)

α/2

by the integral∫ ∞

0

1

(x2 + a2)α/2
dx = a1−αK ′

3

using a = |jr − jl| and the substitution x = a tan θ.
Then

K ′
3

r∑
jl=1

∞∑
jl=1,jl 6=jr

1
|jr − jl|α−1

<
√

nK3

for α > 2.

B. Summary for Case 4

The procedure is similar to that in Case 3 except
that we bound a double summation to get

K ′
4

r∑
jl=1

∞∑
jl=1,jl 6=jr

1
|jr − jl|α−2

<
√

nK4

which converges only when α > 3.
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