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Parallel and Distributed Finite ConstraintSatisfaction: Complexity, Algorithms andExperimentsYing Zhang and Alan K. Mackworth�Department of Computer ScienceUniversity of British ColumbiaVancouver, B.C.Canada, V6T 1Z4Email: zhang@cs.ubc.ca, mack@cs.ubc.caAbstractThis paper explores the parallel complexity of �nite constraint satisfaction prob-lems (FCSPs) by developing three algorithms for deriving minimal constraint networksin parallel. The �rst is a parallel algorithm for the EREW PRAM model, the secondis a distributed algorithm for �ne-grain interconnected networks, and the third is adistributed algorithm for coarse-grain interconnected networks. Our major results are:given an FCSP represented by an acyclic constraint network (or a join tree) of size nwith treewidth bounded by a constant, then (1) the parallel algorithm takes O(logn)time using O(n) processors, (2) there is an equivalent network, of size poly(n) withtreewidth also bounded by a constant, which can be solved by the �ne-grain distributedalgorithm in O(logn) time using poly(n) processors and (3) the distributed algorithmfor coarse-grain interconnected networks has linear speedup and linear scaleup. In ad-dition, we have simulated the �ne-grain distributed algorithm based on the logical timeassumption, experimented with the coarse-grain distributed algorithm on a network oftransputers, and evaluated the results against the theory.�Shell Canada Fellow, Canadian Institute for Advanced Research1



1 IntroductionA Finite Constraint Satisfaction Problem (FCSP) can be described informally as follows.Given a set of variables, each with a �nite domain, and a set of constraints, each specifyinga relation on a subset of the variables, �nd the relation on the set of all the variableswhich satis�es all the given constraints simultaneously. FCSPs are useful abstractions ofmany problems in image understanding, planning, scheduling, database retrieval and truthmaintenance [Mac92] [Dec92]. However, it is well known that the FCSP decision problemis NP-complete. In order to cope with the intractability of FCSPs, two strategies havebeen followed: (1) �nding e�cient algorithms for preprocessing, such as arc consistency[Mac77], path consistency [Mon74] and k-consistency [Fre78] algorithms and (2) exploitingthe topological features of FCSPs to guide e�cient algorithms for solving these problems[Dec92].Arc consistency (AC) plays an important role in constraint network preprocessing, notonly because it has linear complexity in the number of constraints in binary constraintnetworks, but also because it produces the minimal network when it is applied to a tree[MF85]. Similar results were proved in relational database theory [BFM+81], i.e. for acyclicnetworks pairwise consistency is su�cient for global consistency. In fact, pairwise consistencyis exactly arc consistency on a join network and the scheme of an acyclic network is ahypertree [SS88]. On the other hand, by exploiting the topological structures, a subsetof tractable FCSPs was identi�ed [Fre90] [Dec92]. The scheme of this kind of FCSP is aparticular kind of graph called a partial k-tree, i.e. a graph which can be embedded ina hypertree with treewidth bounded by a constant k. It has been shown that many NP-complete problems in graph properties can be decided in linear time for the set of partialk-trees given a tree-decomposition [AL91]. Furthermore, it has been discovered that many2



classes of graphs are in this set [Bod86], including series-parallel graphs, outerplanar graphs[Bod86] and graphs generated by context-free grammars [RM89] [Cou90]. The complexity ofFCSPs given a tree-decomposition is related to two parameters of acyclic constraint networks:size and treewidth, which depend only on the topological features of FCSPs. The treewidthof a constraint network, which is equivalent to the minimum induced width [Dec92], is oneof the essential factors for the complexity. If a tree-decomposition is given for an FCSP withtreewidth bounded by a constant, the decision problem can be solved in linear sequentialtime [MF85] [Dec92] [RM89] [Fre90].Research on parallel and distributed algorithms for FCSP started very recently. The par-allel complexity of problems can be characterized by a class called NC [KR90]. A problemis in NC i� there is a parallel algorithm for this problem in a PRAM model, which takespolylog time using polynomial number of processors, i.e. theoretically, the problem can besolved e�ciently in parallel. It has been shown [Bod88] that many graph recognition prob-lems which are NP-complete in general are in NC when restricted to graphs with boundedtreewidth. It is proved that the arc consistency problem for a constraint network of binaryrelations is in NC if the constraint network is a tree, but P-complete in general [Kas90]. It iswell known that NC � P and a P-complete problem is in NC i� NC = P which is unlikely tobe true. Some work on the connectionist approach to constraint satisfaction has also beenreported [Coo89] [Gue91], but worst case time has not essentially been improved by massiveparallelism.Even though PRAM models are theoretically elegant for studying parallel complexity,many parallel machines are designed as recon�gurable interconnected processors with dis-tributed memory. Such a distributed computation model for FCSPs has been given in [CD91].The distributed problem solving with distributed constraint satisfaction has been formalizedby [YDIK92]. A series of distributed arc consistency algorithms has been developed and the3



performance both in simulation and on real parallel machines has been analyzed. However,the complexity of distributed constraint satisfaction remained unknown.The major contributions of this paper are three new parallel and distributed algorithmsfor constraint networks, and the analysis of these algorithms. Given an FCSP represented byan acyclic constraint network (or a join tree) of size n with treewidth bounded by a constant,we have the following results.1. The parallel algorithm PTAC takes O(log n) time using O(n) processors, therefore suchan FCSP decision problem is in NC. It generalizes Kasif's result [Kas90] from treewidth1 to any constant k; the result can be further generalized to FCSPs with treewidthbounded by O(log n).2. There is an equivalent network, of size poly(n) with treewidth also bounded by aconstant, which can be solved by the �ne-grain distributed algorithm, DJAC, in O(log n)time using poly(n) processors.3. The algorithm for coarse-grain interconnected networks, DTAC, has linear speedup andscaleup.In addition to the theoretical results, we have simulated the �ne-grain distributed algorithmbased on logical time assumptions and experimented with the coarse-grain distributed algo-rithm on a network of transputers.Table 1 summarizes current knowledge on the complexity of FCSPs; our results aremarked with (y). The rest of the paper is organized as follows. Section 2 gives the de�nitionof constraint networks and the related concepts, followed by two sequential AC algorithms,JAC and TAC . Section 3 presents the parallel algorithm PTAC for the EREW PRAM model,which yields the parallel complexity result. Section 4 develops the distributed algorithm DJACfor �ne-grain interconnected networks, and related complexity results are developed for this4



Table 1: The complexity of FCSPsProblem Restriction Sequential Complexity Parallel ComplexityFCSP decision binary relations NP-completeEnforcing arc consistency linear P-completeConsistency k-consistency poly P-completeFCSP decision treewidth = 1 linear NCgiven tree- treewidth � k linear NC ydecomposition treewidth � k log n poly NC ymodel. Preliminary versions of the results in Sections 3 and 4 have been presented earlier[ZM91a, ZM91b, ZM91c]. Section 5 constructs the distributed algorithm DTAC for coarse-grain interconnected networks; speedup and scaleup are discussed for this model. Section 6shows the experimental results both in simulation and on real distributed machines. Section7 concludes the paper.2 Properties of Constraint NetworksMany problems can be formalized as �nite constraint satisfaction problems, which can berepresented by constraint networks. In this section, we use the Course Scheduling (CS)problem as an example to illustrate the major ideas. CS is a simpli�ed version of thegeneral timetabling problems [SS80]. CS(N;n; k) can be informally stated as follows. Givena set of courses, fc1; c2; : : : ; cNg, each of which can be scheduled in one of k timeslots, anda set of students, fs1; s2; : : : ; sng, each of whom takes some of the courses, the problem isto �nd a timetable such that no two courses taken by any student are scheduled in thesame timeslot. We will come back to this example later when we discuss the properties ofconstraint networks. 5



2.1 Constraint networksFormally, a constraint, written r(R), can be considered as a relation r on a relation schemeR [Mai83]. A relation scheme R is a set of variables, fv1; v2; : : : ; vkg. Associated with eachvariable vi is a domain di. Let d = d1 [ d2 : : : [ dk. A relation r on a relation scheme R is aset of mappings, ft1; t2; : : : ; tpg, from R to d, with the restriction that if t 2 r then t(vi) 2 di.We call r(R) a universal constraint if r includes all the possible mappings from R to d withthat restriction. Projection, join and semijoin are operations de�ned on constraints. Letr(R) be a constraint and X � R. The projection of r onto X, written �X(r), is a relationon the relation scheme X, �X(r) = ft(X)jt 2 rg, where t(X) is the mapping restricted toX. The join operation of two constraints r(R) and l(L), written r 1 l, is a relation on therelation scheme R[L, r 1 l = ft(R[L)jt(R) 2 r; t(L) 2 lg. The semijoin operation of r(R)and l(L), written r / l, is a relation on the relation scheme R, r / l = �R(r 1 l). Projection,join and semijoin are the basic operations in our algorithms.Any FCSP can be represented by a constraint network. Graphically, a constraint networkis a labeled hypergraph, in which nodes represent variables and arcs represent constraints.Formally, a constraint network is de�ned as follows.De�nition 2.1 (Constraint network) A constraint network is a quadruple CN = hV; dom;A; coniwhere� V is a set of variables, fv1; v2; : : : ; vNg,� associated with each variable vi is a �nite domain di = dom(vi),� A is a set of arcs, fa1; a2; : : : ; ang,� associated with each arc ai is a constraint ri(Ri) = con(ai).6



Let C be the set of constraints of a constraint network CN , C = fcon(ai)jai 2 Ag. Thehypergraph of CN is called the scheme of CN [Dec92], scheme(CN) = hV;Ei where E =fRjr(R) 2 Cg.Clearly, CS can be represented by a constraint network CN with V = fc1; c2; : : : ; cNg,dom(ci) = f1; 2; : : : ; kg, A = fs1; s2; : : : ; sng, and con(si) = ri(Ri) where Ri is the set ofcourses which si takes and ri = ftj8cp; cq 2 Ri; cp 6= cq ! t(cp) 6= t(cq)g.A solution s of a constraint network CN is a mapping from the set of all variables totheir corresponding domains which satis�es all the given constraints. Formally, let sol(CN)be the set of all solutions of CN , s 2 sol(CN) i� 8r(R) 2 C, s(R) 2 r. A constraint networkCN is minimal i� 8r(R) 2 C, �R(sol(CN)) = r. Clearly, the FCSP decision problem canbe reduced to the problem of deriving minimal networks. Two constraint networks CN andCN 0 are equivalent, written CN � CN 0, i� V = V 0; dom = dom0; sol(CN) = sol(CN 0). Aconstraint network is binary i� 8r(R) 2 C; jRj � 2.2.2 Dual networks and join networksThe dual network DN of a constraint network CN is an alternative representation of anFCSP. DN is a labeled undirected graph, in which the nodes are the arcs of CN labeled byconstraints. Formally, for any two nodes ai; aj in DN , with con(ai) = ri(Ri) and con(aj) =rj(Rj), if I = Ri \ Rj 6= ;, then e = fai; ajg is an edge in DN . The label of e, denotedL(e), is I. A dual network can be regarded as a binary constraint network with constraintsof equality.A join network JN of a constraint network is a subnetwork of the dual network DN , withredundant edges removed. Formally, for any two nodes ai, aj in JN , with con(ai) = ri(Ri),con(aj) = rj(Rj), and I = Ri\Rj 6= ;, if there is a path between ai and aj in JN , consistingof he1; e2 : : : ; eli, such that 81 � k � l, I � L(ek), then e = fai; ajg is not an edge in7



JN , otherwise e is an edge in JN . A dual network can have many join networks withdi�erent redundant edges removed. Consider a CS example with N = 7, n = 6, k = 4 andR1 = fc1; c2; c3g; R2 = fc1; c4g; R3 = fc4; c5g; R4 = fc5; c6g; R5 = fc2; c6g; R6 = fc1; c2; c7g.Figure 1 shows the scheme of the constraint network, the dual network and four of itsjoin networks for this example. Two join networks JN1 and JN2 are equivalent, writtenJN1 � JN2 i� their correspondent constraint networks are equivalent.2.3 Acyclic constraint networksA constraint network CN is acyclic i� its scheme is acyclic, a hypertree [Mai83] [SS88].It has been shown that a hypergraph is a hypertree i� its join graphs are trees [Mai83].A constraint network may not be acyclic in general, as in the example shown in Fig. 1.However, for any hypergraph, a tree-decomposition can be de�ned as follows.De�nition 2.2 (Tree-decomposition) Let G = hV;Ei be a hypergraph. A tree-decompo-sition of G is a pair hfXiji 2 Ig; T = hI; F ii, with Xi � V and T a tree, with the followingproperties:� Si2I Xi = V ,� for every edge e 2 E, there is an Xi; i 2 I such that e � Xi,� for all i; j; k 2 I, if j lies on a path in T from i to k, then Xi \Xk � Xj .The treewidth of a tree-decomposition hfXiji 2 Ig; T i is maxi2I jXij�1. The treewidth of G,denoted treewidth(G), is the minimum treewidth of a tree-decomposition of G, taken overall possible tree-decompositions of G. Given a constraint network CN = hV; dom;A; coni,if hfXigi2I; T i is a tree-decomposition of scheme(CN), TC = hV; fXigi2Ii is called a tree-clustering scheme of CN . It is easy to see that (1) any tree-clustering scheme TC of CN is8
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a hypertree and (2) for any relation scheme R in CN , there is an edge R0 in TC, such thatR � R0. TC can be obtained by applying a tree-clustering algorithm [Dec92] to scheme(CN).Figure 2 shows two di�erent tree-clustering schemes for the constraint network given in Fig.1.
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Figure 2: Two tree clustering schemesGiven a tree-clustering scheme TC for CN , we can construct an equivalent acyclic net-work ACN for CN as follows. Let ACN = hV; dom;A [ A0; con0i such that 8R0 2 TC andR0 62 scheme(CN);9a0 2 A0; con0(a0) = r0(R0) is a universal constraint and 8a 2 A; con0(a) =con(a). It is easy to see that (1) ACN � CN and (2) ACN is an acyclic constraint network.For the CS problem, if TC is TC2 in Fig. 2 then A0 = fa1; a2; a3g, with universal constraintscon0(a1) = r1(fc1; c4; c5g), con0(a2) = r2(fc2; c5; c6g), and con0(a3) = r3(fc1; c2; c5g). A joinnetwork for this acyclic constraint network is shown in Fig. 3. We call a join network of anacyclic constraint network a join tree.2.4 Enforcing consistencyA constraint networkCN = hV; dom;A; coni is pairwise consistent [BFM+81] if for all pairs ofri(Ri) and rj(Rj) in C, �Ri\Rj(ri) = �Ri\Rj(rj) where C = fcon(a)ja 2 Ag. It is easy to seethat a constraint network is pairwise consistent i� its dual network is arc consistent [Mac77].10
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Figure 3: A join treeFurthermore, the dual network is arc consistent i� its join networks are arc consistent. It isclear that if a constraint network is minimal, it is pairwise consistent. However, the converseis not always true for arbitrary networks. For any relations on the relation schemes in aconstraint network, pairwise consistency implies global consistency if the constraint networkis acyclic [BFM+81]. This is equivalent to the result in [MF85] that arc consistency enforcesa minimal network if the network is a tree.Let AC be a series of algorithms with a join network as input and an equivalent arcconsistent join network as output. AC enforces arc consistency on a join network, i.e.AC(JN) � JN . We present two sequential AC algorithms: JAC and TAC.JAC (Fig. 4) is a modi�ed version of AC-3 in [Mac77]. First put the set of arcs, pairs ofconstraints, in a queue. While the queue is not empty, do the following: Get an arc from thequeue, perform a semijoin of the two constraints, with the �rst constraint against the second.If the �rst constraint is re�ned, make sure all of its neighboring arcs are on the queue. Thealgorithm �nishes with an arc consistent join network. According to [MF85], JAC is linearin the number of arcs, or edges, in the join network. Furthermore, it can be more e�cientfor a join tree if the arcs in the queue are initially ordered.11



||||||||||||||||||||||||||{Algorithm JAC: Enforce Arc ConsistencyInput: join network <A,E>;Output: arc consistent network;BEGINq := the set of all arcs in E;/* if {a1,a2} in E, then both (a1,a2) and (a2,a1) in q */WHILE (q is not empty) DOBEGINremove arc (a1,a2) from q;/* con(a1) = r1(R1),con(a2) = r2(R2) */r := r1 semijoin r2;IF r =\= r1 THENBEGINr1 := r;q := q union {(a,a1)|{a,a1} in E}\{(a2,a1)}ENDENDEND ||||||||||||||||||||||||||{Figure 4: Enforcing arc consistency in a join network
12



TAC (Fig. 5) is an explicit version of JAC for rooted join trees (by picking any node asroot), such that each arc is checked only once. The algorithm produces an arc consistent||||||||||||||||||||||||||{Algorithm TAC: Enforcing Arc ConsistencyInput: rooted join tree <A,E>;Output: arc consistent join tree;BEGINq0 := the set of all nodes in A;/* ordered from children to parents */q := q0;WHILE (q is not empty) DOBEGINremove node a from q; /* con(a) = r(R) */FOR (all (a,a1) in E) /* con(a1) = r1(R1) *//* a is the parent of a1 */r := r semijoin r1ENDq: = reverse q0;/* ordered from parents to children */WHILE (q is not empty) DOBEGINremove node a from q;FOR (all (a1,a) in E) DOr := r semijoin r1ENDEND ||||||||||||||||||||||||||{Figure 5: Enforcing arc consistency in a join treejoin tree by traversing the join tree twice: �rst bottom up, then top down. The algorithmconsists of two phases. The �rst phase starts from the leaves and each constraint performssemijoin operations with all of its children. This phase results a directional arc consistentnetwork, i.e. parents are consistent with their children. The second phase starts from the13



root and each constraint performs a semijoin operation with its parent.The solutions for a constraint network CN can be computed in three steps. First, con-struct a join tree JT of an acyclic constraint network ACN which is equivalent to CN .Second, enforce arc consistency in JT . Third, apply backtrack free search [Fre82] to AC(JT ).In this paper, we concentrate on the parallel and distributed algorithms for the second step,while the �rst step is considered as preprocessing, in that our algorithms assume that CNis represented by JT (for PTAC and DTAC) or JN (for DJAC).2.5 Sequential complexityThe complexity of the arc consistency problem on a join network is related to two parametersof its constraint network: size and width. The size of a constraint network is the numberof arcs, size(CN) = jAj. The width of a constraint network is the maximum size of therelation schemes minus one, width(CN) = maxR2scheme(CN) jRj � 1. The width of an acyclicconstraint network is also called the treewidth. For the constraint network CN given in Fig.1, size(CN) = 6, width(CN) = 2. Its acyclic constraint network with tree-clustering schemeTC1 has size 7, treewidth 4; while its acyclic constraint network with tree-clustering schemeTC2 has size 9 and treewidth 2. The treewidth of a constraint network is the minimumtreewidth over all of its acyclic constraint networks resulting from tree-decomposition.For an acyclic constraint network of size n and treewidth w, arc consistency in any of itsjoin trees takesO(nl log l) sequential time [Dec92] where l = mw+1 andm = max1�i�Nfjdom(vi)jg.Since w is the only exponential factor, it is critical for an acyclic constraint network to havesmall treewidth. Even though �nding the treewidth of a constraint network and its corre-sponding tree-decomposition is an NP-complete problem [AL91], there are many e�cientalgorithms for building sub-optimal tree-clustering schemes [Dec92]. Furthermore, in manycases, the relation schemes are �xed, such as a relational database subjected to repeated14



queries, or have a regular topology such as an array, ring or mesh structure. The paral-lel and distributed AC algorithms assume that the equivalent acyclic network and its joinnetwork are constructed o�-line.3 A Parallel Algorithm and ComplexityArc consistency on a join tree whose constraint network has treewidth 1 is in NC [Kas90]. Inthis section, we generalize this result to any acyclic constraint network of bounded treewidth.We show that, given a join tree of an acyclic constraint network CN of bounded treewidth,there is an e�cient parallel AC algorithm which takes O(log n) time using O(n) processorsin the EREW PRAM model, where n is the size of CN .The key idea is to apply parallel tree contraction and expansion algorithms to the prob-lem. The techniques of tree contraction and expansion are abstracted from many applica-tions dealing with trees. Tree contraction reduces a tree to a single node, processing theinformation on the nodes as they are removed. Tree expansion is an inverse of contraction,propagating the information from the single node back to other nodes. It is known that thereexist e�cient parallel algorithms for tree contraction and expansion [MR85] [ADKP89]. Wecan obtain an e�cient parallel algorithm for the problem by associating a procedure witheach tree contraction and expansion step and proving that such a procedure executes inparallel quickly. The parallel algorithm is based on the parallel tree contraction algorithmin [MR85]. The procedures can be associated with other parallel tree contraction algorithms[ADKP89].3.1 Parallel tree contractionLet T = hA;Ei be a rooted tree with nodes A and edges E. A sequence of nodes a1; : : : ; akis called a chain if ai+1 is the only child of ai for 1 � i < k, and ak has exactly one child and15



that child is not a leaf. The parallel tree contraction algorithm de�nes two basic contractoperations: RAKE and COMPRESS (Fig. 6). RAKE is the operation of removing all
COMPRESS

RAKE

RAKE || COMPRESS

CONTRACT:Figure 6: Parallel tree contractionleaves from T . COMPRESS is the operation on T which contracts all the maximal chainsof T in half, by identifying ai with ai+1 for i odd, where ai is a node on a maximal chain.CONTRACT is the simultaneous application of RAKE and COMPRESS to the entire tree.After dlog5=4 ne executions of CONTRACT on a tree of n vertices, the tree is reduced to itsroot [MR85].3.2 The parallel algorithm PTACThe parallel AC algorithm PTAC consists of two phases: ContractAC and ExpandAC.ContractAC,shown in Fig. 7, iterates tree contraction on a rooted join tree T . Semijoin operations are16



associated with each RAKE; join and projection operations are associated with each COM-PRESS. The algorithm assumes that the join tree T = hA;Ei, with constraints associatedwith A, is allocated in the common memory.For a 2 A, let pt(a) be the parent of a. If a has only one child, let cd(a) denotethat child. If arg(a) is the number of children of a, let chain(a) be a boolean functionde�ned as arg(a) = 1 and arg(pt(a)) = 1. We call p the contracting parent of a, if ais raked from p or a is compressed to p. Let cp(a) denote the contracting parent of a.Whenever a RAKE operation removes a leaf node with constraint l(L) from its parent withconstraint r(R), a semijoin r / l is performed and r, the relation on the parent, is updated.Correspondingly for the COMPRESS operation, suppose ai; ai+1 are two consecutive nodeson a chain and let ai�1 be the parent of ai and ai+2 be the child of ai+1 with con(ak) = rk(Rk)and Lk = Rk\Rk+1, where i�1 � k � i+1. Whenever ai is identi�ed with ai+1, an operation�Li�1[Li[Li+1(ri 1 ri+1) is applied, to produce the constraint for the new merged node.Figure 8 shows the �rst three iterations of applying algorithm ContractAC to a join treeresulting from a tree-decomposition of a constraint network with a ring topology, whereshading depicts the removal of a node from T . It is clear that the number of iterations inContractAC is identical to the number needed for CONTRACT.During the tree contraction phase, links between a contracting parent and its contractednodes are established. Let T 0 = hA0; E 0i be the join tree resulting from applying ContractACto T , such that A0 = A [A00 where A00 includes all the nodes created in the tree contractionphase, and (a; a0) 2 E 0 i� a0 = cp(a), i.e., a0 is the contracting parent of a. The tree expansionphase (Fig. 9) starts from the root node of T 0 and propagates the solutions from root toleaves. Initially, the root is marked. Whenever the parent of a node is marked, the solutionscan be computed for the node and then the node is marked.The parallel AC algorithm PTAC (Fig. 10) simply applies ContractAC to T and then17



||||||||||||||||||||||||||{Algorithm ContractAC: Tree Contraction PhaseInput: rooted join tree T = <A,E>;Output: directional arc consistent join tree;Iterate the following procedure until T=root:In Parallel for all a in A\{root}BEGINr(R) := con(a); p(P) := con(pt(a));IF (a has a leaf child) THEN /* RAKE */FOR (each leaf child c with constraint l(L))BEGINr := r semijoin l; remove c;/* update links of a */cp(c) := aENDELSE IF (chain(a)) THEN /* COMPRESS */BEGIN /* pt(a) is identified with a */create a new node a';c(C) := con(cd(a));p'(P') := con(pt(pt(a)));P" := C * R + R * P + P * P';/* + denotes union,* denotes intersection */p" := project (r join p) on P";con(a') := p"(P");pt(cd(a)) := a'; cd(a') := cd(a);cd(pt(pt(a)) = a'; pt(a') = pt(pt(a));cp(a) := a'; cp(pt(a)) := a'ENDEND ||||||||||||||||||||||||||{Figure 7: The algorithm for parallel directional arc consistency: I18
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Figure 8: The tree contraction phaseapplies ExpandAC to T 0.Proposition 3.1 The result of applying PTAC to T is an arc consistent join network whoseconstraint network is minimal and equivalent to the constraint network of T .Proof: The result of the tree contraction phase is the same as the result of the �rst phasein TAC, i.e. the network is directional arc consistent. The result of the tree expansion phaseis the same as the second phase in TAC, which makes each edge in T 0 arc consistent. SinceA � A0, the constraint network with arcs A is arc consistent. On the other hand, theconstraints associated with A0 are derived from A. So the resulting constraint network of T 00is equivalent to the constraint network of T .219



||||||||||||||||||||||||||{Algorithm ExpandAC: Tree Expansion PhaseInput: result of ContractAC T' = <A',E'>;Output: arc consistent join tree;marked(root) := 1;Iterate the following procedure the samenumber of times as for ContractAC:In Parallel for a in A' \{root}/* at most n nodes at each iteration */BEGIN IF (marked(cp(a)) THENBEGIN r(R) := con(a); p(P) := con(cp(a));r := r semijoin p;marked(a) := 1ENDEND ||||||||||||||||||||||||||{Figure 9: The algorithm for directional arc consistency: II||||||||||||||||||||||||||{Algorithm PTAC: Parallel Arc ConsistencyInput: rooted join tree T;Output: arc consistent join tree T";BEGIN T' = ContractAC(T);T" = ExpandAC(T')END ||||||||||||||||||||||||||{Figure 10: The parallel AC algorithm PTAC20



3.3 Parallel complexityThe parallel complexity of arc consistency on a join tree can be derived from the followingtheorem.Theorem 3.1 The algorithm PTAC takes O(log n) time using O(n) processors in the EREWPRAM model, given a join tree of an acyclic constraint network with bounded treewidth.Proof: If the join tree T is not of bounded degree, it can be represented by a binary treewith at most twice as many nodes. Such a transformation takes O(log n) time in parallel[MR85, ADKP89]. So let T be a binary join tree. Let w be the treewidth of the acyclicconstraint network of the join tree T . It is clear that RAKE does not change any of therelation schemes. After each COMPRESS operation, relation schemes are updated to Li�1[Li [ Li+1. But jLij is always bounded by w, for all i, during the whole process. So thesize of all relation schemes in T 0 is bounded by 3w. We also notice that since T is a binarytree, RAKE can be done in constant time at each iteration. Thus the operations takeconstant time at each iteration of contraction. The total number of iterations is dlog5=4 ne.At each iteration, there are at most n nodes which require at most n processors. For thetree expansion phase, the tree sequence is the inverse of the sequence for tree contraction.Furthermore, there are no more than a bounded number of processors reading from the samememory location at any time. 2The procedures associated with RAKE and COMPRESS for arc consistency can be asso-ciated with other parallel tree contraction algorithms. By associating semijoin with PRUNEand associating join and projection with BYPASS in the algorithm given by [ADKP89], arcconsistency for an acyclic constraint network of bounded treewidth can be done optimallyin O(log n) time using O(n= log n) processors in an EREW PRAM.21



Since an acyclic constraint network whose join tree is arc consistent is also a minimalnetwork, �nding a minimal network (the FCSP decision problem) for a bounded treewidthconstraint network is in NC given the tree-decomposition.The result can be extended to constraint networks with the treewidth bounded byO(log n). It is easy to see that the number of tuples in a relation scheme of size O(log n)is bounded by poly(n). Join and projection operations can be considered as variations ofsort and merge operations which can be done O(log l) using O(l) processors, where l is thelength of the longer list [KR90]. Therefore, each RAKE and COMPRESS operation in PTACtakes O(log n) using poly(n) processors. Since there O(log n) iterations, the algorithm takesO(log2 n) using poly(n) processors.4 A Distributed Algorithm and ComplexityIn the real world, many parallel machines are recon�gurable interconnected processors withdistributed memory and asynchronous control. We de�ne a �ne-grain interconnected network(FIN) model as follows:De�nition 4.1 (FIN model) Each processor has a set of input and output ports. A pro-cessor can receive and send one message of bounded size, and perform one operation onoperands of bounded size in its local memory at each step. The network consists of a set ofprocessors connected by channels with any �xed topology. Communication is asynchronouswith unbounded bu�ers and message passing is of bounded delay.Let si be a state of processor i. The state of a distributed computing network of n processorsis de�ned as hs1; s2; : : : ; sni. A stable state S of a network has the following property: if thereis a time t at which S is the state then for all t0 > t S is the state. A distributed algorithmon a network is stable if the network always achieves a stable state. The time complexity of22



a distributed algorithm is de�ned as the longest time required to achieve a stable state fromany initial state.4.1 The distributed algorithm DJACThe distributed constraint satisfaction algorithm DJAC (Fig. 11) is essentially the distributedversion of JAC. Let the nodes and edges of a join network map to processors and bidirectionalchannels in a distributed computing network, respectively. The algorithm is uniform: allprocessors have the same program. Let r(R) be the local constraint and propagate be asubroutine for propagating the local constraint to its neighbors. The following propositionscharacterize the properties of DJAC.Proposition 4.1 DJAC is a stable distributed algorithm.Proof: This is obvious since semijoin is a monotone decreasing function on the number ofthe relation tuples which is initially �nite.2Proposition 4.2 A join network JN is arc consistent i� the distributed network of JN isstable.Proof: Obvious. 24.2 The distributed complexityThe distributed complexity of arc consistency can be derived from the following propositions.Proposition 4.3 If the width of constraint network CN is bounded by a constant, the com-plexity of DJAC is O(n), where n = size(JN).Proof: Suppose the number of relation tuples on each relation scheme is bounded by aconstant K. So the total number of messages is bounded by 2Kn. Therefore in O(n) timethe network will achieve a stable state. 2 23



||||||||||||||||||||||||||{propagate:FOR (all channel c) send r(R) to cAlgorithm DJAC: Distributed ACInput: join network <A,E>;Output: arc consistent network;BEGINpropagate;LOOPBEGINs := r;FOR (all channel c)IF (there is a message at channel c) THENBEGINreceive r1(R1) from c;s := s semijoin r1ENDIF s =\= r THENBEGIN r := s; propagate ENDENDEND ||||||||||||||||||||||||||{Figure 11: The distributed AC algorithm DJAC
24



It is clear that given a join tree of an acyclic constraint network, the resulting constraintnetwork is minimal i� its corresponding distributed network is stable. Moreover, such adistributed network tends to stabilize more quickly than an arbitrary network.Proposition 4.4 If JT is a join tree of an acyclic constraint network of bounded treewidthand JT is of bounded degree, the complexity of DJAC is �(D) where D is the diameter of JT .Proof: Let the degree of JT be bounded by K. Consider K time steps as one big time step.A constraint ri(Ri) will be \a�ected" by another constraint rj(Rj) i� given all the universalconstraints along the path from j to i, the semijoin propagation from Rj to Ri is strictlyincluded in Ri. After l big steps, any node may be \a�ected" by nodes at distance l. Sincethere is a unique path between any pair of nodes in a tree, a node can only be \a�ected" bysome other node once. No node can be \a�ected" by any other node after D big steps. SoKD is the upper bound. And it is obvious that D is the lower bound, since two nodes atdistance D may \a�ect" each other. 2If the join tree is of unbounded degree, we can transform the join tree to a binary jointree which can be mapped to a distributed network. Furthermore, it is easy to see that if thejoin tree happens to be a balanced tree, then D = O(log n). However, in many cases, a jointree may be very unbalanced, with D = 
(n). The following theorem shows that for anyFCSP, if it can be represented by an acyclic constraint network ACN of size n and boundedtreewidth, then we can �nd a balanced binary join tree, such that its acyclic constraintnetwork, with size poly(n) and bounded treewidth, is equivalent to ACN .Theorem 4.1 Let n and w be the size and treewidth of an acyclic constraint network ACN .One can construct a balanced binary join tree such that its acyclic constraint network ACN 0is equivalent to ACN with size(ACN 0) = poly(n) and treewidth(ACN 0) � 3w.25



Proof: Let JT be the join tree of ACN and JT 00 be the binary tree representation of JT andACN 00 be the acyclic constraint network of JT 00. Let n00 and w00 be the size and treewidthof ACN 00. It is clear that n00 � 2n and w00 = w. Let L and R be relation schemes. Thefollowing recursive algorithm BT (T;L;R) takes a binary join tree T as input and returnsthe balanced binary join tree.If T has only one node, return T . Otherwise do the following. First, �nd an edge in Twhich is a \1/3 { 2/3" separator, i.e., it cuts the binary tree into two subtrees T1 and T2with both sizes in the range of [1=3nT ; 2=3nT ], where nT is the number of nodes in T . LetBT (T1; L;M) and BT (T2;M;R) be results of applying this algorithm recursively to T1 andT2 respectively, whereM is the label of the separator. Then create a node C with a universalconstraint on relation scheme L[M [R. Finally create a tree with C as root, BT (T1; L;M)and BT (T2;M;R) as the left and right children of C, and return C.Let JT 0 = BT (JT 00; ;; ;) be the result of applying the above algorithm to JT 00. LetACN 0 be the acyclic constraint network of JT 0. Since the height of JT 0 is log3=2(n00), thereare at most 2log3=2(n00) nodes, i.e., size(ACN 0) = poly(n). Since all jLj, jM j and jRj arebounded by w, treewidth(ACN 0) is bounded by 3w. 2Since the diameter of the resultant join tree is O(log n), enforcing arc consistency in anacyclic constraint network of size n with bounded treewidth takes O(log n) time in a networkof poly(n) processors.5 A Coarse-Grain Distributed AlgorithmIn the previous two sections, we have presented the parallel AC algorithms for PRAM mod-els and �ne-grain interconnected network models. In both of these models, the number ofprocessors is not bounded. However, most real parallel machines are coarse-grain intercon-nected networks, i.e. the number of processors is bounded by a constant. In this section, we26



give a distributed algorithm for arc consistency on join trees for coarse-grain interconnectednetwork (CIN) models. Speedup and scaleup of the problem will be discussed for this classof models.5.1 The distributed algorithm DTACThe distributed algorithm DTAC is a distributed version of TAC, given a balanced binary jointree. Like the algorithms given by [CA91], DTAC distributes a problem into a set of processorsstatically. Let JT be a balanced binary join tree and let the processors be con�gured as abalanced binary tree PT . Let hj and hp be the height of JT and PT respectively, assuminghj � hp. There are three kinds of processors in PT : root processor (RP), internal processors(IPs) and leaf processors (LPs). We assign each subtree of JT rooted at depth hp to each LPand assign the root and the rest of internal nodes of JT to the RP and IPs of PT respectively(Fig. 12).
LP LP LP LP

IPIP

RP

Figure 12: The problem distribution with hj = 4 and hp = 2Algorithm DTAC consists of three types of processes: RPAC, IPAC and LPAC. RPAC (Fig.13) is loaded on RP of PT . It combines the results from its children and sends the �nal resultback. IPAC (�gure 14) is loaded on each IP. It sends the result combined from its children toits parent and then sends the result combined with its parent back to its children. LPAC (Fig.27



||||||||||||||||||||||||||{Algorithm RPAC: Root AlgorithmBEGIN /* c(C) is the constraint on the node */receive l(L) from left;receive r(R) from right;c := c semijoin l;c := c semijoin r;send c(C) to left;send c(C) to rightEND ||||||||||||||||||||||||||{Figure 13: The Root Processor algorithm RPAC||||||||||||||||||||||||||{Algorithm IPAC: Internal Node AlgorithmBEGIN /* c(C) is the constraint on the node */receive l(L) from left;receive r(R) from right;c := c semijoin l;c := c semijoin r;send c(C) to parent;receive p(P) from parent;c := c semijoin p;send c(C) to left;send c(C) to rightEND ||||||||||||||||||||||||||{Figure 14: The Internal Processor algorithm IPAC28



||||||||||||||||||||||||||{Algorithm LPAC: Leaf Node Algorithm/* r(R) is the constraint on the subtree root */BEGIN SemijoinUp(r); /* Fig. 16 */send r(R) to parent;receive p(P) from parent;r := r semijoin p;SemijoinDown(r); /* Fig. 16 */END ||||||||||||||||||||||||||{Figure 15: The Leaf Processor algorithm LPAC15) is loaded on each LP. It consists of two phases: the �rst phase combines the results upto the root of the subtree, the second phase propagates the �nal results back to each nodein JT .5.2 Speedup and scaleupThe ideal parallel system demonstrate two key properties [DG92]: (1) linear speedup: twiceas much hardware can perform the task in half the elapsed time, and (2) linear scaleup: twiceas much hardware can perform twice as large a task in the same elapsed time. Formally, thespeedup of a system is measured asspeedup(N) = elapsed time using 1 processorelapsed time using N processors :The speedup is said to be linear if speedup(N) = O(N). On the other hand, the scaleup ofa system is measured asscaleup(n;N) = elapsed time of size n problem using 1 processorelapsed time of size nN problem using N processors :The scaleup is said to be linear if scaleup(n;N) = O(1).29



||||||||||||||||||||||||||{Procedure SemijoinUp(c):/* c(C) is the current constraint *//* l(L) is the left constraint *//* r(R) is the right constraint */BEGIN IF (C is not a leaf node in JT) THENBEGIN IF (there is left child l) THENBEGIN SemijoinUp(l);c := c semijoin lENDIF (there is right child r) THENBEGIN SemijoinUp(r);c := c semijoin r;ENDENDENDProcedure SemijoinDown(c):/* c(C) is the current constraint *//* l(L) is the left constraint *//* r(R) is the right constraint */BEGIN IF (C is not a leaf node in JT) THENBEGIN IF (there is left child l) THENBEGIN l := l semijoin c;SemijoinDown(l)ENDIF (there is right child r) THENBEGIN r := r semijoin c;SemijoinDown(r)ENDENDEND ||||||||||||||||||||||||||{Figure 16: The procedures SemijoinUp and SemijoinDown for LPAC30



In Section 4, we have shown that given a join tree of a constraint network with boundedtreewidth, we can �nd an equivalent balanced binary join tree whose constraint network isalso of bounded treewidth. In this section, we will show that given balanced binary jointrees whose constraint networks are of bounded treewidth, DTAC has linear speedup andlinear scaleup.Theorem 5.1 Given balanced binary join trees whose constraint networks are of boundedtreewidth, DTAC has linear speedup and linear scaleup.Proof: letN = 2hp+1�1, n = 2hj+1�1. Given a tree-decomposition with bounded treewidth,the sequential complexity is linear in the number of tree nodes:speedup(N) = O(2hj+1 � 1)O(2hj�hp+1 � 1) +O(hp) :Since hj � hp, speedup(N) = O(2hp) = O(N). Thus it has linear speedup. Similarly,scaleup(n;N) = O(2hj+1 � 1)O(2hj+hp�hp+1 � 1) +O(hp) :We have scaleup(n;N) = O(1). Thus it has linear scaleup. 26 Experimental ResultsHere we will present some experimental results on the algorithms given in the previoussections. We have developed a simulation environment for DJAC on FIN models based onlogical time assumptions. In addition, we tested DTAC on a network of transputers. Bothof these experiments are done on a set of generic constraint networks with a ring topology,two valued domain, and inequality relations. The size of the problem is the size of the ringminus one. The inputs to the algorithms are balanced binary join trees which are generatedautomatically (Fig. 17). 31
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2Figure 17: A ring structure and a balanced binary join tree6.1 Simulation of the distributed algorithm DJACThe simulation environment was developed in Strand88 [FT89]: a parallel logic programminglanguage. Each node in the join network corresponds to a process, with the relation schemeas the identity, and with the local time and the relation tuples as the state. Each edge inthe join network corresponds to a communication channel. Whenever a process receives amessage from a neighbor process, consisting of the state of that process, it updates its stateto a new state. The new relation tuples will be the result of the semijoin operation and thenew local time will be the result of the logical time assumption de�ned as follows:De�nition 6.1 (The logical time assumption) Each message of bounded size takes oneunit time to arrive and each semijoin operation on relations of bounded size takes one unittime to compute. The time for sending and receiving messages is ignored.The logical time assumption is captured by the Strand88 program in Fig. 18.If the relation tuples are re�ned because of the semijoin operation, the current state, thenew relation tuples together with the new local time, is sent to all of its neighbor processes.The system will settle down to a stable state when no relation tuple is re�ned.32



||||||||||||||||||||||||||{% T is the time when the message is sent% Time is the local time% CTime is the time when the message is arrived% NewTime is the new local timecommTime(T, Time, CTime) :-T >= Time | CTime is T + 1.commTime(T, Time, CTime) :-otherwise | CTime is Time.newTime(T, Time, NewTime) :-commTime(T, Time, CTime),NewTime is CTime + 1.||||||||||||||||||||||||||{Figure 18: The logical time assumptionIn this environment, we simulated the distributed algorithm DJAC on a set of constraintnetworks with a ring topology, for the problem size of 4, 8, 16, 32 and 48. Figure 19 showsthe time to stability vs. problem size on a log scale. The curve is almost linear which isconsistent with the theoretical complexity.6.2 Performance of DTAC on a network of transputersWe tested the algorithm DTAC on a network of transputers. Briey, a transputer is a RISC-like microprocessor with four bidirectional bit serial links. The instruction set supportscommunication, concurrent processes and process scheduling. The hardware supports onlynearest neighbor communication. The program is written in C++ and then compiled for thetransputer. Table 2 summarizes the performance results.The speedup for problem size 800 is shown in Fig. 20, The real performance is betterbecause the memory access time increases rapidly with the increase of the problem size in33
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Figure 19: The time to stability vs. problem size on a log scale for DJAC
Table 2: The actual time performance of DTACNumber of Problem SizeProcessors 100 200 400 800 1600 3200 64001 0.25 0.71 2.29 8.023 0.30 0.77 2.32 8.57 0.39 0.86 2.46 8.1715 0.52 0.97 2.57 8.2834



each processor. The scaleup for the problem is shown in Fig. 21, which demonstrates that
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Figure 20: The speedup for DTAC
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Figure 21: The scaleup for DTACthe real scaleup is very close to linear, when the problem size is large in each processor.35



7 ConclusionsWe have presented three parallel AC algorithms for enforcing arc consistency in a join net-work. The FCSP decision problem can be reduced to the arc consistency problem if thetree-decomposition of the constraint network is given. The analysis shows that for an FCSPthat can be represented by an acyclic constraint network of bounded treewidth, there aree�cient algorithms in both parallel and distributed environments. The bounded treewidthproperty of constraint networks characterizes a set of tractable FCSPs as well as e�cientlyparallelizable FCSPs. The experimental results on simulation and real parallel machinesshow that good performance is achievable.AcknowledgementsWe wish to thank Rina Dechter, Feng Gao, Nick Pippenger and Runping Qi for valuablesuggestions and comments. The �rst author is supported by the University Graduate Fel-lowship from University of British Columbia. This research was supported by the NaturalSciences and Engineering Research Council and the Institute for Robotics and IntelligentSystems.
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