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CHAPTER I
RINGS

The purpose of this paper will be to investigate certain
properties of algebraic systems known as rings. The proofs,
in most cases, are based on definitiens and theorems in this
paper. A basic knowledge of the algebra of sets is assumed.

Definition 1-1. A set R will be called a ring if R

satisfies the following properties:
PI. R is closed with respect to tl;xe, binary operations
@ and *. These operations will be called "addition"
and '"multiplication."
P1I. 1If a, b, c€R, then the following properties are true:
(1) a®@(b®c)=(a®b) ®ec
(2) a*(b*c) = (a*b)*e
(3) a®b=bP@a
(4) a*(b @ c) = a*b @ a*e
(5) (b ® c)*a = b*a @ c*a
PIIT. There exists an element o €R such that 0 ® a = a
for every acR,
PIV. Given a €R, there is an x ¢ R such that x ® a = 0.
Note that the ocR is not necessarily the real number

zero.



The following systems are examples of rings.
Example l-1l. Let V denote the set consisting of the

totality of ordered n-tuples of real numbers. Let
d\z 0\, d\ G P 0&- = e L4
2 1 PO ngand B gBl’ 32, Engbe elements of V

= \ A

2 2 nn
V is closed under the operations of @ and * since the real

N *B = iO\lBl’ OQ(B ¢ wea A B g

number system is closed with respect to addition and multi-
plication. Therefore, P is satisfied. Due to the corre~
sponding properties of real numbers, PII is satisfied. For

PIII let 0 = (o0, 0,0 vee O Jwhere 0, {s the real number
zero, Therefore 0 @® * = A, 1In order to satisfy PIV, let

- -na\. £ d\ -
b4 i. 1? PUBRRE mng «

= - - a0 A - X =
Then x @ o = {a AL Oy = O . n§ gol, 0, ...gmo,

Therefore V is a ring with respect to @& and *,
Example 1-2. Suppose C is the class of all functions £(x)

of the real variable x defined and continuous on the closed
interval [0, L] . If £, geC, let (£ @ g) (x) = £(x) + g(x)
and (£*g) (x) = £(x).g(x). Since £(x) and g(x) are defined
and continuous on [0,L1] , £(x) + g(x) and £(x).g(x) are also
defined and continuous on [0,1] + Therefore, (£ ® g) (x)

and (£*g) (x) € C and PI is satisfied. Again PII is satisfied

due to the corresponding properties of real numbers.



Let e(x) £ 0 for x ¢ [0.1] o Sinee e(x) is defined
and continuous on [0,1] , e(x) € c.
(e ®£) (%) = e(x) + £(x)
= 0 4+ £(x)
= £(x).
Hence PIIT is satisfied. Finally {f £(x) € C,- £(x) also
belongs to C and PIV follows since (f @ -f) (x) = £(x)-£(x)=0.
Therefore C is a ring.
Example 1-3., Let F denote the set of rational numbers

and let x and y be indeterminants. Then the set of poly-
nomials in x and y with coefficients in F is 2 ring. It ia
£rom this ring that an important example will be constructed
in Chapter 1II.
Some basic properties of a ring are stated in the following
four lemmas,
Lemma 1-l. Given a € R, the element x =R such that
x & a =0 i{s unique and will be denoted by the symbol -a.
Proof: Let y be any element of R such that vy @ a = 0.
XxPDa=yda
(xPa)dx=(y®a)ex
x®(a@x)=y@ (8 x)
X@®O0 =y ®0

X =y,



Lemns 1-2. O*a = a*0 = 0 for a CR,

Proof: lat a,b €ER, Yince b= b ® 0, ba = (b ®0)*a =
b*a ® Ova.,
~bka @ bra = -bva @ (bva @ O%a)
0 = (=b*a ® b¥a) @ O*a
0= 0®0r
0= O%a
In a2 similar wanner it can be shown that a¥0 = 0,
leomg l-5, Suppose R is & ring. 1f 8 is the "eum™ of
any n elements of R, any insertion of parentheses will yield
the sams "sum" 8.
Proof by induction: For n = 1 the result is trivial,
Fwnwﬁ(&l@a)@aswa ® (ay @&)‘*
8 ® 2y ® aq by PII. z af{ is independent of the wmanner in
which parenthesee nre imwmd.

k k
a, = 5, ® % a

1 i 1 2 i

k k

i“@ = @Z

L4 Y 2“3,@“ el

k
"Hhe i"i@“wx)

i
mél ® é “i) ® a1
kel

= 2 a,
11



Since inside 2ach parenthesis there are exactly =
elements, parentheses may be inserted in any way desired
about these k elements. Therefore %%l ay is ivdependent
of parentheses; hence this is true for any positive integer n.
The proof for * is similar.

Leuma L-4. If a,c € R. then -{a¥g) = -a*g = a*(-g),.

Proof: If ¢€R, then ¢ ® ~¢ = 0.

But a*(c @ ~¢) = a¥e @ a¥(-¢) = 0.

By lemma i-l, -{(a*c) is unique, Therefore, a¥(-c) = «(a*e).
Similarly it can be shown that -(a*c) = - a¥g, .

In certain algebraic systems some of the properties of
a ring may be replaced with equivalent properties. It will
be assumed That these algebraic systems are non-ewnpty.

Theorem 1-1. Suppose R is an algebraic system with all

the properties of a ring except for PIII and PIV. R is a
ring if and only if for a,b € R the equation a ® % = b has
a golution in R.

Proof: Suppose for a,b € R the equation a ® x = b has
a solution in R. 1In particular, there is x ¢R such that
a®x = aand there is a y € R such that b® v = b. Purther-

more there are elements y', %' € R such that a @ y' = y and

i

beéx' =%, Buty=a@y' APxPy' = a®y' dx =y @ x
and x = b@x'=b@y@®x' =b@x"@®y=x®y=yd x.

Therefore, x = y and the existence of a zero is established.
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For O,¢ € R the equation a @ x = O also has a solution.
Thia fact establisbes PIV. Cenversely, if R ie a ring for
g,b c R the equation a @ = v b has a solution in R, Namely
x = b® =~&,
Theoren L-2, Let R be an algebraic syetem which, except
for commutativity of @ is & ring., If a*b = ave with a # O
implies b = ¢, then R is a ring.
Proof: let a,b € R, Then a®@ b ond D® 2 €R., Let
c denote any non-zere e¢lement of . o*(a @ b) and
~a*(b ® a) ER,
e*{a ® b) v cva @ o*b
-a*(b @ a) = -c*b @ -e%a
[a"(m ® b)] @ Eﬁ*(b® &)) Ba‘*&u) ® (a*b)] ® (go«*b) ® (»a*a)]
= E(c*m) @ (-»a*aij ® (fu*b) (m*h)]
= 0@®0
= 0
Therefore o (a @ b) » oMb @ &); hence « @ b = b ® = and
R is & ring.

8

Iheorem 1+3. Suppose R and 3 are two distinet ringe.
let R XE denote the set aé all ordered pairs (a,b) vhere
a €R and b € &, Then R XS is a ving if "eddition” and
"multiplication” are defined in the follewing mannex:

(a,b) @ (o,d) 2, (a @, b@4d)
(a,b)*(e,2) ﬁd (a* oy b*ﬁd).
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Proof: Nete that PI is satisfied since a @, o, ak* ¢ &R
and b ®.d, b* 4 €S because both R and S are rings. Let (a,b),
(e,d), (h,£) € R X8, Then [(a,b) @ (c,d)} @ (h,£) =
/
{(a #.c, b ®3d):] & (h,f) = (2@ c®h, b daf) and
(a,b) & [(md) @ (h.f)] = (a,b) ® ((ca ®.h, d e%f)] =
(a &.c &b, b od Gsf).
The remaining properties of PII can be shown in a similar

manner. Since both R and 8 are rings they esach contain a zero.
Denote these elements as O and 0. 1If (a,b)ERXS, then

(a,b) ® (0,0) = (a®.0, b ®J) = (a,b). Hence (0,5) is the
zero for RX 8. Finally if (a,b)€ R X8 then (~-a,-b)ER X8,
(a,b) ® (~a,-b) = (a ®.-a, b &_-b) = (0,0). Therefore RXS

ig a ring.

Definition 1-2. A subset S of a ring R is a subring

of R if S is a ring with respect to the operations of @ and
* in R.

An equivalent definition for subring is the basis for
the next theorem.

Theorem 1-4. A non-empty subset S of a ring R is a

subring of R if and only if for a,b€S a ®-b and a*b are
elements of S.
Preoof: For a,bec S suppose a*b and a @ ~b are elements

of S. Therefore, S is closed with respect to *. If ac§



then a® ~a = 0€8, S8ince O,b €8, 0@ -b €8, Therefore
a® -(0 ® -b) €8,
~(0® -b) ®(0O® ~-b) =0
-0® -b) ® -b =0
~{0®-b)®~-b®Db=b
-(0® ~-b) = b

Therefore, a ® b €8 hence S5 1s closed under ®. All
parts of PII hold since SCR. Since the zero of R is an
element of S, PIII is satisfied., If a 1s any element of S,
O ® ~a is also an element of S. Since a @ ~a = O PIV is
satisfied and 8§ ise a subring of R. Conversely, if 8 is a
subring of R for a,besS a*b €8, PFurthermore if bes,-beS.
Since 8 is clpsed a ® -b €8 and the proof is complete.

In general, net all rings are commutative with respect
to *, Furthermore, it is not necessary for all rings to have
what {8 termed a2 unity element.

Definition 1-3. A ring R is said to be a commutative

ring if a*b = b*a for all a,bcRr,

Definition l-4. An element h of a ring R is said to

be a unity element of R if a*h = h¥a = a for every element

a €R.

Obviously, if R has a unity element it is unique.

Definition l-5. Let a denote a non-zerop element of a

ring R. If there exists a peR, bf0, such that either a*b = O

or b * a = 0, a will be called a divisor of zero.



In view of the preceding definitions, the following
three theorems can now be stated and proved,

Theorem L-5. Suppose R is a ring with a finite number

of elements which has & unity element h, but which has no
divieors of 0. Then for a CR, af0, there is an x € R sueh
that a*x = h.

Proof: Llet {“1’ Byy 8Bqy oo. “n} = R, Since R has a
unity element h, b is some as. Without lose of generality
assume that a; = h., Now aseume that there Is an a €R, a0,
such that a*x ¥ h for any x € R, Again without loss of

generality denote this particular element as a Consider

zﬁ
the n products of the form az*aj\, where § = 1,2, ... n. None
of these products is equal to h. Since n products have been

formed end since no product is equal to a., there are at most

1
n~-1 distinct results. Hence, twe of the products formed in
this process are identical. Therefore, uznt o = ’“2* a* There

exists ~a, € R. Furtherwore, since aa*(a, @ ~8g) = ag%0 = 0,

agtag @ ag(-a,) = 0. Since agha, = agva,, agva. @ ag*(-8,) = 0,

But azta, @ “2*("*%) = ag¥(a, @ ~ ag) = 0, hence either 8y = 0
O 2. @ - a, = O since R has no divisors of 0. a,f0 by
hypothesis. Therefore, 3, ® -a, = 0 hence 8, = a_. At this
peint a contradiction has been reached since 2y £ ag.
Therefore the assumption that there is no x € R such that

ag*x = h is false and the proof is complete.
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Theorem 1-6., A ring R is free of divisors of zero if,
and ahly if, the following cancellation law helds. The
equalities a*b = a*c and b*a = c*a imply that b = ¢, if
a ¥ 0, for otherwise arbitrary elements a,b,c € R.

Proof: Suppose R has no divisor of zero. 1f
a*b = a*c, a*b ® (-a*ec) = 0. By lemma l-4 -~a*e = a¥(-c).
Therefore a*b @ (~a*c) = a*b @ a*(-c) = a¥(b @ «c) = 0.

Since R has no divisors of zero, either a = 0 or
b@® -c = 0., By hypothesis a # 0. Therefore b ® ~c = O,

b® ~-c =0
b®-cdc=08&c
b®0=0&c

b= c.

In a similar manner it can be shown that 1if
b*a = c*a, af0 then b = ¢. Conversely, if a¥*b = ak¢ and
b*a = c*a imply b = ¢, suppose a*b = 0 with a ¥ 0. Since
0 = a*0, a*b = a*0, Hence, b = 0. In a similar manner it
can be shown that if b*a = 0, then b = Q.

Theorem 1-7. Let a be an element of a ring R which has

no divisors of zerpo. If a*a = a,a#0, then a is a unity for R,
Proof: 1If b € R, then b*a and b*(a*a) are also elements

of R. Since a*a = a, b*a = b*(aka). By PII, b*(a*a) =

(b*a)*a = b*a. Therefore, b*a = b by theorem 1-6. 1In

addition both a*b and (a*a)*b are elements of R. Once again
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a*(a*b) = a*bh., Therefore by theorem 1-6 a*b = b, Since
a*b = b*a = b, a is a unity for R.

Definition 1-6. Suppose (R, ® , *) and (R, @1,*,) are

rings. Let g denote a mapping of R into R;. 1If

#la ® b) = g(a) @ F(b) and B(a*b) = g(a)*,#(b) for all
a,bER, ¢ is said to be s homomorphism of R into R;.
Furthermore, if # ie a one-to-one mapping of R onto Ry I
is called an isomorphism of R onto R;.

Two basic properties of homomorphisms are stated in
the following lemma.

Lemma 1-5, Let # denote a homomorphism of R into Ry
1f 0 is the zero of R, then g(0) is the zero of Ry. 1In
addition if a &R, g(-a) = -g(a).

Proof: Given acR, g(a & 0) = g(a) @ 1 $(0Y. Since
#la ® 0) = g(a), #(a) = g(a) ® ; F(0). Since Ry is a ring
~-#(a) €ER such that g(a) ® (-g(a)) = §, where § is the
zero of R,. Hence 0=0® 1 £(0) = #(0). Also given acR,
fla® ~a) = gla) @ 1 g(~a). However, g(a ® -a) = O,
Therefore, U = #(a) ® f(-a).

-g(a) &, 0 = -f(a) &, #(a) @, #(-a)
-gCa) = 6@1 g(-a)
= g(-a).

In view of lemma 1-5, theorem 1-8 follows immediately.
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Theorem 1-8, If g is a homomorphism of R into Ry,
ng{ = E;{{a) / a e RB is o subring of R,.

Proof: Suppose g(a), #(b) € Ryg. Since g is a homo-

morphism, g(a) *; #(b) = g(a*b). Hence ga)*, d(b) € Ry 8.
If #(b) € Ryf, be R. Hence -be€R and g(-b) ER, 4. Due
to lemma 1-5 g(a) & g(-b) = #(a) & -g(b). 8ince g(a) & geb) =
#(a) @ - g(b) = fla & -b), f(a) & - #(b) eRf and R ¢
is a subring of Ry by theorem 1-4,
In theorem 1-3 it was shown that if R and S are two
rings, then R X8 is a ring with suitable definitions for
@ and *, The next theorem illustrates a homomorphism of
# X8 into R XS,

Theorem 1-9. Let RX S be the ring of theorem 1-3.

Then the mappings g and defined by # [(a,b)] = (a,0)
and f[(a,b)] = (0,b) are homomorphisms.
proot: 4 [(a,0) © (c,0)] = # [(a Bz, b OD)| = (a &,c,5).
4 [(8,?3)J ® g L(c,d)J = (a,0) ® (¢,0) = (& ®.c,0). Therefore,
I [-(a,b) ® (c,d)] = g‘[ga,b)] ® g [(c,d)] . In regard to *,
g [(a,p)(e, ] = # [(a*c,b% )] = (a*,e,B).
g [(a,b)}p’ [(c:,cl)]x (a,0)*(c,0) = (a*.c,0). Hence
' [(a,b)*(c,d)] =g [(a,b)] * 4 [(c,d)] . Therefore 4 is
a homomorphism of RXS into R XS. 1In the same manner it can

be shown that ;L is a homomorphism of R XS into R XS.
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Example 1-4, Consider the ring of 2 X2 matricies over

a ¢
the real numbers. The wapping g such that g lKQ dj} = a is

not & homowmorphiem into the real numbers since

s B0 GC -s B - s wmues B2 o [0

(1)(o) = o.

1f R is a ring, there are situatione in which consideration
of a ring which contains a subring isemorphic to R way be of
interest,

Theorem 1-10, If S ie a ring, and T is a set of elements

in a one-to-one correspondence with the elements of S, then 4@1
and *, may be defined in T in such a way that T is a ring
isomorphic to 8 (1, p. 83).

Proof: Since S and T are in a one-to-one correspondence

£, let Y :T—S such that if a €S then g(a) € S and %L (g(a))= a.
Define @ in T to be g(a) @, 4(b) = g(a @ b) and define *l such
that ﬂ(a)*lﬁ(b) = g(a*b). Properties PI and PII are immediately
obvious since 8 is a ring. Let x €£T. There is an a € § such
that g(a) = x. But g(a) ®, g(o) = g(a ® o) = g(a) which satis-
fies PIII. 1In addition, #(a) 6& A(-a) = #(o) which satisfies
PIV.
Suppose x,y €T then x = g(a) and y = g(b) for some

a,b €8. Since %(f(a)) ® 7 (ADb)) = a® b end

Y (Ba) & 4(b) = %(Ha® b)) = a @b, L(H(2)) OUP(D)) =
L (da) & 4(b)) .
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Similarly %(g(a)) * Y (F(b)) = a*b and zLC%(a)*lﬁb)) =
Y (b)) = a*b. Hence L(#(a)) * L(A(D)) = (Far* 4(b)) .
Therefore T is isomorphic to § since Y is a dne-to-one onto

mapping that preserves the operations.

Theorem l-1L. If R and § are rings with no elements in

common, and S centaine a subring Sl which is isomorphiec to R,
there exists a ring T which is isomorphiec to S and which
contains R as a subring (1L, p. 83).
Proof: Let T = RU {x e s]x¢sl} and let g denote

the i.somorphiam between Sy and R. Suppose x € §. Let

Pex) = x if x €5 and Y(x) = g(x) i€ x € 5;. The
wapping is well defined since R and S are disjoint.
Let x €T then either x € R arxe{xes}xftzsl}.

If x €R then there is an a € S, such that x = g(a).
Therefore x = Y(a). If xeixesS|x ¢ sl} then YL (x) = x,
Hence L i{s an onto mapping. Let x,y € 8. BSuppese %(x) = YU(y).
Since x €8, Y(x) = x or U(x) = g(x). If YU(x) = x, then
x = Y(y). Since y €8, y(y) =y or %U(y) = g(y). Suppose
W A(y) = B(y), then g(y) = x and x € R. This is impossible
since R and S are disjoint. Secondly if Y(x) = g(x), then
B(x) = YW(y). Sinece y €8, YCy) ¥ y. Therefore ¥ (y) = g(y).
Since £ is a one-to-one mapping x=y. Therefore Y is a one~
to~one onto mapping. All that remains is to observe that §

and T are in a one-to-one correspondence and apply theorem 1-10.
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R is @ subring of T since if x,y€R, x = g(a) and y = #(b)
for some pair a,b € S;. Since g(a)* g(b) = ﬁ(a{b), x*y € R
because a¥be §). 1In addition g(a) & -g(b) = g(a @ -b) and
since 8, is a subring » ® -y €R. Therefore R is a subring
of T.

The remainder of this chapter will deal with a special
type of ring known as & Boolean ring.

Definition 1-7. A ring R is said to be a Boolean ring

if for every a€R, a%a = a,

Example 1-5. Let H denote any set. Suppose X = Ex/x
is a subset of Hg . If AcH, then A' = Ex/x €H and xeﬁAg .
suppose A,BEX. Define A® B T (AUB)NC(ANB)' and A*B 2 A NB,
With these operations X is a Boolean ring.

X is closed since both A @ B and A*B are subsets of H.
Before proceeding further it will be convenient to develop
an equivalent expression for A @ B.

(AUBN QN = [ancans] U [3ncansy ]
= [ancawsn] U [BNCATY B
[ananuanen] U [’(BnA')umns')]
(ANB)UBNA"YY .

The verification of all parts of PII will now be examined

H

i

in detail,
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(1) A8 (o) =[AnBe® ][ ec)na']

=[a n{ane"yucens'y]
Uene'yucensHyna']
= [A n{(snc')’n(c ns'y) |
U[fene'yaa'} v fcens’yna'l]
= |a n{G'veynce'um}]
U[{(B Ne'yna'y U{(cﬂs')nA'}]
= [a o' ueyne' Upy]
u[feanety a3 v fcens’y natl]
=[fansumno} ne'us]
Ui neyna’jufens’yna'y]
m([m nB'yucane)] ne')
u([ea nB*y ueaney] N 8)
ulieacHnaJufeensyiua']
= (ANB'Ne"YuancnNe') UANB NC)
ul{nena'}ufcens’y naty]
= (ANB'Ng") UANBNEC) UBNCNA")

U NB N A).
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wemec= [aemnc'Ju [onaen']

[{(A N8 U A e’ .
ule n {cans'y u (8na")} J
lcans' ncuena' ne'y]
vle nfansy' neaa’y'y]
[cans’ e’y v aa' ne'y]
le n{ca’ vy nes’ var]
[<ans’ ng"yuesna ne'y]
vlcn(a’ uB) n(B' Uay]
[(anB ne") vs A’ ne)]
u[fcena’y ucenm} nes'uay
[(anB’ ne'yuana'n gy
u[§ce nany Nes'umi v cenm) (B 'UA) ]
[cans’ne'y Ue N’ ney)
Ulcc na'AB"yU(ena na'y U Ce NBNA)Y]
= [(a0B" nc") U(B na’n oY)
ultc na"n 8" uce B Ay ]
(ane’ nc'y una'ne'y uena'n e’y
UCCNBNA).
Hence A@®(B®C) = (A ®B) ®©0C.
(2) A*(B*C) = A N(BNC).
(A*B)*C = (ANB) NG = A N(BNG).
Hence (A*B)*C = A%(B*C).

L]

]

8

H

i

#
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(3) A®B = (AUBYN(ANE)

E@®A = (BUA) N(BNA)

Since AUB = BUA and ANB = BNA, A@E = B ® A.
(%) AMB®C) = & n[(BUOYN(BAG)']

= A N(BLE) N(BAEC)'

[canB) vaneY] Nn(B'UE")
[canB)nB'uc)] U [ ane) N ue'y]

]

L

#

(A0B 0B') UCANBNC') UCANC NB")
veancneh)

(ANBNG') UANCNB).

%A NB) ® (ANCY '

[a nBY UAne)] o [(anB) ncane)]
canByucancy] n [a'usHuca've'y]

lanByucaney) n a'vs've']

(ca By [A'Us'uc']) Y ((A NG) QEA'UB'UG'J)
(ANBNA"Y UANBNB') U(ANB AC")

L]

8

A*B @ A*C

]

#

H

[

]

"

uancna'y Ucancne’y U anang)
= (ANBNC') UCAncNB').
Therefore A*(B @ C) = A%B @ A*C.
(5) A similar proof holds for (B @ C)¥ A.

In the verification of PIII and PIV, ¥ will denote the
empty set.
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]

"

@ouayn,anNg

¥

= 5{')“
= ANX

g®aA

z AQ
Hence ¢ is the zero for X,
A®A = (AUAYN (ANA)'

i

= ana'
= @,
Therefore A = -A and PIV is satisfied. Purthermore
since A%A = A/NA = A, X 1le a Boolean ring.
Example 1-6. The set X = § o, 1, a, b{with @ and *
defined as follows is & Boolean ring (1, p. 140).

+ jo 1 a b *lop L a b
sjo 1 a b ojo o o o
1LiL o b a lje 1 a2 b

a b o alo a & o
bib a 1 o bjo b o b

Theorem 1~-12. The Boolean ring K is isomorphic to the
ring of all subsets of a two element set.

Prosf: lLet Zx,y% denote a two element set. The subsets
of (x,y{ are (x3, (93, Ex,yz and . Therefore the ring of
subssts X of Ex.y} has its elements 034 S¥3, Smypys and 7.
Let ¥ be a mapping of X onto X such that Y(o) = #.I(L) =

Eﬁ:yg s 0Ca) = Em}, and J(b) = iyg. I£f P {8 eny alewent
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of K J (o*p) = ¥ (o) = g and (o)) I(p) = #. Likewise
Y (p*o) = J(pYN ¥ (o) = #. Again if P is an element of K,
Furp) = F(pd = X (p*L). while SN () = {xy () I(p)
= ¥(p) since §(p)C §x,y{. Finally Y(a¥b) = ¢ (b¥a)
since a*b = b*a = o, Therefore J (a*b) = g. Since
feayn ¢eb) = (x3() (y3=4, I(a*d) = J(a)(1J(b). 1In a
similar manner it can be shown J (p) ® 0 (q) = ¢ (p ® q)
where p,q €K. Hence K is isomorphic to the ring of subsets
of a two element set.
Both example 1-5 and example 1-6 were commutative
rings as well as Boolean rings. This is, in fact, true
for all Boolean rings.
Lemma 1-6. Let R be a Boolean ring. If a€R, a ® a = o0,
Proof: (a® a)*(a® a) = (a® a)*a ® (a ® a)*a
= a*a & a*a ® a*a @ a*a
= a®a®a®a,
Since a®a=ad®ad®a®a,
~-a @a®ad~ax=-ab a®adad®ad-~a
o@o0o=0®a®aoo
o= a6 a.

Theorem l-.3. If R is a Boolean ring, then R is a

commutative ring.

Proof: Let a,bER.



(a @ b)*(a ® b)

Therefore a ® b

~a@®a@®@b® -b

°

Therefore b*a =
Hence b¥a = «~(b%a),

b*a = a*b follows.

21

i

(a ® b)*a ® (a ® b)¥*d

a*a ® b*a @ a*b @ b*b
a®b*a® a*b @ b.

= a@®@bta® a*b ® b

A@ a®@ b*a® a*b @b ® ~b
= b*a @ a*h.

i

]

i

«(a*b), By lemma 1l-6 b*a @ b*a = 0,
Then by lemma l+1, ~(b%*a) = ~(a*b) and
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CHAPTER 11
IDEALS

In the study of rings, a special type of subring plays
a prominent role, This chapter will examine this type of
subring known as an ideal.

Definition 2~1. A non-empty subset 3 of a ring R is

called an ideal in R if for a,b¢ 8, a ¢ -b € §, and whenever
a € 8, a*r and r*a belong to S for every r ¢ R.

Theorem 2-1. 1If 8, ,2¢4, is a collection of ideals in
R, then (1 8, is an ideal in R,

Proof: Suppose a,b € NS, . Then a and b are elements
of each S, hence a & -b is an element of each 8, since each
8, is an ideal. Therefore a® - be NS, . Since a is an
element of each 8, , r*a and a*r are elements of each S4
for r € R because each 84 is an ideal. Hence a*r, r*a
€N8,. £or reR. Hence (18, is an ideal in R. Note that
o €18, so that 0 S, ¥ A4,

Definition 2-2. Suppose A and B are sets. let @ and *

denote binary operations defined on A and B. Define

A @ BE Ex ® y/xcA, ye 83 . If a; is a fixed element of
A, then a ® B = Eal ® b/be Bgand A*g = ga*al/aeAS .

23
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Before proceeding with the study of ideals, it will
be necessary to prove the following theorem which deals with
subrings in general.
Theorem 2-2. Suppose R is a ring and B is a subring
in R. If (&) @ B) () @®B) # §, then 2, @ B = ¢; @ B.
Propf: Suppose (a; @ B)\(by ® B) F §. Hence there
is a p€(ay @ B)\(ey; ® B). Therefors p = &, ® v and
P = cy ®s where r,8 €B. Suppose x€aq ® B, then
X = 84 @t whare t €B. Sinmpual@r, alwp@ur,
but a; = ¢; ® 8 @ (~r). Therefore x = o, ® 5 & («r) & ¢t
=2 ®(8 ® (~r) t). However B {s a subring and is closed
hence s @ («r) @ € €B. Therefore x<c¢y @ B and 8 ®BCeo @ B,
Conversely suppose x €oy ® B, then x = ¢y @ h where he< B.
But ¢y = p @ -6 =a®r@(-s). Hence x > 8y ® r @ (~8) ® h
=8 ® (r ® («8) ® h). Therefore XEay @ B, and ¢, ® agal ® B.
If J is a homomorphism between two rings R and K, an
ideal can be constructed in R with respect to y .
Theorem 2-3. let ( be a homomorphiem of R onto I,
Then the set of elements Ny , N 0 & Ea ER/ y(a) = '6';.
is an ideal in R,
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Proof: N¢ is non~ewpty since J0) = 0. Suppose
a,b€ Xy . Then (&) =0 and #(b) = 5. Since (a@ -b)
= f(a) @ F(~b) = F(a) ® (~ Y(b) by lemma 1-5, }(a @ -b)
=0@® -0O=0@®0 =08, Therefore a® ~-bENS . Suppose
a€Ny and let r&R. Then (r*a) = J(r)* Ma) = U and
J(a*r) = y(a)t /(r) = O /(r) = B. Therefore N& is
an ideal in R,

In view of theorem 2-2 if B is an ideal in R, an
important ring can be constructed with respect to B.

Theorem 2-4, Suppose R is a ring and B is an ideal in

R. The get D B ga@ B/ ac R} with appropriate operationes
is & ring.

Proof: Suppose a@® B, b@®BE D, Define (a® B) @ (b @ B)
E(a®b)P B and (a® B)*(bFB) E (a*b) & B. Since the elements
of D are sets, it is necessary to show that ® and * are well
defined, Suppvse a@ B = a'@® Band b@® B = b'@® B. Let
x€E(a@ b) ®B, Then x = (a® b) ® r where reB., Since
aca'®Band beb'@® B, a=at@ t and b = h' @ s where
SytcB. Therefore x=(a' @)@ (L' @ s8) ®r = (a' @ b')

@ (t®s ®r). Because B is a subring, t ® s & r & B.
Hence x€ (a' ® b') ® B. Therefore by theorem 2-2,
(a@®b) ®B = (a' ®b') & B. Now let x¢ a*b @ B, Hence
¥ = a¥*b @ r where r€ B, Since a = a' @ t and b = b'® s,
a*b = (a' @ t)M(b' @ 8) = a'*h!' @ a'*g @® t*b' @ t¥s, But

B is an ideal, so a'¥s, t*b', and t*s are elements of B.
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Hence a'*s @ ¢*b' & t*s ¢ B, Therefore xca'*b' ® B and by
theorem 2-2 a*b & B = a'*b' @ B, Hence & and * are well
defined.
Obviously PI is satisfied aince R is a ring. A

verification of PII will now be given,
(1) [(a ® B o (bo B)]@ (e ® B) m[(a ® b) e a}@ (c ® B)

m((a@b)@c]@k

w[a@(b@a)] ® B

= (a8 056 o) 03]

= (a ®B) @ [(b@m@(een) :
(2) (a®B) * [(b o BY*c o mj = (a ® B* [cb*an o 5]

ﬂ{a*(b*a)J ® B

= [(a*by*c] o B

ﬂ[(a*b) ® B} *(g + B)

= [(a ® B)*(b & B)} *(c ® B).
(3) (ad B (bO®B) =(adb)eB

= (b® a) ® B

= (b® B) e (ad B).
(4) (a ® B)* [(b@ﬁ)o (¢ ® B)| = (a o B)* [(b@@} @3}

=[a*(b ® e)] ® B

*-'»*[a*b 8 a*e] ® B

= [(&*b) & n] ® [(a*e) @ B]

= (a®B)MbeB)e (a@® B)*(c ® B).



27

(5) Verification ies similar to (4).

Therefore P11 is satisfied. If o is the zero of R,
then (a®B) ®(o ®B) = (a®o0) B = a ® B. Hence o ® B
is the zero for D. In conclusion if a ® BeD, then ~a€R,
But (a®B)@ (~-a®B) =(a® ~-2) B =038, 80 ~-a@ B
is the inverse with respect to @ for a ® BED. Therefore
D is a ring.

I1f R ie a ring and B is an ideal, the ring D of theorem
2-4 will be denoted as R/B. Recalling the ideal Ny of theorem
2-3 furnishes theorem 2-5.

Theorem 2-5. Suppose (R, ® , *) and Ry, ® 1, *;) are

two rings. Let ¢ be a homomorphism of R onto R,. Then the

ring R/N¢ is isomorphic teo Ry
Proof: Let # be the mapping of R/N¢ into Rl defined

by #(a® N) = ¢ (a) for a € R, First it is necessary to

show that # is well defined. Suppose a ® N/ = b ® N ¢,

hence bca ® N¢ . Therefore b = a ® x when xN+ . But

d(b) = J(a®x)= J(a) & J(x) = {(a) ® 0y = J(a).

Hence if a ® N = b & Ny, #(a@®@ NS )= #(b@®N¢) and ¢

is well-defined. Suppose now that ¥(a @ N) = % (b @ ).

Then ¢ (a) = 4 (b), Hence J(a) @y - (b)) = 0, = /(a® -b).

Therefore a @ ~b€EN/ and since a = a®@b® -b = b® (a ® -b),

a® N/ = b &N by theorem 2-2, Therefore ¢ is a one-to-one

mapping. This mapping is an' onto mapping since ) is an onte
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mapping, All that ramains is to show that Y preserves the
operations.

%[(a@ NY)® (be Ny )]m ‘f[(a &b) @w]

f(a® b)
y(a) ® ¥(b)

= %(a.@m“)ol (b & N¥ ).
g [caenyInme v = g [ (axb) @w]

= ¥(a*b)

= J’(a)*l £ (b)

“}b[a@w] *15’[?)@2”} .

In the study of ideals, there are a number of different:

Y

#

types of ideals. The next two definitions serve as a start
for a closer investigation of types of ideals.

Definition 2-3. Let R be a ring and let M be an arbitrary

non-empty subset of R. The intersection of all ideals con-
taining M is called the ideal generated by M and is denoted
by (M). An ideal generated by a single element is called
a principal ideal.

Definition 2-4. Let R be a ring and let B denote an

ideal in R. If B has the property that when a*b B, either
ae B or beB; then B is called a prime ideal.

Theorem 2-6. Suppose R is & ring and (M) is the ideal

gencrated by an arbitrary non-empty set of clements in R;

then (M) is the "smallest" ideal in R containing M.
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Proof: 1In order to prove theorem 2-6, it is necessary
to show that (M) < B where B is any ideal containing M.
The proef follows immediately from the definition of (M)
since if x€ (M), x is an element of every ideal coentaining
M, Hence iIn partiocular xc B. Therefore (M)C R £or any
ideal B which contains M, Hence (M) is the smallest ideal
in R containing M.

Theorem 2-7. Lat I denote the ring of integers under

+ and -. BSuppose acI. The set H € ixe 1/x = ka,ke T }is
(a).

Proof: Let x,ycH., Then x = ka end y = X'a. Since
Hwy = (k-'k')a, ¥~ycHs If reR and x H, rx = 3 = rka = kra
since x = ka. Therefore xrcH. Note that ocH, so that K
is non~-ewpty. Hence H is an ideal. K contains a since
@ = L.a, If B is any ideal in I containing a, kach where
k€l, Therefore HCB., In particulsr HS(a). But (a)< H
since (a) is a subset of any ideal eontaining a by theorem
2+6. Therefore (a) = H.

Theorem 2-8. Suppose I is the ring of integers and let

P be a prime integer. If (p) is the principal idesl generated
by p, then every non-zero element of I/(p) has an {nverse
with respect to the multiplication in 1/(p).

Proof: Since I contains the unity element 1, it can
be easily verified that 1 + (p) is the unity for 1/(p).
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There are at most p elements in 1/(9)‘ This fact can be
proved by showing that given any integer i there is an
integer h such that och<p~l and 1 + (p) = h + (p). If i
is a positive integer, the proof is by induction. For
i=1, lﬁp for any prime p. Choose h = 1 if L<p. 1If
p =1, choose h = o; since 1 + (1) = o + (1) because
ocl + (L) and oco + (L). Therefore 1 + (1) = o + (L)
by theorem 2-2. Suppose for i = k, k + (p) = h + (p) where
éshsp«l. If k + (p) = h + (p), then [k + (p)j} + [}. + (p)]
= [_h + (p)} + [l + (pi. Hence [k + 1] + (p) = [h + 1] + (p).
Since h<p~l, h + l<p. If h+ l<p, then h + 1L <p-1 and
proof is complete, If h + 1 = p, then \—_k + 1,] + {p) = o + (p)
since peo + (p). Therefore if 1 is a positive integer, there
is an h such that o<h=<p-l and 1 + (p) = h + (p). I1f i is
a negative integer, i + (p) = «i [p-l] + (p) since -i [pd]
= ~ip+ i =1 «ip=41 4+ [wip] . Therefore -i [pnl]baltmgs to
i+ (p) and ~i [pd] + (p). Hence i + (p) = -i[p-l]-n- (p)
by theorem 2-2. Observe i -ip >0 exgept for p = 1. 1If
p =1, choose h = o0; since i + (1) = o + (1). PFor i-ip> o,
Li-ip]+ (p) = h + (p) for some h o <h=<p-1, Hence
i+ (p)=h+ (p) for o<h<p-l. Therefore 1/(p) can have
at most p elements. |

Suppose a + (p), b + (p) 1I/(p) such that La + (p)}rv[?:a + (p)]u

o + (p). Therefore ab + (p) = v + (p).
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Henge ab = kp. Since p is a prime integer if ab = kp,
either a = rp or b = sp., If 2 = rp, aco + (p) and a + (p)
= o+ (p). Likewise if b = sp, b + (p) = 0 + (p). Therefore
if[é + (p)_]. [§ + (p?]z o + (p), elther a + (p) = o + (p)
or b + {(p) = o + (p). Hence I/(p) has no divisors of zero.
Since I/(p) also has only a finite number of elements each
non-zero element of I/(p) has an inverse by theorem 1-5,
Ideals in the ring I have many desirable properties.

One such property is dealt with in theorem 29,

Theorem 2-9, Ifgél, Byy een angis any set of integers
in the ring I, there exists an element a¢ 1 such that
(a) = (ay, ag, ... a,).

Proof: Let the integer a denote the greatest common
divisor of the integers 81y 8gr wes 8. Then
(a) = (ay, a3, ... ap). Since a€(a) and since by the
Euclidean Algorithm, there exist integers xy, Koy sees Xp
such that a = x; a; + x,8p + «.. + Xya,. Therefore
a€(a), ag ... a,). Hence (a)c(ay, ay, ... ay) since (a)
is a subset of any ideal containing a by theorem 2-6.
Furthermore since a is the greatest common divisor of the
integers a;, agy ++e 8, a divides each integer. Therefore
a1 = kia; ag = kga; . . . ay = kya. Hence a3, ay, ... a,

are all elements of (a) whieh guaranteas (ay, Any «o» 8p) S(a).



32
Definition 2-5. Suppose R is a ring. Let acR and

n be a positive integer. Then a*a* ,,.*a will be denoted
n factors
a® and \a9a® ... ®a,will be denoted as na, If n is a negative
- n factors
integer, na will mean ~a @ ~a ® ... ® -a, If n = o, na will

n Factors
be o where o is the zero element of R,

Definition 2-6. An ideal B in a ring R is said to be

a radical ideal if whenever a™e B for some positive integer
n, ac B,

Definition 2-7. An ideal B in a ring R is said to be

right primary if for a*bc B with a¢ B, implies bc B for
some positive integer n. An ideal B in a ring R is said
to be left primary if whenever a*be B with b4 B, implies
a"c B for some positive integer n, I£f B is beoth left and
right primary B ils said to be primary.

Definition 2.8, A non-zero element a2 &R is called

nilpotent if there exists a positive integer n such that
a® = o.

The following set of theorems and examples is based
on consequences of definition 2-4 through definition 2-8.

Theorem 2-10. Every prime ideal i1s a radical ideal.

Proof: Let B denote a prime ideal. Suppose alc B,
Since a' = a*(a* ... *a), either ac B or a"lcp., 1f

a €B, the proof is complete. Suppose ad B, then ah1lc B.

n-1

= ghp

Since a n~2* an-2

€ B. This process can be continued
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k times until n-k = 2 at whieh point azein. Therefore
a€B and every prime 1ldeal is a radical ideal..
Theorem 2-11. Every prime ideal iz a primary ideal.

Preof: Suppose B iz a prime ideal., Let a*bcB. If
a¢B, then b €B. Hence B is right primary. If b¢B, then
acB, Hence B ig left primary. Therefore B is primary.

Theorem 2+10 showed that every prime ideal is a radical
ideal and theorem 2-11 showed that every prime ideal is a
primary ideal, The following examples will show that a
primary ideal is not necessarily a prime ideal or a radical
ldeal, and a radical ideal need not be a prime ideal or
& primary ideal.

Examples 2-1. Every primary ideal is not a prime

ideal. Consider the ideal (M) in I. Since 2:66(4) with
neither 2 noxr 6 belonging to (4), (4) is not a prime ideal,
However 1f ab €(4) with a¢ (4) implies b2 e(4). If ad(4)
then a is not a multiple of 4, Hence the largest power of
2 which ie a factor of a is 2‘. Since ab €(4), b must be
even. Hence b = 2k. Therefore b2 €(4) and (4) is primary,
Example 2.2, Every primary ideal is not a radical

ideal since 4 €(4) and 4 = 22, but 2 ¢(4).

Example 2-3. Every radical ideal is not a prime ideal.

Consider the ideal (6) in I. Let aP €(6). Then aP = 6k by
theorem 2-7. Suppose a is not a multiple of 6. Then both
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2 and 3 are not factors of a and hence are not factors of
aP, fThis is a contradiction since aP = 6k, Therefore (6)
is a redical ideal. Since #-3€(6) with neither 4 nor 3
belonging to (6), (6) 1is not a prime ideal.

Example 2-4. Every radical ideal is not primary since
(6) is a radical ideal which is net primary. This can be

shown by noting that 2:3€(6) with 2 ¢(6) and 3k¢ (6) for

any positive integer k.
Theprem 2-12, If B is a radical ideal in R, then R/B

has no nilpotent elements.

Proof: Suppose R/B contains a nilpotent element a @ B.
Then there exists a positive integer n such that (a @ 3" =
©@B. Hence a" ® B = 0 ® B, Therefore a"c o ® B. Therefore
a"€B. Since B is a radical ideal acB. Hence a® B =0® B
by theorem 2-2. This contradicts the fact that a @ B is
nilpotent. Hence R/B has no nilpotent elements,

Theorem 2-13. Suppose B is a primary ideal in a ring

R. Then every divisor of zero in R/B is nilpotent.

Proof: Let a @ B be a divisor of zero in R/B. Therefore
there exists an element c ® B 0 @ B such that either
(coB)(a@®B)=o@Bor (a®B)(c®B) = o0& B. 1If
(¢c®B)*(2a ®B) = 0o@B, ckacB. Since c¢¢B, ac B for
some positive integer n. Therefore (a @ B)® = o @ B.
Similarly if (a ® B)*(c ® B) = 0 ® B it can be shown that
there exists a positive integer n such that (a ® B)® = 0 ® B.



35

Theorem 2-l4., The intersection of every set of prime

ideals is a radical ideal.

Proof: Suppose By ,*€ /A, is a set of prime ideals,
Then NB« is an ideal by theorem 2-1. Suppose a'e /1By .
Then a® ie an element of each Bs . Since each Bx is prime,
a 1s an element of each Bx by theorem 2-10. Therefore
a € NBy and NBg 1is a radical ideal.

The following lemmas concerning ideals will be of use
in Chapter IXI.

Lemma 2-1. If A and B are ideals in a ring R,

A¥B = i# ]x ig o finite sum of the form a;bl(j cer @ a ¥b
where a, €A and b€ B3 iz alsc an ideal in R.

Proof: 1If x,y €A*B, x @ -y will obviously be a finite
sum of the desired form. Let x€ A*B. Then r*x and w*r are
also elements of A*B since A and B are ideals. Hence A*B
is an ideal.

Lemma 2~-2, The set B' B*p* ,,.*B3, r factors, is an
ideal in R if B is an ideal in R,

1

Proof by Induction: If r = 1, B =B is an ideal.

Suppose for r = k, 8¥ is an ideal. Hence B*B is an ideal

by lemma 2Z-1. Therefore Bkﬁl

is an ldeal and the proof is
complete.
Lemma 2~3. If B is a prime ideal and ¢ and D are ideals

such that C*D = B, then either C = B or D = &,
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Proof: Suppose x€ B; then x = cl*dl @ ... d cn*dn
since C*D = B. Therefore xe€C and xe D. Hense BC.C and
BCD. Suppose that B7 C; then there is t €C such tha*
t¢B. Let Y denote any element of D. Since O*D = B, t*Y €B.
But B is a prime ideal. Therefore Y €B. Hence B = D. In a
similar fashion it can be shown that if BA N, then ¥ = (.,
Lemma 2-k. If A and B are ideals in a commutative
ring R, then AB = {xeR/ b*x € A for all !:vEBB igs an ideal of %,
Proof: Note that AE is non-empty since o € XB. Let
x,y €AB. Then b*x €A and b¥*ye A for any b€B., Since A 1s
an ideal, b*x @ -b*y €A,
b*x @ -b¥%y

it

b¥*x & b*(~y)
b*(x @ -y),

4]

Therefore x @ -y €AB. Let xcXF and let r€R. Since
**b €A for all b€ 3 and since R is commutative, b*(r*x) and

(r*x)*b €A for all bER. Therefore A¥ ic an ideal.



CHAPTER III
NOETHERIAN RINGS

Before proceeding with Noetherian rings, a few properties
concerning radicals of ideals will be investigated.

Definition 3-1. If B is an ideal in a ring R, the set

HZ { xéR} x*€ B for some positive integer nz is called the
radical of B.

Lemma 3-1., If B is a radical ideal, B = H.

Proof: Obviously BCH. Suppose xSH. Then there exists
a positive integer n such that x"€B., Since B is a radical
ideal, x <€ B, Hence HSB,

Lemma 3-2. I1f By and B, are ideals, then radical
(Blnnﬂ) = radical B; (Yradical Bj.

Proof: Suppose x € radical (Blﬂ By); then there exists

a positive integer n such that x" E(Blﬂ By). Hence e By

2
Hence x €(radical Elﬂradical By). Therefore radical

and x"¢c B_, Therefore x ¢ radical B, and x g radical B,,

(Blﬂ Bz) C radical Bl () radical By,

Suppose x € radical Bl N radical By. Then there exist

positive integers n and k such that x" € B. and x* € B,.

1
Let h denote the larger of n and k. Therefore xh € By

37
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h

and x G.Bz. Hence xh

6131/132‘ Therefore x € radical
(Blf]Bz). 1t follows that radical (BlfW B,) =
radical BI/W radical B,.

Lemma 3-3. If B is an ideal, radical (radical B) =
radical B.

Proof: Suppose x € radicel (radical B). Then there
exists a positive integer n such that x™ € radical B. If
x" € radical B, there exists a positive integer r such
that (x™¥c B. It can be easily verified that (x™)¥ = N7,
Obviously radical B C radical (radical B). Hence the proof
is complete.

Theorem 3«1. If B is an i{ideal in a commutative Ring R,

then the radical of B is also an ideal in R.

Proof: Suppose a,b € radical B. Hence for some positive
integers m and n, a" € B and b” € B, without less of gener-
ality suppose m = n; then azm and bam EB., Consgider the
product (a @ ~b)2m. 8ince R is a commutative ring, it is
easily verified that the binomial expansion holds for
wb)zm. In the rth verm of (a @ mb)zm, a is raised to
the 2m - r+l power and -b is raised to the r-l power. If
r = m, a 18 raised to the m + 1 power and ha®*ix(.p)-l €
where h is a positive integer. 1If r>m, then r-l=Zm,., Hence

hlgzm“r*l*(~ﬁ)r”lé B. If r<m, m <2m~r +# 1. Hence
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hzazm"r*l*(~b}r”l€ B, Therefore every term in the expansion
of (a @® »b)zm is an element of B and hence (a @ ~b)2me.B.
Therefore a @ ~b e.radicai B. Let x € radical B. There
exists a positive integer n such that x' € B. Suppose
a € Rj ‘&hﬁn &ne R. Since B {s an ideal a™x™c B, But
since R is commutative, aP*x" = (a*x)“ = (x*a)®. Therefore
radical B is an ideal in R.

An immediate consequence of theorem 3-1 is corollary
3-1.

Corellary 3~1. If B is a primary ideal in a commutative
ring R, then radical B is a prime ideal in R,

Proof: By theorem 3-1 radical B is an ideal in R.
Suppose a*b € radical B; then there exists a positive integer
n such that (a*b)Pc B. 8Since R is commutative, (a*b)? = al*pt,
Suppose a“'ﬁ B. Since B is primary, there exists a pesitive
integer k such that (b™)*c B. since (B™* = ™, b cradical B..
Similarly if b" ¢ B, a € radical B, Hence whenever
a*b € radical B, either a € radical B or b éﬁfadiaal B.

Definition 3-2, A ring R is said to satisfy the as-
cending chain condition for ideals if every sequence of
ideals BysByy oo in R such that By CB, C... has‘énly a

finite number of terms.
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Definition 3-3. A commutative ring which satisfies

definition 3-2 is said to be a Noetherian ring.

There are other statements which could alse serve as
the definition of a Noetherian ring. Theorem 3-2 will
give two alternate definitions. The fullowing lemma will
aid in the proof of theorem 3-2.

Lemma 3-%. If ByCB, C... is an infinite ascending
chain of ideals in a ring R, then the union of all the
ideals in the chain is an ideal.

Proof: Suppose a,bc UBy ; then a belongs to some
B, and b belongs to some B,, Either By C By or By, C By,
Hence both a,b GBk or a,b€B, . Therefore a® ~b € Bk or
a® ~b € B,. Hence a ® -b& UBy . If x € UBy , then x
is an element of some B, . Since B, is an ideal, r*x and

xhy E:Bk. Therefore r*x and x*r are elements of U By .

Theorem 3-2. In any commutative ring R the following

conditions are equivalent.
(1) R satisfies the ascending chain condition.
(2) Every ideal in R is generated by a finite number
of elements.
(3) Every non-empty set of ideals in R contains at
least one ideal which ies not contained in any

other ideal of the set (3, p. 20).
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Proof: Suppose R satisfies the ascending chain
condition, Let B denote an ideal of R and let b, € B,

Then (b}) < B since if x e(bl) x is an element of every
ideal containing by. 1f (b1) = B » the proof is complete.
Suppose (bl) < B. Now choose by € B such that by g (by).
Obviously (by) < (by, bz) <B, 1f (by, bs) = B, the proof
is complete. If not (b, by) CB and again choose an element
b3 € B such that ba 42. (bl, bz). Now we have

(b)) C(py, b)) C(by, by, by) = B. This process can only
be done a finite number of times. Otherwise there would
exist an infinite ascending chain in R. ‘Therefore for some
positive integer k, (bl' bZ’ «es by) = B,

Suppose now every ideal in R is generated by a finite
number of elements. Furthermore suppose there exists a set
K of ideals in R such that for every Bo € K, By 1is contained
in some other ideal in K. Without loss of generality the
ideals in K can be arranged in a sequence such that
By By C .ev TBy C ... By lemma 3-4 UB, 1is also
an ideal in R and hence is generated by a finite number of
elements. Therefore, U Bx = (bl' b:Z’ «++ bl). Now each
one of the generators for U Bx 1is an element of some By

in the chain. Observe now that there is an ideal Bp in

the chain such that P1s» byy ee b & B},.
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The contention is that B, = U By . Obviously, By & UB, .
Since UBa = (b, LIYRRPE b,.) with each b, €By, UBs C By.
Hence UBa« = B . Obviously By, is net contained in any
pther member of the set K. Therefore every non-empty set
of ideals in R contains at least one ideal which is not
contained in any other ideal of the set.

Finally suppose every non-empty set of ideals in R
contains an ideal which is not contained in any other
member of the set. Let By, Bg. +eey By .. be a sequence
of ideals in R such that By C By C ... CBy C.vs
Gonsidar the set of all {deals in this sequence. There
exists an ideal By such that B, ¢ B, for any By in the set.
Since these ideals form achain, By C B, for every element in
the set. Therefore since this is a sequence of ideals the
éhain is of finite length.

The next set of lemmas is =suggested by the fact that
every ideal in a Neoetherian ring {s generated by a finite
number of elements. |

Lemma 3-5. 1f (xl, Xgo eee x ) is an ideal in a
commutative xfing R, then (x,, Xgy ++o Xp) = G where
G = gX /X = i'[nixi ® ai*xi] where niEI and aing .

Proof: Suppose x,v €G; then x = [ {®a *xlj

L]

n
and - y = = f[-mixi ) bi*xi}
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n 1}
x® -y = %(“1"1 ® agux] 6 - 3 [mgxy @ bi*xij

n
= Zitni - mi] X, ® [ai ® ”bi] * xig .
1 ‘

Therefore x ® -y € G. Suppose x € ¢ and rc R,

1
r“ x & x*py = rxsS [nixi ® ai*'xi]

n 1

xi{ r *[nixi] @r*ai *xig
1
n

=% ([nax]* %1 ® rvagrxg

n% [nir @ r*ai] *xi

33
= i [oixi @ cgﬁci] .
1
The 0, is the real number zero and e; = nrér *ai.

Therefore G is an ideal. Since G contains iy Xy oo ¥y

y

(%, Xge «we X)) CG. Let b denote an clement of G. Then

b = %[nixi ® ai*xi] . Hence bE(xl, X9y s ¥p) because

(x, Xgr «es Xp) is an ideal. Therefore (xl, Xpy +ee %) = G.
Lemma 3-6. 1If B is an ideal in a commutative ring R,

the ideal BF ig the set P of all finite sume of products with

r factors. In set notation P = gxe R,X w; a

*a & *‘t‘ * a
where n€1 and aije Bz .
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Proof by induction: For r = 1 the result is trivial.
For r = 2, the lemma is true by lamag 2.2, Supgs}m lemma ia

k c ‘
true for r = k, Then if yc8 , y = = ai‘f‘aiz* ces¥845 where
1 _ “

4§3€B. Now B“ « 5 s gx/x is a ﬁ.nité sum of the form
yi*by @ ya*by ® ... y,*b, where 3 eB* and bj < 33 .

Each Y4 is expressible as a finite sum of terms with each
term consisting of a product of k elements of B. Also each
y i is "multiplied™ by bj B. Upon application of the
distributive law each term in the sum {s a product of k + 1
elements of B, This is aleo a finite sum since each yj*b j
is & finite sum and there are only a finite number of these

n
o e §a
sums. Therefore B *3 C X) x = % 841%849% ... *ag, . where

n €l and aijeﬁg » But if y¢ gx]x =
n
y ’-“-f [ail * a;q *ee ]*311“1‘ Therefore

n
f 8117849 '*as_m.g ;

n
gxlx = % ail*"'* aik-&-l where n €Y and aijeng < Bk* B.

Hence lemma 3-6 is true.

Lemma 3-7. If R is a commutative ring,

r
(xl, ‘Kz, LI xn) = (0--’ xi*x:i*.o‘*xr L )’

\ /

r factors
Proof: Suppose a E(xl, Kgs oo xn)r, then by lemma 3-6
a is expressible as a finite sum of products ay* .., #g

r
with r factors each a; being an element of (xy, Koy wee Xpd
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n.
=T [ e v ny |

13
ay = %[‘“‘i"i ® by* Xy ]

n
a, = g_ @i"i @ by* xi] .

{2 [P‘ixi ® h‘i*”iﬂ Eaeh term in t;hia product consiats
of r factors of the form x; *x* ., . .*x, . Since a is a
finite sum of factors of this type, a ¢an be written in the
k
form a “%[mj?j ® g’f yj] where my €T, géﬁ and y; ie a

product of the form xj * xy * ... *Xp. Therefore
r factors

a Elusny "i.*"j cos Ky s00)e Obviously any product of the

fﬂrm xi*uj* .hn *xr Will b‘lﬂng to (KXQ xz’ . n xn)r by lemma
r factors

3"‘"6u
The preceding three lemmas have laid the greoundwork for
theoren 3-3.

Theorem 3-3. If B is an ideal in s Noetherian ring,
there exists a positive integer m such that [radiaal. Bj}m E:-_ B.
(3) P. 23):
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Proof: Since radical B is an ideal in R by theorem 3--1,
it is generated by a finite number of elements due to theorem
3-2. Therefore radical B = (xy, X . ee x_ ). For each xg,
there exists a positive integer my such that xfni& B. Let
WE W Wy oo + By By lemma 3-7, (xl, ¥gy ses xn)m =
| QA ":i.*"j* vsse ¥ X, 4e.0). Since there are only n

\ /
m factors

distinet x;'s and since R is commutative, each

np n nk
ey k. * q,. ;
\xl xj s xk/s*-* :tp *"q cas *xk_j where r<n, Obsgerve

m factors T r Tactors

My # Do + o.0 #0y = Wy + WM, + ... + @ . For each x, in
the product of r fgctars, there correspends an n,. Each
Xp in the preduct ef r factors is also contained in the
preduct of m faetm‘*s‘. Observe for each xj, there is an

wy, such that thhe B. Consider the sum n, + ng + ces + ny
and the sum m, + mg # ... + my. It is easily seen that

Ny + Dp # ... + Nk Z Wy o+ mq + 40 4 Wy, Hence there is
ng = mg for some ng and my since if every n, < @, then
N, ¢ Ng + o.o mp<®, +qt.. m. But this statement cannot
be true since n, + Mg * oo M Z My ¢ Wy + .00 my.

q

Therefore there is an n_ =z n Hence contained in each:

s.
product. _x‘i*xj* «ee *x; there is an xsm‘e B. 'mi\m faot
guarantees that every element in the set of generators

for [radical B:}m belongs to B. Hence [mdiaal B]‘“c_; B.
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A similar type of proof can be applied to theorem 3-4,

Theorem J-4. If By and By are ideals in a Noetherian
ring R, there exists 2 positive integer r such that B}_”g._ Bo
if and only if radical B; C radical Bj.

Proof: Suppose there is an r such that B§: < 52. Since
R is Noetherian, B = (x,, Xps ees ¥,). Therefore
(%, Xgy ever xn)r < Bg. By lemmna 3-7 (..., xyRx ., % ) C By,
Therefore for p = 1, ..., 1, xpr € By. This implies that the
set of generators for B, is contained in radical B,, Therefore
By Cradical By. Since By /) radical By = By, by lemma 3-2 and
lemma 3-3 radical By = radical By () radieal By, Therefore
radical B; € radical B;. Now suppose radical 81 C radical By,

Since By C radical B;, By C radical By, Since R is Noetherian,

By = (xy, %3, ... %y). For each x; in the set of generators

for By t:hsm_axiws an ry; €I such that xi_ri < By. Let

¥ 2P ¢ ryg¢ .. .4+ r,. The remainder of the proof i=

identical with that of theorem 3-3, Therefore B, e By,
an‘a-s. Suppose B is an ideal in R. let § denote

the mapping of R onto R/B defined by #(x) = x ® B for x€ .

1f C4 is an ideal in R/B, then Dy = {xe&]ﬁ(x) Eﬂig ie

an ideal in R,
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Proof: Obsarve first that ¢ is a homorphism of R onte
R/B. Suppose x,ycDj, then g(x), #(y) c Cy. But G; is an
ideal. Therefore g(x) ® -g(y)€ Cy. Since f(x) @ ~ﬁ(&)
= f(x @ «y), X ® ~y €D;. Suppose x€D,, Let r¢R.
Sinee g(r*x) = F(r)*f(x) and g(x*r) = F(x)*#(r), r*x and x*re Dy
because C; is an idesl. Therefore ﬁi ie an ideal,

Lemma 3-9. If C; and C, are ideals in R/B such that
Cy Gy, then Dy cDy-

Proof: Suppese x €D; then g(x)€ G;. Hence g(x)c Cy,
80 x €Dy, 8ince CycC,y, there exists a y ® BECy such that
y @ B¢01. Therefore y € D, but vé¢ D,.

Theorem 3-5 follows from lemma 3~8 and lemma 3-9,

Theorem 3-5. If B is an ideal in a Noetherian ring R,
R/B 18 a Neetherian ring (2, p. 198).

Proof: Suppose R/B is not Noetherian. Then there exists
an infinite sequence of ideals in R/B such that C1CCyCh o v s
according to lemma 3-8 and lemma 3-9 the sequence of ideals
Dys Py, «v. Dy in R is also infinite, But this statement
contradicts the fact that R ia a‘Naethériaﬁ ring. Therefore
R/B is Noetherian. | | |

The remainder of this chapter will be devoted to the
decomposition of an ideal in a Noetherian ring.

Definition 3-4. Suppose B is an ideal in a ring R such
that B = By /) By /) ... (B, where each By is a primary ideal

in R. This intereection will be called a primary decomposition
of B.
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Definition 3-5. An ideal B ig said to be irreducible

if whenever B = 8117 Bo, either B = By or B = B,.
Definition 3-6., A finite intersection of ideals is

said to be irredundant if no ideal in the intersection
contains the intersection of the remaining ideals.,

A fundemental property of Noetherian rings is stated
in theorem 3-6.

Theorem 3-6, In a Noetherian ring every ideal can be

represented as the intersection of a finite number of irre-
ducible ideals (L, p. 175).

Proof: If B is an ideal in R, either B is irreducible
or B is not irreducible. If B is irreducible, B can be
expressed in the form B = By () By where B = By = Bj.
Obvieously By () By is a finite intersection of irreducible
ideals. If B is not irreducible, then there must exist ideals
B; and B, such that B = B, B, with B ¥ B, and B # B,. Therefore
B C:Bl eand B C By. If both B, and B, are irreducible, the
theorem is proved. Suppose that exactly one of Bl and B,
is not irreducible. Without loss of generality assume it is
By. Then there exist ideals By and By such that B, = B, ()Bg
with ByCBy and By c.Bg. Therefore B = Bl() By (1 Bg with
B CBy CBg. Again if By and Bg are both irreducible the

theorem is proved. So suppose Bh is irreduscible and Bg is
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not irreducible. Hence Bg = Bg /) Byg With Bg C Bg and BgCByq,
Now B = Blﬂ B“[)B& NByg with BC Bg CBg CBy g Oncé again if
Bg énd Bip are irreducible the theorem is proved. If not,
the same procedure is repeated. This procedure can only be
done a finite nmﬁber of times since the chain BC B,C BgCB1p<...
can have anly‘finite length. Hence there can be only a
finite number of ideals in the intersection and all of these
ideals are irreducible.

Theorem 3-7. If R is Noefherian, every irveducible
ideal in R is a primary ideal (1, p. 176),

Proof: Suppose there is an irreducible ideal B in R
which is not a primary ideal., Since B is not primary, there
exist elements a,b€R such that a*b €B with a¢ B and
b2 ¢ B for any positive integer n. Consider the set of
ideals Ay % E x € Rf whpi S Bg v It is easily verified that
each Ay is an ideal. Observe also that Ay CAy,q- Therefore
the Aj's form a chain in R. Si}me R is Noetherian, this chain
can have cnly finite length. Tﬁerefore there existe a positive
integer n such that Ay = A, .;. Consider the set
K% [_B @ (a}] a [(B & R*b“J . It can be eagily verified that
Be® (a), R*b" and B ® R*b" are ideals in R. If x€ K, then
x€B ® (a), Hence x = h® ka & k'*a where he B, k<1 and k'e R.
Observe that x*b = h*b @ k(a*b) ® k'*a*b, Since h*b, k(a*b),
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and k'*a*b e B, x*beB., Since x cB ®R*bP, x = p @ q
where p € B and g € R*b™, If q € R*b™, then q = r*b™,

Hence x = p ® r*b™. Therefore x*b = p*b @ r*bma} Since

z*b and -p*b € B, x‘*bml € B. Furthermore since r*bm'l

€ B,
r €Ap,y. But Ay = A ;. Therefore r € A . Hence r*b" ¢ B.
Since x = p ® r*b" with p, r*ph €B, x € B. Therefore
K € B. Obviously BK. Hence K = B, S8ince a¢B, B & (a)4B,
Also B & R*b™ & B since b™' ¢ B, Therefore BCB ® (a) and
BCB ® R*D™, This result contradicts the fact that B is
irreducible. Hence every irreducible ideal in a Noetherian
ring is primary. | |

Before stating and proving the fundamental decompeosition
theorem one more lemma is needed.

Lemma 3-10. If By and B, are primary ideals with radiecal
By = radical By, By ) B2 is a primary ideal. ‘

Proof: Suppose a*b €B; () B, with a¢ B, (1 By. Hence
a¢B, or a ¢B,. Without loss of generality suppose a¢B,,
Since a*b € By (1 By, a*b € B;. Hence b e By for some
positive integer k. Therefore b € radical By;. Since radical
By = radical By, b € radical Bs.

. Hence there exists a positive integer n such that
b" € B,. Let / denote the larger of k and n. Then b'c B,
and b € By. Hemce b’ € B, ()B;. Therefore By N By is rivn

primary. Similarly it c.n be shown that Blﬂ By is left primary.
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Theorem 3-8 is the fundamental decomposition theorem
for Noetherian rings.

Theorem 3-8, Bach ideal in a Noetherisn ring R is an

irredundent intersection of primary ideals with distinet
radicals,

Proof: By theorem 3-6 if B is an ideal in R, B is
the intersection of a finite number of irreducible ideals.
Each of these irreducible ideals is primary by theorem 3-7.
Let B = By (] By /) ... (B, denote this intersection. Either
this intersection is irredundant or it is not irredundant.

If it is not irredundant, there exists a B; such that
By (1] By M aes [}3i~l/q Bjs1-.. 1By C Bi, Therefore

By /182 (Neve OBy 1 /)Bi41 ) -o- N By = By) By (] ... N By -
Hence B = By /) By N... /1Bi.1 NBip1 ) «n. N By . Clearly
this process can be repeated until an irredundant expression
is found. Let B = By (1 By )... NBy denote the irredundant
intersection. If all the Bj'a have distinct radicals, the
proof is complete. Suppose there is a By and a B, with the
same radical. By lemma 3-10 B, N Bp is a primary ideal.
Clearly this process can also be repeated until there is a
representation B = N B, with each B, having e distinct
radical.

This intersection need not be unique as the following

example will show,
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Example 3-1. Let F denote the set of rational numbers.

Consider the polynomial ring F [x,y] . It can be verified
that F [x,y] is a Noetherian ring. The ideal (xu, xzy)
in P [x,g} has more than one representation as the inter-
section of a finite number of primary ideals with distinct
radicals,

For example (x“, xzy) = (xz)(ﬁ (x“, y) and
(xu, xzy) = (xz)fw (x“, xzy, yz). Let £, g, and h denote
elements of F [x,y] .

First of all (xz) is primary. Let f*géi(xz) with
fé:(xz). Therefore there is a term in £ which has degree
less than twe in x. Hence each term in g must be of at
least degree one in x. Therefore gz € (xz) and (xz) is
primary.

The ideal (xu, y) is also primary. Suppose f*gcs(xq,y)
with fé:(xq,y). Hence £ has a term which does not contain
either x* or y. This particular term has a degree of less
than four in x and of less than one in y. Hence every term
in g must be of at least the first degree in x or of the
first degree in y since f*g e(xu,y). Therefore g“é (xu,y)
and (xu,y) is primary.

Finally the ideal (xu, xzy, yz) is primary. Suppose
f*gE(xu, xzy, yz) with fé(xu, xzy, yz). Then £ contains
a term which is less than the fourth degree in x, less than

the second degree in y, and which is not of the form hzxzy.
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Therefore every term of g is either of the first degree in x
or of the first degree in y. Therefore ga € (x“, xzy, yz);
hence (x“, xzy, yz) is primary.
Suppose £ 6.(xu, xzy).

H]

£=£x" 4 £y

b 2
£.x% +{?2x ] v.
Therefore £ E(xz)‘and fea(xg,y). Hence (xu,xzy)g;(xz)()(x“,y}.

H

L]

suppose £ ¢ (x?) N(x*,y); then £ = flxz and £ = glx“ + go¥.

>

Hence By = gxz. Therefore £ = glxq + gxzy and (xu’xzy) =
(xz)/\(x“,y). Since radical (xz) = (x) and radical (x“,y) = (x,y)
with (xz) g;(x“,y) and (xu,y) g;(xz), thig decomposition satis-
fies theorem 3-8.
Again suppose £ <£(xu. xzy).
£f = flx“ + fzxzy
[flxz + fzyJ xz

]

2

Therefore (x&, xzy) g:(xg) f\(xa, xzy, yz). Suppose
£ 6.(x2) (](x“, xzy, yz); then £ = hlxz hnd fu glx“ % gzxzy *gayz.
Since £ = blxz, gg = gx?. Hence
£ = glxh + gzxzy + gxzy
= glx“ + [52 + gy‘] xzy.
Therefore (x*, x%y) = (x2) f\(xu, x%y, v2). Note once again
that radical (x?) =(x)while radical (x“, xzy, y2) = (x,y).
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Note also that (xz)ﬂ;(xu, Xzy, yz) and ()ﬁ“’, xzy, yz)gé(xz),
Therefore this decomposition also satisfies theorem 3-8,

2:y’, yz) because yé(x‘*,y)

Finally note that (xh,y) £ GH, x
but y ¢’(x’*, xzy. yz). 'Hence these two decompositions are
different.

The concluding two theorems in this thesis are conse-
quences of theorem 3-5,

Theorem 3-9. The radical of an ideal in a Noetherian

ring R is the intersection of the radicals of the primary
ideals in theorem 3-8,
Proof: Let B = () By of theorem 3-8.
radical [ﬂ Bi]
N [radical Bi]'

{2

radical B

i

The radicals of the primary ideals in theorem 3-3 are
known as the associated prime ideals of B.

The f£inal six lemmas prepare the way for theorem 3-10.

Lemma 3-1l. If B is a primary ideal such that a*beB
with b ¢ radical B, ac B.

Proof: Suppose a¢ B; then since B is primary b€radical B.
But b ¢ radical B. Hence ac3.
Lemma 3-12. If /) B; and C are ideals,

[ﬂai]c = [)[Bi cj .
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Proof: Suppose =€ NBf CJ; then x is an clement of
each (By C] . Therefore x*c is an element of each Bj for
¢ €C. Hence x € [(1Bf] C . Suppose now x¢ [NBI]C; then
for ¢ €C, x*c € \Bj. Hence x*c is an element of esach By
for any c< C. Therefore x is in each [Bf ] and hence

Lemma 3~-13. If B is a primary ideal, and C is an

ideal which is not contained in radical B, B¢ ™= B.

Proof: Obviously BCBCG. 8o suppose x € FC. There
exists a ¢ € C such that ¢ ¢ radical B, But x*c€B for
every c €C since x €BC. Hence by lemma 3-11 x€ 8.

Lemma 3~13. If B and C are ideals in a Noetherian

ring R such that B < ¢, then for any positive integer n
B"<=ch,
Proof: Since R is Noetherian B = (s, Koy eee Xp) and

C=(¥y1, Y9y «v. y3). By lemma 3-7

n
B = (."l Xi*x:j UQO*XEQ oco) ﬂnﬁ Cn = (..l' ylﬁ‘*y@ .,.*yt',.,‘).

n factors n factors
n
Bach x._ = f [niyg ® ag*y;] where ny c1 and ag €. Therefore

each term in the product xjix.: ...*x, will contain a
faetars
product of the form Yh*¥¢ ++.*¥, . Hence every element of
n factors
the set of generators for BM is in C™. Therefore BM c cP.

Lemma 3-14. If B and C are ideals in a Noetherian
ring R and C < B, then BT = R,
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Proof: Obviously BU C R. Suppose x€R and let e
denote any element of C. Then x* ¢ €B since ce B,
Therefore x € 0. Hence BC = R.

Lemma 3-15. If A and B are ideals such that £F = 4,

AB" = A for each positive integer n.

Proof by induction: For n = 1, AF = A by hypothesis.

Suppose for n = k AB‘EE = Aj; then EEEB = AB = A. Hence it

will suffice to show that AB'B = ABK*L, Suppose x € ABEp

let g denote any element of Bkﬂ. Theth g is a finite sum

of terms each term containing k+l factors. Hence

n
X'g = x* S ci*bi where biegk and ¢y e B. Each x*niEABk

————

1
since x €ABK B, since x QiEABk X"y *b; €A, Hence
n
x* < ci* by € A. Therefore if g éBml, x ¥ g €A. Hence

x €ABYFL | yoy suppose x € ABK¥L ; then xgm, Let b
denpte any element of Bk and let ¢ denote any element of B.
Then x *[c *b:] E‘A for any b eBk. Hence x* ¢ ¢ Z;" which is
true for all c ¢B. Therefore x emand proof is complete.

g‘_hearem 3-10. If B and C are ideals in a Noetherian

ring R, then B¢ = B if and only 1f C is not contained in any
of the aesociated primes of B. (1, ps 179).

Proof: Suppose C is not contained in any of the asspci~
ated primes of B, let B =/() B i by theorem 3-8.

BC =[BT

z (1 BIO by lemma 3-12.
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For each By there is a ¢y €C such that ¢y ¢ rad By.
Therefore for each By, BjC = By by lemma 3-13. Therefore
(TBiC = 1By = B. Hence BC = B. Suppose now BC = B.
Suppose also that C is contained in one of the associated
primes of B. Without loss of generality denote this primary
ideal as By, Then C Cradical Bj. By theorem 3-3 there
exists a positive integer n such that [radieal Bl]nc_: By.
By lemma 3-13 ¢ C [radical Bl:] n' Furthermore W = R
by lemma 3-14. Since BC = B, BC" = B by lemma 3-15.

B = BCh

= ﬂBicn

H

B1C" /) B,C" by lemma 3-12

£1
= n
R N oC
pAi L
= /) n
B,C
PAL
But () B, gn‘ﬁ;gﬁ . By lemma 3-12 OB, C" = (B, CP ,
PAL  pf1l pAL p#£ 1

Therefore B, C (N B_ CP , This implies N B_ 3.
p#£L p#£l p#1P

Since B = /) By and NB; C NBgy BS (1 By, . Therefore
prl

PAL
B=1[) Bp. But if By = (1B, for xe N By, % € NB;.
PAL pAL

However if x € ()By, x €B;. Hence leBp S By. But this
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result iz a contradiction since /)B; is an irredundant
expression. Hence C is not contained in any of the associ-

ated primes of B.
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APPENDIX

Definition Page Example Page
-1 1 1-1 2
1-2 7 1-2 2
1-3 8 1-3 3
1-k 8 1-4 13
1-5 8 1-5 13
1-6 11 1-6 19
1-7 15 2-1 33
2.1 23 2-2 a3
2-2 a3 2-3 33
2-3 28 2-4 34
2-4 28 3-1 53
2-5 32
2-6 32
2-7 32
2-8 32
3-1 37
3-2 39
3-3 Lo
3-4 48
3-3 49
3-6 49
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