
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/221015073

Web	Service	Micro-Container	for	Service-based
Applications	in	Cloud	Environments

Conference	Paper		in		Proceedings	of	the	Workshop	on	Enabling	Technologies:	Infrastructure	for	Collaborative
Enterprises,	WET	ICE	·	June	2011

DOI:	10.1109/WETICE.2011.51	·	Source:	DBLP

CITATIONS

14

READS

136

4	authors:

Mohamed	Mohamed

IBM	Resarch	Almaden

20	PUBLICATIONS			82	CITATIONS			

SEE	PROFILE

Sami	Yangui

Concordia	University	Montreal

27	PUBLICATIONS			101	CITATIONS			

SEE	PROFILE

Samir	Moalla

University	of	Tunis	El	Manar

10	PUBLICATIONS			44	CITATIONS			

SEE	PROFILE

Samir	Tata

Institut	Mines-Télécom

119	PUBLICATIONS			747	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Mohamed	Mohamed

Retrieved	on:	19	September	2016

https://www.researchgate.net/publication/221015073_Web_Service_Micro-Container_for_Service-based_Applications_in_Cloud_Environments?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/221015073_Web_Service_Micro-Container_for_Service-based_Applications_in_Cloud_Environments?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Mohamed_Mohamed43?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Mohamed_Mohamed43?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_5
https://www.researchgate.net/profile/Mohamed_Mohamed43?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Sami_Yangui?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Sami_Yangui?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Sami_Yangui?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Samir_Moalla?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Samir_Moalla?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Tunis_El_Manar?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Samir_Moalla?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Samir_Tata?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Samir_Tata?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Institut_Mines-Telecom?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Samir_Tata?enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ%3D%3D&el=1_x_7

Web service micro-container for service-based
applications in Cloud environments

Mohamed Mohamed1, Sami Yangui1, Samir Moalla1 and Samir Tata2

1 Faculté des Sciences de Tunis, 2092 Tunis EL Manar, Tunisia

mohamedmohamed@orange.tn, yangui.sami@yahoo.fr, samir.moalla@fst.rnu.tn
2 Institut TELECOM, TELECOM SudParis, UMR CNRS Samovar, 91011 Evry Cedex, France

Samir.Tata@it-sudparis.eu

Abstract— Cloud computing describes a new supplement, con-
sumption, and delivery model for IT services based on Internet
protocols, and it typically involves provisioning of dynamically
scalable and often virtualized resources. In this paper, we
propose to design and implement a new service micro-container
to address scalability by reducing memory consumption and
response time. We propose to dedicate a services micro-container
for each deployed service and thus avoid the processing limits
of classical services containers. Our micro-container is evaluated
and compared to conventional Web containers to highlight our
contribution.

I. INTRODUCTION

Web services can be seen as a pillar block for achieving

electronic B2B transactions. More and more companies are

using Web services to achieve transactions with their partners

and/or offer on-line services. For instance, in a Mckinsey

Quarterly survey [11] conducted in 2007 on more than 2800

companies worldwide, 80% are using or planning to use

Web services. Among these companies, 78% says that the

Web services technology is among the three most important

technologies to their business.

To make their services online, companies can set up their

own infrastructure or can adopt the new economic model

offered by Cloud Computing. Cloud computing describes a

new supplement, consumption, and delivery model for IT

services based on Internet protocols, and it typically involves

provisioning of dynamically scalable and often virtualized

resources. There is a no consensus on a definition of Cloud

computing relying on the definition of some twenty experts[8].

Foster et al. [10] define cloud computing as a large-scale

distributed computing paradigm that is driven by economies of

scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and

services are delivered on demand to external customers over

the Internet.

Although there is no consensus or definition of the concept

of cloud but there are few common key points in these

definitions. First, Cloud computing is a specialized distributed

computing paradigm [10]; it differs from traditional ones on

the fact (1) it is massively scalable, (2) it can be encapsulated

as an abstract entity that delivers different levels of services to

customers outside the Cloud, (3) it is driven by economies of

scale and (4) can be dynamically configured (via virtualization

or other approaches) and delivered on demand.

In this work, we aim at showing that classical service

containers such as Axis2 are not adequate to be used for

services management in a context of Cloud computing. Indeed

classical service containers are not in line with characteristics

of Cloud environments. Infact, they are not designed for

elasticity. For example, the occupied memory of these classical

containers is limited to the size of the memory of the physical

node on which they are deployed even though virtualization

techniques are used.

In this paper, we propose to design and implement a

new service micro-container to make the tasks performed

previously by classical service containers possible in a Cloud

environment.

The micro-container that we propose should be as

lightweight as possible for an optimal usage of Cloud re-

sources and ensure good performance in terms of response

time and memory consumption. Regarding the issue of scal-

ability, we propose to dedicate a services micro-container for

each deployed service. So, we will have as many micro-

containers as deployed services and thus avoid the processing

limits of classical services containers. The new size limit of

memory consumption will be the size limit of all physical

nodes of the Cloud environment. One can even push up this

size limit when considering hybrid Cloud environments. So the

actual limit of service deployment would be the limit of the all

available physical resources in the Cloud. In addition of that,

the deployment process will be very easy and summarized in

enclosing a service within its own micro-container.

This paper is organized as follows. Section II presents a

state of the art of Cloud computing environments and the

motivations of our work. In Section III, we present concep-

tion and the architecture of our service micro-container. In

Section IV, presents the implementation and the experiments

of our realization. Finally, in Section V we conclude our paper

and present our future work.

II. STATE OF THE ART AND MOTIVATION

Cloud providers offer different API to access to their

Cloud services. We can cite among other the following APIs:

Amazon API [12], GoGrid’s API [13], Sun’s Cloud API [14]

and VMware’s vCloud [15]. The Service Oriented Architecture

(SOA) is one of the principle architectures related to cloud

computing; hence we notice the increasing use of “Everything

2011 20th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

1524-4547/11 $26.00 © 2011 IEEE

DOI 10.1109/WETICE.2011.51

61

2011 20th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

1524-4547/11 $26.00 © 2011 IEEE

DOI 10.1109/WETICE.2011.51

61

https://www.researchgate.net/publication/23716795_Cloud_Computing_and_Grid_Computing_360-Degree_Compared?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/23716795_Cloud_Computing_and_Grid_Computing_360-Degree_Compared?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/240918699_Amazon_White_Paper_on_Cloud_Architectures?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==

as a service” terms like IaaS for infrastructure as a service,

PaaS for platform as a service and SaaS for Software as a

service and so on [18][16].

Taxonomy of cloud computing systems shows that all the

existing systems are limited to a programming framework

which makes the use of those clouds difficult, since cloud

clients need to use the related programming language before

using the cloud [16]. For example, Amazon imposes Amazon

Machine Image (AMI) and Amazon MapReduce framework,

Force.com imposes Apex language for database service, Azure

imposes Microsoft .Net [19][20], Google App Engine imposes

MapReduce programming framework [19], and so on.

The use of the SOA approaches in Cloud-based applications

leads to the use of service containers to manage the life cycle

of the provided services part of the deployed applications.

After studying different architectures of service containers, we

realized that all of them are not able to scale among many

physical machines. Any of those containers, Axis2 included,

can be deployed physically just on one machine, so the cloud

using such containers will reach its limits when this machine

uses its entire resources even if the other machines are charge

free. We can say that the cloud’s limit is the same limit

of the machine in which we deployed the service container.

This machine presents a bottleneck in every cloud using such

containers for service-based applications.

Amazon EC2, Force.com and Eucalyptus are examples

of clouds using Axis2 container to manage their deployed

services. Axis2 is one of the service containers that can handle

a big number of services in the same time and response to

client’s queries in an acceptable time [17].

We think that if every service could be deployed separately,

the cloud can really scale easily till it reaches its real limit

which are the limits of all the resources of the cloud. Every

service can be deployed anywhere in the cloud with the

minimal use of its resources. We got the idea to create a web

service micro-container that is able to contain just one service.

This micro-container provides the minimal functionalities to

manage the life cycle of the deployed web service. We can

deploy as many micro-containers as it is possible on any

machine, if this machine reaches its limit we can deploy on a

second one then on a third and so on. With this idea we will

show that we use the minimal resources to encourage the pay-

as-you-go model of cloud computing and we can enforce the

elasticity of cloud because we use just the resources needed

no more and no less.

III. SERVICE MICRO-CONTAINER

Doudoux [1] presents containers as mechanisms for manag-

ing the lifecycle of components that run in them. The container

hosts and provides services that can be used by applications

during their execution. To deploy an application in a container,

one must mainly provide two elements: the application with

its all components (compiled classes, resources, etc.) included

in an archive or a module and a deployment descriptor file

contained in the module that specifies the container options to

run the application. For example, for the J2EE platform, there

are several types of containers: Web containers, for servlets

and JSP, EJB containers, for EJB, and client containers for

applications on standalone terminals using J2EE components.

In line with the definition given in Wikipedia [2], we can

define a Web container as an application that implements the

communication contract between different application compo-

nents obeying a distributed architecture. This contract spec-

ifies a runtime environment for Web components including

safety and competition management, lifecycle, transactions,

deployment and other services. Web containers can generally

use their own Web server and also be used as a plug-in a

dedicated Web server (as is the case with Apache servers or

Microsoft IIS). Examples of Web containers are Tomcat (a

J2EE container implementation) and Axis2 which are open

sources projects from Apache.

In this paper, we shall focus on a particular type of Web

containers called services containers. Of course, services con-

tainers meet all specifications for the Web container already

mentioned and provides, in addition, support and management

of Web services. As far as we know, Tomcat and Axis2 are

both the most popular Web container used by developers.

For optimality and performance constraints, features of our

micro-containers will be as minimal as possible. After studying

the features provided by conventional service containers and

other container architectures. We drew up a list of basic

features that should satisfy our micro container. For example,

we failed to incorporate a safety module for managing access

since it is a prototype and management competitions module

since we are assuming a single Web service per container.

This list reflects directly the different components that make

up our micro-container architecture and ignores the extensions

and classical add-ons of conventional service containers. Ob-

viously, this does not affect the main process of our micro

container (Web services hodting, interaction with clients,etc.).

We believe that we will need the following modules:

• A transport module for user requests reception and for

sending responses,

• A SOAP and XML processing module for analyzing

SOAP messages elements and interpret/generate XML

contents,

• A process module for the invocation and processing

deployed Web services,

• A deployment module for deploying a deployed Web

service in the micro-container.

The architecture of our micro-container is formed by several

components detailed in Fig.1 below:

• A deployment platform for addressing the source archives

and correspondent WSDL for the generation of a corre-

sponding micro-container and service deployment,

• Micro-container to host the deployed Web service and

handle various clients requests,

• Thin clients to invoke services via micro-containers

The deployment framework is responsible of the generation

of the micro container component. Specifically, after analyzing

the WSDL file of the service by the WSDL parser component

and after receiving all its source archive (Fig. 1, Action 1), the

processing module chooses the type of binding to use with the

service from the generic communication module and switch

6262

https://www.researchgate.net/publication/220284963_From_infrastructure_delivery_to_service_management_in_clouds?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220285850_Toward_Dynamic_and_Attribute_Based_Publication_Discovery_and_Selection_for_Cloud_Computing?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221521743_A_Taxonomy_and_Survey_of_Cloud_Computing_Systems?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221521743_A_Taxonomy_and_Survey_of_Cloud_Computing_Systems?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==

Fig. 1. System Architecture

this decision to the generation module which generates and

deploys the specific micro-server with the necessary modules

(Fig. 1, Action2).

This mechanism ensures that we are decreasing the memory

unlike many containers engaging all the modules for a service

which may use just one module. This also helps to identify the

entire process of analysis, generation and deployment of the

total load of the micro-container and thus ensure its optimum

performance.

Micro-container component is responsible of managing the

communication with the client, holding the service and pro-

cessing all the messages incoming or outgoing the micro-

container. It is composed of the necessary modules for the

deployed service, no more, no less. The architecture of the

micro-container is shown in Fig. 1 and shows three main

components. Each of them ensures a feature from features

list introduced above.

The micro-container is composed of 3 parts:

• Communication module to establish communication and

to support connection protocols,

• Processing module to process ingoing and outgoing data

the server (packing and unpacking data),

• Service module to store and invoke the requested Web

service.

The next section presents the implementation of our micro-

container and some experiments related to response time and

memory consumption.

IV. IMPLEMENTATION & EXPERIMENTS

In this section we will detail the implementation of our

micro-container and detailed the experimentation we have

done that compare the performance of our micro-container

against the Axis2 container.

A. Implementation

The implementation took place in three phases. We have

first developed a minimal Java deployment framework, which

allows developers to deploy a Java Web service on a hard-

coded micro-container before deploying both of them in the

Cloud. After that, we developed the generation module by

generating and deploying an optimal and minimal micro-

container. We have also developed Java clients which send

requests to the service micro-containers and display results

returned by the deployed Web services.

At the first iteration of our implementation, we mainly

focused on automating generation and deployment process of

a service micro-container from a WSDL and source archives

provided by a developer. Then, in the second iteration, our

concern was to alleviate as much as possible the generated

micro-container for performance reasons and scalability con-

straints. In other terms, we had to refine the generation process.

To do this, we defined a generic component of communication

in the deployment platform to identify and contain most all

the communication protocols that can support a service. The

generation process is based primarily on results Bindings

components detected by the WSDL parser and secondly by

the activation of corresponding communication modules from

the generic communication module.

In addition, before generating the communication module of

the micro-container, we have imagined the scenario that traces

the sequence of events from a request reception until sending

a response. Indeed, for a SOAP over HTTP communication,

the execution of this module takes place in four steps: (1)

receipting of the client request, (2) extracting HTTP SOAP

envelopes, (3) invocation of requested Web service and (4)

building of the response message and send it to the client.

The generation module aims at supporting several commu-

nication protocols between the service micro-container and the

clients. Later, during the deployment, only necessary commu-

nication protocol is encapsulated in the micro-container. Fig. 2

represents UML sequence diagram which describes the service

Invocation’s scenario and the different interactions between the

services micro-container and clients.

A client sends its request to the service micro-container via

a specified port. The micro-server intercepts this request and

associates it to a new connection with this client. Parameters,

which represents deployed Web service arguments, are ex-

tracted from the client HTTP request and unpacks parameters

where side use an instance of Message_Processor. After Web

service invocation, Message_Processor packs execution re-

sults, build the message response and sends it back to the client

before closing the connection. By analogy with deployment

Web services procedures on conventional Web containers, the

developer must provide service’s sources archive and provide

service’s WSDL file. The developer must follow instructions

6363

Fig. 2. Invocation scenario

of the deployment descriptor of the Web container. Similarly,

our deployment process is greatly inspired by this process. Fig.

3 below represents an UML sequence diagram which describes

this procedure. We remind that we deploy a single Web service

on the micro-container in our case.
Each instance of the micro-container uses a communication

protocol with clients. To deploy a service, the user has to

provide a WSDL file and its related sources archive. The

Deployer analyses the WSDL file and detects which type of

micro-container will be deployed with the Web service. This

generation is related to the binding specified in WSDL file.

For example, if the service description denotes that the service

supports a HTTP connection, the Deployer will instantiate a

HTTP micro-server and the micro-container started is ready

to receive any HTTP client request via the specified port of

the Web service.
In the next subsection, we present the experiments we have

conducted to validate our proposal.

B. Experiments
To evaluate performance of our proposed micro-container,

we have considered a couple of criteria:

• Response time: Time taken by a service container be-

tween request reception instant and response sending

instant.

• Memory consumption: Memory size necessary to load

and process deployed service in services container after

receiving a request.

To perform these tests, we chose to evaluate the performance

of our services micro-container opposite to Axis2. This choice

was motivated by the performance of Axis2. Indeed, as far

as we know, Axis2 is one of the best efficient conventional

services containers.
We have also decided to perform tests in one machine

even for the micro-container. Axis2 can be deployed on one

machine. Nevertheless our container can be deployed over

more than one physic machine, hence, if our container defeats

Axis2 using just one machine so we can confirm that it

can defeat Axis2 more easily on large scales Cloud context

included, because our micro-container can scale without any

interaction between the services deployed unlike any other

container.

The machine that we have used for experiments is a Siemens

Fujitsu machine with a Pentium Dual Core 2.5 GHz, 2

Gigabyte of RAM and a Microsoft Windows XP Professional

SP3 as operating system.

We have also developed a test collection generator to obtain

thousands of generated Web services code archives and their

WSDL files. The functionality which implements these Web

services is the same: sum of two integers.

Fig. 4 below shows the different stored values for response

time experiments.

Axis2 time response increases proportionally with the num-

ber of deployed services. It represents the time needed for

Axis2 to load a service, update indexations and contexts and

execution. The interpretation time of request and the time for

the building of a response from a result are always the same.

For our micro-container, the response time is almost the same

for all the experiences, because every instance of the micro-

container is independent from the others, hence, we can deploy

as many micro-containers as it is possible regarding the avail-

able resources in the machine without affecting the response

time. In this environment, Axis2 reached its limit when 5700

services are deployed. Throwever, our micro container reached

more than 8000 deployed services using our defined approach

with the same performances and without any problem. During

these experiments, we had to make a choice between (1) test

by comparing Axis 2 performance versus a single instance of

the micro container performance (2) or test by comparing total

CPU time between all instances of deployed micro containers

6464

Fig. 3. Deployment scenario

Fig. 4. Time response evolution (Axis2 vs Micro-container) -int inputs

running in parallel versus Axis2. We opted for the first test

plan because we chose to comprare performance of the two

application servers with the same test collection (deployed

services).

Fig. 5 shows the different stored values for memory con-

sumption experiments. We have repeated the same experiments

in the same environment for memory criteria. We notice that

the memory usage is linear, increasing with the number of

services in the two sides. Results show the savings of the

micro-container against Axis2 in memory usage. That is due to

the large number of files generated using Axis2 container for

each web service deployed (archives, indexation, temporary

files, context files...). Those files’ size is larger than a micro-

container’s size.

For the first criterion of our experiments, in addition to

the variation of the number of deployed services, we have

also tried to diversify as much as possible our experiments.

Specifically, each time, we have changed data types provided

Fig. 5. Memory consumption (Axis2 vs Micro-container)

to services for the same test collections. As our implemen-

tation is in JAVA we decided to use JAVA primitive types

(int, long, double, etc.). For experiments with objects type

data, we manipulated Strings. The goal is not only to see the

impact of these types changes on Axis2 response time, our

micro-container response time but also the evolution of the

difference in performance already registered with the integers

in the initial experiments. To do so, we slightly modified the

source of services and the collection tests generation program.

Fig. 6 and Fig. 7 below show the different stored values for

response time experiments respectively for double inputs and

String inputs.

We note that Axis2 reached much faster (limit in terms

of number of deployed services) the threshold of the timeout

(30000 ms) for integer type inputs. This is explained by the

fact that the average processing times for String type data or

double type are less than the time required for the manipulation

of integers. This slight increase has also been observed on

the response time of our micro-container. We can therefore

conclude that the difference between response time of our

6565

Fig. 6. Time response (Axis2 vs Micro-container) -double inputs

Fig. 7. Time response (Axis2 vs Micro-container) -string inputs

micro-container and Axis2 recorded during experiments on

integers inputs has been accentuated in these experiments.

Finally, we tried to vary the number of inputs to deployed

services at invocation to test the reaction of our micro-

container facing Axis2. The choice of such experiment was

motivated by declining performance Axis2 from a given num-

ber of inputs. Fig. 8 shows the different stored values for

response time experiments for different numbers of integer

inputs.

V. CONCLUSION

The work presented in this paper is based on a simple idea

that consists in dedicating a micro-container to each deployed

service in a context of cloud environment. Only necessary

resources, such as communication protocol, are encapsulated

in the micro-container to host the deployed service. We

have defined the architecture of the proposed micro-container

and the deployer that is in charge of generating the micro-

container. We have in addition presented the implementation

of our micro-container. During, the first experimentations we

have done challenging Axis2 are rather very encouraging.

They clearly show the gain we can have when we opt for

our micro-container.

Fig. 8. Time response depending inputs number (Axis2 vs Micro-container

In our future works, we are planning to refine more our

experiments. We will push further our context of experimen-

tation and use our cloud computing infrastructure composed

of 256 cores.

REFERENCES

[1] http://www.jmdoudoux.fr/java/dej/chap048.htm (2010).
[2] http://en.wikipedia.org/wiki/Web_container (2010).
[3] http://searchsoa.techtarget.com/definition/Tomcat (2011).
[4] E. Langlet. Apache Tomcat 6, Guide d’installation du serveur Java EE

sous Windows et Lunix Livre des éditions ENI Collection Ressources
Informatiques. ISBN : 978-2-7460-4162-2, pp121-126

[5] http://www.javajazzup.com/issue11/page13.shtml (2011).
[6] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D.

Jayasinghe, S. Weerawarana, G. Daniels. Axis2, Middleware for Next
Generation Web Services. In: IEEE International Conference on Web
Services, ICWS, 2006.

[7] A. Dhesiaseelan, V. Ragunathan. Web Services Container Reference
Architecture (WSCRA). In the IEEE International Conference on Web
Services,ICWS, 2004.

[8] Twenty Experts Define Cloud Computing, SYS-CON Media Inc,
http://cloudcomputing.sys-con.com/read/612375_p.htm (2011)

[9] J. Silvestre. Economies and Diseconomies of Scale. In the New Palgrave:
A Dictionary of Economics, v. 2, pp 80–84, 1987.

[10] I. Foster, Y. Zhao, I. Raicu and S. Lu. Cloud Computing and Grid
Computing 360-Degree Compared. In the IEEE Grid Computing En-
vironments (GCE08), (2009).

[11] The Mckinsey Quarterly: How businesses are
using web 2.0. A mckinsey global survey
http://www.mckinsey.de/downloads/publikation/mck_on_bt/2007/mobt_
12_How_Businesses_are_Using-Web_2_0.pdf (2011).

[12] J. Varia. Amazon white paper on cloud architectures.
http://aws.typepad.com/aws/2008/07/white-paper-on.html (2008).

[13] GoGrid web site. http://www.gogrid.com (2009).
[14] The sun cloud API. http://kenai.com/projects/suncloudapis (2009).
[15] vCloud API programming guide, Tech. Rep., VMWARE Inc., 2009.
[16] B. Prasad Rimal,E. Choi,I. Lumb. A Taxonomy and Survey of Cloud

Computing Systems. In the fifth International Joint Conference on INC,
IMS and IDC, 2009.

[17] L.R. Merino, L.M. Vaquero, V. Gil, F. Galan, J. Fontan, R.S. Montero,
I.M. Liorente. From infrastructure delivery to service management in
clouds. In: Future Generation Computer Systems (26) pp 1226-1240,
2010.

[18] A. Goscinski, M. Brock. Toward dynamic and attribute based publica-
tion, discovery and selection for cloud computing. In: Future Generation
Computer Systems (26) pp 947-970, 2010.

[19] Microsoft, Azure. http://www.microsoft.com/azure/default.mspx (2009).
[20] Google, App Engine. http://code.google.com/appengine/ (2009).

6666

https://www.researchgate.net/publication/220284963_From_infrastructure_delivery_to_service_management_in_clouds?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220284963_From_infrastructure_delivery_to_service_management_in_clouds?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220284963_From_infrastructure_delivery_to_service_management_in_clouds?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220284963_From_infrastructure_delivery_to_service_management_in_clouds?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220285850_Toward_Dynamic_and_Attribute_Based_Publication_Discovery_and_Selection_for_Cloud_Computing?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220285850_Toward_Dynamic_and_Attribute_Based_Publication_Discovery_and_Selection_for_Cloud_Computing?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/220285850_Toward_Dynamic_and_Attribute_Based_Publication_Discovery_and_Selection_for_Cloud_Computing?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221587103_Axis2_Middleware_for_Next_Generation_Web_Services?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221587103_Axis2_Middleware_for_Next_Generation_Web_Services?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221587103_Axis2_Middleware_for_Next_Generation_Web_Services?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221587103_Axis2_Middleware_for_Next_Generation_Web_Services?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221521743_A_Taxonomy_and_Survey_of_Cloud_Computing_Systems?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221521743_A_Taxonomy_and_Survey_of_Cloud_Computing_Systems?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/221521743_A_Taxonomy_and_Survey_of_Cloud_Computing_Systems?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/4082530_Web_services_container_reference_architecture_WSCRA?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/4082530_Web_services_container_reference_architecture_WSCRA?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/4082530_Web_services_container_reference_architecture_WSCRA?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/23716795_Cloud_Computing_and_Grid_Computing_360-Degree_Compared?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/23716795_Cloud_Computing_and_Grid_Computing_360-Degree_Compared?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/23716795_Cloud_Computing_and_Grid_Computing_360-Degree_Compared?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/240918699_Amazon_White_Paper_on_Cloud_Architectures?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==
https://www.researchgate.net/publication/240918699_Amazon_White_Paper_on_Cloud_Architectures?el=1_x_8&enrichId=rgreq-c9dd2856605897b41ff255ab20d8f525-XXX&enrichSource=Y292ZXJQYWdlOzIyMTAxNTA3MztBUzoxNzg3NDQ3MTA5MzQ1MjlAMTQxOTYyNzQ2OTAxOQ==

