
Enabling social networking in ad hoc networks of mobile
phones

Emre Sarigöl1 Oriana Riva1 Patrick Stuedi2 Gustavo Alonso1

1 Systems Group, Department of Computer Science, ETH Zurich
2 Microsoft Research

{emres,riva,alonso}@inf.ethz.ch, pstuedi@microsoft.com

ABSTRACT

This demonstration presents AdSocial, a software platform
supporting social network applications in ad hoc networks.
AdSocial targets small-scale scenarios such as friends playing
a game on the train or co-workers sharing calendar informa-
tion. Moreover, AdSocial is specifically designed to run on
resource-constrained mobile devices, such as mobile phones.
By using a simple and efficient data piggybacking mecha-
nism, AdSocial applications share data by using any of the
many existing routing protocols for ad hoc networks and
without requiring any modification to the protocols them-
selves. The goal of this demonstration is to show the func-
tionality that AdSocial can support with a very low over-
head in an ad hoc network of 10–15 Nokia N810 handhelds.
Conference participants will be able to establish voice-video
calls, chat, or play games while moving around thus config-
uring a mobile and multi-hop ad hoc network.

1. INTRODUCTION

Whether for work or for entertainment, the mobile phone
has positioned itself as a universal device that provides users
with access to a wide variety of services. In particular, the
availability of short-range wireless technology such as WiFi
and Bluetooth makes it possible to build a new class of self-
organizing applications running in ad hoc networks of mobile
phones. Rather than focusing on traditional ad hoc network
applications such as military battlefield, emergency rescue
operations, or entity tracking, we are interested in small
scale networks established, for instance, to play a game with
friends on the train, to make a social connection with peo-
ple in a bar, or to share photos and documents in office or
household environments.

To support this kind of applications we built AdSocial,
a complete software stack and middleware platform sup-
porting social networks and related applications in ad hoc
networks. AdSocial offers a rich set of functions like chat,
video, VoIP, buddies search, and games, and it is specifically

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

developed to target the resource-constraints of small mobile
devices. Its current prototype has been tested in ad hoc net-
works of 20+ Nokia N810 Internet Tablets and it has been
used in several field trials. These were organized in office
environments and during a 3-day retreat where it was suc-
cessfully used by 40+ members of our research group both
in indoor and outdoor settings. In the demonstration, we
will demonstrate AdSocial using 10–15 Nokia N810 Internet
Tablets. In the following we give a more detailed description
of AdSocial.

2. ADSOCIAL

We outline the main features of AdSocial, its software ar-
chitecture, and its data model. We also give examples of
several applications that have been integrated in it.

2.1 Features

AdSocial integrates diverse functionalities typical of social
network sites such as Facebook, Orkut, or MySpace. Fig-
ure 1 shows a Nokia N810 Internet tablet running AdSocial.
The snapshot in Figure 1(a) shows the profile of the user
Oriana. The left hand side of the profile contains personal
information, such as a photo, her interests, and her email
and SIP addresses. On the right hand side, the nearby bud-
dies are displayed. Unlike typical online social networks
where a user’s list of buddies consists of friends explicitly
selected by the user, in ad hoc social networks, buddies are
nearby users whose presence has been detected by AdSo-
cial. As shown in the figure, users can retrieve the profile
of any nearby buddy by right-clicking on the buddy’s icon
and start a chat session with them. Alternatively, they can
also search for buddies matching some specific interest. Cur-
rently, interests are matched using a simple string matching
algorithm, but in the future more advanced matching sup-
port can be added.

AdSocial is designed to support spontaneous interactions
and provide the basis for running collaborative applications.
It currently supports presence detection, games (e.g., Quake
I [6] as shown in Figure 1(c)) as well as chat, voice and
video calls (see Figure 1(b)). For example, if a user retrieves
the profile of a nearby buddy, and the profile contains the
SIP address of the buddy, he/she will be able to establish
a voice/video session by simply clicking on the SIP address
and enabling the device camera.

(a) Profile, user status and buddies

(b) Voice-video call

(c) Game application

Figure 1. AdSocial applications running on a N810 handheld

ad hoc
network

 Persistent
Store

MAND
PUT

Subscription
MAND GET

FastCGI

HTTP

lighttpd
webserver

MAND

Browser

node 1

 Persistent
Store

MAND
PUT

Subscription
MAND GET

FastCGI

HTTP

lighttpd
webserver

MAND

Browser

node 2

AdSocial

HTTP

AdSocial

Figure 2. AdSocial system architecture.

2.2 System Architecture

AdSocial is implemented as a local web application running
in a regular web browser (see Figure 2). The local browser
connects to the lighttpd web server [4] that redirects the calls
to AdSocial via a FastCGI interface [2].

The whole presentation logic is written in JavaScript and
executed by the local web browser (e.g., Firefox). The inter-
action between the presentation logic and AdSocial is done
using local AJAX polling. The browser periodically queries
the local AdSocial instance to get updates about the avail-
ability of nearby buddies and refreshes the displayed infor-
mation.

Information about nearby buddies such as their presence
status, SIP address, or interests is retrieved directly from
the web server of the corresponding buddy in the ad hoc
network. To locate a buddy and to determine the address
of a buddy’s webserver, AdSocial uses MAND (Mobile Ad
hoc Network Directory) [7], a distributed directory service
for ad hoc networks.

2.3 MAND Data Model

MAND provides the abstraction of a distributed tuple space
in ad hoc networks. Tuple spaces like Linda [3] are well-
known shared memory models. Data is represented as el-
ementary data structures, called tuples, and the memory,
called tuple space, is a multiset of tuples. Sharing of data
among processes occurs by writing tuples (i.e., adding tu-
ples to the tuple space) or reading tuples (i.e., reading and
eventually removing tuples from the tuple space).

Likewise, the MAND tuple space supports three basic op-
erations:

• put(tuple): to insert a tuple in the ad hoc network;

• get(tuple request) to look up for a certain tuple
available in the ad hoc network; the operation places
a tuple request in the network;

• put(tuple delete) to remove a tuple previously made
available in the ad hoc network; the operation places
a tuple delete in the network.

A tuple consists of a sequence of typed fields. It contains a
key, a value, an owner, a scope, a lifetime, and a version

field. A key specifies the type of the tuple and the value

represents its content. The owner is the identifier of the node
generating the tuple. The scope field specifies for how many
hops at most the tuple must be disseminated in the network.
The lifetime field specifies for how long a tuple is stored
locally at a node. The version field specifies a replacement
schema among tuples with the same key. Tuples with older
versions and expired lifetime are automatically erased from
the tuple space. Therefore, a tuple is uniquely identified by
the pair <key,version>.

In the case of AdSocial’s presence information dissemina-
tion, a user publishing its online status can, for instance,
submit a tuple like the following, where he advertises his
name and his status:

tuple = {
key = "adsocial"
value = 15.10.5.2:80|adsocial|Patrick-available
version = 1
owner = "15.10.5.2"
scope = 4
lifetime = 100

}

Tuple request and tuple delete have the same structure
of a normal tuple with the only difference that the value

field is optional. The search criteria is specified using the
key, value, and version parameters. Owner, scope, and
lifetime refer to the actual tuple request, but they are
not used in selecting the tuple to be returned.

Both one-time requests (lifetime = 0) and subscriptions
(lifetime >0) are supported. Once a user has placed a
tuple request into the network, matching tuples are re-
turned. For example, to be notified about other buddies’ sta-
tus changes, a user can insert the following tuple request:

tuple_request= {
key = "adsocial"
value = s:String
version = *
owner = "15.10.5.3"
scope = 5
lifetime = 50

}

The value field offers more flexibility compared to the
other fields. It can contain both actuals and formals. Ac-
tuals are values (as the fields of the tuple’s value shown in
the first example) while formals are types such as integer,
string, and float. In the tuple request above, the value

field contains a formal: it indicates that a String type is
expected in the value fields of matching tuples.

Therefore, a tuple and a tuple request (or a tuple -

delete) match if they have 1) matching keys, 2) matching
formals and actuals in the corresponding value fields, and
3) matching versions.

A special parameter * permits specifying the “any” rela-
tionship. This parameter can only be used in the value and
version fields of a tuple request or a tuple delete. For
example, the previous tuple request is meant to search for
tuples whose version can be any value. However, to limit
the number of tuples returned in the case of tuples with long
lifetime, a user can also specify version=LAST; in this case,
only one tuple per each matching key will be returned, i.e.,
the one with the highest version.

Similarly, the same concepts apply to a tuple delete.
In the common case, a tuple delete will contain a certain

key and have value = *, version = *, and lifetime = 0.
This means that the command will delete all tuples with the
given key, regardless of their value and version.

In order to allow more flexibility, keys and values can be
organized in multiple subkeys and multiple subvalues. For
instance, in the case of a game such as the Quake I game
that AdSocial supports, a game server may use key=adquake
to send tuples to all active players who are (by default)
subscribed to game updates (i.e,. they have sent a tuple -

request with key=adquake). When the Quake server wants
to send an update that interests only a subset of the active
players (e.g., because they are located in the same game
region), then the server can inject a tuple with subkeys and
subvalues like the following:

tuple= {
key = "player1|player2|player3"
value = room3a|numobstacles25|level9|57
version = 23
owner = "15.10.5.10"
scope = 3
lifetime = 20

}

Keys can “match exactly”, as in first pair of tuple and
tuple request described above, or “partially”, as in the ex-
ample shown below: the following tuple request matches
both tuples above, i.e., the one with key = "adsocial" and
the one with key = "player1|player2|player3".

tuple_request = {
key = "adsocial|adquake|player1"
value = *
version = LAST
owner = "15.10.5.7"
scope = 4
lifetime = 100

}

Although MAND provides explicit support for tuple -

delete operations, given the unreliability of the underlying
wireless network and nodes mobility, this operation cannot
always guarantee to delete the specified tuple on all nodes
where the tuple was previously stored. Except for critical
operations, the simpler and more reliable way to guarantee
a global deletion of a certain tuple, is to use the lifetime

parameter of the tuple itself. The tuple delete operation
should be used only in those cases where a tuple was dis-
seminated with a lifetime that largely exceeds the currently
required lifetime.

2.4 Implementation

Applications built on top of AdSocial interact with the
MAND system through its three basic operations. All ap-
plication messages are wrapped into tuple objects that are
then distributed by MAND. Communication can be of two
types.

One possibility is to disseminate tuples and tuple re-
quests across the ad how network by piggybacking mes-
sages onto routing packets exchanged by the underlying
routing protocol. This communication channel is appro-
priate for disseminating small messages, that are not time-
critical, and that can tolerate losses. Depending on the un-
derlying routing protocol, the piggybacking space in rout-
ing messages can vary from 255 (the size of an AODV [5]

Figure 3. AdSocial testbed with 16 N810 handhelds.

extension) to 1200 (with OLSR) bytes. For instance, the
presence service, previously described, uses this channel
to periodically broadcast presence updates to nearby bud-
dies. The SIP protocol uses this channel to disseminate SIP
proxy addresses. The piggybacking-based approach provides
message-efficiency and can work with many routing proto-
cols without requiring any modification.

The second possibility is to use unicast messages. This
is the channel to be used to transfer time-critical messages
that do not need to be propagated to the entire network.
When a SIP-based call is established the voice and video
traffic goes through this channel. The multi-player game
uses this channel for exchanging real-time game updates.

3. EXPERIENCES WITH ADSOCIAL

AdSocial has been deployed using Nokia N810 Internet
Tablets, which although relatively powerful computing plat-
forms, yet present several limitations in supporting the de-
mands of a continuous social networking application like Ad-
Social. Nokia N810 tablets have 400 MHz processor, offer
128 MB of RAM, and run the Internet Tablet OS based on
Linux 2.6.18. Figure 3 shows a snapshot of our testbed.

AdSocial is a solid platform that has been already used in
several user trials employing 20+ N810 handhelds. In one in-
door trial we placed the handhelds in our department build-
ing at ETH Zurich. Devices were placed in offices across
three floors and users could set up voice-video calls or play
games in groups. Another trial was organized during the
retreat of our Systems group in a small town in the moun-
tains of Switzerland. In this case, 30+ users used AdSocial
to call each other from room to room, chat, and keep track
of users’ location in the hotel.

4. DEMONSTRATION HIGHLIGHTS

In this demonstration we use 10-15 Nokia N810 Internet
Tablets. The ad hoc network is established using the
OLSR [1] routing protocol. We use a transmission power
of 10 mW in order to create a multi-hop topology even in
a limited space. The services enabled by AdSocial partic-
ularly fit the conference scenario. Conference participants
will be provided with N810 devices and will be able to in-
teract with AdSocial while residing in different spots of the
conference room(s) and possibly moving around. We will
demonstrate how AdSocial can turn out to be a very useful
and convenient tool for communicating in a crowded confer-
ence venue, and participants will gain practical evidence of
the user experience that can be provided.

More specifically conference attendees will be able to:

• Create their own personal profile, specify interests to
be advertised in the network, publish their profile and
set their current status (available, busy, etc.); a basic
profile can also be created on a laptop thus avoiding
typing on the small keyboard of the N810.

• Initiate search for buddies with matching interests: the
user inserst a few key words and buddies with match-
ing interested are highlighted on the buddies list.

• Chat with multiple buddies at the same time, as in
typical IM applications

• Set up voice-video calls to other buddies: the user can
retrieve the profile of another buddy and by clicking on
its SIP address, the call is established. Additionally,
the user can click on the camera icon and enable video.

• Play Quake: users can play Quake with other buddies
(maximum 16 players are supported in one game). A
user who wants to initiate a game with others, can
select one or more buddies from its list of buddies and
send them game invitations. While playing Quake, by
moving the cursor on a specific player the user can see
the name and other basic profile information of the
corresponding buddy-player.

In addition to interacting with AdSocial, by means of a
simple applet to be started on the handheld, conference par-
ticipants will be able to view how the routing topology varies
over time and space, and can monitor several performance
metrics such as number of exchanged packets, bytes sent
and received, or number of lost packets. This will allow
conference participants to understand in more details how
AdSocial, MAND, and the underlying routing protocol in-
teract.

Acknowledgments
The work presented in this paper was partly supported by
the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Founda-
tion under the grant number 5005-67322, and partly by the
ETH Fellowship Program. N810 handhelds were provided
by Nokia’s Sensor Planet initiative.

References
[1] T. Clausen, P. J. (editors), C. Adjih, A. Laouiti,

P. Minet, P. Muhlethaler, A. Qayyum, and L.Viennot.
Optimized Link State Routing Protocol (OLSR). RFC
3626, October 2003. Network Working Group.

[2] Open extension to CGI, 2009. http://www.fastcgi.com.
[3] D. Gelernter. Generative communication in Linda. ACM

Transactions on Programming Languages and Systems
(TOPLAS), 7(1):80–112, 1985.

[4] Lighttpd web server, 2009. http://www.lighttpd.net.
[5] C. Perkins and E. Royer. Ad-Hoc On-Demand Distance

Vector Routing. In Proceedings of the 2nd IEEE Work-
shop on Mobile Computing Systems and Applications
(WMCSA’99), pages 90–100, February 1999.

[6] Quake I, 2009. http://quakeone.com/.
[7] P. Stuedi. From Theory to Practice: Fundamental Prop-

erties and Services of Mobile Ad Hoc Networks. PhD the-
sis, Swiss Federal Institute of Technology Zurich, Novem-
ber 2008.

