
Analyzing Student Work Patterns
Using Programming Exercise Data

Jaime Spacco
Knox College

jspacco@knox.edu

Paul Denny
University of Auckland

paul@cs.auckland.ac.nz

Brad Richards
University of Puget Sound

brichards@pugetsound.edu
David Babcock

David Hovemeyer
James Moscola

York College of Pennsylvania
{dbabcock,dhovemey,
jmoscola}@ycp.edu

Robert Duvall
Duke University

rcd@cs.duke.edu

ABSTRACT
Web-based programming exercises are a useful way for stu-
dents to practice and master essential concepts and tech-
niques presented in introductory programming courses. Al-
though these systems are used fairly widely, we have a lim-
ited understanding of how students use these systems, and
what can be learned from the data collected by these sys-
tems.

In this paper, we perform a preliminary exploratory anal-
ysis of data collected by the CloudCoder programming ex-
ercise system from five introductory courses taught in two
programming languages across three colleges and universi-
ties. We explore a number of interesting correlations in the
data that confirm existing hypotheses. Finally, and perhaps
most importantly, we demonstrate the effectiveness and fu-
ture potential of systems like CloudCoder to help us study
novice programmers.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Computer science education

General Terms
Measurement

Keywords
programming exercises; student work patterns; outcomes

1. INTRODUCTION
Many students struggle in introductory computer science

courses [4]. Web-based programming exercise systems, such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright c© 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677297 .

as CodingBat [16] and CloudCoder [10], can be a useful way
for instructors to provide students with additional oppor-
tunities to practice basic concepts and techniques with the
ultimate goal being (hopefully) to help students achieve bet-
ter outcomes.

In these systems, an exercise requires the student to write
a small amount of code (perhaps 5–15 lines) to perform a
specified computation. The correctness of the student’s code
is judged automatically by running the code against a set of
tests. If all of the tests pass, the student’s code is judged
to be correct. Because these systems are web-based and
the assessments are automatic, students can work wherever
and whenever is convenient for them, and receive immedi-
ate feedback. This combination of features allows students
to receive more feedback for a greater number of homework
exercises than would be possible with manually graded as-
signments.

In addition to the pedagogical benefits of using program-
ming exercises, the data collected by programming exercise
systems offers a detailed window into the students’ habits.
In this paper, we examine data collected using the Cloud-
Coder programming exercise system in five introductory pro-
gramming courses taught at three different institutions.

This paper makes the following contributions:

• We demonstrate the research potential of collecting
and analyzing data from short programming exercise
systems such as CodingBat and CloudCoder.

• We find a positive and consistent, although weak, cor-
relation between a student’s effort and success on Cloud-
Coder exercises and the student’s final exam score.

• We find that more difficult exercises (as measured by
the average score achieved by students) require more
time and effort to complete, but are not more likely to
result in compilation failures.

• We explore possible indications of student struggling
(flailing), and find that the amount of time spent on
an exercise, as well as the frequency of submissions,
are weakly inverse-correlated with the chance the code
compiles. However, time spent and the frequency of



submissions are not consistently correlated with overall
success on an exercise.

• We find, unsurprisingly, that over the course of the
term, the assigned exercises become more difficult, and
the students become more adept at writing syntacti-
cally correct programs.

2. RELATED WORK
Numerous hurdles confront students learning to program.

Many novice programmers struggle to interpret cryptic com-
piler error messages and fail to overcome syntax errors [12].
Logic errors generally present an even greater challenge for
novices [9], and it is known that poor debugging skills can
lead to the introduction of new errors, frustration, and ulti-
mately failure in a course [3, 13].

A wide variety of tools have been developed by computing
education researchers to help novice programmers. These
tools can also assist researchers, as they can be used to col-
lect data on student behavior, shedding light on the kinds
of problems that students encounter and revealing strategies
that prove effective. Collecting such data over an extended
period of time for research purposes is one of the explicitly
stated goals of the Blackbox project outlined by Brown et.
al. Blackbox collects information about submissions made
by students in the BlueJ environment into a central reposi-
tory [5]. Given the wide adoption of BlueJ in introductory
programming courses around the world, Blackbox data could
potentially form the basis for vast cross-institutional studies.

Even at more modest scales, the BlueJ environment has
been a rich source of data on novice programmer behavior.
Jadud monitored student compilation events within individ-
ual BlueJ work sessions with a particular focus on syntax er-
rors [11]. Certain kinds of errors occurred frequently, direct-
ing future work efforts toward helping students break out of
repetitive error cycles. More fine-grained data, including ba-
sic project and file management within BlueJ, was collected
by Norris et. al. using their ClockIt data logger [14]. Anal-
ysis of this data revealed that students who started work on
assignment tasks earlier tended to obtain superior results,
echoing the advice of many an instructor.

Automated grading tools have been another source of data
used by researchers to explore student work habits. Edwards
et. al. analyzed data from Web-CAT, an online tool where
students iteratively submit both their source code and the
set of tests used to verify their work [8]. Although student
behavior was inconsistent over the course of a semester, they
found that in general, better outcomes were achieved when
students started working on assignments early. A similar re-
sult, showing that students who started work earlier tended
to earn higher scores, was reported by Spacco et. al. from
an analysis of student data collected by the Marmoset au-
tomated grading system [17].

Previous work has also examined novice behavior when
solving short programming exercises, similar to those found
in CodingBat [16] and CloudCoder. An example is the work
of Denny et. al. with the CodeWrite tool where students cre-
ate, as well as solve, the exercises [7]. Their analysis revealed
that certain syntax errors consume a great deal of student
time and cause significant trouble, prompting a new tool
design displaying simplified error messages and associated
examples [6]. In this paper, to better understand student

work habits when solving short programming exercises, we
explore activity data collected by the CloudCoder tool.

3. CloudCoder
CloudCoder [1, 15] is an open source, web-based program-

ming exercise system inspired by CodingBat. It supports ex-
ercises in several programming languages, including (at the
time of writing) C/C++, Java, Python, and Ruby. The sys-
tem utilizes a repository of freely-redistributable exercises [2]
contributed by users.

One of the goals of the CloudCoder project is to provide
a platform for collecting data on how students learn to pro-
gram. In support of this goal, CloudCoder collects a rich
stream of data related to the process students undertake
when working on programming exercises. The specific data
we analyze in this paper are as follows.

Submissions When working on an exercise, students can
click the Submit button to have their code compiled and
tested on the server. For each submission event, Cloud-
Coder records the full text of the submission and the result
of compiling the submission. Students may submit as many
times as they wish without penalty with the system using
the best submission as their final score. We compute the
best submission as simply the percentage of test cases the
student code passes (i.e., 8 test cases passed out of 10 total
test cases is 80%).

Test results If a submission compiles successfully, it is exe-
cuted against each of the exercise’s tests and records the test
results. Possible results from executing a test are passed
if the code’s result matches the expected result, failed if
the code’s result does not match the expected result, or ex-
ception if the code misbehaves such as encountering a fatal
runtime error or exceeding allowed CPU time.

Code edits As students edit code within CloudCoder, the
underlying code editor produces a stream of insertion and
deletion events which are captured and recorded. The events
are fairly fine-grained: for example, as students type, the
insertion events record individual characters.

All of the data described above are recorded with millisecond
resolution timestamps, allowing detailed time-based analy-
ses to be performed.

4. ANALYZED DATA SETS
We analyzed data sets collected from five courses taught

at three institutions in 2013–2014. An overview of the data
used in our research is available in Table 1.

4.1 CS 101 at York College
The two CS 101 course offerings at York College were CS 1

courses taught using C. CloudCoder exercises were made
available to accompany the reading assignments, for exam
review, and as in-class quizzes and labs. In both semesters,
most of the exercises were optional, although the instructors
strongly encouraged students to do them. The extent to
which different students attempted to complete the exercises
varied considerably.

The format of the courses differed somewhat in the two
semesters. In both semesters, a substantial chunk of each
class meeting was spent on in-class lab activities. In Spring
2013 each class began with a traditional lecture. In Spring



School Term Course Language # stud. total #
exercises

avg. #
started

avg. #
finished

York Spring 2013 CS 1 C 133 62 37 33.9
York Spring 2014 CS 1 C 86 53 30.2 27.4
Auckland Fall 2013 Programming

for engineers
C 740 12 11.7 11.6

Duke Fall 2013 CS 1 Python 233 62 44.2 38.2
Duke Spring 2014 CS 1 Python 194 55 45.2 42.2

Table 1: Overall breakdown of CloudCoder data for the three institutions and five courses.

Auckland York 2013 York 2014 Duke 2013 Duke 2014

num. completed vs.
final exam

p-value < 0.001* 0.083 0.004* < 0.001* < 0.001*
R2 0.089 0.030 0.119 0.231 0.386

num. attempted vs.
final exam

p-value < 0.001* 0.370 0.006* < 0.001* < 0.001*
R2 0.073 0.008 0.106 0.194 0.382

pct. completed vs.
final exam

p-value < 0.001* < 0.001* 0.041* < 0.001* < 0.001*
R2 0.082 0.138 0.06 0.149 0.295

Table 2: Results from linear regressions. All regressions try to predict the final exam score, and all significant
results show the score on the final to increase with additional work on CloudCoder. Statistically significant
results are marked with a star (*).

2014 we used a fully flipped-classroom approach, with each
class meeting starting with a peer instruction quiz. The stu-
dents in CS 101 consisted of Computer Science, Electrical
and Computer Engineering, and (in Spring 2013) Mechani-
cal Engineering majors, along with a small number of Math-
ematics majors. There were also a small number of students
from other majors. The decrease in class size from Spring
2013 to 2014 is due to the Mechanical Engineering program
starting its own programming course in Spring 2014.

The “final” exam scores reported for both semesters of
data from York are not the official final exam, but rather
the last of four midterm exams. The last midterm exam
took place during the last week of classes, contained only
programming questions where students were asked to write
code, and was cumulative; however, some of the questions
emphasized topics from later in the course, such as struct
types, and so may not necessarily be representative of a
traditional final exam. The final exam at York is optional
for students who have already achieved their desired grade,
and so we have chosen not to include it.

4.2 ENGGEN 131 at University of Auckland
Over 700 students took Engineering 131 at the University

of Auckland in the Fall 2013 semester. The course, required
of engineering majors, taught two programming languages,
C and Matlab. CloudCoder was used for one assignment,
containing 12 exercises and worth about 2% of the marks
for the course, during the portion of the course taught in
C. CloudCoder does not support Matlab, so there were no
CloudCoder exercises for that portion of the course. The
final exam contained both multiple-choice and code-writing
questions covering both C and Matlab. Unfortunately, we
do not have the breakdown of which exam questions covered
which language.

4.3 CompSci 101 at Duke University
Computer Science 101, Duke’s CS 1 course, is taught

using Python. Both semesters of the course included in
our dataset regularly assigned CloudCoder exercises, worth

about 10% of the semester grade. The final exams were tra-
ditional written exams containing about half multiple-choice
and half code-writing questions; however, we only have the
aggregate scores.

5. DATA ANALYSIS
The obvious question is whether CloudCoder exercises

help students learn to program. Thus far, we have not been
able to perform a large-scale controlled study to address this
question directly. Instead, we have performed a post-hoc,
exploratory analysis of the data collected by CloudCoder.

5.1 CloudCoder Exercises and Exams
To explore the relationship between CloudCoder exercises

and final exam scores, we performed linear regressions of the
number of CloudCoder exercises attempted and completed,
as well as the percentage of exercises attempted that were
completed, against the final exam score for each course in our
dataset. We also compare the percent of submissions that
compile for each user against their final exam score. Table 2
shows the p-value, and the coefficients of determination (R2)
for these linear regressions.

CloudCoder exercises show the strongest predictive power
for the final exam at Duke, and the weakest predictive power
at Auckland. This makes sense, as University of Auckland
students only completed one 12-exercise CloudCoder assign-
ment, and the final exam covered Matlab (for which there
were no online exercises) as well as C; students at Duke Uni-
versity, on the other hand, completed regular CloudCoder
assignments, and the final exam asked programming ques-
tions that were similar to these exercises.

The data from York College is mixed; it is unclear why
the number of exercises attempted and answered was statis-
tically correlated with the exam scores in 2014 but not 2013.
One possible explanation is that the CloudCoder exercises
were not as well integrated into the course in 2013, given
that it was the first full-scale effort to include them. Another
possibility was that the student population changed signif-



Auckland York 2013 York 2014 Duke 2013 Duke 2014
avg. num. sessions vs.
avg. best score

p-value < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*
R2 0.702 0.770 0.593 0.218 0.654

pct. compilable subs.
vs avg. best score

p-value 0.525 0.120 0.109 0.197 0.180
R2 0.042 0.040 0.050 0.028 0.034

Table 3: Results from linear regressions against average best score achieved by all users who attempted each
exercise. Statistically significant results are marked with a star (*). Work sessions are computed by clustering
keystrokes less than 10 minutes apart into work sessions.

Auckland York 2013 York 2014 Duke 2013 Duke 2014
total time in mins. vs.
pct. compilable subs.

p-value < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*
R2 0.090 0.007 0.008 0.009 0.019

avg. # subs./min. vs.
% compilable subs.

p-value < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*
R2 0.195 0.026 0.020 0.024 0.020

total time in mins. vs.
best score

p-value 0.002* < 0.001* < 0.001* 0.034* 0.417
R2 0.001 0.004 0.015 < 0.001 < 0.001

avg. # subs./min. vs.
best score

p-value 0.507 0.072 0.405 0.017* 0.435
R2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 4: Results from linear regressions of the total time spent on each exercise, and the average number
of submissions per minute for each exercise, against the percent of submissions that compile, and the best
score achieved on each exercise. Each data point represents all combined work sessions for a student on a
particular problem. Statistically significant results are marked with a star (*). Work sessions are computed
by clustering keystrokes less than 10 minutes apart into work sessions. The best score is the maximum score
achieved by the student on any submission.

icantly in 2014, with Mechanical Engineering students de-
parting. Finally, there was a significant pedagogical change
in 2014, with the course being fully “flipped”. In any case,
the discrepancy highlights the difficulty of post-hoc analysis.

With the exception of the Spring 2013 York data, all of the
relationships indicated in Table 2 are significant, although
relatively weak (R2 at most 0.38). Overall, this suggests a
positive relationship between a student’s engagement with
CloudCoder exercises and their final exam score.

However; we must urge caution when interpreting these
results. We do not know what would have happened had
these courses been taught without CloudCoder, and so we
cannot conclude that it was CloudCoder that helped, as op-
posed to doing homework in general. We hypothesize that
CloudCoder’s automation enables instructors to assign more
practice exercises, which leads to more students learning,
but we do not have the data to support this claim.

5.2 Evaluating CloudCoder Exercises
Table 3 explores, over each exercise, predictors of the av-

erage best score achieved by each user who attempted the
exercise. We compute average best score by summing each
student’s best score on the exercise, and then dividing by
the number of students. As might be expected, more dif-
ficult exercises (as evidenced by lower average best scores)
strongly correlate with more effort by students, as measured
by additional work sessions: i.e., students were unable to
complete the exercise in a single sitting. We report regres-
sion results for the average number of work sessions for each
exercise; however, we should note that many other ways of
measuring effort, such as average number of minutes per user
per problem, average number of keystrokes, etc., also show
similar results.

We also note that there is no statistically significant rela-
tionship for any of our datasets between the percentage of
submissions that compile and the average best score achieved.
In other words, for the more difficult exercises, it is not more
difficult for students to submit syntactically valid code.

5.3 Students Struggling in CloudCoder
One intriguing use of systems such as CloudCoder would

be to detect “flailing” [9] students early enough in the term
that the instructor might intervene. However, this begs the
obvious question: What does flailing look like (i.e., students
who are working unproductively, and are unlikely to make
progress), and what does learning look like (i.e., students
who are working productively)? Two common assumptions
that all of the authors of this paper have heard from col-
leagues are 1) sometimes a student is unlikely to complete
an exercise, even if given an infinite amount of time, and 2)
small changes made in rapid succession with little thought
are unlikely to represent productive work. We chose two
metrics to represent these concepts: total amount of time
spent on an exercise, and average number of submissions
per minute of work.

Note that both of these metrics rely on total work time,
which we compute by clustering all keystrokes within 10
minutes into the same work session. We acknowledge that
this sort of clustering is course-grained, and that the 10-
minute cut-off is subjective. Determining an accurate cut-
off time by observing students as they work remains future
work.

We present our analysis of student struggles in Table 4.
Both the total amount of time spent on an exercise, and
the number of submissions per minute of work, are inversely
correlated with the chances that a submission would com-
pile. In other words, the more time a student works on



an exercise, or the more times they submit per minute, the
less likely those submissions are to compile. However, other
than at Auckland, the R2 values are quite low, which implies
that many other factors contribute to the compilability of a
student’s submissions.

Our potential measurements of flailing are less effective
at predicting a student’s best score. Three of five datasets
show a statistically significant inverse relationship between
minutes of work and the best score, but the relationship
is weak; Duke 2013 actually shows a significant, extremely
weak, positive relationship between minutes and best score,
while Duke 2014 shows no statistical relationship. Given
these results, it is hard to infer a relationship between time
spent working on an exercise, and the best score achieved on
that exercise. We also see essentially no relationship between
the number of submissions per minute, and the best score
achieved, as our only significant result is extremely weak.

One possible interpretation of the data is that short, quick
code changes mean something different when the code com-
piles than when it does not. This data could occur because
the immediate feedback from CloudCoder allows students to
diagnose and fix problems quickly; however, the data could
also happen because a guess-and-check style of coding is, in
fact, an effective strategy for short exercise systems. Simi-
larly, additional minutes of work may mean something dif-
ferent when the code compiles than when it does not, pre-
sumably because students are working on semantics rather
than syntax.

These interpretations are exploratory and highly specu-
lative, and we must stress that we cannot draw any strong
conclusions without more data and a much more nuanced
analysis of the data.

5.4 Improvement Over Time
Another question is whether students improve during the

semester. To shed light on this question, for each student,
we number the exercises in the order in which each student
attempted them. The ordering is relative to each student,
which means that exercise #1 may not be the same exercise
for all students, because students may choose to do the ex-
ercises for an assignment in any order, may skip exercises,
and may work on multiple exercises at the same time. How-
ever, even given these complications, the results in Figure 2
show a striking pattern. We can see very clearly that the
exercises assigned at York College and Duke University be-
come progressively more difficult, as evidenced by the lower
average best scores achieved on later exercises (the Auck-
land data was a single assignment, so it is not surprising
that the order in which students did the exercises mattered
less than at other schools). At the same time, we clearly
see that, other than the York 2013 data, the more exercises
a student attempts, the higher the chance that future exer-
cises will compile, which seems to show clear improvement in
compilations. We are unsure why the data from York 2013
suggests that more practice somehow makes students worse
at compiling their code. One possibility is that stronger
students became less likely to do the exercises over time.

Interestingly, the data from Figure 2 suggests that stu-
dents improve at compiling with practice, and that the im-
provement happens rapidly for C as well as Python. How-
ever, Figure 1 still reveals differences in the overall likeli-
hood that a submission compiles between the datasets, with
code written in C less likely to compile than code written in

Figure 1: Boxplot of compilation percent for the
five datasets. The box depicts and first and third
quartiles, while the whiskers are 1.5 × IQR (inter-
quartile range). Outliers are plotted as points.

Python. Given that many schools have switched to Python
for the first programming language, at least in part due to
its “easier syntax”, an open question is whether the choice
of language shows a measurable effect on the rate at which
students learn to fix syntax errors. This is an extremely
difficult question to address, as many things vary between
courses taught at different institutions. A very careful and
detailed analysis would be required even to begin to answer
this question.

6. DISCUSSION AND FUTURE WORK
In this work, we have explored a number of interesting cor-

relations and relationships in data collected from hundreds
of novices learning to program in two different programming
languages, at three different institutions.

This work represents a first look at the rich dataset we
have amassed, and only scratches the surface of possible re-
search angles. We hope to address a number of interesting
questions in future work. For example, our current work
only includes students who eventually took the final exam.
Are there measurable differences in behaviors or outcomes,
especially in the first three or four weeks of the term, be-
tween students drop the course and those who do not? Cod-
ing style is another interesting angle of study: Does code
that better follows stylistic guidelines or conventions, per-
haps as evaluated with a static style checker, correlate with
better outcomes, and does style matter as much for shorter
CloudCoder exercises as it does for longer, “nifty” assign-
ments? Finally, there is still much to be learned about com-
pilation and syntax errors for novices.

7. ACKNOWLEDGMENTS
This work was supported by a SIGCSE Special Projects

Grant. Cloud-hosting was supported by an Amazon Web



Figure 2: Results from linear regressions. The x-axis is the exercise number from the perspective of each
student, i.e., 1 is the first exercise the student started working on, 2 is the second exercise, and so on.
Regressions try to predict the average of the best scores achieved by each student, or the percentage of
compilable submissions, for each exercise.

Services (AWS) in Education Grant. Thanks to Kevin Hast-
ings for help with statistics.

8. REFERENCES
[1] Cloudcoder - welcome to cloudcoder!

http://cloudcoder.org, June 2014.

[2] Cloudcoder exercise repository.
https://cloudcoder.org/repo, June 2014.

[3] M. Ahmadzadeh, D. Elliman, and C. Higgins. An
Analysis of Patterns of Debugging Among Novice
Computer Science Students. SIGCSE Bull.,
37(3):84–88, June 2005.

[4] J. Bennedsen and M. E. Caspersen. Failure rates in
introductory programming. SIGCSE Bull.,
39(2):32–36, June 2007.

[5] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting.
Blackbox: A large scale repository of novice
programmers’ activity. In Proc. SIGCSE ’14, SIGCSE
’14, pages 223–228, New York, NY, USA, 2014. ACM.

[6] P. Denny, A. Luxton-Reilly, and D. Carpenter.
Enhancing syntax error messages appears ineffectual.
In Proc. ITiCSE ’14, ITiCSE ’14, pages 273–278, New
York, NY, USA, 2014. ACM.

[7] P. Denny, A. Luxton-Reilly, and E. Tempero. All
syntax errors are not equal. In Proc. ITiCSE ’12,
ITiCSE ’12, pages 75–80, New York, NY, USA, 2012.
ACM.

[8] S. H. Edwards, J. Snyder, M. A. Pérez-Quiñones,
A. Allevato, D. Kim, and B. Tretola. Comparing
effective and ineffective behaviors of student
programmers. In Proc. ICER ’09, ICER ’09, pages
3–14, New York, NY, USA, 2009. ACM.

[9] S. Fitzgerald, G. Lewandowski, R. McCauley,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: Finding, Fixing and Flailing, a
Multi-institutional Study of Novice Debuggers.
Computer Science Education, 18(2):93–116, 2008.

[10] D. Hovemeyer, M. Hertz, P. Denny, J. Spacco,
A. Papancea, J. Stamper, and K. Rivers. Cloudcoder:
building a community for creating, assigning,
evaluating and sharing programming exercises
(abstract only). In Proc. SIGCSE ’13, SIGCSE ’13,
pages 742–742, New York, NY, USA, 2013. ACM.

[11] M. C. Jadud. Methods and tools for exploring novice
compilation behaviour. In Proc. ICER ’06, ICER ’06,
pages 73–84, New York, NY, USA, 2006. ACM.

[12] S. K. Kummerfeld and J. Kay. The Neglected Battle
Fields of Syntax Errors. In Proc. ACE ’03, ACE ’03,
pages 105–111, Darlinghurst, Australia, Australia,
2003. Australian Computer Society, Inc.

[13] L. Murphy, G. Lewandowski, R. McCauley, B. Simon,
L. Thomas, and C. Zander. Debugging: The Good,
the Bad, and the Quirky – a Qualitative Analysis of
Novices’ Strategies. SIGCSE Bull., 40(1):163–167,
Mar. 2008.

[14] C. Norris, F. Barry, J. B. Fenwick Jr., K. Reid, and
J. Rountree. Clockit: collecting quantitative data on
how beginning software developers really work. In
Proc. ITiCSE ’08, ITiCSE ’08, pages 37–41, New
York, NY, USA, 2008. ACM.

[15] A. Papancea, J. Spacco, and D. Hovemeyer. An open
platform for managing short programming exercises.
In Proc. ICER ’13, ICER ’13, pages 47–52. ACM.

[16] N. Parlante. Nifty Reflections. SIGCSE Bull.,
39(2):25–26, June 2007.

[17] J. Spacco, D. Fossati, J. Stamper, and K. Rivers.
Towards improving programming habits to create
better computer science course outcomes. In Proc.
ITiCSE ’13, ITiCSE ’13, pages 243–248, 2013. ACM.


