LoKey: Leveraging the SMS Network in
Decentralized, End-to-End Trust Establishment

Anthony J. Nicholson!, Ian E. Smith?, Jeff Hughes?,
and Brian D. Noble!

! University of Michigan
{tonynich, bnoble}@eecs.umich.edu
2 Intel Research, Seattle
ian.e.smith@intel.com
3 University of Washington
jeffdh@cs.washington.edu

Abstract. People increasingly depend on the digital world to com-
municate with one another, but such communication is rarely secure.
Users typically have no common administrative control to provide mu-
tual authentication, and sales of certified public keys to individuals have
made few inroads. The only remaining mechanism is key exchange. Be-
cause they are not authenticated, users must verify the exchanged keys
through some out-of-band mechanism. Unfortunately, users appear will-
ing to accept any key at face value, leaving communication vulnerable.
This paper describes LoKey, a system that leverages the Short Message
Service (SMS) to verify keys on users’ behalf. SMS messages are small,
expensive, and slow, but they utilize a closed network, between devices—
phones—that are nearly ubiquitous and authenticate with the network
operator. Our evaluation shows LoKey can establish and verify a shared
key in approximately 30 seconds, provided only that one correspondent
knows the other’s phone number. By verifying keys asynchronously, two
example applications—an instant messaging client and a secure email
service—can provide assurances of message privacy, integrity, and source
authentication while requiring only that users know the phone number
of their correspondent.

1 Introduction

People increasingly depend on the Internet for daily interactions with others.
We send email instead of letters, send digital pictures rather than prints, and
pay bills online rather than write and mail checks.

The financial sector of our digital lives has at least a modicum of protection
and security. Businesses have certified public keys [1], and use SSL [2] to provide
reasonable authentication of a service to its users. Of course, such services are
still vulnerable to phishing [3], DNS spoofing [4], and users’ apparent willingness
to accept any certificate presented as valid, no matter how problematic [5].

Unfortunately, person-to-person communication remains largely vulnerable.
Secure email has made few inroads, and many messaging systems provide no se-
curity model at all. There are several structural reasons for this. Family members,

K.P. Fishkin et al. (Eds.): PERVASIVE 2006, LNCS 3968, pp. 202-2T9] 2006.
© Springer-Verlag Berlin Heidelberg 2006

LoKey: Leveraging the SMS Network in Decentralized 203

friends, and colleagues often have no central point of administrative control, mak-
ing mutual authentication based on third-party services, such as Kerberos [6],
impossible. Furthermore, individuals have little conscious incentive to purchase
their own certified public keys.

The only remaining model is key exchange. The essential weakness of this
model is that exchanged keys are unauthenticated—the users have no idea if the
key they have is the correct key, or if some attacker has replaced it with one of
their own choosing.

To confirm the veracity of a key, users are expected to verify it using some out-
of-band mechanism. For example, they can call one another on the phone, and
compare their key fingerprints. Typically, such fingerprints are long sequences
of digits. In practice, users rarely verify keys out of band and tend to accept
whatever keys are presented to them [7], though there has been work on more
user-friendly verification techniques [8,[0L10].

The unique properties of pervasive and mobile computing devices exacerbate
this problem. Users would clearly like the devices they carry with them to com-
municate securely with the ever-changing and expanding set of users and devices
encountered in their everyday travels.

Rather than rely on users to manually verify potentially compromised keys,
we have constructed a system, called LoKey, that exploits the Short Message
Service [11] to verify keys on users’ behalf. There are several advantages to SMS.
It utilizes a closed network, making internal attacks more difficult. The end
user devices—phones—are authenticated by network operators, nearly always
connected, and rarely out of their users’ possession. These facts together allow us
to construct an out-of-band channel between two corresponding users’ machines;
if a key can be verified by such a channel, it can be used with high confidence.

LoKey removes the need for users to trust any party beyond the person they
want to communicate with and their phone service provider—no certificate au-
thorities, public key infrastructures, or third-party intermediaries. Instead, it
leverages the security properties of a network of limited usefulness (the SMS
network) to secure traffic on the insecure, but vastly more powerful, Internet.

However, there are also challenges in using SMS—messages must be small,
cannot use the full symbol space, have very high latency, and are expensive
to transmit. Furthermore, the SMS service must be used judiciously, else the
phone’s battery will be expended too quickly.

This paper describes LoKey’s approach to meeting these challenges, while
still establishing a valid key. First, we establish a secure association between
each user’s phone and their computing devices. Thereafter, a user can establish a
secure relationship with another knowing only the correspondent’s mobile phone
number—something users are already accustomed to doing. The calling user
initiates key establishment with the correspondent via SMS, the two exchange
keys via the Internet, and confirm the veracity of those keys via SMS.

The established key can either be used directly as a symmetric key between
two users, or used as a session key to provide an authenticated channel. Such
channels can be used to distribute public keys, group keys, et cetera, in a reliable

204 A.J. Nicholson et al.

and authenticated way. LoKey is a general framework for trust establishment
that is agnostic to the specific key technologies in use.

In addition to describing our system, we also present two sample applications
that use LoKey. The first is an instant messaging client, that establishes a secure
session key when a new correspondent is added for the first time. The second
is a plug-in for the Mozilla Thunderbird email client. This tool lets email users
swap their public keys in an authenticated way, in order to send and receive
encrypted email.

Two users can exchange and verify a key in just over 30 seconds; this time is
dominated by SMS message latency. While this is too expensive for on-demand,
synchronous communication, it is acceptable for asynchronous or one-time tasks,
such as signing a piece of email before it is sent for delivery or adding a user
to a list of correspondents for future use. Half of this cost is incurred to initiate
key establishment via an SMS message, rather than over the IP Internet. This
is an expensive feature, but an important one for mobile clients, as it prevents
DNS-based attacks.

2 Background: Why Key Establishment Is Hard

Key establishment is trivial when all users belong to one administrative domain.
For example, all employees in a department trust their system administrator
implicitly. This allows Kerberos-style authentication [6] between employees who
have a common trusted entity (the sysadmin), but is obviously impractical for
establishing trust across the global Internet.

The Diffie-Hellman key establishment protocol [12] lets two users with no pre-
vious relationship establish a key in a way that is secure against eavesdroppers.
Alice and Bob each generate a random integer (a and b) and exchange (g* mod
n) and (¢® mod n), where g and n are public protocol parameters. The key is
(g*® mod n). Alice can calculate this, knowing a and having received (g® mod n)
from Bob, because (¢ mod n)® = g% mod n. Bob can do likewise because (g°
mod n)? = g% mod n. But an eavesdropper cannot calculate the key feasibly,
because deriving a and b from {(g® mod n), (¢° mod n), g, n} is intractable [13].

Unfortunately, the protocol is vulnerable to active attacks. If Mal can remove
and insert messages as shown in Fig.[I] she can force Alice and Bob to unwittingly
establish keys with her instead of each other. As long as Mal tunnels all traffic
between Alice and Bob, they cannot detect the attack. SSL [2] and the Station-to-
Station protocol [14] both solve this problem by requiring users to have certified
public keys. In this model, all users must trust a small number of certification
authorities (CAs) [1], whose public keys are broadly distributed and well-known.
Alice and Bob then sign all their key establishment messages to each other, and
can detect if a message originated from someone else.

But how do users get these key certificates? This places an unreasonable
burden on users to find a secure side-channel with the CA, such as physically
visiting a key signing kiosk. There is little incentive for users to do this. For
example, most merchants authenticate individuals by their credit cards. Many

LoKey: Leveraging the SMS Network in Decentralized 205

Fig. 1. Vulnerability of Diffie-Hellman to man-in-the-middle attacks

institutions also self-sign their certificates, acting as their own CA. This leads
to a balkanization of the world into islands of trust. While there has been work
toward bridging this gap [I5], each trust domain must still somehow establish
trust with each other or with a hierarchical set of CAs. SSL is also vulnerable to
“DNS hijacking” attacks [I6]. While users are informed the host key has changed
when such an attack occurs, too often they are conditioned to just click “OK”
on every security alert message [5].

At the other end of the spectrum lies the decentralized PGP “web-of-trust”
model. Users sign the keys of others whom they trust, or keys that they receive
over a secure side-channel. When Alice receives Bob’s public key for the first
time, she accepts it as valid if someone she already trusts has signed it, attesting
to its integrity. In order to sign someone’s key, one needs to receive or verify
the key out-of-band to preclude man-in-the-middle (MiM) substitution attacks.
In practice, users rarely verify keys out of band and tend to accept whatever
keys are presented to them [7]. Unfortunately, these signature chains are only as
strong as their weakest link. Furthermore, two users cannot communicate unless
they have at least one trusted user in common.

The end result is the situation we have today, where each time we converse
with a new correspondent, we are presented with a key fingerprint that we have
no intention of verifying. While much work has focused on making key verifica-
tion easier [7,[8,[9,[10], in general such techniques have not yet made the transition
to practice. Meanwhile, most users just click “OK”, accept any certificate or key
which is presented to them, and go about their business [5[7].

3 Design

The crucial point of the previous section is that Diffie-Hellman exchanges are
sufficiently secure to establish pairwise trust between users, provided that the
man-in-the-middle problem could be solved. This is possible if there was a trusted
out-of-band channel Alice and Bob were willing to use to verify that their keys
match. We argue that one such out-of-band channel already exists: the Short
Message Service (SMS) network used to send text messages between mobile
phones. This network has the following nice properties:

— It is a closed network. To complete a MiM attack, one must remove messages
which are in transit. This requires access to phone company resources or the
ability to masquerade as a network tower.

206 A.J. Nicholson et al.

— Phone companies have a strong economic incentive to secure their network,
to avoid customers defecting en masse to competitors.

— Users are universally identified by their phone number, a paradigm people
already understand.

— SMS messaging is already standard on most phones, and all signs point
toward increasing adoption [I7].

We are not claiming attacks against the SMS network are not possible, but
rather argue the bar is much higher than what is required for similar attacks
against Internet traffic. A MiM attack against the SMS network would require
coordinating radio eavesdropping with intrusion into at least one phone network.

Unfortunately, the SMS network has limitations. Each message holds at most
160 bytes. Delivery time is slow and variable, and typically has a per-message
charge. Performing the entire key establishment over SMS would take dozens of
messages, last prohibitively long and run up users’ bills.

LoKey leverages the strengths of both the Internet and the SMS network
to establish a secret key between two users without requiring they start from
any shared secret, use certified keys, or both trust any other entity—in an
efficient and user-friendly way. After establishing a secret key using standard
Diffie-Hellman key exchange, Alice and Bob each calculate a cryptographic hash
of their key, and send this hash to their mobile phone. The phones swap these
hashes via SMS messages, and then download the other party’s hash to its user’s
computer. LoKey then checks if the hashes match—if so, Alice and Bob know
with a high degree of confidence that their key is genuine.

Cryptographic hash functions are ideal for verifying keys because they map
an arbitrary-length key to a small, fixed number of bytes [I8]. Given this hash,
it is infeasible to discover the key from whence it came, or to construct another
key which will hash to the same value. We use SHA-256 [19], which outputs a
32 byte hash. The hash can be exposed to eavesdroppers because it gives them
no advantage toward reconstructing the secret key.

Key verification may take several seconds, due to SMS delivery latency. Users
may be unwilling to incur this overhead every time. LoKey can either cache
secret keys or, preferably, leverage public key cryptography to make this a one-
time cost. After establishing and verifying a secret key, LoKey swaps Alice and
Bob’s public keys under the cover of the secret key. They can then generate a
session key using any number of protocols which rely on certified keys [14].

The user can secure the communication channel between her phone and her
computer in several ways, since she controls both devices. We assume the phone
and computer communicate via Bluetooth. Her phone remains in her pocket, and
the entire process is user-transparent, apart from the one-time task of pairing her
phone and computer [20]. To pair two devices, the user chooses a variable-length
PIN and manually inputs it on both devices. The devices then negotiate a secret
key, using the shared secret of the PIN to thwart MiM attacks. Recent work [21]
demonstrated vulnerabilities in this pairing process, but only against PINs less
than 8 digits long. Since the standard supports up to 128-bit PINs, this is not a
blanket indictment of the pairing protocol but rather an implementation issue.

LoKey: Leveraging the SMS Network in Decentralized 207

3.1 Threat Model

We assume the attacker Mal is an active attacker who can remove, insert, and
modify messages in flight anywhere in the Internet. She may even completely
control one or both users’ access points to the Internet. With regard to the
SMS network, we assume that Mal can eavesdrop on all text messages sent and
received by both Alice and Bob, but that she cannot remove or modify SMS
messages.

We also assume Mal cannot eavesdrop on the Bluetooth channel between the
user’s computer and phone. As we argue above, the pairing protocol is secure,
given sufficiently-long PINs.

It must be noted that in current GSM technology, phones authenticate them-
selves to the network tower, but the converse is not true [22]. An attacker could
therefore masquerade as a GSM tower, trick the user’s phone into associating
with it, and then act as the man-in-the-middle between the user and a legitimate
phone company tower. The attacker could then modify key hashes as appropriate
to conceal his presence. This requires specialized hardware, but is not beyond
the capacity of organized crime, law enforcement, and national governments.

Emerging standards (specifically, 3GPP) will preclude this sort of attack. For
the time being, users can leverage their mobility to re-confirm hashes from mul-
tiple locations via multiple network towers. Our previous work [23] establishes
an insecure key between two users over the Internet, like LoKey, but then ex-
changes key hashes also over the Internet. In lieu of an out-of-band channel (such
as the SMS network), this system repeatedly rebroadcasts key hashes over the
different access points the two users encounter in the course of their ordinary,
daily travels. Our initial results show such mobility ensures, with high probabil-
ity, that multiple path-diverse routes between the two users will be generated,
requiring an attacker to control an unreasonably large portion of the Internet in
order to conceal his presence. We argue that adding such capabilities to LoKey
would similarly thwart such “dummy tower” attacks. We have not implemented
this in our prototype, however.

3.2 Protocol Design

Figures 2 and [illustrate our protocol for establishing a secret key between two
users. It is a two-phase process. First, the two users perform standard Diffie-
Hellman key establishment over the Internet. Second, the key is verified via the
SMS network.

Consider an example scenario where a user Bob wants to establish a key with
another user, Alice:

Insecure Key Establishment (Fig.[3):

1. Bob’s laptop sends a key establishment request message to his phone, via
Bluetooth. This request contains both Bob’s IP address and Alice’s mobile
phone number.

208 A.J. Nicholson et al.

(2) KEYEST(IP, ,, NUM

SMS network

bob))

, NUM_)

bob

(5) g° mod n

(3) KEYEST(IP

Internet

Fig. 2. Phase 1: Initiation and insecure key establishment

2. Bob’s phone encapsulates the request in an SMS message payload, and sends
it to Alice’s phone via the SMS network.

3. Alice’s phone receives the request, and forwards it to Alice’s laptop.

4. Alice initiates Diffie-Hellman key establishment, by calculating a pseudoran-
dom integer a and sending the integer (¢ mod n) to Bob over the Inter-
net. Bob generates his pseudorandom parameter b, and calculates the key:
Kp = (g* mod n)® = ¢* mod n.

5. Bobsends Alice (¢? modn),andshealsocalculatesthekey: K 4 = (g° mod n)® =
g mod n.

Note: if there was a man-in-the-middle attack, then K4 # Kp. Otherwise,
they are the same. The next phase of the protocol determines which case it is.

Key Verification via SMS (Fig.[3):

6. Both Alice and Bob calculate the SHA-256 cryptographic hash of their key.
They then send the hash, and the other party’s mobile phone number, to
their phone via the secured Bluetooth link.

7. Alice’s phone sends SHA-256 (K 4) to Bob’s phone in an SMS message. Bob’s
phone likewise sends SHA-256 (K g) to Alice’s phone.

8. Once each phone receives the other’s text message, it downloads the hash
and the sender’s phone number to its paired computer. Both Alice and Bob
check if SHA-256 (K 4) = SHA-256 (K). If not, then the key establishment
failed and LoKey discards the key. If they match, Alice and Bob know with
high confidence that K4 = Kp.

LoKey: Leveraging the SMS Network in Decentralized 209

(7b) SHA-256(K,))

SMS network

(7a) SHA-256(K)

(8b) SHA-256(K)
(*)952-VHS (29)
(8a) SHA-256(K)
(*¥)952-vHS (99)

Internet

Fig. 3. Phase 2: Key verification via SMS

A lightweight version of the protocol omits steps 1-3 in cases where Bob
already knows Alice’s IP address. In that case, he can initiate Diffie-Hellman
establishment directly. This saves the overhead of one SMS message delivery
latency (step 2 of the above protocol).

3.3 Discussion

Usability and Privacy. To establish a key with another user, all we need to
know is their mobile phone number. This is attractive since users are already
accustomed to identifying people by their phone numbers. While remembering
a phone number is more difficult than remembering an email address (numbers
rather than names and words) we argue it is not unreasonable. Phone numbers
are also easy to communicate out-of-band since they are short strings of digits,
and people are already accustomed to doing so.

LoKey fails if someone else has the user’s phone, because we will establish
a key with the attacker and his laptop, rather than the user we intended. We
argue that the window of opportunity between when a phone is lost and its
owner cancels service or recovers it will be short—at most, on the order of one
day. Since users typically pay per usage, there is a strong incentive for them to
quickly stop unauthorized use.

LoKey raises some privacy concerns, however. In the above example, Alice
may not want to disclose her IP address to Bob. Automatically initiating Diffie-
Hellman key establishment in response to Bob’s SMS message does just that.
While an IP address doesn’t provide GPS-level information, it can reveal a user’s
presence on a certain university campus, or at least in a certain city. We resolve

210 A.J. Nicholson et al.

this tension between privacy and usability by providing the user with the phone
number of the person requesting key establishment. Since users opinions on
privacy vary [24], we empower users to decide their own privacy policies. LoKey
users can activate a privacy option, so that when the user’s phone receives a
key establishment request, it displays the phone number of the requester on
the mobile phone. The user then allows or denies the request via her mobile
phone keypad. A whitelist of pre-approved users prevents common requests from
annoying the user.

For even more privacy, users could use an anonymous routing system to hide
their IP address from others. For example, a tor (http://tor.eff.org/) uses
onion routing to redirect packets through a set of overlay peers, each of whom
only know the identity of the source immediately preceding it in the sequence.
Once packets arrive at their destination, only the identity of the most recent
node in the overlay can be ascertained.

Network Address Translation (NAT). Network address translators (NATS)
multiplex one public IP address across a number of private IP addresses. This is
often used by wireless routers to share one DSL or cable modem, causing prob-
lems in establishing point-to-point IP connections. To solve this, we leverage the
well-known technique of “hole-punching” [25,26]. Each host maintains a con-
nection with a well-known rendezvous server (RS), which determines the host’s
globally-visible IP address and port pair. When requesting key establishment via
SMS, a host which is behind a NAT sends both its local IP address (behind the
NAT) and the globally visible IP address and port. When Alice then establishes
a TCP connection to Bob (to initiate Diffie-Hellman key establishment) on his
global IP and port, the existing outbound TCP connections to the RS are bro-
ken, and Alice and Bob are connected directly. Full details can be found in the
literature [25]26].

Clearly, the channel between the RS and the user must be authenticated or
Mal can trick users into connecting to the wrong user. An active attacker could
pose as a rendezvous server and connect Alice to a third-party, Charlie, rather
than the principal (Bob) with whom she intended to exchange keys. Charlie can
then perform a man-in-the-middle attack by tunneling traffic between Alice and
Bob, as described above in Sect. 2l One solution is to use LoKey to establish a
secret key between Alice and the RS, then use this shared secret to authenticate
all subsequent traffic between Alice and the rendezvous server.

Multiple User Devices. Users have multiple computing devices. If all of these
are connected to the Internet then IP discovery is not a trivial one-to-one map-
ping. When your phone receives a key establishment request from a friend, and
you have both your PDA and your laptop with you, which device should han-
dle the key establishment? Should your 3G phone handle the entire process
itself?

In our current implementation, we elide this issue by having users choose
which device to associate with when they start the LoKey process on their
mobile phone. Since a user owns and controls all her devices, she can establish

LoKey: Leveraging the SMS Network in Decentralized 211

a shared secret which allows them all to communicate confidentially. Ongoing
work is focused on extending LoKey to forward keys established and verified by
one of the user’s devices to all of the others. For example, if Alice’s PDA was
her only device in contact with her mobile phone when Bob tried to establish a
secret key, it would handle the key establishment and then transmit the key to
her laptop, desktop, et cetera, the next time they were reachable via the network.

4 Implementation

We developed a working prototype of LoKey, consisting of two main components:
a service daemon, running on the user’s computer, and an SMS bridge, running
on the user’s phone. The computer and phone communicate via Bluetooth.

4.1 Service Daemon (SD)

The SD is a user-level service on the user’s computer, listening in the background
for incoming data on one of three connections: (1) a well-known, local TCP port
number to which user applications connect to request services from the SD, (2)
an externally-visible socket on another well-known LoKey port, to which SDs
running on other users’ computers connect, and (3) the computer’s Bluetooth
stack creates a pseudo-device which behaves like a normal RS-232 serial port.
The SD listens on that port for incoming data from the user’s mobile phone.

We developed the SD in C++, using the OpenSSL crypto library for Diffie-
Hellman establishment to leverage its optimized implementation. The SD has
been ported to both Windows XP and Linux.

4.2 SMS Bridge

We implemented the SMS bridge process as a Python script, running on a Nokia
6600 mobile phone. The 6600 runs the Symbian operating system with the Nokia
Python runtime library. When the script starts, it presents the user with a list
of Bluetooth devices in the area. The user chooses her computer from the list,
and pairs the phone with the computer if she has not done so previously. The
script now retreats into the background—the user can make calls and use all
other phone features, even while key verification messages are passing back and
forth.

The SMS bridge consists of two threads of execution. An upstream thread
listens on the Bluetooth serial port for data from the user’s computer. These
messages consist of a phone number and a payload. The upstream thread parses
requests from the computer and sends the payload to the specified number as
an SMS message. A downstream thread waits for a text message to arrive in
the phone inbox. If it is a LoKey message rather than a text generated by a
human, it removes the message from the inbox and sends the payload and the
sender’s phone number to the user’s computer. LoKey messages are identified
by a special control code to prevent users from accidentally deleting them while
manually sending SMS messages.

212 A.J. Nicholson et al.

4.3 Application Services

Regardless of how useful LoKey may be, if application programmers cannot easily
use its services, it will be abandoned. This is why we pushed the complexity of
interacting with mobile phones and other users down into the service daemon.
Applications merely request one of the following two services by sending a request
over the local LoKey socket and waiting for a response. We implemented this
interface as a socket rather than using IPC or named pipes to both maximize
portability and increase ease of use, since the Berkeley socket interface is a
common, simple abstraction that most programmers already understand.

Secret Session Key Establishment
key = est_and verify key(remote_phone)

An application sends the SD a message containing the phone number of the
user with which they want to establish a secret key. The SD then performs key
establishment as described in Sect. Once the key has been established but
before it has been verified, the SD returns the key to the calling application.
Once the key has subsequently been verified or disproved, the SD returns an ap-
propriate success code. If the hashes matched, the application can now establish
a secure connection to its peer in confidence, using any symmetric cryptographic
cipher of its choosing.

Authenticated Public Key Exchange
remote PK = auth_pk_swap(remote_phone)

Since establishing and verifying a secret key can take tens of seconds, users will
want to make this a one-time cost. Caching the key accomplishes this, but at the
cost of exposing the pairwise key if one user’s computer is stolen or compromised.
A better solution is to use the secret key LoKey provides as a one-time session
key, and leverage public key cryptography to swap both users’ public keys in a
completely authenticated fashion. They can subsequently establish a session key
entirely over the Internet via any number of well-known methods [I4] that require
certified keys (since both public keys are completely trusted). Our prototype
uses Gnu Privacy Guard (GPG), a PGP-style system, to manage public keys
locally.

Applications send a phone number to the SD, which first establishes and
verifies a secret key. Alice and Bob then swap copies of their public keys, en-
crypted by the secret key. The keys are ASCII-armored for transport, which
adds a standard PGP header to the key. This is critical for verification, since an
attacker cannot just send an arbitrary message of the correct length to a user,
and trick her into importing a bogus public key. If the data sent was not en-
crypted by the secret LoKey key it will decrypt to gibberish, without the correct
PGP header formats. Thus, users only accept keys which originate from each
other.

LoKey: Leveraging the SMS Network in Decentralized 213

5 Example Applications

Along with our LoKey prototype, we developed two examples to illustrate how
applications can leverage LoKey to enhance user security and usability.

5.1 Instant Messaging: Jabber

Jabber is an open-standard Internet chat protocol, also known as XMPP. We
used the xmpppy open-source Python library to write a Jabber client. LoKey-
Jabber is an ordinary IM client, with one exception: each time the user adds
a new contact to her “buddy list”, LoKeyJabber establishes and verifies a key
with that buddy. We do this immediately rather than on demand, because it
may take several seconds due to SMS latency.

When Alice first imports Bob into her buddy list, she specifies both his chat
handle and his mobile phone number. His name first shows in the buddy list
as red, indicating Alice has no key with him. LoKeyJabber immediately starts
the key establishment process. Meanwhile, Alice and Bob are free to commu-
nicate without a key, if they wish. Once the key has been established over the
Internet, but before it has been confirmed via SMS, the SD returns the key to
LoKeyJabber. Bob’s name now turns yellow, because LoKeyJabber has a key
with him which may or may not be trustworthy. Our implementation uses AES
(Rijndael) [27] symmetric encryption, with 128-bit keys, to secure chat messages.
Meanwhile, the SD verifies key integrity via hash exchange. This may take on the
order of 20 seconds or more. During this time, Alice and Bob can communicate
provisionally using the unverified key, if what they need to say is not partic-
ularly confidential. Once the key has been confirmed, each party’s SD returns
the result to their LoKeyJabber. Bob’s name turns green and Alice knows she
can communicate with him in full confidence. Confirmed keys are cached, so key
establishment is a one-time cost.

5.2 Email Client: Mozilla Thunderbird

One arena in which public key cryptography has made some inroads is email.
Basic encryption/decryption is standard in many email clients. As we have ob-
served, the problem is distributing everyone’s public key over the insecure, unau-
thenticated Internet. EnigMail, a third-party plug-in to the Mozilla Thunderbird
email client, is a graphical front-end to PGP. When users compose messages, they
choose a user’s public key from a provided list, and EnigMail encrypts the mes-
sage with that key. Likewise, EnigMail automatically decrypts received messages
with the user’s private PGP key.

We extended EnigMail to add an option to swap public keys with a user,
given their phone number. Assume Alice wants to swap keys with Bob. First,
Alice’s Thunderbird requests authenticated public key exchange with Bob. If the
SD returns success, then Bob’s public key is now on Alice’s PGP keyring, and
Alice’s public key is on Bob’s keyring. If Alice now composes an email to Bob,
she will see his public key on the list of possible recipients, since EnigMail also
uses the PGP keyring.

214 A.J. Nicholson et al.

6 Evaluation

In evaluating our implementation of LoKey, we sought to answer three questions:

1. What is the user-perceptible time overhead imposed by using LoKey for
authentication?

2. What are the reasons for this overhead? Are we limited by SMS network
latency, or some artifact of our design?

3. Since these are mobile, battery-powered devices, is LoKey’s power consump-
tion acceptable?

Our test setup consisted of two x86 laptops running Windows XP. Each had
a 866 MHz CPU and 256 MB of RAM. The laptops were both connected to the
same campus 802.11 wireless network. We created a GMail email address, PGP
public key, and Jabber chat handle for two imaginary users (Alice LoKey and
Bob LoKey). We paired a Nokia 6600 mobile phone with each laptop and ran
the experiments inside an office to simulate the GSM network conditions users
would commonly experience. Our GSM signal strength was good, typically at
the high end of the scale. Note that SMS delivery latency will vary on different
networks.

6.1 Application-Level Metrics

All numbers in this section are from the initiator—the user who started the chat
or the public key exchange—because the time delay is longest for that user.

To test the overhead a user would see in using the LoKeyJabber chat client, we
added Bob to Alice’s buddy list 20 times. This triggered chat key establishment
and verification. Table[Il shows the delay in seconds, averaged across all 20 runs.
LoKey requires just over 30 seconds to establish and verify a key.

Similarly, we used our email client plug-in to swap Alice and Bob’s public
keys 20 times. As Table [shows, the time required for key establishment is

Table 1. LoKeyJabber chat key establishment. Values in seconds.

Key establishment

mean 36.05
median 36.41
stdev 6.17

Table 2. Public-key exchange plug-in for Mozilla Thunderbird. Values in seconds.

Total Key establishment Public key exchange

mean 34.17 29.61 4.30
median 34.45 30.06 4.07
stdev 2.01 1.90 0.54

LoKey: Leveraging the SMS Network in Decentralized 215

comparable to that shown in the chat client test. An additional 4 seconds is
required, on average, to securely exchange public keys under the cover of the
new secret key. This overhead is primarily the result of communication overhead
between LoKey and the user-level Gnu Privacy Guard client, incurred when
importing a new user’s key into a local keyring.

6.2 Infrastructure-Level Delays

We instrumented the Service Daemon and collected internal profiling informa-
tion during all of the 40 test runs described above. Tables Bl and [show the
breakdown of time spent in each phase of the key exchange and public key ex-
change protocols. As expected, SMS delivery delays comprise the overwhelming
majority of overhead. One does see a small communication delay in key estab-
lishment for exchanging the Diffie-Hellman key material over the Internet. Even
across a true WAN this delay is unlikely to be more than a few seconds. As dis-
cussed above, importing the exchanged public keys into the local GPG keyring
incurs overhead of several seconds. All these local delays are still dwarfed by
SMS network delays, however.

Table 3. Secret key establishment. Values in seconds.

Request Diffie-Hellman Verify

Total key exchange exchange hashes

mean 35.84 17.83 0.14 17.87
median 36.33 18.02 0.11 18.53
stdev 6.22 2.55 0.48 3.99

Table 4. Secure public key exchange. Values in seconds.

Total Request Diffie-Hellman Verify Public key

key exchange exchange hashes exchange
mean 33.27 14.04 0.14 14.31 3.44
median 33.52 13.96 0.08 14.52 3.50
stdev. 191 0.77 0.29 1.80 0.53

6.3 Power

Since both sending SMS messages and communicating with the user’s computer
via Bluetooth can be power-intensive for mobile phones, we sought to quantify
the effect LoKey would have on battery life. To examine power drained during
active operation, we started from fully charged batteries and performed secret
key establishment from Alice to Bob 100 times. After the 100 runs, neither phone
had dropped off the highest battery setting, meaning that at least 87.5% of the

216 A.J. Nicholson et al.

battery remained. We did not run until the batteries drained because these are
live, expensive SMS messages.

We believe that because the standby battery life of the phone is at most 10
days, users are unlikely to establish brand-new relationships with hundreds of
users before recharging the phone at least once. Users’ phone plans also typically
budget only several hundred messages per month.

We also considered standby power consumption, because LoKey requires
that the Bluetooth interface on the user’s phone is always enabled, expend-
ing power while waiting for a connection. Bluetooth radios draw on the or-
der of 0.3 mA while quiescent [28]. The Nokia 6600 battery is rated at 850
mAh (milli-amp hours) when fully charged. According to the 6600 user man-
ual, the phone should last 150-240 hours in standby mode. Thus, the standby
mode current draw of the phone must be in the range of (850 mAh)/(150 h)
to (850 mAh)/(240 h), or 5.7 mA - 3.5 mA. We therefore expect LoKey will
reduce standby time by at most 10%, by one day (from 10 to 9 days) in the
worst case.

7 Related Work

Thompson describes a system whereby banks push secret PINs to users via text
messages [29]. While the risk is small, one cannot consider the SMS network se-
cure from eavesdropping. That is one reason we exchange cryptographic hashes.
Claessens [30] uses SMS messages as a sort of receipt for online transactions.
Both require that users read the message and manually perform some action,
while LoKey is automatic.

Maher [31] first suggested using a short hash of a long key to ease key ver-
ification. This approach has been adopted by many others [32,[33], but all still
require a good deal of user intervention—one must either connect the devices
physically, read and verify hashes on two different screens, or manually input a
code on several devices. Users seem resistant to all of these tasks.

These limitations have sparked work on helping users more easily verify
fingerprints [8,[0,[7]. Unfortunately, few or none of these techniques have yet
made the transition into everyday use. Perrig and Song [I0] generate images
from fingerprints, exploiting the fact that humans recall images much better
than strings of letters and numbers. Similarly, Madhavapeddy et al. [34] sug-
gested the voice channel of mobile phones could be used to verify keys through
user to user communication. While we could modify LoKey to verify hashes in
any of these ways, this would require user intervention, where our solution is
automatic.

Stajano and Anderson introduced the “Duckling” [35]—a small device which
performs actions on behalf of its “mother” device. This is similar to the role
users” mobile phones play in LoKey. They are bound to the user’s computer,
and are trusted completely because the user controls both. Other work in the
ad-hoc networking space has shown how capitalizing on such side channels when
they arise can enhance security [36}37].

LoKey: Leveraging the SMS Network in Decentralized 217

8 Conclusion

As users are more mobile, they interact with a varied set of people and devices.
Since the Internet is insecure and unauthenticated, we need to use data en-
cryption to ensure confidentiality of our communications. Current methods for
establishing end-to-end trust put too much burden on users, and demand trust
in either a centralized authority or strangers on key signature trails.

We introduced LoKey, a decentralized, automatic system for generating end-
to-end trust between users. LoKey uses standard Diffie-Hellman key establish-
ment, and defeats the man-in-the-middle by leveraging the mobile phones that
users already carry. By exchanging key hashes over the SMS network, LoKey
detects after the fact if a MiM attack occurred. We provide users with a simple
API for establishing secret keys and exchanging public keys in an authenticated
fashion.

We developed two proof-of-concept applications to showcase our implemen-
tation. Evaluation of our prototype shows one-time delays of approximately
30 seconds to establish a secure communication channel with a remote user.
By either caching the generated secret key or leveraging public key cryptog-
raphy, this cost can be eliminated for future communications between the two
users.

Acknowledgements

We would like to thank our shepherd Nigel Davies, and the anonymous reviewers,
for their insightful comments and feedback that greatly improved the quality of
our paper. We also gratefully acknowledge the helpful feedback of James Mickens
and Sam Shah.

References

1. CCITT, Draft Recommendation X.509: The Directory-Authentication Framework.
Consultation Committee, International Telecommunications Union, Geneva (1989)

2. Freier, A., Karlton, P., Kocher, P.: Secure Socket Layer 3.0. Internet Draft (1996)

3. Warner, B.: Billions of “phishing” scam emails sent monthly. Reuters News Service
(2004)

4. Bellovin, S.M.: Using the Domain Name System for system break-ins. In: Pro-
ceedings of the 5th USENIX Security Symposium. (1995)

5. Xia, H., Brustoloni, J.C.: Hardening web browsers against man-in-the-middle and
eavesdropping attacks. In: Proceedings of the 14th International World Wide Web
Conference (WWW ’05). (2005)

6. Neuman, B., Ts’o, T.: Kerberos: An authentication service for computer networks.
IEEE Communications Magazine 32 (1994) 33-38

7. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: A usability evaluation of
PGP 5.0. In: Proceedings of the 8th USENIX Security Symposium. (1999)

8. Dohrmann, S., Ellison, C.: Public-key Support for Collaborative Groups. In:
Proceedings of the First Annual PKI Research Workshop. (2002)

218

9.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

A.J. Nicholson et al.

Garfinkel, S., Margrave, D., Schiller, J., Nordlander, E., Miller, R.: How to make
secure email easier to use. In: Proceedings of the Conference on Human Factors in
Computing Systems (CHI). (2005)

Perrig, A., Song, D.: Hash Visualization: A New Technique to Improve Real-
World Security. In: Proceedings of the International Workshop on Cryptographic
Techniques and E-Commerce (CryptEC). (1999)

Peersman, C., Cvetkovic, S.: The global system for mobile communications: Short
Message Service. IEEE Personal Communications 7 (2000) 15-23

Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory 6 (1976) 644-654

Maurer, U.: Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms. In: Proceedings of the 14th Annual International
Cryptology Conference (CRYPTO ’94). (1994)

Diffie, W., Oorschot, P., Wiener, M.: Authentication and Authenticated Key Ex-
changes. Designs, Codes, and Cryptography 2 (1992) 107-125

Kaminsky, M., Savvides, G., Mazieres, D., Kaashoek, M.: Decentralized User Au-
thentication in a Global File System. In: Proceedings of the 19th ACM Symposium
on Operating Systems Principles. (2003)

Burkholder, P.: SSL Man-in-the-middle Attacks. The SANS Institute (2002)

Xu, H., Teo, H., Wang, H.: Foundations of SMS Commerce Success: Lessions from
SMS Messaging and Co-opetition. In: Proceedings of the 36th Hawaii International
Conference on System Sciences (HICSS). (2003)

Naor, M., Yung, M.: Universal one-way hash functions and their crytographic appli-
cations. In: Proceedings of the 21st ACM Symposium on the Theory of Computing
(STOC ’89). (1989)

National Institute of Standards and Technology (NIST): Secure Hash Standard
(SHS). National Technical Information Service (2002)

Bluetooth SIG: Specification of the Bluetooth System,
http://www.bluetooth.org/spec/ (2005)

Shaked, Y., Wool, A.: Cracking the Bluetooth PIN. In: Proceedings of the Third Int-
ernational Conference on Mobile Systems, Applications, and Services (MobiSys '05).
(2005)

Anderson, R.: Security Engineering. Wiley (2001)

Nicholson, A.J., Han, J., Watson, D., Noble, B.D.: Exploiting Mobility for Key Es-
tablishment. In: Proceedings of the Seventh IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA ’06). (2006)

Smith, I., Consolvo, S., Abowd, G.: Social Disclosure of Place: From Location
Technology to Communication Practice. In: Proceedings of the Third International
Conference on Pervasive Computing. (2005)

Biggadike, A., Ferullo, D., Wilson, G., Perrig, A.: NATBLASTER: Establishing
TCP Connections Between Hosts Behind NATSs. In: Proceedings of the SIGCOMM
Asia Workshop. (2005)

Ford, B., Srisuresh, P., Kegel, D.: Peer-to-Peer Communication Across Network
Address Translators. In: Proceedings of the USENIX Annual Technical Conference.
(2005)

Daemen, J., Rijmen, V.: AES Proposal: Rijndael. NIST (2000)

Fischer, K.: Bluetooth Wireless Technology. In: Proceedings of the IEEE EMC
Wireless Workshop. (2000)

Thompson, K.: A Security Review of the ASB Bank Netcode Authentication Sys-
tem (2004) http://www.crypt.gen.nz/papers/asb_netcode.html.

30.

31.

32.

33.

34.

35.

36.

37.

LoKey: Leveraging the SMS Network in Decentralized 219

Claessens, J., Preneel, B., Vandewalle, J.: Combining World Wide Web and Wire-
less Security. In: Proceedings of IFIP Network Security. (2001)

Maher, D.: Secure communication method and apparatus. U.S. Patent Number
5,450,493 (1995)

Gehrmann, C., Mitchell, C., Nyberg, K.: Manual Authentication for Wireless De-
vices. RSA Cryptobytes 7 (2004)

Hoepman, J.H.: The Ephemeral Pairing Problem. In: Proceedings of the 8th
International Conference on Financial Cryptography. (2004)

Madhavapeddy, A., Sharp, R., Scott, D., Tse, A.: Audio Networking: The Forgotten
Wireless Technology. IEEE Pervasive Computing 4 (2005)

Stajano, F., Anderson, R.: The Resurrecting Duckling. In: Proceedings of the 7th
International Workshop on Security Protocols. (1999)

Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to Strangers: Au-
thentication in Ad-Hoc Wireless Networks. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS ’02), San Diego, California, USA
(2002)

Capkun, S., Hubaux, J.P., Buttyan, L.: Mobility Helps Security in Ad Hoc Net-
works. In: Proceedings of the Fourth ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc ’03), Annapolis, Maryland, USA
(2003)

	Introduction
	Background: Why Key Establishment Is Hard
	Design
	Threat Model
	Protocol Design
	Discussion

	Implementation
	Service Daemon (SD)
	SMS Bridge
	Application Services

	Example Applications
	Instant Messaging: Jabber
	Email Client: Mozilla Thunderbird

	Evaluation
	Application-Level Metrics
	Infrastructure-Level Delays
	Power

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

