
AutoPower: Toward Energy-Aware Software

Systems for Distributed Mobile Robots

Keith J. O’Hara, Ripal Nathuji, Himanshu Raj, Karsten Schwan, Tucker Balch

College of Computing

Georgia Institute of Technology

Atlanta, Georgia 30332–0250

Email: {kjohara, rnathuji, rhim, schwan, tucker}@cc.gatech.edu

Abstract— Autonomous robot systems have to manage their
energy wisely in order to complete their missions. Typical
approaches seek to conserve energy by energy-efficient motion
or sensor planning. This paper puts forth a distributed systems
approach to power management. Specifically, it develops and
presents AutoPower, which is a model that characterizes robot
software systems’ computation and communication energy behav-
iors. With AutoPower, it is possible to make principled decisions
about (1) where to deploy software components across the dis-
tributed computing resources of autonomous robotic systems, and
(2) how the different systems involved should communicate to best
meet overall mission objectives. We showcase AutoPower by using
a multi-robot search-and-rescue mission as a guiding application.
For this scenario, application of the model shows that there are
counterintuitive energy trade-offs in configuring such application
software. Further, by using AutoPower to guide deployment
and interconnects at runtime, for certain configurations, overall
computing system lifetimes can be increased by up to 57% over
a base-line configuration.

I. INTRODUCTION

Autonomous robot systems have to manage their energy

wisely in order to complete their missions. Typical approaches

seek to limit the energy usage of each robotics system plat-

form, using general or application-specific power management

methods. Examples of the latter are energy-efficient motion

or sensor planning. We seek to avoid solutions that limit

individual robots’ sensing or actuation capabilities in order

to ensure longer lifetimes for their computing subsystems.

Toward this end, this paper presents a distributed systems

approach to runtime power management. Specifically, it de-

velops and presents the AutoPower model for characterizing

and manipulating the software systems that execute on robotic

platforms. The AutoPower approach:

• offers a general method for modeling robot software sys-

tems’ computation and communication energy behavior,

and

• by using this method, principled decisions can be made

about (1) where to deploy certain software components

and (2) how communications between components should

be realized.

There are multiple reasons why AutoPower adjusts robot

software systems’ energy behavior without considering trade-

offs that may be realized by changing robots’ sensing or mo-

tion behaviors. First, solutions like AutoPower can support ef-

ficient energy usage without requiring roboticists to change the

behaviors they are seeking to develop or utilize. AutoPower’s

energy management solutions, therefore, are a general service

to any robot system regardless of its particular application,

architecture, robot platform, etc. Additional energy savings

attained via application-specific solutions will simply enhance

AutoPower-based solutions. Second, as autonomy increases in

robot systems, energy usage for computation will constitute a

substantial portion of total energy consumption (i.e., battery

drain). Third, as we look to teams of robots, system energy

consumption is increasingly impacted by communications

across team members.

Decisions about which software components to run on

the computer systems of distributed robots depend both on

current application needs and on available system resources.

Application-level decisions that affect the use of available

system resources include the following:

• Which components should run? Concrete examples are

which localization, path-planning, or vision routines to

execute on robots.

• How should the components run? Application needs

dictate how many particles to use for Monte Carlo

localization or what grid granularity to employ for D*.

• When should the components run? Real-time con-

straints are determined by current application context or

mission parameters, determining for instance, the period-

icity and deadline for the obstacle-avoidance routine.

The AutoPower approach seeks to retain for applications

the ability to run the components they desire and in the

fashion suitable for their current needs. Rather than limiting

the application’s ability to use system resources, the approach

supports application needs by seeking to automate how such

resources are used:

1) Where should the components run? For example,

should we ‘offload’ localization computations to a re-

mote computer?

2) How should the components interact? Should robots

communicate using 802.11a or should they use bluetooth

communications? Should component middleware use

pull- vs. push-based communications?

Stated more explicitly, AutoPower attempts to answer the

following question: How can we deploy a robot software

system to maximize the lifetime of the system while



still meeting application QoS requirements? In addition,

AutoPower looks to manage energy at a system-wide level,

rather than maximizing individual systems (e.g. communi-

cation protocols, operating system scheduling) of individual

robots (e.g. voltage scaling, sensing frequency). This paper

is a first step toward system-wide energy management for

distributed autonomous robot systems.

II. THE AUTOPOWER ENERGY MODEL

Our first goal is to model a robot software system’s energy

behavior. The composition of such a model requires three main

components: (1) energy characteristics of computational plat-

forms, (2) energy characteristics of communication mediums,

and (3) execution profiles of software components.

The first key component is the energy characteristics of

the computational resources. It is well known that the precise

power consumption of a workload can vary with respect to

use of the processor, much less the additional consumption

of resources like memory, external buses, etc. While fine

grain power models attempt to capture all such usages, the

AutoPower approach focuses on the scalability of power mod-

eling, by offering a first order approximation of total system

power usage. The goal is to capture key system-level tradeoffs.

AutoPower attains this goal by summarizing the energy costs

of computational resources in terms of joules per millisecond

of computation. This allows us to describe the energy demands

of our software simply by latency measurements, rather than

direct energy measurements, which are more time consuming

and costly to gather.

In this work the computational model is developed based

upon real hardware. Specifically, the Intel Sitsang experimental

platform is used as a typical on-board computational platform

for robots. The Sitsang is based on the Intel PXA255 XScale

processor and is aimed at embedded platforms like PDAs

and robots. This platform would be ideal for applications

such as robots since the PXA255 provides integrated solutions

for peripherals such as flash, memory, infrared, USB, and

others. Moreover, the solution strikes a solid balance between

performance and power. Though the XScale core lacks a

floating point unit, it can be clocked up to 400 MHz, and is

accompanied with 64 MB of RAM, 32 MB of Flash memory,

and supports dynamic voltage and frequency scaling. The

platform itself is capable of various wireless communications

such as bluetooth and 802.11a via expandable slots.

To develop our computational energy model, various work-

loads are executed on the Sitsang platform, and platform power

measurements are performed using a Tektronix TDS5104B

oscilloscope, Tektronix TCP202 current probes, and Tektronix

P6139A voltage probes. It should be noted that though the Sit-

sang is equipped with a LCD display, since these might not be

attached on a deployed robot, the LCD, backlight, and frame-

buffer DMA were disabled for our measurements. The work-

loads utilized were various media based encoders/decoders

that are typical of systems such as robotics. When running

at 400Mhz, the average computational overhead when idle is

1.34W, and 2.27W when active.

802.11a Bluetooth GSM

Bandwidth (kbps) 54000 1500 116

Sleep Power (W) 0.010 0.000036 0.000165

Send Power (W) 1.498 0.095 1.815

Send µjoules/bit 0.028 0.064 15.647

Receive Power (W) 1.22 0.095 0.165

Receive µjoules/bit 0.022 0.064 1.422

Fig. 1. Energy characteristics of communication resources.

The second component of the system energy model involves

describing the communication infrastructure. The communi-

cation resources are characterized by the average amount of

energy (joules) needed to communicate one bit of information.

802.11a, Bluetooth, and GSM (mobile phone network) are

considered as possible communication mediums. The specific

energy characteristics of each radio are taken from [7] and are

reproduced in Figure 1.

Fig. 2. Application Chain: Our application execution model.

The final piece of the energy model is concerned with

the software components that must actually execute in the

system. In order to derive energy costs, software components

are modeled as chains of computation and communication.

Each node in the chain does some amount of computation and

passes along data that serves as input to the next computational

node. The nodes are described in the applications chains

by their average computational latencies, and the links of

the application chains are described by the sizes of data

communicated between two adjacent nodes. The model is

illustrated in Figure 2. In order to accommodate application-

level requirements (formulated as quality of service (QoS) con-

straints) into the model, each chain must specify its timeliness

requirements (e.g. rate) as well as any hardware constraints

like the need for the presence of certain sensor devices or

human operators. The overall modeling process is visualized

in Figure 3.

Fig. 3. The process of building an energy model.

III. APPLICATION SCENARIO

In order to demonstrate our energy modeling approach, a

search-and-rescue mission is used as a guiding application



throughout this paper. Specifically, the scenario considered is

where a multi-robot team is tasked with searching a building

for victims. The lifetime of the system is defined as the amount

of time until one robot depletes its energy reserves.

The robot team consists of three mobile robots, all with

laser-scanners and odometers. Two of the three robots are

equipped with cameras. The third robot acts primarily as

a communication relay. The robots communicate to a base-

station (a laptop) operated by a human operator. Also, the

robots can use the base-station computer for off-loading com-

putation if necessary. The base-station can communicate with

the robots using either GSM or 802.11a (if range permits)

communication. The robots have embedded Linux computers

on-board and can communicate to each other using 802.11a

or bluetooth (again, if range permits). Lastly, the computers

are also able to route messages between each other using a

shortest-path routing algorithm.

We focus on two software components that will be executed

in support of this mission. First, a piece of vision software

that detects possible victims. Our particular implementation

(blob-finder) locates blobs of different colors in an image.

The information from the blob-finder is communicated to

the human operator for victim/non-victim classification. The

application demands the blob-finder run 4 times a second.

Fig. 4. Two application chains for the search-and-rescue mission.

In addition, the robots use Monte-Carlo Localization to

estimate their position in the building. The robots may need to

report their positions to the human operator, but not necessarily

continually. The localization components should execute once

every two seconds. The two application chains for these

components, as described above, are illustrated in Figure 4.

IV. TWO SOFTWARE EXECUTION PROFILES

Given the application described in the previous section,

energy profiles are created of Monte-Carlo Localization (CAR-

MEN [11]) and Blob Finding (CMVision [1]). While relevant

to our driving application, these applications are also represen-

tative of typical robotics software. First, both implementations

are taken from popular open-source robot software distribu-

tions. Second, the two pieces of software have very different

computational behaviors, which makes them an interesting

pair to energy-profile. Specifically, MCL makes heavy use

of floating point operations, whereas blob-finding primarily

uses integer operations. This distinction causes them to differ

substantially with respect to their characterization by the Au-

toPower energy model. The Sitsang platform lacks a floating

point unit resulting in a bigger performance gap between the

Localization Blob-Finder

Period (sec) 1.0 .25

Laptop Latency (sec) 0.0035 0.01048

Sitsang Latency (sec) 0.85 0.115

Input Size (bytes) 1059 230415

Output Size (bytes) 805 200

Fig. 5. Energy profiles for the two software components.

laptop and Sitsang when running localization compared to

running the blob finder.

The average latencies and data sizes of the two applications

are profiled on the computational platforms (Intel laptop,

Sitsang) and recorded. The localization module is run using

a simulation of two different environments. The robot in the

simulation navigates from a start location to a goal position

10 times. The average localization latency is noted. The blob-

finder is run on three different data-sets collected using a

Logitech web-cam. The blob-finder runs on each data-set 50

times, and the average latency for processing a frame was

collected. The results are shown in Figure 5. Note, the large

disparity in computational performance between the SitSang

and the laptop.

V. METHODOLOGY AND RESULTS

A. System Lifetime Analysis

As an initial step towards analyzing system-level tradeoffs

with robotic software systems, we built a tool to compute

the expected lifetime of our search-and-rescue team given our

energy models, the initial energy of each robot, a description

of the network (including link types and connectivity), and

a particular allocation scheme. In order to limit the design

space, a shortest path routing scheme is assumed for all of

our network topologies.

In order to calculate system lifetime, first the base power

cost of each robot’s on-board computer is determined. This

is done by taking the base idle power consumption (1.34W),

and including the sleep power of every radio that is needed

for network links. Then the application chains are mapped

across the system as specified by the allocation scheme. The

period information of an application chain is used along with

the radio characterizations to assess the communication costs

to robots. Similarly, periodicity and computation time provide

computational energy costs.

To validate that all application requirements are met, the

utilizations of the radio and computers are computed. If any

of these values exceed 100%, the allocation scheme is deemed

impossible. Otherwise, “lifetime” of the system is calculated

as a function of the maximum average power consumption of

all the robots in the system.

B. Static Allocation Results

Using the lifetime analysis tool, given the search-and-rescue

mission previously described, the space of possible allocations

and networks is exhaustively explored. Specifically, all three

robots perform localization (Loc), and Robots 2 and 3 have

cameras attached and require blob finding (Blob) on images.



Fig. 6. An example scenario.

One particular scenario is illustrated in Figure 6. In this

instance, the two robots with cameras have off-loaded their

blob-finding component to the base-station. The robots are

fully connected with bluetooth, and the relay-robot is com-

municating to the base-station using 802.11a communications.

In this scenario the relay-robot routes messages between the

base-station and the robots with the cameras.

In Figure 7, the results for some interesting configurations

are reported. The table in the figure provides the lifetimes

for various network configurations and component allocations.

The “baseline” configuration is when all components execute

locally and all network links use 802.11a-based communica-

tions.

The maximum lifetime configuration occurs when the net-

work is fully connected with 802.11a and the robots offload

all computation to the laptop. The lifetime of this configu-

ration is approximately 57% better than the case where the

robots perform all computations locally on board. This is

an interesting result because, from Figure 1, it would seem

that for power reduction, the robots should use the bluetooth

radio which consumes less power. However, utilizing the more

efficient radio prevents certain offloading, and therefore has a

negative impact on the entire system. This type of counterin-

tuitive tradeoff highlights the importance of the system-level

deployment mechanisms offered by the AutoPower approach.

Also interesting are situations where it is unrealistic that

the entire team is connected by 802.11, for instance, due to

range constraints. Consider the case where the relay robot

is connected to the base-station by GSM and the robots are

connected by bluetooth. The relay robot’s communication link

is the bottle-neck in this situation. The expected lifetime of the

base-line (i.e., everything executed locally) configuration is

64% of the maximum lifetime configuration. We also observe

that the most efficient allocation for this network configuration

is to have the robots offload their localization to the laptop.

This allocation comes closer to the optimal expected lifetime,

78% of the maximum expected lifetime.

Finally, we investigate a scenario in which robots begin

the mission with uneven energy reserves. In this situation,

the relay robot (Robot-1) has half the energy of the other

two robots. Again, interesting configurations are tabulated in

Figure 8. In this scenario, the optimal configurations are less

obvious. When the system is fully connected, the optimal

configuration is for the robots to communicate with the base-

station using GSM, and for the robots to communicate with

each other using bluetooth. The robots “shift” their localization

responsibilities away from the robot with the least energy.

When Robot-1 is the only robot connected to the base-station

the optimal configuration is also interesting. Robot-3 runs

both blob-finders and Robot-2 runs the localization for itself

and Robot-3. Robot-1’s localization is off-loaded to the base-

station.

C. The Need for Dynamic Allocation Support

Thus far, our results have illustrated the benefits of utilizing

an optimal allocation scheme versus a basic local execution

policy for robotic software systems. To realistically utilize

these software offloading schemes, however, there must ex-

ist system support for dynamic allocation. To support this

statement, consider two types of changes that may trigger a

dynamic re-allocation. The first type is infrastructural changes

like those due to changes in network connectivity or link char-

acteristics. The second type is due to changes in application

behavior. That is, the needs of an application, or the chain

descriptions in our model, may change as scenarios unfold.

Revisiting our optimal scenario, where all nodes are inter-

connected by 802.11a and all computations are offloaded, let

us assume that Robot-3 experiences a fault with its hardware,

and must utilize GSM to contact the laptop, and bluetooth

for inter-robot communications. Due to utilization constraints

alone, the existing allocation scheme cannot continue while

providing the required QoS. Reverting back to a local compu-

tation scheme provides only 80% of the lifetime compared to

the optimal deployment, where Loc-1, Loc-2, and Blob-2

are performed by the laptop, Loc-3 is offloaded onto Robot-

1, and Blob-3 is performed locally on Robot-3.

Next, consider application triggered re-allocations. For in-

stance, once the mission is over, i.e., all the vicitims were

succesfully rescued, the robots may not need to use their

cameras any more. In other words, during the robots’ return

only localization may need to be run. Previously, when the

relay robot is providing the communication link back to the

base-station, the configuration using 802.11A is the opti-

mal configuration concerning total expected lifetime because

802.11 has to be used to off-load the blob-finders. When

blob-finders no longer need to run, there is more flexibilty

and Bluetooth is able to support off-loading the localization

computations.

Finally, with support for dynamic re-allocation, the lifetime

of the team could be extended even when there are no in-

frastructural or application changes. Previously we considered

the best possible static allocation. But, by considering re-

allocations, it is possible to extend the lifetime of the team

even more by dynamically moving components. In other

words, at a given decision point, an important system charac-

teristic is the relative energy capacity of each robot. Given an



Lifetime (sec) Normalized Loc-1 Loc-2 Loc-3 Blob-2 Blob-3 Laptop-Robot Net Robot-Robot Net

FULLY CONNECTED

45715.2 1.57 laptop laptop laptop laptop laptop 802.11a 802.11a

29451.2 1.01 r1 r2 r3 r2 r3 802.11a 802.11a

32976.0 1.13 r1 laptop laptop r2 r3 GSM 802.11a

29121.6 1 r1 r2 r3 r2 r3 GSM 802.11a

45714.4 1.57 laptop laptop laptop laptop laptop 802.11a Bluetooth

29450.4 1.01 r1 r2 r3 r2 r3 802.11a Bluetooth

33146.4 1.14 r1 laptop laptop r2 r3 GSM Bluetooth

29254.4 1.00 r1 r2 r3 r2 r3 GSM Bluetooth

ONE RELAY ROBOT

41820.0 1.44 laptop laptop laptop laptop laptop 802.11a 802.11a

29451.2 1.01 r1 r2 r3 r2 r3 802.11a 802.11a

35262.4 1.21 laptop laptop laptop r2 r3 GSM 802.11a

29451.2 1.01 r1 r2 r3 r2 r3 GSM 802.11a

36181.6 1.24 r1 laptop laptop r2 r3 802.11a Bluetooth

29586.4 1.02 r1 r2 r3 r2 r3 802.11a Bluetooth

35432.0 1.22 laptop laptop laptop r2 r3 GSM Bluetooth

29586.4 1.02 r1 r2 r3 r2 r3 GSM Bluetooth

Fig. 7. Expected lifetimes when all robots start with 64,000 joules of energy.

Lifetime (sec) Normalized Loc-1 Loc-2 Loc-3 Blob-2 Blob-3 Laptop-Robot Net Robot-Robot Net

FULLY CONNECTED

23697.6 1.33 r2 r2 r3 r3 laptop 802.11a 802.11a

18335.2 1.03 r1 r2 r3 r2 r3 802.11a 802.11a

23694.4 1.33 r2 r2 laptop r3 r3 GSM 802.11a

18333.6 1.03 r1 r2 r3 r2 r3 GSM 802.11a

23696.8 1.33 laptop r2 r2 laptop r3 802.11a Bluetooth

18335.2 1.03 r1 r2 r3 r2 r3 802.11a Bluetooth

23860.8 1.34 r2 r3 laptop r2 r3 GSM Bluetooth

18439.2 1.03 r1 r2 r3 r2 r3 GSM Bluetooth

ONE RELAY ROBOT

23694.4 1.33 laptop r2 r2 r3 r3 802.11a 802.11a

18333.6 1.03 r1 r2 r3 r2 r3 802.11a 802.11a

20812.8 1.17 laptop r2 r2 r3 r3 GSM 802.11a

17833.6 1.00 r1 r2 r3 r2 r3 GSM 802.11a

23692.0 1.33 laptop r2 r3 r2 r3 802.11a Bluetooth

18332.0 1.03 r1 r2 r3 r2 r3 802.11a Bluetooth

20947.2 1.17 laptop r2 r3 r2 r3 GSM Bluetooth

17932.0 1.01 r1 r2 r3 r2 r3 GSM Bluetooth

Fig. 8. Expected lifetimes when robot-1 starts with 32,000 joules and the other two robots start with 64,000 joules of energy.

allocation that does not consume energy evenly across nodes,

then, it is possible that even without changes to application

chains or infrastructure, a run-time re-allocation may further

improve lifetime beyond a single deployment strategy. The

ability to extend optimal lifetimes with this type of reallocation

will depend upon the efficiency and architecture of the system-

level support for dynamic re-allocation. The next steps in our

research will quantify the overheads associated with specific

reallocations and then use these overheads to craft appropriate

dynamic reallocation policies.

VI. RELATED WORK

Energy management is a fundamental issue in autonomous

robotics. The first autonomous robots, Grey Walter’s “Elmer”

and “Elsie” [16], had behaviors to search for their recharging

station. In much the same way the authors in [14] develop

a method for a self-recharging robot to support long-lived

operation. The authors of [9] present a power model of a

robot based on its mechanics in order to derive the energy

costs of different mobile robot coverage patterns. Our work

differs from this past work because we are not putting any

constraints on the behavior of the robots for energy reasons.

Currently, we are only concerned with managing the energy

used by the software components. Similarly, the authors in

[4] compare the energy behavior of different communication

schemes for multi-robot systems.

Our model assumes a fair level of sophistication at the

software systems level. For instance, the distributed nature of

the application chains, and the need for application migration

when dynamically reconfiguring. There has been recent work

to use advanced software mechanisms to support autonomous

robot applications. For instance, Player [8] is able to deploy

software components in a distributed fashion. The CARMEN

[11] software package also relies on an event-based com-

munication mechanism (IPC) allowing flexible deployment

of its software components. The MARIE project [3] is con-



cerned with building middleware to connect various robot

software systems. They accomplish this by using middleware

[13] capable of many advanced software systems techniques.

Although, all of these packages offer some subset of the

mechanisms needed to support the dynamic allocation and

adaptation, no one of them can currently support it fully.

Moreover, even though some of the mechanisms for distributed

deployment exist, the process of making the actual deployment

and configuration decisions is not automated as is left to the

programmer/operator.

The idea of efficiently deploying computations in a dis-

tributed architecture has been proposed before. From a per-

formance standpoint, there has been long standing work in

mapping parallel computations onto multiple processors [12].

Taking energy into account, there has been work investigating

the use of dynamic voltage and frequency scaling (DVFS)

to reduce processor power consumption in distributed real

time systems [10]. From an application drive perspective, a

solution for efficient distributed speech recognition as been

addressed [5], as well as the use of service deployment in

wireless hotspots to increase the capabilities of handheld de-

vices [15]. Support for the use of application level adaptations

has also been provided by prior work which has quantified

possible benefits [2], [6].

VII. DISCUSSION

Rather than restricting the sensing or motion of autonomous

robots for energy reasons, in this work we put forth an

approach for addressing robot software systems’ computation

and communication energy behavior. Motivated by increasing

autonomy and communication in multi-robot systems, and the

desired independence from specific robot platforms and ar-

chitectures, this paper presents a distributed systems approach

to runtime power management. Specifically, it develops and

presents the AutoPower model for characterizing and manipu-

lating the software systems that execute on robotic platforms.

This model allows us to make principled decisions about the

configuration of application software system, including auto-

matically deciding where to run certain software components.

It also allows us to examine the trade-offs between different

network media. The model is showcased by using a multi-

robot search-and-rescue mission as a guiding application.

The model’s ability to describe system-level energy behavior

results in the capture of energy trade-offs that are not obvious,

with specific results demonstrating near 57% increases in

lifetime by using particular system configurations.

Since AutoPower is a first step in system-wide energy

management for autonomous robot systems, there are many

avenues of future research. An obvious extension to this work,

which we are currently developing, is an efficient algorithm for

extending the lifetime of a distributed robotics application and

system via intelligent allocation and choice of communication

media. In the same vein, making use of dynamic frequency

and voltage scaling (DVFS) may afford even greater energy

savings. Second, we are expanding AutoPower to describe

richer application flows, for instance, moving from application

chains to describing applications with directed acyclic graphs.

Third, we are investigating ways to handle dynamic situa-

tions (e.g. failures, network connectivity, application changes)

effectively, without the need for a global reconfiguration.

For instance, we could have sub-groups of robots exchange

software components in order to locally optimize energy use.

Finally, developing methods that treat application requirements

as another variable to be optimized, rather than just a binary

constraint. For example, trading off localization quality, or

reducing the camera’s frame-rate for energy gain.

REFERENCES

[1] Bruce, J., Balch, T., and Veloso, M., “Fast and Inexpensive Color Image
Segmentation for Interactive Robots”, In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2000.
[2] Compton, C. and Tennenhouse, D., “Collaborative Load Shedding for

Media-Based Applications”, In Proceedings of the Eighth IEEE Con-

ference on Multimedia Computing and Systems (ICMCS), pp. 496-501,
May 1994.

[3] C C., Lourneau, D., Michaud, F., Valin, J.-M., Brosseau, Y., Ravsky,
C., Lemay, M., Tran, V., “Code Reusability Tools for Programming
Mobile Robots”, Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems. 2004
[4] Das, S., Hu, Y., Lee, C.S., and Hu, Y., “Performance Comparison of

Communication Protocols for Mobile Robotic Sensors”, In Proceedings

of IEEE International Conference on Robotics and Automation, May
2004.

[5] Delaney, B, Simunic, T., and Jayant, N., “Energy Aware Distributed
Speech Recognition for Wireless Mobile Devices”, Tech. Rep. HPL-
2004-106, HP Laboratories, June 2004.

[6] Flinn, J. and Satyanarayanan. M., “Energy-aware adaptation for mobile
applications”, In Proceedings of the Symposium on Operating System

Principles (SOSP), December 1999.
[7] Fryman, J., Huneycutt, C., Lee, H.-H., Mackenzie, K., and Schimmel,

D., “Energy Efficient Network Memory for Ubiquitous Devices”, In

IEEE MICRO Special Edition, September/October 2003.
[8] Gerkey, B., Vaughan, R., Stoy, K., Howard, A., Sukhatme, G., and

Mataric, M., “Most valuable player: A robot device server for distributed
control,” IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Oct 2001.
[9] Mei Y., Lu Y., Lee, C.S., Hu, Y., “Energy-Efficient Motion Planning

for Mobile Robots,”In Proceedings of IEEE International Conference

on Robotics and Automation, May 2004.
[10] Mishra, R., Rastogi, N., and Zhu, D., “Energy Aware Scheduling for

Distributed Real-Time Systems”, In Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS), April 2003.
[11] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardization

in mobile robot programming: The Carnegie Mellon navigation (CAR-
MEN) toolkit”,In Proceedings of IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems, 2003, pp. 2436–2441.
[12] Nicol, D. and O’Hallaron, D., “Improved Algorithms for Mapping

Pipelined and Parallel Computations”, IEEE Transactions on Computers,
vol. 40, no. 3, pp. 295-306, March 1991.

[13] Schmidt, D.C., Huston, S.D., C++ Network Programming: Resolving

Complexity Using Ace and Patterns, Addison-Wesley Longman, Boston,
MA, 2001.

[14] Silverman, M.C, Nies D., Jung B, and Sukhatme, G.S., “Staying Alive: A
Docking Station for Autonomous Robot Recharging”, In Proceedings of

IEEE International Conference on Robotics and Automation, pp. 1050-
1055, Washington D.C., May 11 - 15, 2002.

[15] Su, Y.-Y. and Flinn, J., “Slingshot: Deploying Stateful Services in
Wireless Hotspots”, ”In Proceedings of the 3rd International Conference

on Mobile Systems, Applications, and Services (MobiSys), June, 2005.
[16] Walter, W.G., The Living Brain, W.W. Norton, New York, 1963.


