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Prediction of nanoparticles-cell association based
on corona proteins and physicochemical properties

Rong Liu,a,b Wen Jiang,a Carl D. Walkey,c Warren C. W. Chanc,d,e and
Yoram Cohen*a,b,f

Cellular association of nanoparticles (NPs) in biological fluids is affected by proteins adsorbed onto the

NP surface, forming a “protein corona”, thereby impacting cellular bioactivity. Here we investigate, based

on an extensive gold NPs protein corona dataset, the relationships between NP-cell association and

protein corona fingerprints (PCFs) as well as NP physicochemical properties. Accordingly, quantitative

structure–activity relationships (QSARs) were developed based on both linear and non-linear support

vector regression (SVR) models making use of a sequential forward floating selection of descriptors. The

SVR model with only 6 serum proteins and zeta potential had higher accuracy (R2 = 0.895) relative to the

linear model (R2 = 0.850) with 11 PCFs. Considering the initial pool of 148 descriptors, the APOB, A1AT,

ANT3, and PLMN serum proteins along with NP zeta potential were identified as most significant to corre-

lating NP-cell association. The present study suggests that QSARs exploration of NP-cell association data,

considering the role of both NP protein corona and physicochemical properties, can support the planning

and interpretation of toxicity studies and guide the design of NPs for biomedical applications.

1. Introduction

Engineered nanomaterials (ENMs) are now routinely used in a
myriad of products and various applications given their novel/
useful chemical, electrical, magnetic, optical, thermal, and
mechanical properties that arise from their small size and
structural features.1 It is estimated that ENMs are constituents
of over 1600 consumer products.2 Aside from their use in
various industrial and consumer products, there are also rapid
advancements in the application of nanotechnology in
medical-treatment and diagnosis as exemplified by the use of
nano-scaled systems for safe and effective delivery of thera-
peutic agents into targeted sites.3 Although many of the
unique properties of ENMs are beneficial, there is concern
regarding potential risks that ENMs may pose to human
health and the environment.4,5 Various studies have reported

that certain ENMs can lead to adverse biological impacts.6,7

For example, CuO and ZnO nanoparticles (NPs) have been
observed to cause pulmonary inflammation,8 Ag and Pt NPs
may interfere with zebrafish embryo hatching,9 CdSe quantum
dots were found to affect cell viability,10 and carbon nanotubes
have been linked to pulmonary fibrosis.11

Experimental5,8,12 and modeling studies13,14 have shown
that bioactivity of ENMs is strongly correlated with their
physicochemical properties. Based on the assumption that
ENMs of similar physicochemical properties will have similar
bioactivity, a number of (quantitative) structure–activity-
relationships ((Q)SARs) have been successfully developed for
various ENMs, such as metal oxide NPs,14–17 surface modified
iron oxide NPs,18–22 and carbon nanotubes.23 Physicochemical
properties used as (Q)SAR descriptors include NP primary15–18

and aggregate15 sizes, zeta potential in the media of
exposure,15,17,18 concentration (e.g., mass concentration15 and
volume fraction16), relaxivities,18,19 energy/enthalpy infor-
mation (e.g., atomization and band gap energies16,17 and
formation enthalpies14,17), and structures of NP surface-
modifying molecules.18,20–22,24,25 In a physiological environ-
ment, NPs suspended in a biological fluid (e.g., blood, plasma,
or interstitial fluid) will adsorb proteins that form a “protein
corona” on the NP outer surface.26–30 It has been suggested
that the protein corona constitutes the first stage of nano-bio
interaction/interface that governs subsequent NP fate and
transport (e.g., aggregation, dissolution, and mobility) which
in turn impacts NP bioactivity (e.g., cellular association/uptake
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and toxicity).29 In this situation, the NPs assume “biological
identity” after exposure to biological environment that is
different than their “synthetic identity”.26,27,31 The biological
identity is “seen” by cells and impacts the observed biological
behavior.26–29 Therefore, the protein corona, as described by
the types of serum proteins and their abundance on the NP
surface,30 are thought to encode information that may be
useful in predicting NP bioactivity.27,31

It has been argued that cellular association with NPs, attrib-
uted to the protein corona, is a critical upstream event influen-
cing various downstream biological responses, such as
pharmacological and toxicological effects.29,30 For example, in
a recent study Au NPs were incubated with human serum,
purified, and the proteins were identified by mass spec-
trometry.27 In parallel, cell association, using A549 human
lung epithelial carcinoma cells, was quantified for a composi-
tionally diverse library of 105 NPs (Fig. 1) of 15, 30, or 60 nm
Au core with neutral, anionic, or cationic ligands.27 Liquid
chromatography tandem mass spectrometry was employed to
detect the adsorbed serum proteins on the NP surface, provid-
ing a comprehensive quantitative characterization of the NP
protein corona.27 For the entire library of Au NPs, a total of
785 distinct serum proteins were detected with 129 identified
as suitable for abundance quantification. The relative abun-
dance27 of the 129 serum proteins adsorbed on the NP surface
was used as a “fingerprint” to characterize the protein
coronas. QSARs were then developed for 84 NPs based on the
129 protein fingerprints, with the remaining 21 NPs of neutral
surface ligands excluded due to their negligible adsorption of
serum proteins.27 QSAR for log2-transformed cell association
(2.60 × 10−3 to 2.51 mL µg(Mg)−1) of Au NPs was developed via
partial least squares regression (PLSR)32 using 6 optimal prin-
cipal components (PCs) calculated from 64 fingerprints identi-
fied via sequential forward selection (SFS).33 The developed
QSAR demonstrated prediction accuracy in terms of R2 = 0.81
and 0.61 (coefficient of determination between predicted and

observed cell association) in leave-one-out (LOO) validation
(i.e., R2LOO = 0.81) and 4-fold cross-validation (i.e., R24CV = 0.61),
respectively.

The above study also reported that QSARs for Au NP-cell
association, developed based on a total of 39 physicochemical
properties of the Au NPs (as synthesized and w/serum) of
various surface ligands,27 were not of an acceptable prediction
accuracy. The 39 physicochemical properties included TEM
and DLS size characterization, zeta potential, absorbance
spectrophotometry, and the amount of adsorbed serum
protein on the NP surface obtained from the bicinchoninic
acid (BCA) assay. The best performing QSAR developed in the
above work27 was using 7 PCs calculated from 52 descriptors
that included both protein corona fingerprints and NP
physicochemical properties; however, only marginal perform-
ance improvement was attained (R2LOO = 0.86 and R24CV = 0.63)
relative to the QSAR utilizing only the protein corona
fingerprints. Given the above, it was concluded that the protein
corona encodes relevant biological information regarding cell
association with Au NPs.27

The above work provided an important basis for advancing
the understanding of nano-bio interactions given the publi-
cation of comprehensive fingerprint profiles of protein corona
on the surface of Au NPs, along with QSAR analyses of their
correlation to cell association.27 Although definitive corre-
lations of protein corona fingerprints with cell association
were demonstrated, the QSAR descriptors were selected based
on SFS process that provided limited exploration of the
descriptor space.33,34 Also, LOO validation of the derived
QSARs, while valuable, usually leads to over-optimistic esti-
mate of prediction accuracy for small datasets, while cross-vali-
dation (CV) can lead to estimate of excessive variance.35,36 It is
also important to note that the QSARs reported in the above
work27 were developed using PLSR that are in fact “full
models”, in which each PC represents a linear combination of
all the original descriptors (e.g., the 64 selected finger-
prints).37,38 The above provided practical compact QSARs the
use of a small number of PCs, but at the cost of forfeiting
unambiguous and direct links between cell association
and the specific protein corona fingerprints.38,39 The analysis
presented in the above work provided a sufficient and
compelling case regarding the importance of the protein
corona fingerprints and the lesser dominance of physico-
chemical properties.27

With the above dataset it should be possible to identify
the specific and quantitative significance of various corona
proteins and physicochemical properties to NP-cell associ-
ation. Accordingly, in the current work we demonstrate that
the specific corona serum proteins and/or NP physico-
chemical properties, which are most relevant to correlating
NP-cell association, can be identified via rigorous QSAR
analysis. QSAR descriptors were identified by sequential
forward floating selection (SFFS)34 with prediction accuracy
of developed linear and non-linear models validated by a
bootstrapping based approach that is suitable for relatively
small datasets.

Fig. 1 Structure of Au NP-protein complex. The NP library contains 105
NP formulations of a 5, 30, or 60 nm Au core with 67 neutral, anionic,
or cationic ligands. For the entire NP library, a total of 785 distinct
serum proteins were detected on their surfaces with 129 identified as
suitable for relative abundance as “fingerprints” for protein corona
characterization.
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2. Results
2.1. QSAR development

The correlation of cell association of Au NPs (modified with
different ionic/cationic surface ligands) with corona proteins
and physicochemical properties was investigated via QSAR
analysis of a recently published dataset.27 QSARs were develo-
ped following a workflow (Fig. 2; Methods section) consistent
with the OECD guidelines.40 In the dataset27 of cellular associ-
ation of 84 Au NPs, 9 of the 129 identified protein corona finger-
prints (PCFs) were found in the coronas of <5% of the
84 Au NPs. Thus, these 9 PCFs did not provide sufficient infor-
mation for developing QSARs of acceptable generalization
capability and were hence omitted. The Au NPs were character-
ized by a total of 19 physicochemical properties (NPPs;
Table 1) which included TEM core size, four hydrodynamic
size measures (based on z-average, volume mean, number
mean and intensity mean), primary NP surface area and
volume, zeta potential, and localized surface plasmin reson-
ance (LSPR) index and peak position. NPs in serum were also
characterized by the same hydrodynamic size measures, LSPR
index, and zeta potential as above, in addition to the adsorbed
proteins (total mass and adsorbed surface density) and the NP
dose (Table 1). Accordingly, three different initial descriptor
sets were utilized, which comprised of 120 PCFs, 19 NPPs
(Table 1), and a composite of the two sets. Both linear
regression and non-linear epsilon support vector regression
(ε-SVR) models41–43 were used for QSAR development. The
most suitable descriptors for a given QSAR were selected from
the above three sets of descriptors via sequential forward float-
ing selection (SFFS).34 QSAR prediction accuracy was assessed
via a bootstrapping (i.e., sampling with replacement) based
validation approach that has proven particularly suitable
for a limited number of training samples.17,35,36 Robustness

validation of the developed QSARs was carried out based on
Y-randomization17–19 to ensure that the QSARs were not “chance”
correlations. Applicability domain analysis using William’s
plot44,45 was subsequently conducted to map the descriptor
space for which reliable QSAR predictions can be attained.

2.2. Impact of number of selected descriptors on QSAR
prediction accuracy

Correlation of cell association with protein corona fingerprints
(PCFs) and NP physicochemical properties (NPPs) was
assessed via linear and non-linear ε-SVR QSARs. The developed
QSARs demonstrated prediction accuracy in terms of
R2E632(= 0.368R2resub + 0.632R2boot, where, R

2
resub is the model pre-

diction accuracy assessed using the training set and R2
boot

denotes the prediction accuracy in bootstrapping vali-
dation;35,36 Methods section) that increased with increasing
number of selected descriptors (Fig. 3). The prediction accu-
racy of the ε-SVR QSARs was higher relative to linear QSARs
(Fig. 3), at the cost of increased model complexity. For the
linear QSARs, the inclusion of NPPs with PCFs did not result
in significant difference in prediction accuracy compared to
those developed based on PCFs alone (Fig. 3); this implies that
information contained in the NPPs in a linear correlation to
cell association of Au NPs could be substituted by certain
PCFs. On the other hand, of the ε-SVR QSARs developed based
on descriptors selected solely from the NPPs, the highest pre-
diction accuracy of R2E632 = 0.695 was attained with 3 NPPs,
including zeta potential (as synthesized), density of protein on
NP surface, and number mean hydrodynamic diameter
(w/serum). The above result should, however, not be interpreted
to suggest that NPPs have no relevance to cell association,
since the ε-SVR QSAR demonstrated significantly improved
prediction accuracy (R2E632 = 0.895, Fig. 3) upon the inclusion
of zeta potential (as synthesized) with the selected PCFs.

Fig. 2 Workflow for QSAR development. Both linear and nonlinear (ε-SVR) regressions were used in the QSAR development for cellular association
of Au NPs. The regressions were coupled with sequential forward floating selection (SFFS) to identify suitable QSAR descriptors from the three
descriptor sets, including 120 PCFs, the 19 NPPs, and a composite of the two sets. The QSAR prediction accuracy was assessed via a bootstrapping
based validation approach known as 0.632 estimator. Once the desired QSAR was identified, Y-randomization was then conducted to assess its
robustness followed by William’s plot for applicability domain analysis.
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It is noted that prediction accuracy increased with added
descriptors (Fig. 3). In order to keep the number of QSAR
descriptors at a reasonable level, while maintaining acceptable
accuracy, the number of selected descriptors was set at the point
where the increase in R2E632 upon adding a new descriptor was
≲1%. The above “turning-point”46 was in the range of 7–11
descriptors (Table 2) for the linear and ε-SVR QSARs. The above
number of QSAR descriptors is within the suggested 1/10 to 2/10
ratio of number of descriptors relative to the number of total

samples (i.e., NPs).47 It is noted that 18 of the 24 distinct PCFs
identified in the present analysis (Table 2) were also identified
previously as suitable QSAR descriptors;27 moreover, 9 of these
18 PCFs were also identified in previous work with the same
dataset27 as being highly relevant to correlating NP-cell association.

2.3. Non-linear QSAR

Among the QSARs corresponding to the four identified
descriptor set (Table 2), the ε-SVR QSAR developed using the

Table 1 Protein corona fingerprints and NP physicochemical properties considered in the QSAR analysis

NP physicochemical property (NPP)

As synthesized w/serum

Four different NP hydrodynamic diameter (nm) (measures based:
Z-average, volume mean, number mean, and intensity mean)

Four different NP hydrodynamic diameter (nm) (measures based:
Z-average, volume mean, number mean, and intensity mean)

Zeta potential (mV) Zeta potential (mV)
Localized surface plasmon resonance (LSPR) index (AU) Localized surface plasmon resonance (LSPR) index (AU)
LSPR peak position (nm) Total adsorbed proteina (BCA assay) (μg)
TEM core size (nm) Total NP surface areaa (cm2)
Surface area of a NP (nm2) Density of protein on NP surfacea (μg cm−2)
Single NP Volume (nm3)

Protein corona fingerprint (PCF)

Abbrev. Full name Abbrev. Full name

A1AT Alpha-1-antitrypsin AMBP Protein AMBP
ANT3 Antithrombin-III APOB Apolipoprotein B-100
APOE Apolipoprotein E APOF Apolipoprotein F
CO3 Complement C3 FA10 Coagulation factor X
FA11 Coagulation factor XI FA12 Coagulation factor XII
HRG Histidine-rich glycoprotein IC1 Plasma protease C1 inhibitor
IGHG4 Ig gamma-4 chain C region IGLL5 Immunoglobulin lambda-like polypeptide 5
ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3 ITIH4 Inter-alpha-trypsin inhibitor heavy chain H4
KLKB1 Plasma kallikrein KNG1 Kininogen-1
PLMN Plasminogen PON1 Serum paraoxonase/arylesterase 1
PROS Vitamin K-dependent protein S TETN Tetranectin
THRB Prothrombin TTHY Transthyretin

a Based on the total NP content in the serum.

Fig. 3 Prediction accuracy (R2
E632) of the linear and ε-SVR QSARs as increasing number of selected descriptor. The circles identify the “turning-

points” where the increase in R2
E632 upon adding a new descriptor is ≲1%. In the above figure, PCFs + NPPs identifies the composite descriptor set of

the protein corona fingerprints (PCFs) and NP physicochemical properties (NPPs).
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7 most suitable descriptors had the highest prediction accu-
racy of R2E632 = 0.895 (R2Boot = 0.851 ± 0.049 and R2resub = 0.971;
Fig. 4a). The above best performing ε-SVR QSAR, which
kernel width (γ), regularization factor (C), and tube size (ε)
were determined (based on the recommended parameter selec-
tion approaches;42,48,49 Methods section) as 0.125, 11.310, and
0.344, respectively, can be expressed as

y ¼ 4:479þ
X51
i¼1

αi expð�0:125 k z� zi k2Þ ð1Þ

in which y represents the log2-transformed NP cell association
(mL µg(Mg)−1), while zi denote NPs (represented by their stan-
dardized descriptors) identified as support vectors with their
weights given by ai (Fig. 5). In total, 54 Au NPs (64%) were
identified as support vectors (Fig. 5) for the ε-SVR QSAR,
which signifies its reasonable sparsity. It is noted that it is
acceptable for the number of support vectors in a reasonable
ε-SVR model to amount to ∼50% of the total samples.48 The
reasonable sparsity together with the relatively small descrip-

tor number demonstrates acceptable complexity of the ε-SVR
QSAR. The ε-SVR QSAR (eqn (1)) also exhibited good robust-
ness in a 100-round Y-randomization with R2E632 = −0.208 ±
0.109 and is associated with a well spanned applicability
domain (Methods section) covering all but two (G15.DTNB and
G60.SPP) of the Au NPs (Fig. 6a). It is also noted that signifi-
cantly improved prediction accuracy of R24CV = 0.862 ± 0.026 as
determined in a 100-round 4-fold cross-validation (Methods
section) was obtained with the above ε-SVR QSAR (eqn (1))
relative to previously developed partial least squares regression
QSAR (R24CV = 0.63 ± 0.16).27

2.4. Linear QSAR

The developed linear QSARs did not reveal marked difference
in prediction accuracy of those constructed from the descriptor
sets of PCFs versus PCFs plus NPPs. Therefore, based on the
linear QSARs, one cannot convincingly argue that NPPs are
descriptors of relevance to linear correlation of NP-cell associ-
ation. Thus, only the PCF descriptors can be justified for the

Table 2 Most suitable descriptors selected for linear and ε-SVR QSARsa

Linear QSAR PCF APOB ANT3 KLKB1 TTHY A1AT IGHG4 ITIH3 PLMN APOF FA11 KNG1
VIPb 1.19 1.15 0.98 1.51 1.61 1.00 1.51 — — 0.85 0.87
+NPP APOB ANT3 KLKB1 TTHY AMBP ITIH4 PON1 HRG VOLAu IC1 FA10
VIP 1.19 1.15 0.98 1.51 1.67 1.51 — 0.94 — — 0.70

ε-SVR PCF APOB A1AT IGLL5 ANT3 KLKB1 THRB CO3 PROS TETN
VIP 1.19 1.61 0.80 1.15 0.98 — 1.37 0.67 0.78
+NPP APOB A1AT IGLL5 ZPSyn HRG FA12 APOE
VIP 1.19 1.61 0.80 — 0.94 — 0.87

a A total of 24 distinct PCFs and 2 NPPs (zeta potential (as synthesized, ZPSyn) and volume of a NP (VOLAu)) were identified. b VIP: variable
importance (influence) on projection32 reported in the previous work27 for the PCFs. Lack of the VIP value (identifies by “—”) indicate that the
PCF was not identified in the partial least squares regression QSAR developed in the previous work.27

Fig. 4 Observed cell association (2.60 × 10−3 to 2.51 mL μg(Mg)−1, log2-transformed) of Au NP versus those predicted by (a) the ε-SVR and (b) linear
QSARs. In (a), the points on or outside the ε-tube (ε = 0.344) are support vectors of the ε-SVR.
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linear QSAR. Accordingly, the best performing linear QSAR
with PCF descriptors was with 11 descriptors as given by

y ¼ � 19:167xAPOB � 7:188xANT3 þ 251:252xPLMN þ 51:815xITIH3

þ 31:432xA1AT � 598:507xIGHG4 � 106:242xKLKB1 þ 66:079xTTHY
þ 21:937xFA11 þ 68:110xAPOF � 12:531xKNG1 � 3:530

ð2Þ

in which y is the log2-transformed NP cell association (mL µg
(Mg)−1) and xi is the fingerprint (i.e., relative abundance) of
protein i (Table 1). The above linear QSAR provided good corre-
lation of the observed cell association data for the Au NPs
(Fig. 4b), quantified by prediction accuracy of R2E632 = 0.850
(R2Boot = 0.829 ± 0.044 and R2resub = 0.887). In addition, the
above linear QSAR (eqn (2)) also had higher prediction accu-
racy of R2

4CV = 0.843 ± 0.015 than the partial least squares
regression QSAR (R24CV = 0.63 ± 0.16) developed previously.27

Moreover, the present linear QSAR (eqn (2)) exhibited good
robustness in a 100-round Y-randomization with average
R2E632 = −0.208 ± 0.109; this negative value signifies that the
developed QSAR is not a “chance” correlation. The linear
QSAR was shown to have a well spanned application domain
(Fig. 6b), which covers all but three (G15.DDT-ODA, G15.MES,
and G15.AHT) of the 84 Au NPs.

3. Discussion

The developed QSARs provide a means of assessing the relative
significance of the identified protein corona and physico-
chemical descriptors. This was achieved by determining the
R2E632 decrease for a given descriptor in 100-round descriptor
randomization (Fig. 7; Methods section). We note that one
should also consider a descriptor that is selected by multiple
models to be of higher significance than those selected by a
single model. Among the 7 descriptors used in the best per-
forming ε-SVR QSAR (eqn (1)), APOB (Apolipoprotein B-100)
was the most commonly selected descriptor (Table 2). This
descriptor also demonstrated the greatest impact on the corre-
lation of Au NP cell association. As a major protein found in
both low-density lipoprotein (LDL) and very low-density lipo-
protein (VLDL), APOB has been reported to be responsible for
cellular uptake of LDL particles from plasma.50 Studies have
also shown that APOB acts as a ligand for LDL receptors in
various cells throughout the body as well as a bridge to deliver
cholesterol into tissue.50,51 APOB has been identified in
protein corona of other NPs (e.g., silica52 and polystyrene53

NPs). On the NPs, the protein function is altered due to
changes in the structure and this affects the intracellular
trafficking, fate, and transport of NPs in cells and animals.54

The second significant descriptor in the ε-SVR QSAR (eqn (1))
is A1AT (Alpha-1-antitrypsin). It is noted that there is evidence
that this protein is associated with a broad group of proteases
and protects the lungs from cellular inflammatory enzymes.55

The anti-apoptotic function of A1AT has been reported both
in vitro and in vivo for lung microvascular endothelial cells and
epithelial cells.56 In other words, A1AT is an anti-inflammation
protein serving as an immune system regulator of NPs that
impact lymphocyte proliferation and cytotoxicity and mediates
monocyte and neutrophil functions.55 In addition, the associ-
ation of A1AT with anti-inflammation could reduce the attrac-
tion of macrophages to the site of NP deposition.57,58 The
third ranking descriptor in the ε-SVR QSAR (eqn (1)) is the zeta
potential (as synthesized). This descriptor has been reported

Fig. 5 Selected descriptors (standardized per the z-score) for the linear
and the ε-SVR QSARs where by the Au NPs are ordered on the basis of
their cellular association. A brief explanation about these descriptors is
provided in Table 1. The values given following “/” are the weight factors
of the NPs identified as support vectors.
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as a significant parameter in nanotoxicology and has been
widely used as a QSAR descriptor.16–19,24 NP surface charge,
while “screened” by the protein corona, will impact the adsorp-
tion of proteins and thus their relative abundance in the
protein corona, which will in turn affect NP-cell association.53

In general, zeta potential plays a fundamental role in the fate
and transport of NPs59 (e.g., stability and aggregation of NPs in
aquatic environments60) and also affects their behavior at the
bio-nano interface.60,61

Analysis of the relative significance of the 11 PCFs used in
the linear QSAR (eqn (2)), consistent with the ε-SVR QSAR (eqn
(1)), also identified APOB as having the greatest correlating
importance for NP-cell association. The above consistency
increases the level of confidence regarding the significance of
APOB as an important protein that affects cell association of

Au NPs. The second significant descriptor in the linear QSAR
(eqn (2)) is ANT3 (Antithrombin III). As a serine protease
inhibitor,62 ANT3 can exert anti-inflammatory properties via
inhibition of NF-κB activation and subsequent production of
growth factors and cytokine.63 Therefore, ANT3 adsorbed onto
NP surfaces could alter inflammatory processes during cellular
uptake of NPs.64 The third ranking descriptor in the linear
QSAR (eqn (2)) is PLMN (Plasminogen), which is known as a
zymogen released by plasmin from the liver. The activated or
open form of PLMN is reported to be responsible for facilitat-
ing protein–protein interactions between plasmin and fibrin
in blood.65 Existence of PLMN on cell surfaces is important for
positive regulation of cell surface plasmin proteolytic activity
that facilitates both physiological and pathological processes.66

Accordingly, the activation of PLMN to plasmin could be sig-
nificantly enhanced when PLMN on the surface of NPs binds
to cells, indicating the critical role of PLMN in macrophage
recruitment during the inflammatory response.67 It is noted
that A1AT, which was identified as the second most significant
descriptor in the ε-SVR QSAR (eqn (1)), was the fifth highest
ranking descriptor in the linear QSAR (eqn (2)). The higher
ranking of A1AT in the ε-SVR QSAR (eqn (1)) could indicate a
significant non-linear correlation between A1AT and Au NP cell
association, which is not captured by the linear QSAR. On the
other hand, the simple linear QSAR (eqn (2)) is beneficial in
that its descriptors can be categorized as being either positively
(i.e., “promoter”) or negatively (i.e., “inhibitor”) correlated with
NP-cell association. For example, the linear QSAR (eqn (2)) indi-
cates that APOB is an “inhibitor” while A1AT is a “promoter” of
Au NP cell association.

4. Conclusions

In summary, the correlation of NP-cell association with protein
corona fingerprints (PCFs) and NP physicochemical properties

Fig. 6 William’s plots for the applicability domains (AD) of (a) the ε-SVR and (b) linear QSARs. The leverage/average kernel similarity quantifies the
similarity in NPs while the standardized residual reflects the prediction quality. The critical leverage was identified as h* = 0.43 and g* = 0.05 for the
linear and ε-SVR QSARs, respectively. In the above figure, G15.DTNB, G15.MES, G15.AHT, G15.DDT-ODA, and G60.SPP identify the NPs of 15 nm Au
Core with 5,5’-dithiobis(2-nitrobenzoic acid), 2-mercaptoethanesulfonate, 6-amino-1-hexanethiol, 1-dodecanethiol @ octadecylamine surface
modifiers, respectively and NP of 60 nm Au Core with Bis(p-sulfonatophenyl) phenylphosphine surface modifier.27

Fig. 7 Descriptor importance assessed by the decrease in prediction
accuracy (R2

E632) of the ε-SVR and linear QSARs developed with a given
descriptor randomly permutated. A descriptor whose random permu-
tation leads to a large R2

E632 decrease is considered to be of increased
correlation to cellular association of Au NPs.
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(NPPs) was explored using both linear and non-linear quanti-
tative structure–activity relationships (QSARs). The analysis of
a cell association dataset of a combinatorial library of 84 gold
nanoparticles (NPs) of 15, 30, or 60 nm cores with cationic or
anionic surface ligands, included evaluation of a set of 129
PCFs and 19 NPPs as QSAR descriptors. Serum proteins, such
as APOB, A1AT, ANT3, and PLMN, were identified, along with
NP zeta potential, as being significant PCFs for correlating NP
cell association. The best performing linear QSAR with the
most suitable 11 PCFs had a high prediction accuracy of R2

E632

= 0.850, which was improved to R2E632 = 0.895 by a non-linear
ε-SVR QSAR using 6 only PCFs and NP zeta potential. Both the
QSARs demonstrated good robustness and well spanned appli-
cability domain. Good performance of the developed QSARs
demonstrated that exploration of the descriptor space can
provide important information about NP-cell association that
can potentially guide toxicity studies by identifying the set of
proteins of potential relevance. Identification of the relevant
proteins via data mining through QSAR can also provide infor-
mation that could be useful in developing NP with targeted NP
protein adsorption for bio-medical application and to render
NPs non-toxic.

5. Methods

QSAR development (Fig. 2) included the use of both linear and
non-linear ε-SVR regression models.41–43 The suitable descrip-
tor sets for a given QSAR were selected via sequential forward
floating selection (SFFS).34 QSAR prediction accuracy was
assessed via a bootstrapping (i.e., sampling with replacement)
based validation approach that has proven particularly suitable
for a limited number of training samples.17,35,36 Robustness
validation of the developed QSARs was carried out based on
Y-randomization17–19 to ensure that the QSARs were not “chance”
correlations. Applicability domain analysis using William’s
plot44,45 was subsequently conducted to map the descriptor
space for which reliable QSAR predictions can be attained.

5.1. QSAR models

Linear QSARs, for the log2 transformed cell association (y), can
be expressed as

yðxÞ ¼ bþ ðw; xÞ
where (w, x) denotes the inner product of the NP descriptor
vector x (e.g., PCFs or NPPs) and weight vector w. The weight
vector w and the intercept term b are parameters determined
from the data by the least square algorithm.41

Non-linear QSARs, developed using ε-SVR,41–43 can be
expressed as

yðxÞ ¼ bþ ðw;φiðxÞÞ ¼ bþ
Xl

i¼1

αikðx; xiÞ ð4Þ

where, k(x, xi) = (ϕ(x), ϕ(xi)) represents a kernel function, set
for the present QSAR development as the commonly used
Gaussian kernel41,49 k(x, xi) = exp(−γ||x − xi||

2) (γ is known as

kernel width). In eqn (4), xi’s are support vectors determined

together with b and w ¼ Pl
i¼1

αiϕðxiÞ
� �

from the data by solving

the following optimization problem41–43 with two slack vari-
ables ξi and ξi*.

min
w;b;ξ;ξ*

1
2w

Tw þ C
Pn
i¼1

ξi þ C
Pn
i¼1

ξi*

subject to wTφðxiÞ þ b� yi � εþ ξi
yi � wTφðxiÞ � b � εþ ξi*
ξi; ξi* � 0; i ¼ 1; . . . ; n

ð5Þ

In the above formulation, n denotes the total number of
training samples, while C and ε are known as regularization
factor and tube size, respectively. The ε-SVR model perform-
ance depends on proper setting of these two parameters (C
and ε) as well as the kernel width γ. In the present QSAR devel-
opment, according to a practical model parameter selection
approach,48 C and ε were determined as:

C ¼ maxðjȳþ 3σyj; jȳ� 3σyjÞ

ε ¼ 3σffiffiffi
n

p ð7Þ

where, ȳ and σy denote the average and standard deviation of
the response variable y (i.e., log2 transformed cell association),
respectively. The standard deviation of data noise σ in eqn (7)
was estimated for each of the descriptor sets by:48

σ2 � n1=5k
n1=5k � 1

� 1
n

Xn
i¼1

ðyi � ŷiÞ2 ð8Þ

where, ŷ is the response estimated by k-nearest-neighbor
method with the recommendation48 of k = 3. The optimal
kernel width, γ, was determined using a “grid-search”42,49

from γ = 2−9, 2−7, …, 23. It is noted that, for the ε-SVR develop-
ment, all the descriptors (PCFs and NPPs) were standardized
as zi = (di − d̄)/σd (i.e., z-score43), in which d̄ and σd denote the
mean and standard deviation of descriptor d.

5.2. QSAR performance validation

The performance of the developed QSARs was quantified by
the widely used coefficient of determination R2 as rec-
ommended by the OECD guidelines for QSAR development
and validation.40 It is noted that R2, defined as 1-MSE/σy, in
which MSE = Σi(yi − y(xi))/n is the mean squared error, can be
negative for a QSAR of MSE > σy, which would indicate lack of
QSAR predictive ability.68 The 0.632 estimator35,36 was adopted
for QSAR validation since it is particularly suitable for per-
formance validation of models based on small datasets.
Accordingly, model prediction accuracy was assessed as R2

E632 =
0.368R2

resub + 0.632R2boot, where, R
2
resub is the model prediction

accuracy assessed using training set (i.e., re-substitution vali-
dation) and R2boot denotes the prediction accuracy in bootstrap-
ping validation.35,36 For the latter, the out-of-bootstrap
samples (i.e., un-sampled ones) used for model testing were
∼36.8% (≈(1 − 1/n)n ≈ 1/e) of the complete dataset.69 The boot-
strapping process was repeated for 200 rounds, consistent with
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the recommended range36 of 25–200. In addition, the predic-
tion accuracy of the developed QSARs was also assessed via
4-fold cross-validation (CV).41,43,47 In 4-fold CV, the NPs were
randomly partitioned into 4 mutually exclusive subsets, with
three subsets used for training and one for validation. This
4-fold CV was repeated 100 times and the average prediction
accuracy was used for model assessment.

5.3. Descriptor selection

QSAR development and performance were evaluated in
relation to the number of included model descriptors. Consist-
ent with the goal of arriving at QSARs with a reasonably small
number of descriptors, in the current analysis the maximum
number of descriptors was set at ∼3/10 of the total number of
NPs. It is interesting to note that a recommended rule of
thumb47 is that the number of QSAR descriptors should be in
the range of 1/10–2/10 of the total NPs. Accordingly, the ana-
lysis also included the range of recommended number of
descriptors in relation to the number of samples. In order
to identify a reasonably small QSAR descriptor subset of
relevance to cell association, descriptor selection33,38,39

was accomplished by sequential forward floating selection
(SFFS),34 which represents an improvement of the traditionally
used sequential forward selection (SFS).33 At each selection
step, SFFS first conducts a forward selection to identify the
descriptor that leads to the greatest increase in model perform-
ance, then backward elimination to evaluate whether pre-
viously selected descriptors should be removed due to the
addition of the newly selected one.34 The above selection
process proceeds until the prescribed number of descriptors
selected. In order to avoid early termination of the descriptor
selection process (i.e., addition of a new descriptor that does
not improve model performance prior to reaching the target
number of descriptors), speculative steps of up to ∼1/10 of the
total number of the Au NP was used. The speculative steps
proceed the descriptor selection process by including the
additional identified descriptor, even in the absence of
increased model performance. Based on the on model per-
formance, with respect to the selected descriptors, the suitable
descriptor number was then determined by locating the
“turning point” being defined when the addition of a new
descriptor led to insignificant improvement (e.g., ≲1%
increase in R2) in model performance.46

5.4. QSAR robustness and descriptor importance assessment

In order to assess if the developed QSARs are indeed robust
models (i.e., not “chance” correlations), they were further vali-
dated via a 100-round Y-randomization.17–19 In Y-randomiz-
ation, models were built using the same set of selected
descriptors but for randomized cell association values. The
built models are considered as “chance” correlations when
compared with the developed QSAR, since Y-randomization
distorts the correlation (if a correlation exists) between the
selected descriptors and cell association. This accepted
approach confirms the robustness of a QSAR if it significantly
outperforms the “chance” correlations.17–19

The randomization approach was also used to estimate the
importance of the selected QSAR descriptors. In this approach,
a decrease in the performance of a model developed with ran-
domization of a given descriptor was used to assess the
descriptor’s importance.70 Accordingly, a significant decrease
in model performance is indicative of increased importance of
the descriptor that was randomized.70

5.5. Applicability domain analysis

The applicability domain for the linear QSAR was analyzed by
William’s graph44,45 in order to identify the descriptor space
region in which reasonable QSAR predictions can be made.
William’s graph depicts a QSAR’s applicability domain with a
two-dimensional scatter plot. The first dimension is the lever-
age hi = xi(X

TX)−1xi
T (where XT = [x1

T, x2
T, …, xn

T] identifies the
complete NP dataset) that represents the distance of a given
NP (xi) to the center of those NPs used for QSAR development
in the descriptor space.44 NPs of smaller h value are more
similar to the dataset used for QSAR development and thus
are within the NP descriptor domain, in which cell association
can be predicted more reliably. In practice, the critical leverage
value is commonly set as h* = 3(m + 1)/n covering ∼99% of nor-
mally distributed training samples,44,45 where m is the number
of QSAR descriptors and n is the number of training samples
(n = 84 in the present work). The second dimension of Wil-
liam’s graph is the standardized prediction residual (ei − ē)/σe,
(where ei = yi − y(xi) with ē and σe denoting its average and
standard deviation respectively) with [−3, 3] as a generally
accepted range.44

It is emphasized that in the traditional Willam’s graph, the
leverage only quantifies linear similarity defined by (xi, xj).
However, in the non-linear ε-SVR model, similarity is defined
by a non-linear kernel function k(xi, xj). Therefore, leverage
may not be suitable for assessing the applicability domain of
ε-SVR QSARs. The similarity measure for applicability domain
assessment has to be consistent with the one used for QSAR
development. Therefore, determination of the application
domain for the ε-SVR QSARs was accomplished with replace-
ment of the leverage in William’s graph by the average kernel
similarity71 defined below.

gi ¼ ðφðxiÞ; 1n
Xn
j¼1

φðxjÞÞ ¼ 1
n

Xn
j¼1

kðxi; xjÞ ð9Þ

Similar to the leverage, the average kernel similarity (eqn
(9)) quantifies the similarity of a NP xi to the center of those
used for QSAR development as measured by the kernel func-
tion. Here, analogous to h*, the critical kernel similarity g* was
defined as the 99% percentile of the kernel similarity for all
training samples.
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