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The behavior of the olfactory bulb is modeled as a network of interconnected cells with nonlinear
dynamics. External inputs from sensory neurons are introduced as perturbations to subsets of cells within
the network. We describe the attractors of the system and show how they can be classified and ordered
according to their varying degrees of symmetry. By studying networks of attractors in the system’s phase
space, it is shown how different perturbations may evoke specific switches between various patterns of
behavior. This ensures that different odors, even if present at extremely low concentrations, are able
to evoke a specific spatio-temporal behavior in the olfactory bulb, permitting their unique perception.
The model incorporates many of the processes proposed to mediate perception, such as the topographic
organisation of sensory systems, destabilization of cortex by sensory input and synchronisation between
neurons. It is also consistent with the character of the olfactory electroencephalogram.

1. Introduction

The perception of sensory stimuli constitutes one

of the basic functions of neural systems. Theoreti-

cally, one is interested in how a multitude of different

sensory stimuli can each lead to unique dynami-

cal patterns in the neural systems which receive

them. This problem is even more interesting when

it is recalled that perceptions, such as smells, may

be reliably triggered by microscopic sensory stimuli.

Ideally, a model should also explain the features

of experimental signals such as EEG. Clinically it

is hoped that the study of these processes may

elucidate pathological mechanisms leading, for ex-

ample, to sensory hallucinations. In this paper we

focus on the olfactory system, as this has been exten-

sively studied.1–3 We discuss a theoretical model of

olfactory perception with experimental and clinical

perspectives.

1.1. Structure and function

of the olfactory bulb

One of the remarkable features of the olfactory

system is its ability to reliably detect and discrimi-

nate between tens of thousands of odors at concen-

trations as low as a few parts per trillion (1012). To

begin with, odorant molecules attach to odor-specific

membrane receptors in sensory cells of the nasal

mucosa. This causes a conformal change in the

receptor which leads to depolarization of the

neighboring membrane.4 As the distribution of dif-

ferent receptors is confined to small populations of
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neurons,2 specific odors lead to excitation of specific

subsets of sensory neurons. These neurons project

through the cribiform plate of the skull and form

synaptic connections with mitral and tufted neurons

in the highly interconnected olfactory bulb. The

local circuitry of the olfactory bulb is constituted by

dense inhibitory and excitatory interconnections and

plays a critical role in processing incoming olfactory

information before projecting to neurons in the ol-

factory cortex and other brain regions.2,3 This paper

examines the dynamics of the olfactory bulb during

the cycle of odor-inhalation and exhalation.

1.2. Dynamical behavior of the olfactory

bulb during inhalation-exhalation

Detailed analysis of 64-channel EEG recorded over

the olfactory bulb indicates a characteristic pattern

of activity during this cycle.5–7 During exhalation,

the EEG displays a low-amplitude, irregular signal

with little coherence between different EEG chan-

nels. Time series analysis of this signal using

the Grassberger–Procaccia algorithm yields a non-

integer correlation dimension,5 indicating that the

underlying behavior may be governed by chaotic

dynamics. During the inhalation of a familiar

odor, the EEG changes quickly to a high-amplitude

signal with an almost-periodic waveform and high

coherence between channels. The amplitude of this

waveform differs between EEG channels so as to

form a specific spatial pattern for each specific odor.6

Inhalation of a novel odor does not produce an

almost-periodic signal. The EEG retains the irre-

gular and discordant pattern of the exhalation signal.

Any novel odor, however, can be learned through

repeated exposure and reinforcement, whereupon

the EEG evoked by its inhalation becomes almost-

periodic, with a new unique amplitude distribution.7

This pattern of activity lends itself to the

following interpretation.8–10 Firstly, the olfactory

bulb plays a critical role in creating dynamical

representations of learned odors by constructing

coherent structures for interpretation by the olfac-

tory cortex and other brain regions. The pattern

of activity that plays this role is a robust, almost-

periodic signal with a characteristic amplitude dis-

tribution for each odor. In this way, the entire bulb

is involved in producing a dynamical structure — a

spatio-temporal attractor — in response to an odor.

Searching Attractor

EEG: Temporal
Irregularity, Spatial

Discordance

Odor-Specific
Attractor

EEG: Almost Periodic
with  Amplitude

Distribution  Specific
to Odor

Exhalation

Inhalation of specific odor

Fig. 1. Representation of olfactory bulb dynamics dur-
ing cycle of inspiration-expiration. Lower arrow shows
switching of bulbar dynamics following inhalation of a
familiar odor. Top arrow shows reinstatement of search-
ing attractor during expiration.

During exhalation, the activity of the olfactory bulb

is governed by a “searching attractor” with a spa-

tially discordant and temporally chaotic waveform.

This attractor appears reliably during exhalation,

but switches quickly to one of many possible odor-

specific attractors following even nanoscopic sensory

perturbation. This cycle of inhalation-exhalation dy-

namics is summarised in Fig. 1.

1.3. Aims and structure of this paper

We are thus left with an intriguing but seemingly

elusive dynamical problem: How to describe a

chaotic spatio-temporal attractor that appears re-

liably during exhalation but is at the same time

very close to a large number of other attractors.

Additionally, how do small but specific sensory

perturbations cause specific jumps from the former

attractor to one of the latter? In this paper, we

model the behavior of the olfactory bulb as an

ensemble of globally coupled cells with nonlinear

responses. We show that the structure of attrac-

tors and their basins of attraction in this system

permit an explanation of these phenomena. Our

approach is motivated by a proposal of Kaneko in his

study of attractors in high-dimensional systems with

symmetry.11–13 Specifically, he has proposed that

this searching attractor must have a large basin of
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attraction that is nonetheless “riddled” with the

basins of other attractors. These are attractors

in the sense of Milnor14 and are defined below.

We review this proposal and demonstrate how the

anisotropic character of the basin riddling permits

specific switching between attractors depending on

specific types of perturbation.

The paper is structured as follows. In Sec. 2

we model the dynamics of the olfactory bulb as a

globally coupled nonlinear map (GCM) with topo-

graphically organised sensory input. In Sec. 3, we

review the appearance of coherent clusters and at-

tractors in these globally coupled maps. We define

Milnor attractors and basin riddling and show that

these appear robustly in GCMs. A group-theoretic

ordering of attractors, based on their symmetries, is

introduced. This permits orbits to be “tracked” from

typical random initial conditions to attractors. In

Sec. 4, the transverse Lyapunov exponents are de-

fined, and the structure of phase space is examined

more closely. This allows a demonstration of how

different sensory perturbations are associated with

specific probabilities in the jumps between different

attractors. In Sec. 5, the relationship between these

dynamics and the EEG signals recorded from the

olfactory bulb is discussed. Mechanisms for olfac-

tory hallucinations, which are seen in some forms of

epilepsy as well as schizophrenia and drug-induced

psychoses are also proposed. In Sec. 6, the strengths

and limitations of the present model are discussed in

comparison to others in the literature.

2. The Olfactory Bulb as a Globally

Coupled Map with Sensory Perturbations

In this section we model the olfactory bulb as a

network of interconnected cells with nonlinear dy-

namics. Sensory input from the nasal mucosa and

neuromodulatory inputs from other regions of the

brain (such as monoamine pathways and limbic

structures) are introduced.

2.1. Modeling local dynamics within the

olfactory bulb

Sensory neurons from the olfactory mucosa synapse

with mitral cells in the olfactory bulb. The synapses

occur in structures known as glomeruli, which con-

tain about one hundred mitral cells. Mitral cells,

together with tufted cells are the main excitatory

neurons of the olfactory bulb, and form dense and

mutual connections with periglomerular and gra-

nule cells, which are inhibitory. The structure of

the glomeruli, together with the local connectivity

of the inhibitory neurons, confers a modular struc-

ture on the olfactory bulb1 which we will take as

the basic functional unit of our model. These mo-

dules are analogous to the microcolumns found in

the neocortex.15

One of the difficulties modeling the dynamics

of a neural system derives from the very large num-

ber of neurons involved. To counter this problem,

the mass action of thousands of neurons averaged

together is often studied.16 The effect of averaging

is to smear the all-or-nothing threshold potential of

individual neurons into a sigmoid relationship be-

tween local mean dendritic potential and local mean

firing rate.17 Thus we consider the local mean firing

rate of the excitatory neurons, x(t), and inhibitory

neurons, y(t) in the locale of each glomerulus. The

firing rates are normalized such that maximum firing

occurs with x(t) or y(t) = 1. Thus each range in the

interval I = [0, 1]. Furthermore, we assume the ave-

rage membrane potential is determined by excitatory

and inhibitory impulses that each neuron receives.

Thus, in one of these olfactory modules,(
x(t + 1)=σu(ωeex(t) + ωyie(t))

y(t+ 1)=σu(ωeix(t) + ωiiy(t)) ,

)
≡ Fu

(
x(t)

y(t)

)
(1)

where,

σu(z) =
1

1 + e−uz
, (2)

is the neural activation function of sigmoid type. The

parameter, u > 0, controls the responsiveness, or

gain, of all neurons in the node to an input. This

parameter models input to the bulb from other

brain regions, modifying the state of arousal, such

as during hunger or fear. The connection matrix,

W = wkk, represents the strength of local excitatory-

inhibitory neural interactions. For any given ma-

trix W , the network in (1) defines a one-parameter

family of iterations of the map Fu on I2 = [0, 1] ×
[0, 1]. It can be shown18 that when W takes the form,

W =

[
a − ka
b − kb

]
, (3)
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with a, b, k > 0, then Fu is a diffeomorphism, and is

topologically conjugate to the one-dimensional map,

fu(x) = σu(ax)− kσu(bx) . (4)

This map, which is known as the Wang-oscillator,19

allows one to draw upon the robust results derived

from studies of one-dimensional maps. Furthermore,

when k = 1, and a ≥ 2b, then gu (and hence Fu) is

topologically conjugate to a full family of S-unimodal

maps on the interval [0,1]. This result,18 which

requires a single maximum and restricts the types

of points of inflexion that are permitted, is impor-

tant because these are the most widely studied and

best understood one-dimensional maps.20,21 They

exhibit the period-doubling route to chaos with

increasing u. In addition, when the map is in the

chaotic regime, unstable periodic orbits are dense

amongst the attractors, a result which is of particu-

lar significance in our later analysis. The best known

example of this class of equations is the logistic map,

fu(x) = 1− ux2 . (5)

Thus for quite general connection weights it is possi-

ble to gain a complete understanding of the behavior

of (1) by studying (4) and (5).

2.2. Coupling of local nodes to model

global olfactory bulb dynamics

The large-scale structure of the olfactory bulb is

modeled by coupling these individual nodes into

a complex assembly. We initially consider global,

symmetric coupling between all nodes, although the

effect of lessening these constraints will also be

considered. The coupling is mediated by synap-

tic connections between mitral cells, which are the

principle long-range excitatory neurons of the

olfactory bulb. Hence we consider the evolution of

the state space vector X = (x1, x2, . . . , xn) in N -

dimensional Euclidean space, RN by the system,

X(t+ 1) = Gu,c(X(t)) , (6)

where G is defined by,

xi(t+ 1)=(1− c)fu(xi(t))+
N∑
j=1

c

N
.fu(xj(t)) . (7)

The variable xi(t) describes the mean rate of cell

firing of the ith node in the assembly at time t and

N is the total number of nodes considered. The

function fu(xi) describes the response characteris-

tics of each individual node by either (4) or (5).

The parameter c ∈ [0, 1] represents the strength of

coupling between nodes. It can be seen that with

no coupling (c = 0) the nodes evolve independently

and there is no collective behavior. With maxi-

mum coupling (c = 1) all the nodes follow the same

evolution and thus synchronise after one time-step.

Between these extremes, the behavior can be quite

complex, with clustering, chaotic synchronisation

and the emergence of long temporal scales,22–24 as

examined below. In the olfactory bulb, as in other

brain regions, the strength of coupling between cells

is modulated by diffusely projecting monoamine

neurons from brain stem structures, principally the

dorsal raphe nucleus.25

In this paper, we are interested in both the

transient and asymptotic behavior of G. To study

this explicitly, the following definitions are recalled.26

Suppose we have a map, G, and a manifold RN such

that G : RN → RN . An orbit is a sequence of

iterates {Xn}n∈Z with initial condition, X0 ∈ RN

and nth iterate Gn(X0) = Xn. For any orbit,

ω(X) =
⋂
N>0

⋃
n>N

Xn

is the ω-limit set. This is the asymptotic behavior

of a specific initial condition. Given any compact in-

variant set A, then we define its basin of attraction,

B(A) = {X ∈M : ω(X) ⊆ A} .

An invariant set satisfies F (A) ⊆ A. A compact

invariant set is said to be an attractor if it has a

basin of attraction with positive (Lebesgue) measure

in RN . This is motivated by the intuitive definition

of an attractor as “the set of points to which most

points evolve under iterates of G”14,20 — the long-

term behavior of a large set of initial conditions. An

attractor, A, is said to be asymptotically stable if the

time evolution of G returns to A following any small

perturbation of any orbit. That is, for all X ∈ A

there exists some δ > 0 such that |X−Y | < δ implies

ω(Y ) ⊆ A and for all ε > 0 there exists δ > 0 such

that X ∈ Bδ(A) implies Gn(X) ∈ Bε(A) for all n.

An attractor is said to be structurally stable if it per-

sists despite any small perturbation to the function
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G itself. Otherwise it is said to be fragile.27 These

important two stability properties are quite different,

and certainly are not satisfied by all attractors.

At this stage, we note that Eq. (6) is highly

symmetrical. By this, we mean that there exists

a group of transformations, Γ, such that γG(X) =

G(γX) for any γ ∈ Γ. It is straightforward to see

that this is true where γ denotes any permutation of

the subscripts of the indices of X. The set of all such

permutations constitutes the symmetric group, SN .

x1

x2

x3

N

T

A

(a)

x1

x2

x3

N

T

A

(b)

Fig. 2. Phase space diagram illustrating transverse sta-
bility for hypothetical flow with periodic orbit A, em-
bedded in invariant manifold N . A is an attractor of the
system confined to N , as illustrated by the thin arrows
in the plane. (a) A is also attracting in the transverse
direction T , as illustrated by the ribbon arrows, and so is
an asymptotically stable attractor in the full phase space.
(b) A is transversely unstable, and so is a saddle in the
full phase space.

A related property is that the linear manifolds of the

form {xi = xj = · · · = xk} for i, j, k ∈ (1, 2, . . . , N)

are invariant under the action of G. That is, any

orbit that starts on one of these manifolds remains

there for all time. These invariant manifolds may

contain attractors, saddles, or repellors depending on

the attraction or repulsion of orbits in the direction

transverse to the manifold.

The importance of transverse stability is illus-

trated in Fig. 2. which shows a hypothetical example

of an attracting periodic orbit in the invariant plane

(x1 = x2). In Fig. 2(a), this orbit is also attracting

in the transverse direction and is thus an attractor

in the full phase space. In Fig. 2(b), the same orbit

is transversely repelling, and is thus a saddle in the

full phase space. It is a transversely unstable period-

1 orbit.

2.3. Sensory perturbation and perception

Sensory input is introduced by perturbing a subset

of the nodes over a single time-step, or over a se-

quence of time-steps. Let S be the set of all learned

odorant molecules. We define a bijective mapping h :

S → X that associates with each odor, s, a subset of

nodes in the network; h(s) = (xa, xb, . . . , xc) where

a, b, . . . , c ∈ (1, 2, . . . , n). This captures the diffuse,

although topographically restricted nature of sensory

projections from olfactory mucosa to glomeruli. A

sensory perturbation is then modeled by the addi-

tion of a small random term to each of these nodes

during a finite sequence of iterations, representing

excitation of the cells by afferent input. That is, for

t ∈ [t1, t2, . . . , tf ] and an inhaled odor s ∈ S,

xi(t+ 1) = (1− c)fu(xi(t)) +
N∑
j=1

c

N
· fu(xi(t))

+ δ.randi(t)χ
h(s)
i (8)

where δ is the (arbitrarily small) amplitude of the

sensory perturbation, randi is an independent ran-

dom number with uniform distribution across the

interval [−0.5, 0.5] and,

χ
h(s)
i =

{
1 if xi ∈ h(s)

0 if xi /∈ h(s) .

Before and after this “inhalation” sequence, the

system evolves according to (6). Transients evoked
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HT
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(a)

Olfactory Cortex and
other Brain Regions

Hypothalamus and
other ‘Activating’

Brain Regions

Monoamine Neurons
of Locus Ceruleus
and Dorsal Raphe

Nucleas

OM.

CP

LOT

OB

(b)

Fig. 3. Schematic diagram of the present model. (a) Sen-
sory neurons (SN) project to excitatory neurons (EN)
such as mitral cells in the bulb. These form dense lo-
cal reciprocal connections with other excitatory cells,
including tufted cells, and inhibitory neurons (IN) such
as periglomerular and granule cells. The strengths of
these connections are parameterised by the connection
matrix wee etc. The gain of the cells is modified by
neurons projecting from other brain regions, such
as the hypothalamus (HT). Connections between the
local nodes are mediated by longer-range excitatory
connections (EC). (b) On a larger scale the nodes are
coupled together into an ensemble to constitute the
olfactory bulb. Sensory neurons with different recep-
tor populations in the olfactory mucosa (OM) project
through the cribriform plate (CP) to the bulb (OB).
Reciprocal coupling strength between nodes is modulated
by monoamine neurons from brain stem nuclei. Excita-
tory neurons then project from the bulb via the lateral
olfactory tract (LOT) to other brain regions.

by the perturbation are allowed to settle and the

system again returns toward an attractor. We will

say that the system has perceived the odor, s, when

the perturbation sequence (7) evokes a jump from

one attractor to another. Of particular interest in

the current setting will be the attractors with large

basins of attraction which nonetheless permit jumps

onto another attractor following arbitrarily small

sensory perturbations, thus modeling perception of

extremely low concentrations of odorant molecules.

The structure of our model for the olfactory

cortex is summarised in Fig. 3.

3. Spontaneous Activity of the

Olfactory Bulb

In this section we examine the attractors, basins and

stability properties of (6). These are motivated by

numerical examples with random initial conditions,

where the logistic map (5) is substituted into (6).

The attractors represent the spontaneous, or rest-

ing activity in the olfactory bulb, in the absence of

sensory stimuli. For simplicity, examples are illus-

trated for N = 8 nodes. Many more nodes than this

are required to model the olfactory bulb. However,

similar behavior is observed12 with N > 100. Nume-

rical simulations were carried out in MatLab, using

double-precision arithmetic.

3.1. Attractors, basins and stability of

the model

To begin, suppose c = 0.12 and u = 0.9. In this

case, all individual nodes rapidly synchronise and the

system exhibits coherent periodic behavior. That

is, there is rapid collapse onto a period-2 attractor

embedded in the one-dimensional manifold, x1 =

x2 = · · · = x8 (the hyperdiagonal). The coupling

is of sufficient strength to produce contraction of the

initial eight degrees of freedom, producing a single

coherent cluster with only one degree of freedom.

Note that any two subscripts denoting node position

can be permuted without disturbing the structure of

the attractor.

Alternatively, if c = 0.12 and u = 1.8, all in-

dividual nodes display chaotic behavior and do not

synchronise. Therefore the attractor for the system

spans all eight dimensions (R8) and is chaotic in each

direction. Because of the asymmetry of the chaotic
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behavior (which derives from the random distribu-

tion of initial conditions) x1 6= x2 6= · · · 6= x8 for all

t. Thus no two individual nodes can be permuted.

Kaneko refers to these two types of behavior

as the coherent phase and turbulent phase12 re-

spectively. They represent the extremes of reg-

ularity and symmetry versus discordance. How-

ever the attractors in both these cases share the

same stability properties. They both persist in

large open regions of parameter phase (the for-

mer with small u or large c, and the latter

for large u or small c). Hence they both are

structurally stable. Additionally, they attract all

conditions. Thus, following any perturbation of the

dependant variables, the system always returns to

the same attractor. Following Kaneko,12 we per-

turb all dependant variables by a random amount of

average amplitude δ for one timestep and define

PR(δ) as the probability that the system returns

to the same attractor subsequent to the perturba-

tion. Trivially in this case PR(δ) = 1 for all δ and in

particular,

lim
δ→0+

PR(δ) = PR(0+) = 1 . (9)

These attractors are thus asymptotically stable and

structurally stable.

If u is increased smoothly from 0.9 and c held

constant at 0.12, one observes the bifurcation from

the coherent phase to the partially ordered phase.12

The phase space in this parameter region is parti-

tioned into several basins of attraction, each of which

contains periodic attractors with 2 or 3 coherent

clusters. The first to appear (at u ∼= 0.96) are the

attractors with 2 coherent clusters each with 4 syn-

chronised nodes. 2-cluster periodic attractors with

disparate cluster sizes then appear — first those with

clusters of 5 and 3 nodes (u ∼= 1.08), then those

with clusters of 6 and 2 nodes (u ∼= 1.18) then those

with a cluster of 7 nodes and a single unsynchronised

node (u ∼= 1.28). All of these attractors have period-

2 and all are stable to small perturbations of their

dependent variables; PR(0+) = 1. That is, although

the phase space is partitioned into different basins

of attraction, each basin is open and hence the at-

tractors are asymptotically stable. These attractors

are also structurally stable. At u ∼= 1.30, attractors

with 3 disparate clusters of synchronised nodes are

also seen, such as those with a cluster of 4 nodes and

0.9 1 1.1 1.2 1.3 1.4
0

0.1

0.2

0.3

0.4

[44] [62] [71][53]

u

Relative
Basin

Volume

Fig. 4. Consecutive appearance of attractors with two
unsynchronised clusters in the partially ordered phase
with N = 8 and c = 0.12. See main text for at-
tractor coding. Vertical axis is relative basin volume
of each attractor, obtained from uniformly distributed
random initial conditions for each node on the interval
[−1, 1]. Total volume has been normalized to 1. Only
the basin for the completely coherent attractor [8] has
been omitted. This is the only attractor if u < 0.96.

2 clusters with 2 nodes each. The appearance of

each of these attractors with increasing u is shown

in Fig. 4.

The nodes within each cluster (e.g., xi, xj , xk)

have the same time evolution. Thus the orbits

are confined to the invariant manifold, xi = xj =

xk. The attractor lies along the intersection of the

invariant manifolds containing each synchronised

cluster.

As u is increased further, attractors with greater

numbers of coherent clusters appear, and there exists

period-doubling bifurcations for each attractor. The

onset of chaotic temporal behavior heralds the ap-

pearance of the complex ordered phase12 at u ∼= 1.43.

There are several features of this region:

1. The phase space is partitioned into many

basins of attraction. In Fig. 5 is shown the

number of different types of attractors for dif-

ferent values of u. This number peaks in the

complex ordered phase.

2. Attractors with small numbers of synchronised

clusters and several unsynchronised appear in

large numbers.

3. The temporal behavior of the attractors

becomes quite complex. In addition to peri-

odic and chaotic behavior, one observes burst-

ing between synchronised and desynchronised
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behavior and complex irregular switching be-

tween bursting behavior and almost periodic

behavior. This is discussed further below.

4. There are attractors with chaotic evolution

which become periodic following small changes

to either parameters. These attractors are

thus fragile. It has been conjectured28 that

chaotic attractors with m positive Lyapunov

exponents can be dispelled by small changes

to n ≥ m parameters. In the present set-

ting, since there are 2 control parameters, this

corresponds to attractors with 1 or 2 chaotic

clusters. Attractors with 3 chaotic clusters

remain structurally stable.

5. Attractors lose asymptotic stability. That is,

small perturbations of the dependant variables

(while the parameters are held constant) have

a finite probability of causing the system to

jump to another attractor. Thus PR(0+) < 1.

6. Chaotic saddles appear. These are invariant

chaotic sets which attract in some transverse

directions, but repel in others. Hence, in

theory, PR(0+) = 0. With finite-precision

arithmetic, however, these chaotic saddles oc-

casionally “capture” orbits due to rounding off

and calculations erroneously yield PR(0+) >

0. For this reason, they have also been termed

“pseudo-attractors”.12,22

As u is increased further, attractors with one

small synchronised cluster and many unsynchronised

1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

u

Number
of

Conjugate
Classes

of
Attractors

Fig. 5. Number of different conjugate classes of attractors
with N = 8 and c = 0.12. See main text for definition
of conjugate classes. Horizontal axis shows u increasing
from the ordered to the turbulent phase.

1.68 1.69 1.7 1.71 1.72 1.73 1.74 1.75
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[3311]

[311111]

[2111111]

[32111]

u

Relative
Basin

Volume

Fig. 6. Relative basin volume for attractors with increas-
ingly small and numerous clusters in the transition from
the complex-ordered to the turbulent phase. Axis and
methods as per Fig. 4. Only the basin for the completely
desynchronised attractor [18] has been omitted. This is
the only attractor once u > 1.735.

nodes dominate phase space. This is shown in Fig. 6.

Other attractors undergo transition to chaotic sad-

dles. Eventually, at u ∼= 1.74, all attractors other

than the completely desynchronised state become

saddles or repellors, and the turbulent phase is

reached.

3.2. Riddled basin attractors

Property 5 is of most significance in the current

context, as this permits small sensory perturbations

due to odor inhalation to cause a sudden switch in

the bulbs spatio-temporal behavior. Attractors that

are not asymptotically stable are attractors in the

sense of Milnor.14 The basins of these attractors are

riddled with points that belong to another basin of

attraction.29 More formally, a basin is said to be

riddled when any ball, no matter how small, cen-

tred on any point in the basin contains a set of posi-

tive (Lebesgue) measure of points belonging to other

basins of attraction. That is, for all x ∈ B(A) and

all δ > 0,

l(Bδ(x) ∩B(A)) > 0 and l(B)δ(x) ∩Bc(A)) > 0

where l(.) denotes the Lebesgue measure on RN .

Thus riddled basins have no interior.26 In the present

context, the riddling arises from the unstable peri-

odic points embedded in the synchronised chaotic
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 P

 G(Q)

 Q

 G-1(P)

 G-1(P)

 N

 xi

xj

  A

Fig. 7. Schematic representation of riddled basin attrac-
tor. A is contained within subspace N invariant under
the action of G, G(N) ⊆ N . Unstable periodic points
such as P (period-1) and Q (period-2) are repelling
in the transverse direction. Also shown are two pre-
images of P , G−1(P ). The transversely unstable peri-
odic orbits and their pre-images create narrow tongues
of repelling regions, shaded. Other orbits are attractin
towards the chaotic attractor contained within N . Here
N corresponds to the cluster of synchronised nodes,
xi = xj.

attractor which repel orbits in the direction trans-

verse to the attractor.23,30 These orbits create nar-

row tongues of repelling orbits. Any sensory per-

turbation that causes the system to land within one

of these tongues permits a jump from one attrac-

tor to another. This is schematically depicted in

Fig. 7. Because the set of repelling orbits have pos-

itive measure, there is always a finite probability of

this occurring and hence PR(0+) < 1. Conversely,

the basin of attraction also has positive measure so

that PR(0+) > 0. Henceforth we refer to attractors

with riddled basins as riddled basin attractors.

Typically, as u increases, so do the number of

transversely unstable periodic points, and hence the

measure of repelling obits in the neighborhood of

A approaches one. Finally, PR(0+) = 0 as the at-

tractor undergoes a blowout bifurcation to become

a saddle.31 This phenomenon is examined in more

detail in Sec. 4.

0.08 0.1 0.12 0.14 0.16 0.18
1.6

1.65

1.7

1.75

1.8

1.85

1.9

c

u

Fig. 8. Contour map showing relative distribution of
riddled basin attractors in parameter space. Random
initial conditions chosen as per Fig. 4. Contour
shading shows percentage of initial conditions evolving
toward riddled basin attractors. Increments are of
10% from minimum (white) 0–10%, to maximum.(black)
90–100%. Riddled basin attractors calculated numeri-
cally as satisfying 0 < PR(0+) < 1.

The same transition from the coherent through

the partially- and complex-ordered phases, to the

turbulent phase also occurs if u is fixed (e.g., at

1.68) and c is decreased . Figure 8 depicts the propor-

tion of initial conditions in parameter space limiting

toward riddled basin attractors. The appearance

of these attractors is robust, in that they occur in

a large region of parameter space. Moreover, when

they do appear, their basins of attraction typically

are of large volume and dominate phase space. That

is, whilst they are locally unstable, they are glob-

ally attracting.12 This means that medium to high

amplitude non-specific noise, which randomly sam-

ples phase space, preferentially selects the basins of

riddled basin attractors.

Examples of all these behaviors are illustrated in

Secs. 3.4 and 4.4.

3.3. Coding and symmetry of attractors

Attractors in these systems can be classified12 by the

number of clusters k and the number of elements for

each cluster Nk. They can be coded by the cluster-

ing condition [N1 ≥ N2 ≥ · · · ≥ Nk]. Due to sym-

metry, there can be many attractors with the same

code. In the coherent phase there is a single attractor

with code [8], whilst in the partially ordered phase,
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there are multiple attractors each with codes [4,4],

[5,3], [6,2], [7,1], [4,2,2] or [4,3,1] etc., In the turbu-

lent phase there is again one attractor, with code

[1, 1, 1, 1, 1, 1, 1, 1] = [18].

It is also possible to classify and order attractors

by exploiting the symmetry of G. Consider the sin-

gle attractor in the coherent phase. Because the time

evolution of all nodes is identical, the state space

vector is not affected by any permutation of indices

between nodes. Thus, like G itself, this attractor is

invariant under the action of the symmetry group

S8. In the partially ordered and complex ordered

phases, the attractors are preserved if the permuta-

tions are only between nodes within the same clus-

ters. In other words, for any attractor with clusters

of synchronised nodes there exists a subgroup of S8

whose action preserves the structure of the attractor.

For the coherent attractor, this subgroup is the whole

group. For the turbulent attractor it contains only

the identity element. Using the notation of Ashwin32

we now develop the method of classifying and

ordering the attractors according to their symme-

tries. A brief review of the prerequisite group

theoretic concepts is presented in Appendix I.

Consider the action of a group Γ on the manifold

RN given by X → γX for X ∈ RN and γ ∈ Γ. The

isotropy subgroup of a point X, denoted Σ(X) is the

subgroup which fixes the point X. Thus,

Σ(X) = {γ ∈ Γ : γX = X} .

Σ(X) describes the symmetry of the point X. We

refer to isotropy subgroups up to conjugacy. Recall

that all points on the attractor must have the same

symmetry. Hence we define the fixed-point subspace

of the isotropy subgroup Σ as the set of all points in

RN which are invariant under the action of Σ,

fix(Σ) = {Y ∈ RN : σY = Y for all σ ∈ Σ} .

and thus have the same symmetry as X. In the

present context the group Γ is the symmetry group

S8 where each element is a specific permutation

of the subscripts of the state space vector, X.

The fixed-point subspaces are precisely the invariant

manifolds of G. Because attractors lie on the inter-

section of these manifolds, they can be classified ac-

cording to the subgroup for which this intersection is

the fixed-point subspace. For example the attractor

with the code [3221] lies on the invariant manifold

fixed by the subgroup S3 × S2 × S2 × S1. Note that

there are in general many subgroups in each con-

jugacy class. Each specific subgroup describes the

symmetry of a specific attractor, and the conjugacy

class captures the shared symmetry of all attractors

with the same code. We will refer to such attractors

as conjugate. Even with N = 10 there are tens of

thousands of conjugate attractors in the complex-

ordered phase. This exaggerates the peak in the

number of attractors for the complex phase, as shown

in Fig. 5, by several orders of magnitude.

S8

S7 S6 x S2 S5 x S3 S4 x S4

S6 S5 x S2 S4 x S3 S4 x S2 x S2 S3 x S3 x S2

S5 S4 x S2 S3 x S3 S3 x S2 x S2 S2 x S2 x S2 x S2

S4 S3 x S2 S2 x S2 x S2

S3 S2 x S2

S2

 S1=[1]

1

2

3

4

5

6

7

8

Fig. 9. The lattice of isotropy subgroups of S8. Arrows depict containment (increasing symmetry). The numbers in the
column correspond to the degrees of freedom in the fixed-point subspaces of all subgroups in each row.
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There also exists a partial ordering of the isotropy

subgroups, the isotropy lattice, given by Σ1 < Σ2

if there exists γ ∈ Γ such that γ−1Σ1γ is a proper

subgroup of Σ2. This permits a rigorous ordering of

the attractors of (6), as shown in Fig. 9. It provides

a formal structure for the bifurcation diagram of the

olfactory bulb as depicted in Fig. 13 of [33]. The

descending row numbers, as labelled in Fig. 9, cor-

respond to the number of degrees of freedom in the

fixed point subspaces of each row. As we shall see be-

low, the isotropy lattice also shows us exactly which

jumps between attractors are possible consequent to

sensory perturbation.

3.4. Numerical examples of attractors

and saddles

In this section we start with random initial condi-

tions and chart the subsequent orbit on the isotropy

lattice. Due to the generic inequality of the ran-

dom initial conditions, the initial state vector has

only the trivial symmetry of the subgroup S1. The

ω-limit set of each initial condition is reached only

in the limit as t → ∞. However, in the numerical

calculations, there is an artificial jump onto the at-

tractor after only a finite number of iterations due to

rounding off. Fortuitously, this allows us to identify

not only the attractor, but also the transient path

en-route. This path can be charted on the isotropy

lattice. Each step up the lattice occurs when a node

synchronises with another, or fuses with a cluster of

nodes. This corresponds to the absorption of the

orbit into an invariant subspace of progressively in-

creasing symmetry, and the consequent loss of one

degree of freedom. Spontaneous descent down the

lattice is not possible.

In Fig. 10(a) is charted the progress of some

typical orbits in the coherent phase. Although the

ω-limit set inevitably has the symmetry of the group

S8, several distinct paths through phase space are

possible. Typically there is a cascade of synchro-

nisation involving one cluster with serial capture of

individual nodes. Occasionally a smaller cluster also

appears, and fuses with the larger cluster at the final

stage. Fusion of two large clusters is not observed.

Analogous paths are charted in Fig. 10(b) for

the partially-ordered phase. Note the parallel fu-

sion of two or three clusters of comparable size is

seen. This accounts for the overall shift of paths to

the right of the lattice. Occasionally clusters fuse en

route to the fully synchronised attractor. As u in-

creases, the orbits halt their progression at stages of

partial symmetry. This corresponds to the appear-

ance of basins of attraction for partially synchronised

attractors.

In the complex-ordered phase, Fig. 10(c), no

paths reach the state of maximum symmetry. In-

deed, some initial conditions maintain trivial sym-

metry for all time. As noted above, chaotic invariant

sets with PR(0+) = 0 corresponding to chaotic

saddles appear. However, orbits on attractors of

lower symmetry often shadow these saddles for

lengthy but irregular sequences of iterations. Such

attractors, “stuck on” to invariant subspaces of

higher symmetry have been described in other dy-

namical systems.34 Sudden, irregular bursts away

from these saddles occur whenever the orbit ap-

proaches transversely unstable periodic orbits. An

example of this behavior is seen with c = 0.12 and

u = 1.683 for attractors with S3 × S3 symmetry,

shadowing a chaotic saddle with S4 × S3 symmetry.

Occasionally this attractor even shadows a saddle

with S4 × S4 symmetry. This can be visualised on

the lattice, by noting when the orbits are nearby

(e.g., within 10−3 units) manifolds of higher sym-

metry. The dotted lines in Fig. 10(c) represent this

shadowing of saddles.

Other complex behaviors are also possible. With

c = 0.12 and u = 1.68, the attractor with S3 × S3

symmetry continues to intermittently shadow the

chaotic saddle with S4 × S3 symmetry. However,

the intermittent bursts are occasionally captured by

lengthy epochs of period-4 like behavior. The sys-

tem switches between these two types of behavior at

irregular intervals. Figure 11 examines an example

of this attractor. Node x1 is in one of the clusters

of three synchronised nodes; x2 is not synchronised

with any other node. Figure 11(a) shows the time

evolution of the Euclidean separation, d = x1 − x2.

The block of regular behavior between the arrows

is clearly different from the otherwise very irregular

timeseries. In Fig. 11(b) is shown the attractor in

phase space during the irregular behavior. It can

be seen that during this time the attractor is stuck

onto the invariant manifold over higher symmetry

(fixed by S4 × S3), x1 = x2. In fact, the attractor

is shadowing a chaotic saddle, shown in Fig. 11(c),

embedded in this manifold. Intermittent bursting
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S8

S7 S6 x S2 S5 x S3 S4 x S4

S6 S5 x S2 S4 x S3 S4 x S2 x S2 S3 x S3 x S2

S5 S4 x S2 S3 x S3 S3 x S2 x S2 S2 x S2 x S2 x S2

S4 S3 x S2 S2 x S2 x S2

S3 S2 x S2

S2

 S1

(a)

S8

S7 S6 x S2 S5 x S3 S4 x S4

S6 S5 x S2 S4 x S3 S4 x S2 x S2 S3 x S3 x S2

S5 S4 x S2 S3 x S3 S3 x S2 x S2 S2 x S2 x S2 x S2

S4 S3 x S2 S2 x S2 x S2

S3 S2 x S2

S2

 S1

(b)

S8

S7 S6 x S2 S5 x S3 S4 x S4

S6 S5 x S2 S4 x S3 S4 x S2 x S2 S3 x S3 x S2

S5 S4 x S2 S3 x S3 S3 x S2 x S2 S2 x S2 x S2 x S2

S4 S3 x S2 S2 x S2 x S2

S3 S2 x S2

S2

 S1

(c)

Fig. 10. (a) Typical orbits in the coherent phase, commencing with random initial conditions and evolving to the coherent
structure. Arrows depict successive progress of the orbits onto fixed-point subspaces of increasing symmetry. Transients
pass through fixed-point subspaces highlighted in bold. Subgroups highlighted in bold italics fix the subspace containing
the attractor. (b) In the partially ordered phase, invariant sets of saddle-type appear. These are in subspaces fixed by the
subgroups in italics. (c) In the complex-ordered phase, attractors fixed by subgroups towards the bottom of the lattice
often shadow saddles above them on the lattice, depicted by the dotted arrows.
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Fig. 11. (a) Numerical simulation of attractor with S3×S3 symmetry (x1 = x3 = x4 and x5 = x6 = x7). (a) Evolution of
Euclidean distance between x1 and x2. Arrows delineate more regular block of behavior discussed in text. (b) Structure
of the attractor in phase space during iterations outside of the delineated block. The diagonal corresponds to the
invariant manifold with x1 = x2 fixed by S3 × S4. (c) Chaotic saddle embedded within this invariant manifold which is
shadowed by the attractor during epochs such as (b). The saddle is embedded in two disjoint intervals on this manifold.
(d) Appearance of the attractor in phase space during the delineated block of (a). (e) Cluster of period-4 saddle orbits
that are shadowed during epochs such as (d).
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away from the saddle accounts for the scatter of

points away from the diagonal in Fig. 11(b), and the

irregularities in Fig. 11(a). One of these bursts has

been captured by the regular behavior delineated by

the arrows. Figure 11(d) reveals that during this

block the attractor is confined to four small regions

in phase space. In fact, the attractor shadows a large

number of period-4 saddles embedded in these re-

gions which are shown in Fig. 11(e). Thus the at-

tractor spontaneously switches between two different

semi-stable types of behavior.

In our model, all these types of behavior repre-

sent the spontaneous, or “resting” activity of the

bulb. We include some of the more complex ex-

amples because they have implications for average

measures of EEG activity. Spontaneous activity that

explores several semi-stable types of behavior has no

single typical behavior, or archetype. When com-

puting dynamical measures of the system, it is nec-

essary to use lengthy intervals in the time domain

to ensure inclusion of all archetypes and hence ad-

equate convergence to dynamical means. However,

by averaging across different types of dynamics, one

produces measures that are, of themselves, never

expressed by the system of interest. In the spatial

domain, this includes methods based on principle

components analysis, and in the time domain, most

of the numerical algorithms for characterising non-

linear timeseries. It may therefore be advantageous

to employ methods of analysis capable of capturing

and quantifying archetypes35 in complex dynamical

systems.

We now progress from spontaneous to sensory-

evoked activity.

4. Sensory-Evoked Dynamics of the Bulb

We have defined perception as the process by which

(possibly small) sensory input leads to switching

between attractors for the dynamics of the olfac-

tory bulb. In this section, we consider the type of

switches that can be induced by different types of

sensory perturbation. We show that various switches

have different probabilities of occurring following dif-

ferent odors. This forms the basis for how specific

odors can lead to specific perceptions. To this end,

we progress from a study of the dynamics within

invariant manifolds to the dynamics in the transverse

direction.

4.1. Fission and fusion of synchronised

nodes by sensory perturbation

Sensory input is introduced by perturbing a subset

of nodes in the system away from an asymptotic

(“resting”) state through (7), and then allowing it

to evolve again according to (6). In general,12 such

a perturbation may lead to:

1. Fission (splitting) of a synchronised node out

of a synchronised cluster. In this case, the

system steps down the isotropy lattice.

2. Fusion (union) of two clusters (or a cluster and

a single node) to create a larger cluster, in

which case the system steps up the isotropy

lattice.

3. The swapping of a node (or nodes) between

one cluster and another. This is actually a

two-step process involving fission of an at-

tractor into an unstable transient, which then

evolves toward an attractor of higher sym-

metry. In this case, the new attractor is on

the same level of the lattice, but has different

subgroup symmetry. It is possible that the

new attractor is conjugate to the previous one.

The effect of the perturbation depends critically

upon the symmetry of the attractor and the subset

of nodes perturbed. A perturbation involving a node

in a synchronised cluster causes transient desynchro-

nisation of that node. In the phase space, this

corresponds to perturbing an orbit transverse to, and

thus out of, an invariant manifold. If the perturba-

tion is small and the attractor is asymptotically sta-

ble, then the orbit will evolve back to the invariant

manifold and the odor will not have been perceived.

However, if the attractor has a riddled basin there

is a finite chance that the orbit will be kicked out of

the basin, causing permanent desynchronisation of

that node, fission of the attractor and thus percep-

tion of the odor. The probability of this occurring

depends upon the density of the riddling in the di-

rection of the perturbation. This density is typically

anisotropic.36

Perturbations involving only unsynchronised

nodes are tangent to the invariant manifolds which

contain the attractor. Therefore, fission of clusters is

not possible. However, fusion of nodes can occur if,

(1) there is an invariant set of higher symmetry that

is an attractor, and not a saddle or repellor; and (2)
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S7 S5 x S3 S4 x S4

S6 S5 x S2 S4 x S3 S4 x S2 x S2 S3 x S3 x S2

S4 x S2 S3 x S3 S3 x S2 x S2

S3 x S2

Fig. 12. Possible switches from the attractor with S4 × S3 symmetry consequent to different types of perturbation. Solid
up-pointing arrows correspond to fusion of nodes. Solid down-pointing arrows correspond to fission of nodes. Dashed
up-pointing arrows represent the second step of swapping of a node between clusters.

the basin of this attractor riddles the basin of the

other attractor. Once again, the probability of fu-

sion occurring depends upon the density of the basin

riddling. In Fig. 12 we show the switches possible

for the attractors with S4×S3 symmetry consequent

to different types of sensory perturbation (different

“odors”).

Thus there are several reasons why different per-

turbations of the same attractor may be associated

with different transition probabilities to other attrac-

tors. This derives from the structure of phase space

in the transverse direction to the invariant manifold

and the relationship between the attractor and the

perturbation.

4.2. Transverse Lyapunov exponents and

unstable periodic orbits

The tendency of nodes to coalesce into clusters or

desynchronise into individual nodes following pertur-

bation depends upon the behavior of the phase space

transverse to the invariant manifolds. Suppose A is

an invariant set of the system (6) and an orbit is per-

turbed some small distance, δ, transverse to A. Af-

ter n iterations, the amplitude of this displacement

will be,

d = δeλrn (10)

where λT , is the called transverse Lyapunov expo-

nent . Clearly, in the limit as n→ ∞ the amplitude

of the displacement will grow or diminish according

to the sign of λT . If λT > 0 then all perturbations

grow and the set A is a saddle. If λT < 0 then, on

average, perturbed orbits return to A which is thus

an attractor in the full phase space. For an attractor

with k clusters, there exits a spectrum of k trans-

verse Lyapunov exponents {λT (1), λT (2), . . . , λT (k)}

where λT (j) describes the growth or decay of pertur-

bations transverse to the invariant manifold contain-

ing the jth cluster. In Appendix I, it is shown that

with the logistic equation (5) governing the behavior

of the local nodes, these are given by

λT (j) = lim
n→∞

1

n

n−1∑
t=0

log |2uxi(t)(1− e)| (11)

where xi is one of the nodes in the jth cluster. These

can be estimated numerically by choosing a typical

orbit on A, and a suitable time-scale t′, and calculat-

ing the finite-time transverse Lyapunov exponents,

λT (j) ∼= 1

t′

t′−1∑
t=0

log |2ux′i(t)(1− e)| . (12)

By calculating these it is possible to trace the trans-

verse stability of an invariant manifold for different

values of c and u. In Fig. 13, we plot the numera-

tor of (12) against the denominator, t, to illustrate

the relationship between the stability of A and the

nature of the finite-time transverse Lyapunov expo-

nents. Three scenarios are shown with c = 0.14,

invariant sets with symmetry S3 × S4 and different

values of u. The finite time transverse Lyapunov ex-

ponents are given as the slope of each calculation.

For clarity, only the exponent transverse to the 3-

node cluster is shown. During the partially ordered

phase with u = 1.675 the λT ’s are strictly negative

(i) and A is an asymptotically stable attractor. In

the complex-ordered phase with u = 1.72 the finite

time λT ’s are negative (ii) if calculated over long

periods of time. However, they are often positive

over brief time intervals when the system shadows

a transversely unstable periodic orbit. In Fig. 13(b)

is shown a magnification of (ii) when A is shadow-

ing an unstable period-4 orbit. During this time the
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Fig. 13. Finite-time transverse Lyapunov exponent for
the invariant set with S3 × S4 symmetry and c = 0.14.
Vertical axis is calculated along a typical orbit of the
system. (a) (i) Asymptotically stable attractor with
u = 1.675 giving λT = −0.0379 < 0; (ii) Riddled basin
attractor with u = 1.72 giving λT = −0.0076 < 0;
(iii) Saddle set with u = 1.73 giving λT = 0.030 > 0.
(b) Magnification of scenario (ii) shows the system shad-
owing a period-4 orbit (for a total of eight complete
periods). This graph is contained in the dashed square
of (a).

attractor is particularly unstable to any perturba-

tion. Outside of these epochs, the slope is negative

and the system is stable. Here A is a riddled basin

attractor. For larger values of u the occurrence of

unstable epochs increases until one of the λT s be-

comes positive over long time scales (iii). Hence all

perturbations transverse to the corresponding invari-

ant manifold grow in amplitude. A has undergone a

blowout bifurcation from attractor to saddle.31

In Fig. 14, is presented the same transverse

Lyapunov exponent for the same attractor with c =

0.14 against a range of u. The solid lines gives

the average over 60,000 iterations and the dotted

lines give the maximum finite-time transverse ex-

ponent over intervals of 1000 iterations. From this

1.66 1.68 1.7 1.72 1.74 1.76 1.78
-0.6

-0.4

-0.2

0

0.2

u

λT

Fig. 14. Transverse Lyaponuv exponent for the 3-node
cluster of the attractor [32111], c = 0.14 over a range of u.
Exponent calculated numerically over 60,000 iterations,
after removal of initial transient. Dotted line depicts the
maximum of the finite-time Lyapunov exponent over all
blocks of 1000 iterations.

graph, we note that when u < 1.678, both are neg-

ative. This corresponds the region of asymptotically

stable attractors. In two regions, (1.678 < u <

1.688 and 1.705 < u < 1.727) the average is neg-

ative, but the shorter finite-time exponent is posi-

tive. This indicates the existence of riddled basin

attractors. For u > 1.727 there is a range of values

for which the average exponent also becomes posi-

tive, corresponding to blowout bifurcations Of note

are the multiple windows of asymptotically stable

periodic attractors, corresponding to sharp dips in

the values of the exponents. This interrupts the

gradual increase in the exponents, causing a blurring

of the blowout bifurcations over a range of parameter

values.27

4.3. Anisotropic riddling

We have already seen that the possible type of attrac-

tor switches evoked by transverse perturbations are

different to those following perturbations tangeant to

invariant manifolds. However, even amongst trans-

verse perturbations, the transition probabilities can

be markedly different. This can be true even for clus-

ters of the same size, and reflects the anisotropic na-

ture of basin riddling in high-dimensional systems.36

For example, there are parameter values for which

attractor basins are riddled in one transverse direc-

tion, but not in others. Hence if we define PR(δ, s)
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as the probability that the evolution returns to the

same attractor following a perturbation of size δ of

a specific odor, s, then we may have;

s1 6= s2 ⇒ PR(δ+, s1) 6= PR(δ+, s2) (13)

even if s1 and s2 both perturb clusters of the same

size. Note that (7) is essentially a period of iterat-

ing G in the presence of anisotropic noise. In our

model, this derives from the topographic organisa-

tion of sensory input from the nasal mucosa.

A final point is that when G is operating in a

regime allowing different dynamical archetypes the

spectrum of finite-time λT ’s varies markedly. The

transition probabilities vary in tandem. This im-

plies that the “state” of the system just prior to

sensory stimuli has a significant bearing on the

sensory-evoked activity of the model.

4.4. Heteroclinic connections and

networks of attractors

A perturbation which “knocks” the system out of an

invariant subspace in the vicinity of a transversely

unstable periodic orbit — where a λT is positive —

causes it to shadow the unstable manifold of this or-

bit toward another attractor. Manifolds which are

unstable (repelling) for one asymptotic state and

stable (attracting) for another are termed hetero-

clines . More formally, we recall that the alpha limit

set,

α(X) =
⋂
N>0

⋃
n>N

X−n

is the “backwards” asymptotic state of an orbit. If

A1 and A2 are two disjoint compact invariant sets,

then

c(A1, A2) = {X ∈ RN |α(X) ⊆ A1, ω(x) ⊆ A2} ,

is the set of all heteroclinic connections from A1 to

A2. It is the structure of these heteroclines that

determines how (6) behaves once it has been per-

turbed off an attractor. Heteroclines can run be-

tween conjugate attractors or those on different

levels of the isotropy lattice. They may connect a

riddled basin attractor to an asymptotically stable

attractor, or may interconnect different riddled basin

attractors. In the former case, the connection can

only be one-way. Otherwise, there may be reciprocal

connections. Whereas heteroclinic connections be-

tween periodic orbits may be smooth manifolds,

those connecting chaotic attractors with riddled

basins have a rich algebraic37 and topological38

structure which has not yet been fully elucidated.

The strengths of the interconnections can be es-

timated by perturbing an attractor according to

(7) and numerically calculating the probability of

switching to another specific attractor. That is, we

can define the average connectivity between two at-

tractors; Tr(A1 : A2, s(t
′)), as the numerically com-

puted transition probability from A1 to A2 following

exposure to an odor, s, for a time sequence t′. The

magnitude of the transition probability reflects the

density of heteroclines between the two attractors.

As for (13) we may have,

s1 6= s2 ⇒ Tr(A : B, s1(t′))

6= Tr(A : B, s2(t′)) (14)

However, since the exact numeric values of these will

vary following a change of variables, they should be

treated only as numeric indicators of connectivity.

We say that a set of attractors {Ai} forms a hetero-

clinic network of attractors if for all i 6= j,

C(Ai, Aj)UC(Aj , Ai) 6= φ .

A numeric example of a heteroclinic network is pre-

sented in Fig. 15 with c = 0.12 and u = 1.655. It

can be seen that saddles and riddled basin attractors

permit large networks of attractors in the complex-

ordered phase. Recall that the type of input selects

and biases the transitions mediated by the hetero-

clinic connections. Therefore, such a system is able

to switch flexibly and adaptably between coherent

states in response to sensory input.

To conclude, the system (6) permits many thou-

sands of attractors in phase space. There are large

regions of parameter space where many of these

attractors have basins riddled with the basins of

other attractors. This leads to large networks of

chaotic attractors in phase space, structured by he-

teroclinic connections between periodic orbits. Due

to the anisotropic structure of the basin riddling,

different sensory perturbations are associated with

different transition probabilities between these at-

tractors. This is the basis by which distinct odors

may be perceived differently in the present model of

the olfactory bulb.
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S4 x S4

S4 x S3 S3 x S3 x S2 (S4 x S2 x S2)

(S4 x S2) S3 x S3 S3 x S2 x S2 S2 x S2 x S2 x S2

S4 S3 x S2 S2 x S2 x S2

S3 (S2 x S2)

S2

 (S1)

Fig. 15. Heteroclinic network of attractors in the complex phase (c = 0.12 and u = 1.655). Chaotic saddles are
in (italics), riddled basin attractors in bold, and asymptotically stable attractors in bold italics. Results obtained by
finding all invariant sets with a positive measure basin of attraction, and then determining the stability of these by
adding small perturbations and inspecting the transverse Lyapunov exponents. Solid lines (exiting saddles) indicate that
Tr(A : B, s) = 100% (for some s); dashed lines, (exiting riddled basin attractors) indicate that 0 < Tr(A : B, s) < 100%.

5. The Inspiration-Expiration Cycle:

Comparison of the Model with the

Experimental EEG

Having described the dynamical properties of our

model, we know show how it can reproduce the

function and electrophysiology of the olfactory bulb

during the inspiration-expiration cycle. Following

Kaneko,12 we propose that the bulb normally oper-

ates in the complex-ordered phase. This is achieved

through a judicious balance between synaptic con-

nectivity, c and gain, u. It ensures the existence of a

very large heteroclinic network of attractors.

5.1. The normal inspiration-expiration

dynamics of the bulb

A riddled basin attractor with a large basin of

attraction achieves the role of the “searching”

attractor that appears during expiration. In the

complex-ordered phase, attractors with a one or two

clusters of synchronised nodes and many unsynchro-

nised nodes have both these properties. An example

are the attractors with code [32111]. Such attractors

permit different types of transverse and tangential

perturbation, allowing a range of transitions accord-

ing to the nature of the perturbation. Moreover, the

pattern of activity of these attractors is irregular and

poorly synchronised — precisely the character of the

EEG recorded over the bulb during expiration.

At the beginning of inspiration, contact between

a specific odorant and receptors in the nasal mucosa

leads to excitation of a very small number of sen-

sory neurons. As discussed above, this produces the

anisotropic noise modeled by (7), evoking a jump

from the searching attractor to a specific robust

attractor. This switch serves as the dynamic “fin-

gerprint” for inhalation of that odor, permitting its

perception. With basin riddling, this process can

occur for even microscopic odor concentrations. If

the perturbation is transverse, the attractors per-

missible include [311111], [221111], [211111], [41111]

or conjugate attractors of [32111]. Tangential per-

turbations allow jumps to attractors further up the

isotropy lattice, such as [332] which are possibly bet-

ter candidates for our model as they typically have

periodic or almost-periodic behavior and large clus-

ters of synchronised nodes, thus matching the char-

acter of the EEG recorded over the bulb.

As noted in Sec. 3.1, riddled basin attractors in

the complex phase typically have large volume, par-

ticularly those with many unsynchronised nodes. For

example with c = 0.12 and u = 1.689, numerical

simulations indicate that attractors with code

[32111] occupy almost 50% of phase space. As

noted above, these attractors are therefore selected

by isotropic noise. Such noise, present intrinsically in

the bulb, is thus required to reinstate the searching

attractor prior to the next inhalation. This com-

pletes the inhalation-exhalation cycle. Figure 16
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Fig. 16. Simulation example of the inhalation-exhalation
cycle in the model bulb. The model has been initiated on
a riddled basin attractor with code [315], S (the searching
attractor). After 300 iterations, a random perturbation,
P , of order 10−10 has been added for one time step to one
of the unsynchronised nodes to simulate odor inhalation.
Subsequently, a robust attractor, A, with code [3213]
appears. After 300 iterations, an isotropic noise term
of amplitude 0.05 has been added to the system (solid
bar). This causes the system to return to the searching
attractor, S.

depicts an example of such a cycle. The model

has been initiated on a riddled basin attractor, then

perturbed at “P” by a simulated odor (of amplitude

10−10). This causes the system to jump onto a ro-

bust attractor, as evidenced by the appearance of

regular behavior. At the end of “inspiration”, a short

burst of low amplitude noise has been added to the

system. Consequently the riddled basin attractor has

reappeared: The bulb is ready for the next odor.

For clarity, only the behavior of one node has been

presented.

5.2. Abnormal dynamics associated

with hallucinations

We finish with a note on the occurrence of olfac-

tory hallucinations. Hallucinations are perceptual

experiences that occur in the absence of sensory

stimuli. In the context of the present model, this

corresponds to a spontaneous jump from the

searching attractor onto a asymptotically stable

attractor. Olfactory hallucinations occasionally oc-

cur prior to some forms of seizures,39 after ingestion

of psychostimulants such as amphetamines, and in

some instances of schizophrenia.40 Seizures are as-

sociated with the occurrence of highly synchronised

periodic-like behavior in large numbers of neurons.39

The aetiology of at least some seizures involves a

deficit in the function of inhibitory interneurons.41

In our model, this implies a change of the parameter

u, possibly to a periodic window for the dynamics

of the searching attractor. Thus, the olfactory bulb

would be captured by a robust, large volume attrac-

tor, severely disrupting the normal dynamics of the

bulb. This would explain the unpleasant and often

unusual nature of these phenomena.

Synaptic responsiveness in the brain is modified

by diffusely projecting neurons whose cell bodies

are found in subcortical nuclei such as the locus

ceruleus and dorsal raphe nucleus.25 These neurons,

which project strongly to the olfactory bulb, func-

tion by releasing monoamine neurotransmitters such

as dopamine, noradrenaline and serotonin. The

synaptic modulatory effects of these monoamines

is facilitated by a second messenger system.25 In-

gestion of amphetamine (a dopamine/noradrenaline

agonist) or LSD (a serotonin agonist) leads to

alteration of synaptic coupling strength by disrupt-

ing these monoamine pathways. Thus we model am-

phetamine/LSD ingestion as an abnormal tuning of

the parameter, c. This results in a change in the

stability of attractors and the strengths of their con-

nections. If the searching attractor underwent a

blowout bifurcation, then the system would jump

to an attractor in the transverse direction that first

lost stability. This would explain the intrusiveness

of substance-induced hallucinatory experiences and

their persistence over a period of hours.

Although the aetiology of schizophrenia is

still unclear, the mechanism of hallucinations is

possibly similar to those of amphetamine/LSD

psychosis: Anti-psychotic medications typically tar-

get monoamine neurotransmitters25,40 and studies

have found abnormal distributions of monoamine

neuro-receptors in the brains of subjects with

schizophrenia.42 Therefore, hallucinations in schizo-

phrenia are also modeled as detuning the coupling

parameter c into a region where the searching at-

tractor has become a saddle.

These final notes are meant as conjectures

only, although they serve to illustrate the potential

clinical utility of the present model and the advan-

tage of giving a concept such as “perception” an
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explicit definition within the framework of a neural

model.

6. Discussion: Strengths, Weaknesses and

Future Directions

This paper proposes a nonlinear model of percep-

tual dynamics in the olfactory bulb that explains its

ability to discriminate between many thousands of

different odors, present in possibly very small con-

centrations. Essentially we illustrate a proposal by

Kaneko12 concerning the potential role of riddled

basin attractors in Freeman’s8,33 description of olfac-

tory bulb dynamics. In addition, we utilise a group-

theoretic ordering of the dynamics, the isotropy

lattice, based on the symmetries of the attractors.

The topographic organisation of sensory input is

introduced and the model is able to replicate the

discriminatory function of the bulb during the nor-

mal cycle of inspiration-expiration. For pathological

values of either the coupling or the gain parameter,

our model “hallucinates”.

There are several links between the behavior

of the model and neurophysiology, that are worth

noting:

1. The spatio-temporal behavior of the model

is consistent with the character of the EEG

recorded over the bulb. That is, during exha-

lation, the behavior is discordant and chaotic.

Following inhalation of an odor, it switches

to a periodic or almost-periodic signal with a

pattern of spatial coherence specific to the

odor.

2. Synchronous oscillations play a central role in

our model. The number and size of clusters

of synchronised nodes distinguishes attractors,

determines the invariant manifolds that con-

tain them, and thus the transverse stability.

There is currently very active neuroscientific

research devoted to the role of synchronous

oscillations in normal43–46 and disturbed47

brain function, particularly in regard to the

perception of sensory stimuli. This paper

proposes a mechanism and role for syn-

chronous oscillations in neural systems and is

thus relevant to this research.

3. A feature of the model is its ability to pro-

duce quite complex behavior. Some attractors

display spontaneous jumps amongst a number

of dynamical archetypes, each associated with

different transverse stability. The response of

these attractors to sensory stimulation thus

depends strongly on the dynamics prior to

the stimulus. This is also consistent with

neurophysiology research suggesting that be-

havioral and neurophysiological consequences

of sensory input are strongly influenced by

prestimulus brain state as reflected in the

prestimulus EEG.48–50

Introducing the algebraic classification of at-

tractors and transverse Lyapunov exponents into

the discussion of the model’s behavior permits

a degree of formal analysis. This complements

investigations based almost solely on numerical

simulations of neural systems exhibiting synchronous

chaos.51 Numerical simulations of nonlinear and

iterated functions are particularly susceptible to

a number of systematic errors. For example,

spurious synchronisation can result from rounding

error, and binary floating-point arithmetic can cause

spurious desynchronisation. Therefore, complement-

ing analytic and numeric techniques is desirable.

However, there are several significant simplifications

which were required to make the analysis more

tractable:

1. The coupling strengths and local dynamics

within all nodes are symmetric. The sym-

metry forces the existence of invariant sub-

spaces, which are central to our discussion.

However, breaking these symmetries, by re-

laxing the constraints on either the local dyna-

mics or coupling strengths, leaves much of the

qualitative features of the dynamics intact.52

Breaking the symmetry by a small amount is

essentially the same as adding a small ampli-

tude noise signal to (7). Symmetries in such

circumstances can be detected by studying the

statistical correlations between the individual

nodes.53

2. The approximation of local neural dynamics

by (1) assumes that neural behavior is solely

determined by neural interactions, and ignores

other contributions, such as leaky membrane

channels and the resting membrane potential.

The restrictions on excitatory-inhibitory inter-

actions which allow substitution of (1) by (4)

and (5) effectively limit our description to a
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cross-section of the original parameter space.

Nonetheless, the behavior exhibited is ade-

quate to fulfil our original aims and replicate

the EEG. Preliminary numerical simulations

of (1) indicate similar dynamics for a variety

of parameter values.

3. The dimensionless units of the governing equa-

tions prohibit incorporation of physiological

parameters and thus explicit hypothesis test-

ing. However, qualitative considerations, as

discussed in Sec. 5.2, are still possible. More-

over, it is generally accepted that even in

networks like the olfactory bulb, physiologi-

cal measurements have large errors, restricting

precise quantitative analysis.

Thus analytic approaches have the advantage of

rigor but are limited by simplifications. Conversely,

physiological realism often leads to reliance on nu-

merics with its various pitfalls. The convergence of

analytic, numeric and experimental research consti-

tutes a strong argument for the role in brain func-

tion of nonlinear systems with partial synchronisa-

tion and partial stability.

Improving the current model can be achieved by

replacing the coupling parameter, c, with the N ×N
connection matrix54 C = [cij ], where cij is the synap-

tic connectivity from node i to node j. Firstly,

this permits introduction of patterns of intercon-

nection with a neurohistological character55 such as

clustering, strong reciprocity,56 and “small world”

networks.57 The symmetry of C is broken, although

in a particular manner that leaves less symmetric

relations intact. Secondly, it is possible to introduce

a learning rule which allows the dynamical formation

of Hebbian assemblies.58 This involves the strength-

ening of effective synaptic connectivity between cells

which fire synchronously,59 leading to assemblies

of preferentially interconnected neurons within the

network. This principle has been proposed as a

mechanism of learning of odors in the olfactory

bulb.8 It can be introduced parsimoniously into

the current model by updating each cij following

inhalation of any odor which was paired with a

“conditioned stimulus”. Coupling between nodes

with very small average Euclidean separation is

strengthened, whereas those with large separation

are weakened. If the increment is small then note

(1) above, holds.

Given the modular structure of the cerebral

cortex, it is possible that similar models may have

some application to understanding the neural dy-

namics at the scale of the whole brain. Thus

dynamics involving riddled basins and heteroclinic

networks may underlie other brain functions, such

as visual and auditory perception, learning60 and

computation.22,61,62
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Appendix I

Basic group theoretic definitions

A non-empty set, Γ = {γi}, together with an opera-

tion, •, is called a group if it satisfies the following;

(i) Γ is closed under the action of •. That is

for any two elements γi, γj ∈ Γ, there exists

γk ∈ Γ such that γi • γj = γk.

(ii) γi, γj , γk ∈ Γ implies that (γi • γj) • γk =

γi • (γj • γk).

(iii) For all γi ∈ Γ, there exists an identity ele-

ment denoted e such that γi •e = e•γi = γi.

(iv) For all γi ∈ Γ there exists an inverse, γ−1
i ∈

Γ such that γi • γ−1
i = γ−1

i • γi = e.

Examples of groups of infinite size include the

integers under the action of addition. Finite groups

of size n include the integers modulus n under the

action of addition. The set of permutations of n

objects is also a finite group and is called the

symmetry group, Sn.

A subgroup Σ of Γ is any subset of Γ which is

also a group. For example, the even integers under

the action of addition is a subgroup of the integers.

Two subgroups Σ and Σ′ are said to be conjugate

(Σ ∼ Σ′) if there exists γ ∈ Γ such that Σ′ = γ−1Σγ .

A proper subgroup Σ < Γ of Γ is a subgroup that is

strictly smaller that Γ.

The isotropy subgroups and fixed point subspace

of a subgroup are defined in the main text. Note that
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the fixed point subspaces of the group are quite dif-

ferent from the fixed points of the map G (although

every fixed point of G will be contained within some

fixed point subspace). It can be shown that con-

jugate subgroups have fixed point subspaces that

are mapped onto each other by the group. More

precisely,36 for any isotropy subgroup Σ ⊆ Γ and

any γ ∈ Γ then γ−1Σγ is an isotropy subgroup and,

Fix(γ−1Σγ) = γ−1Fix(Σ) .

Hence congugate attractors are mapped onto each

other by the symmetries of the whole system, G.

Appendix II

Derivation of the transverse

Lyapunov exponent

Suppose A is an invariant set of the system G and an

orbit of A is perturbed some small distance, δ, trans-

verse to A. After n iterations of G, the amplitude of

this displacement will be,

d = δeλTn (A1)

where λT , is the transverse Lyapunov exponent. We

can derive λT by taking a change of variables and

linearising G in the neighborhood of the invariant

manifold. Consider a synchronised cluster containing

two nodes, x1 and x2. Taking a change of variables,

y(t) = x1(t) + x2(t)

z(t) = x1(t)− x2(t) , (A2)

we see that y(t) describes the behavior within the

cluster and z(t) describes any displacement in the

transverse direction. Then by substituting (A2) into

(6), taking the Taylor series expansion around z = 0

and dropping higher-order terms we obtain,

z(t+ 1) = Dfy(1− e)z(t) , (A3)

where Dfy is the derivative of f with respect y.

Hence, after n iterates the transverse displacement

will be,

d = z(n) = z(0)
n∏
t=1

Dfy(1− e) ,

= δ

n∏
t=1

Dfy(1− e) . (A4)

Taking the logarithm of both sides we obtain,

λt = lim
n→∞

1

n

n∑
t=1

log |Dfy(1− e)| . (A5)

If we restrict ourselves now to orbits on the invari-

ant set, A, then x1(t) = x2(t). Thus, substituting

the logistic map and x1 into (A4),

λt = lim
n→∞

1

n

n∑
t=1

log |2ux1(t)(1− e)| . (A6)

The convergence of this calculation to the same value

for different orbits on A requires that all orbits on

A are typical (i.e., A supports an ergodic invariant

measure). Then we can obtain a numeric approxi-

mation for λT for some finite (large) T number of

iterations of a single orbit {x1(0), x1(1), . . . , x1(T )}
on the attractor. The assumption that A supports

an ergodic measure can be checked by ensuring this

value converges to the same value for increasing T

and different orbits of A.

References

1. G. Shephard 1988, “Chemical senses,” Neurobiology
(Oxford University Press, Oxford).

2. M. Bear, B. Connors and M. Paradiso 1996, “Che-
mical senses,” Neuroscience (Williams and Wilkins,
Baltimore).

3. J. Dodd and V. Castellucci 1991, “Smell and taste:
The chemical senses,” Principles of Neural Science,
ed. E. Kandall and Schwarz (Publisher, City).

4. R. Reed 1990, “How does the nose know?” Cell 60,
1–2.

5. W. Freeman 1987, “Techniques used in the search
for the physiological basis of the EEG,” Handbook
of Electroencephalography and Clinical Neurophys-
iology, ed. A. Gevins and A. Remond (Elsevier,
London).

6. W. Freeman and G. Viana Di Prisco 1986, “EEG
spatial patterns differences with discriminated odors
manifest chaotic and limit cycle attractors in olfac-
tory bulb of rabbits,” Brain Theory, ed. G. Palm
(Springer-Verlag, London).

7. W. Freeman and W. Schneider 1982, “Changes in
spatial patterns of rabbit olfactory EEG with condi-
tioning to odors,” Psychophysiology 19, 44–56.

8. C. Skarda and W. Freeman 1987, “How brains make
chaos in order to make sense of the world,” Behav.
Brain Sci. 10, 161–195.

9. W. Freeman 1991, “The physiology of perception,”
Scientific American 264, 78–85.



Perception of Odors by a Nonlinear Model of the Olfactory Bulb 123

10. J. Kauer 1991, “Contributions of topography and
parallel processing to odor coding in the vertebrate
olfactory pathway,” Trends Neurosci. 14, 79–85.

11. K. Kaneko 1998, “On the strength of attractors in a
high-dimensional system,” Physica D124, 322–344.

12. K. Kaneko 1997, “Dominance of Milnor attrac-
tors and noise-induced selection in a multiattractor
system,” Phys. Rev. Lett. 78, 2736–2739.

13. K. Kaneko 1992, “Overview of coupled map lattices,”
Chaos 2, 279–282.

14. J. Milnor 1985, “On the concept of attractor,”
Commun. Math. Phys. 99, 177–195.

15. P. Nunez 1992, Neocortical Dynamics and Human
EEG Rhythms (Oxford University Press, Oxford).

16. M. Freeman 1975, Mass Action in the Nervous
System (Academic Press, New York).

17. P. Robinson, C. Rennie and J. Wright 1997, “Propa-
gation and stability of waves of electrical activity in
the cerebral cortex,” Phys. Rev. E56, 826–841.

18. X. Wang 1991, “Period-doublings to chaos in a
simple neural network: An analytic proof,” Complex
Systems 5, 425–441.

19. A. Minai and T. Anand 1998, “Chaos-induced
synchronisation in discrete-time oscillators driven by
a random signal,” Phys. Rev. E57, 1559–1562.

20. P. Collet and J. Eckmann 1980, Iterated Maps on the
Interval as Dynamical Systems (Birkhauser).

21. S. Van Strien 1988, “Smooth dynamics on the
interval,” in New Directions in Dynamical Systems
(Cambridge University Press, Cambridge).

22. K. Kaneko 1994, “Information cascade with marginal
stability in a network of chaotic elements,” Physica
D77, 456–472.

23. A. Tabarov, Y. Maistrenko and E. Mosekilde 2000,
“Partial synchronisation in a system of coupled
logistic maps,” Int. J. Bif. Chaos 10, 1051–1066.

24. R. Mendes 1999, “Clustering and synchronization
with positive Lyaponuv exponents,” Phys. Lett.
A257, 132–138.

25. J. Cooper, F. Bloom and R. Roth 1991, The
Biochemical Basis of Neuropharmacology (Oxford
University Press, Oxford).

26. P. Ashwin and J. Terry 2000, “On riddling and weak
attractors,” Physica D142, 87–100.

27. P. Ashwin, E. Covas and R. Tavakol 1999,
“Transverse instability for non-normal parameters,”
Nonlinearity 12, 563–577.

28. E. Barreto, B. Hunt, C. Greborgi and J. Yorke 1997,
“From high dimensional chaos to stable periodic
orbits: The structure of parameter space,” Phys. Rev.
Lett. 78, 4561–4564.

29. J. Alexander, J. Yorke, Z. You and I. Kan 1992,
“Riddled basins,” Int. J. Bif. Chaos 2, 795–813.

30. Y. Maistrenko, V. Maistrenko, A. Popovich and
E. Mosekilde 1998, “Transverse instability and
riddled basins in a system of two coupled logistic
maps,” Phys. Rev. E57, 2713–2732.

31. P. Ashwin, J. Buescu and I. Stewart 1996, “From
attractor to chaotic saddle a tale of transverse
instability,” Nonlinearity 9, 703–37.

32. P. Ashwin and J. Swift 1992, “The dynamics of
n-weakly coupled identical oscillators,” J. Nonlinear
Sci. 2, 69–108.

33. W. Freeman 1987, “Simulation of chaotic EEG
patterns with a dynamic model of the olfactory
system,” Biol. Cybern. 56, 139–150.

34. P. Ashwin 1995, “Attractors stuck on to invariant
subspaces,” Phys. Lett. A209, 338–344.

35. E. Stone and A. Cutler 1996, “Archetypal analysis of
spatio-temporal dynamics,” Physica D90, 209–224.

36. P. Ashwin and M. Breakspear 2000 “Anisotropic
properties of riddled basins,” Physics Letters A280,
139–145.

37. P. Ashwin and M. Field 1999, “Heteroclinic networks
in coupled cell systems,” Arch. Rational Mech. Anal.
148, 107–143.

38. J. Eckmann and D. Ruelle 1984, “Ergodic theory of
chaos and strange attractors,” Rev. Modern Phys.
57, 617–653.

39. T. Pedley 1984, “Epilepsy and the human elec-
troencephalogram,” in Electrophysiology of Epilepsy,
ed. P. Schwartzkroin and H. Wheal (Academic Press,
London).

40. P. McKenna 1997, Schizophrenia and Related Syn-
dromes (Psychology Press, Hove).

41. W. Spencer and E. Kandel 1969, “Synaptic inhibi-
tion in seizures,” in Basic Mechanisms of the Epilep-
sies, ed. H. Jasper, A. Ward and A. Pope (Little,
Brown and Company, Boston).

42. A. Bleich, S. Brown, R. Kahn and H. van Praag 1988,
“The role of serotonnin in schizophrenia,” Schiz.
Bull. 14, 297–315.

43. C. Gray, P. Konig, A. Engel and W. Singer 1989,
“Oscillatory responses in cat visual cortex exhibit
inter-columnar synchronization which reflects global
stimulus properties,” Science 338, 334–337.

44. M. Stopfer, S. Bhagavan, B. Smith and G. Laurent
1997, “Impaired odor discrimination on desynchro-
nization of odor-encoding neural assemblies,” Nature
390, 70–74.

45. W. Miltner, C. Braun, M. Arnold, H. Witte and
E. Taub 1999, “Coherence of gamma-band EEG
activity as a basis for associative learning,” Nature
397, 434–436.

46. E. Rodriguez, N. George, N. Lachaux, J. Mar-
tinerie, B. Renault and F. Varela 1999, “Per-
ception’s shadow: Long-distance synchronization of
human brain activity,” Nature 397, 430–433.

47. A. Haig, E. Gordon, V. De Pascalis, R. Meares,
H. Bahramali and A. Harris 2000, “Gamma activ-
ity in schizophrenia: Evidence of impaired network
binding?” Clin. Neurophysiol. 111, 1461–1468.

48. M. Brandt, B. Jansen and J. Carbonari 1991,
“Pre-stimulus EEG patterns and visual evoked



124 M. Breakspear

response,” Electroenceph. and Clin. Neurophysiol.
80, 16–20.

49. E. Rahn and E. Basar 1993, “Prestimulus EEG-
activity strongly influences the auditory evoked
vertex response,” Int. J. Neuroscience 69, 207–220.

50. A. Haig and E. Gordon 1998, “Prestimulus EEG
alpha phase synchronicity influences N100 amplitude
and reaction time,” Psychophysiol. 35, 591–595.

51. D. Hansel 1996, “Synchronised chaos in local cortical
circuits,” Int. J. Neural Sys. 7, 403–415.

52. P. Buono, M. Golubitsky and A. Palacios 2000,
“Heteroclinic cycles in rings of coupled cells,”
Physica D143, 74–108.

53. P. Schneider and P. Grassberger 1997, “Studying
attractor symmetries by means of cross-correlation
sums,” Nonlinearity 10, 749–762.

54. T. Sejnowski 1976, “On global properties of neuronal
interactions,” Biol. Cybern. 22, 85–95.

55. R. Kotter and F. Sommer 2000, “Global relation-
ship between anatomical connectivity and activity
propagation in the cerebral cortex,” Phil. Trans. R.
Soc. Lond. 355B, 127–134.

56. K. Friston, G. Tononi, O. Sporns and G. Edleman
1995, “Characterising the complexity of neuronal
interactions,” Human Brain Mapp. 3, 302–314.

57. D. Watts and S. Strogatz 1998, “Collective dynamics
of small world networks,” Nature 393, 440–442.

58. D. Hebb 1949, “The first stage of perception,”
reprinted in Brain Function, ed. G. Shaw and
G. Palm (World Scientific, Singapore).

59. Y. Hayakawa and Y. Sawada 2000, “Learning-
induced synchronisation of a globally coupled
excitable map system,” Phys. Rev. E61, 5091–5097.

60. H. Nakajimi and Y. Ueda 1996, “Riddled basins of
the optimal states in learning dynamical systems,”
Physica D99, 35–44.

61. S. Sinha and W. Ditto 1998, “Dynamics based
computation,” Phys. Rev. Lett. 81, 2156–2159.

62. I. Tsuda 2001, “Towards on interpretation of dy-
namic neural activity in terms of chaotic dynamical
systems,” Behav. Brain Sci. 24 (to appear).


