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Abstract. A large volume of geospatial data is available on the web
through various forms of applications. However, access to these data is
limited by certain types of queries due to restrictive web interfaces. A
typical scenario is the existence of numerous business web sites that pro-
vide the address of their branch locations through a limited “nearest
location” web interface. For example, a chain restaurant’s web site such
as McDonalds can be queried to find some of the closest locations of its
branches to the user’s home address. However, even though the site has
the location data of all restaurants in, for example, the state of California,
the provided web interface makes it very difficult to retrieve this data
set. We conceptualize this problem as a more general problem of run-
ning spatial range queries by utilizing only k-Nearest Neighbor (k-NN)
queries. Subsequently, we propose two algorithms to cover the rectan-
gular spatial range query by minimizing the number of k-NN queries as
possible. Finally, we evaluate the efficiency of our algorithms through
empirical experiments.

1 Introduction

Due to the recent advances in geospatial data acquisition and the emergence
of diverse web applications, a large amount of geospatial data have become
available on the web. For example, numerous businesses release the locations
of their branches on the web. The web sites of government organizations such
as the US Postal Office provide the list of their offices close to one’s residence.
Various non-profit organizations also publicly post a large amount of geospatial
data for different purposes.
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Unfortunately, access to these abundant and useful geospatial data sets is only
possible through their corresponding web interfaces. These interfaces are usually
designed for one specific query type and hence cannot support a more general
access to the data. For example, the McDonalds web site provides a restaurant
locator service through which one can ask for the five closest locations from a
given zip code. This type of web interface to search for a number of “nearest
locations” from a given geographical point (e.g., a mailing address) or an area
(e.g., a zip code) is very popular for accessing geospatial data on the web. It
nicely serves the intended goal of quick and convenient dissemination of business
location information to potential customers. However, if the consumer of the
data is a computer program, as in the case of web data integration utilities (e.g.,
wrappers) and search programs (e.g., crawlers), such an interface may be a very
inefficient way of accessing the data. For example, suppose a web crawler wants
to access the McDonalds web-site to retrieve all the restaurants in the state of
California. Even though the site has the required information, the interface only
allows the retrieval of five locations at a time. Even worse, the interface needs
the center of the search as input. Hence, the crawler needs to identify a set
of nearest location searches that both covers the entire state of California (for
completeness) and has minimum overlap between the result sets (for efficiency).

In this paper, we conceptualize the aforementioned problem into a more gen-
eral problem of supporting spatial range queries using k-Nearest Neighbor (k-
NN) search. Besides web data integration and search applications, the solution
to this more general problem can be beneficial for other application domains
such as sensor networks when sensors have a limited number of channels to com-
municate with their nearest neighbors. Assuming that we have no knowledge
about the distribution of the data sets and no control over the value of k, we
propose two algorithms: the Quad Drill Down (QDD) and Dynamic Constrained
Delaunay Triangulation (DCDT ) algorithms. The efficiencies of the algorithms
are empirically compared.

The remainder of this paper is organized as follows: In Section 2, the problem
is formally defined. Our proposed algorithms are discussed in Section 3. Next,
the algorithms are experimentally evaluated in Section 4. The related work is
presented in Section 5. Finally, Section 6 concludes the paper.

2 Problem Definition

A range query in spatial database applications returns all objects inside a query
region R. A k-Nearest Neighbor (k-NN) query returns the k closest objects to a
query point q. More formal definitions for the range query and the k-NN query
can be found in [1,2].

Our focus is on finding all objects within a given rectangular query region R
using a minimum number of k-NN searches as supported in various web applica-
tions. The complexity of this problem is unknown. Therefore only approximation
results are provided. In reality, there can be more than one web site involved in
the given range query. Then, the general problem is to find all objects within
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the query region R using k-NN searches on each of these web sources and to
integrate the results from the sources into one final query result. To make the
problem more general, no assumptions are made about the data set, i.e., neither
the number of objects in the data set nor the data distribution is known.

Figure 1 (a) and (b) illustrate the challenges of this general problem through
examples. Suppose that we want to find the locations of all the points in a given
region (rectangle) and the only available interface is a k-NN search with a fixed
k, k = 3 in (a) and k = 6 in (b). Hence, the only parameter that we can vary
is the query points for the k-NN searches. Given a query point q, the result of
the k-NN search is a set of k nearest points to q. It defines a circle centered at
q with radius equal to the distance from q to its kth nearest neighbor (i.e., the
3rd closest point in (a)). The area of this circle, covering a part of the rectangle,
determines the covered region of the rectangle. To complete the range query,
we need to identify a set of input locations corresponding to a series of k-NN
searches that would result in a set of circles covering the entire rectangle.

q

(a) A range query using 3-NN search

q

(b) A range query using 6-NN search

Fig. 1. Range queries on the web data

The optimization objective of this problem is to perform as few k-NN searches
as possible. This is because each k-NN search results in communication overhead
between the client and the server in addition to the actual execution cost of the
k-NN search at the server. Hence, the circles should have as few overlaps as
possible. In addition, the fact that we do not know the radius of each circle prior
to the actual evaluation of its corresponding k-NN query makes the problem even
harder. Hence, the sequence of our k-NN searches become important as well. To
summarize, the optimal solution should find a minimum set of query locations
that minimizes the number of k-NN searches to completely cover the given query
region. In many web applications, the client has no knowledge about the data set
at the server and no control over the value of k (i.e., k is fixed depending on the
web applications). These applications return a fixed number of k nearest objects
to the user’s query point. Considering a typical value of k in real applications,
which ranges from 5 to 20 [3], multiple queries are evaluated to completely cover
a reasonably large region.
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Without loss of generality, and to simplify the discussion, we made the follow-
ing assumptions: 1) a k-NN search is supported by a single web source, 2) the
web source supports only one type of k-NN search while there can be multiple
k-NN searches based on the value of k, 3) the parameter to the k-NN search is
the query point q, 4) the value of k is fixed, i.e., the user has no control over k.

3 Range Queries Using k-NN Search

Our approach to the range query problem on the web is as follows: 1) divide
the query region R into subregions, R = {R1, R2, ..., Rm}, such that any Ri ∈ R
can be covered by a single k-NN search, 2) obtain the resulting points from the
k-NN search on each of the subregions, 3) combine the partial results to provide
a complete result.

The main focus is how to divide R so that the total number of k-NN searches
can be minimized. We consider the three following approaches: 1) a naive ap-
proach: divide the entire query region R into equi-sized subregions (grid cells)
such that any cell can be covered by a single k-NN search. 2) a recursive ap-
proach: conduct a k-NN search in the current query region, divide the current
query region into subregions with same sizes if the k-NN search fails to cover
R, and call k-NN search for each of these subregions. Repeat the process until
all subregions are covered. 3) a greedy and incremental approach: divide R into
subregions with different sizes. Then select the largest subregion for the next
k-NN search. Check the covered region by the k-NN search and select the next
largest subregion for another k-NN search.

Table 1. Notations

Notation Description
R a query region (rectangle)
Pll the lower-left corner point of R

Pur the upper-right corner point of R

q the query point for a k-NN search
Rq half of the diagonal of R; the distance from q to Pll

CRq circle inscribing R; the circle of radius Rq centered at q

Pk the set of k nearest neighbors obtained by a k-NN search
ordered ascendingly by distance from q

r the distance from q to the farthest point pk in Pk

Cr k-NN circle; the circle of radius r centered at q

C
′
r tighter bound k-NN circle; the circle of radius ε · r centered at q

The notations in Table 1 are used throughout this paper and Figure 2 illus-
trates our approach to evaluate a range query using k-NN searches. If r > Rq,
then the k-NN search must have returned all the points inside CRq . Therefore,
we can obtain all the points inside the region R after pruning out any points of
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Pk that are outside R but inside Cr. Then, the range query is complete. Other-
wise, we need to perform some additional k-NN searches to completely cover R.
For example, if we use 5-NN search for the data set shown in Figure 2, then the
resulting Cr is smaller than CRq . For the rest of this section, we focus on the
latter case that is a more realistic scenario. Note that it is not sufficient to have
r ≥ Rq in order to retrieve all the points inside R when q has more than one
kth nearest neighbor since one of them will be randomly returned as q’s kth-NN.
Hence, we use r > Rq as a terminating condition in our algorithms.

Cr

C

Range Query R 

Rq

 r

P

P

ll

ur

q

Rq

P1

P5

P3

P2

P4

Fig. 2. A range query using 5-NN search

In a naive approach, R is divided into a grid where the size of cells is small
enough to be covered by a single k-NN search. However, it might not be fea-
sible to find the exact cell size with no knowledge of the data sets. Even in
the case that we obtain such a grid, this approach is inefficient due to large
amounts of overlapping areas among k-NN circles and wasted time to search
empty cells (consider that most real data sets are not uniformly distributed).
Thus, we provide a recursive approach and an incremental approach in the fol-
lowing subsections.

3.1 Quad Drill Down (QDD) Algorithm

We propose a recursive approach, the Quad Drill Down (QDD) algorithm, as a
solution to the range query problem on the web using the properties of the quad-
tree. A quad-tree is a tree whose nodes either are leaves or have four children,
and it is one of the most commonly used data structures in spatial databases [11].
We adopt the partitioning idea of the quad-tree but we do not actually construct
the tree. The main idea of QDD is to divide R into equal-sized quadrants, and
then recursively divide quadrants further until each subregion is fully covered
by a single k-NN search so that all objects in it are obtained.

Algorithm 1 describes QDD. First, a k-NN search is invoked with a point q
which is the center of R. Next, the k-NN circle Cr is obtained from the k-NN
result. If Cr is larger than CRq , it entirely covers R, then all objects in R are
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Algorithm 1. QDDrangeQuery(Pll, Pur)
1: q ← getCenterOfRegion(Pll, Pur)
2: Rq ← getHalfDiagonal(q, Pll, Pur)
3: Knn{} ← add kNNSearch(q)
4: r ← getDistToKthNN(q, Knn{})
5: if r > Rq then
6: result{} ← pruneResult(Knn{}, Pll, Pur)
7: else
8: clear Knn{}
9: P0 ← (q.x, Pll.y)

10: P1 ← (Pur.x, q.y)
11: P2 ← (Pll.x, q.y)
12: P3 ← (q.x, Pur.y)
13: Knn{} ← add QDDrangeQuery(Pll, q) // q1
14: Knn{} ← add QDDrangeQuery(P0, P1) // q4
15: Knn{} ← add QDDrangeQuery(P2, P3) // q2
16: Knn{} ← add QDDrangeQuery(q, Pur) // q3
17: result{} ← Knn{}
18: end if
19: return result{}

Pll

Pur

Range Query R 
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3-NN Search
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Fig. 3. A QDD Range Query

retrieved. Finally, a pruning step is necessary to retrieve only the objects that
are inside R − a trivial case. However, if Cr is smaller than or equal to CRq , the
query region is partitioned into four subregions by equally dividing the width
and height of the region by two. The previous steps are repeated for every new
subregion. The algorithm recursively partitions the query region into subregions
until each subregion is covered by a k-NN circle. The pruning step eliminates
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those objects that are inside the k-NN circle but outside the subregion. An
example of QDD is illustrated in Figure 3 (when k=3), where twenty one k-NN
calls are required to retrieve all the points in R.

3.2 Dynamic Constrained Delaunay Triangulation (DCDT )
Algorithm

In this section, we propose the Dynamic Constrained Delaunay Triangulation
(DCDT ) algorithm − a greedy and incremental approach to solve the range
query on web data using the Constrained Delaunay Triangulation (CDT )1.
DCDT uses triangulations to divide the query range and keeps track of cov-
ered triangles by k-NN circles using the characteristics of CDT . DCDT greedily
selects the largest uncovered triangle for the next k-NN search while QDD fol-
lows a pre-defined order. To overcome redundant k-NN searches on the same
area, DCDT includes a propagation algorithm to cover the maximum possible
area within a k-NN circle. Hence, no k-NN search will be wasted because a
portion of a k-NN circle is always added to the covered area of the query range.

p2

p6

p7

p5

p4
p3

p1

c1

c2

p2

p6

p7

p5

p4
p3

p1 c1

c2

(a) Constrained edges                                             (b) CDT

Fig. 4. An example of Constrained Delaunay triangulation

Given a planar graph G with a set of vertices, P , a set of edges, E, and a subset
of edges, C, in the plane, CDT of G is a triangulation of the vertices of G that
includes C as part of the triangulation [12], i.e., all edges in C appear as edges of
the resulting triangulation. These edges are referred to as constrained edges and
they are not crossed (destroyed) by any other edges of the triangulation. Figure 4
illustrates a graph G and the corresponding CDT . Figure 4 (a) shows a set of
vertices, P = {P1, P2, P3, P4, P5, P6, P7}, and a set of constrained edges, C =
{C1, C2}. Figure 4 (b) shows the result of CDT that includes the constrained
edges of C1 and C2 as part of the triangulation.

1 The terms, CDT and DCDT , are used for both the corresponding triangulation
algorithms and the data structures that support these algorithms in this paper.
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We define the following data structures to maintain the covered and uncovered
regions of R:

– pList: a set of all vertices of G; initially {Pll, Prl, Plr, Pur}
– cEdges: a set of all constrained edges of G; initially empty
– tList: a set of all uncovered triangles of G; initially empty

pList and cEdges are updated based on the current covered region by a k-NN
search. R is then triangulated (partitioned into subregions) using CDT with the
current pList and cEdges. For every new triangulation, we obtain a new tList.
DCDT keeps track of covered triangles (subregions) and uncovered triangles;
covered triangles are bounded by constrained edges (i.e., all three edges are con-
strained edges) and uncovered triangles are kept in tList, which are sorted in
descending order by the area of the triangles. DCDT chooses the largest uncov-
ered triangle in tList and calls k-NN search using the centroid (which always
lies inside the triangle as opposed to the center) of the triangle as the query
point. Our algorithm uses a heuristic approach − to pick the largest triangle
from the list of uncovered triangles. The algorithm terminates when no more
uncovered triangles exist. For the rest of this section, we describe the details of
DCDT shown in Algorithm 2 and Algorithm 3.

DCDT invokes the first k-NN search using the center point of the query region
R as the query point q. Figure 5 (a) shows an example of a 3-NN search. If the
resulting k-NN circle Cr completely covers R (r > Rq), then we prune and return
the result − a trivial case. If Cr does not completely cover R, DCDT needs to
use C

′

r (a little smaller circle than Cr) for checking covered region from this
point for further k-NN searches. We have previously discussed the possibility
that the query point q has more than one kth nearest neighbor and one of them
is randomly returned. In that case, DCDT may not be able to retrieve all the
points in R if it uses Cr. Hence we define C

′

r = ε · Cr, where 0 < ε < 1 (ε = 0.99
in our algorithm).

DCDT creates an n-gon inscribed into C
′

r. Choosing the value of n depends
on the tradeoff between computation time and the coverage of area; n = 6 (a
hexagon) is used in our experiments as shown in Figure 5 (b). All vertices of
the n-gon are added into pList. To mark the n-gon as a covered region, the
n-gon is triangulated and the resulting edges are added as constrained edges
into cEdges (getConstrainedEdges() line 15 of Algorithm 2). The algorithm
constructs a new triangulation with the current pList and cEdges, then a newly
created tList is returned (constructDCDT () line 16 of Algorithm 2).

DCDT selects the largest uncovered triangle from tList for the next k-NN
search. With the new C

′

r, DCDT updates pList and cEdges and creates a new
triangulation. For example, if an edge lies within C

′

r, then DCDT adds it into
cEdges; on the other hand, if an edge intersects C

′

r, then the partially covered
edge is added into cEdges. Figure 6 shows an example of how to update and
maintain pList, cEdges and tList. �1 (�max) is the largest triangle in tList,
therefore �1 is selected for the next k-NN search. DCDT uses the centroid of �1
as the query point q for the k-NN search. C

′

r partially covers �1: vertices v5 and
v6 are inside C

′

r but vertex v3 is outside C
′

r. C
′

r intersects �1 at k1 along v3v6 and
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Algorithm 2. DCDTrangeQuery(Pll, Pur)
1: pList{} ← {Pll, Prl, Plr, Pur};
2: cEdges{} ← {};
3: tList{} ← {};
4: Knn{} ← {}; all objects retrieved by k-NN search
5: q ← getCenterOfRegion(Pll, Pur)
6: Knn{} ← add kNNSearch(q)
7: r ← getDistToKthNN(q, Knn{})
8: Cr ← circle centered at q with radius r
9: Rq ← getHalfDiagonal(q, Pll, Pur)

10: ε = 0.99
11: if r ≤ Rq ; Cr does not cover the given region R then
12: C

′
r ← circle centered at q with radius ε · r

13: Ng ← create an n-gon inscribing C
′
r with q as the center

14: pList{} ← add {all vertices of Ng}
15: cEdges{} ← getConstrainedEdges({all vertices of Ng})
16: tList{} ← constructDCDT(pList{}, cEdges{})
17: while tList is not empty do
18: mark all triangles in tList to unvisited
19: �max ← getMaxTriangle()
20: q ← getCentroid(�max)
21: Knn{} ← add kNNSearch(q)
22: r ← getDistToKthNN(q,Knn{})
23: C

′
r ← circle centered at q with radius ε · r

24: checkCoverRegion(�max, C
′
r, pList{}, cEdges{})

25: tList{} ← constructDCDT(pList{}, cEdges{})
26: end while
27: end if
28: result{} ← pruneResult(Knn{}, Pll, Pur)
29: return result{}

Pll

Pur

q

Cr

Pll

Pur

q

Cr‘

(a) Query point q and R (b) A hexagon as a covered region

Fig. 5. An example of first k-NN call in query region R

at k2 along v3v5, hence, k1 and k2 are added into pList (getCoveredV ertices()
line 3 of Algorithm 3). Let Rc be the covered area (polygon) of �1 by C

′

r

(Figure 6 (c)). Then Rc is triangulated and the resulting edges, k1k2, k1v6,
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‘ ‘

pList ={v1,v2,v3,v4,v5,v6} 
cEdges ={ } 
tList = { 1Δ , 2Δ , 3Δ , 4Δ , 5Δ , 6Δ }

(a) Step 1

pList ={v1,v2,v3,v4,v5,v6,k1,k2} 
cEdges ={ 65vv , 16kv , 21kk , 52vk , 15kv }
tList = { 1Δ , 2Δ , 3Δ , 4Δ , 5Δ , 6Δ }

(b) Step 2

pList ={v1,v2,v3,v4,v5,v6,k1,k2} 
cEdges ={ 65vv , 16kv , 21kk , 52vk , 15kv }
tList = { 2Δ , 5Δ , 6Δ , 7Δ , 8Δ , 9Δ , 10Δ , 11Δ }

(c) Step 3

Fig. 6. Example of pList, cEdges and tList: covering �max

Algorithm 3. checkCoverRegion(�, C
′

r, pList{}, cEdges{})
1: if � is marked unvisited then
2: mark � as visited
3: localPList{} ← getCoveredVertices(�, C

′
r)

4: localCEdges{} ← getConstrainedEdges(localPList)
5: if localCEdges is not empty then
6: pList{} ← add localPList{}
7: cEdges{} ← add localcEdges{}
8: neighbors{} ← findNeighbors(�)
9: for every �i in neighbors{}, i = 1, 2, 3 do

10: checkCoverRegion(�i, C
′
r, pList{}, cEdges{})

11: end for
12: end if
13: end if

k2v5, v5v6 and k1v5 are added into cEdges. The updated pList and cEdges are
used for constructing a new triangulation of R (Figure 6 (c)).

As shown in Figure 6 (c), the covered region of �1 can be a lot smaller than
the coverage area of C

′

r . In order to maximize the covered region by a k-NN
search, DCDT propagates to (visits) the neighboring triangles of �1 (triangles
that share an edge with �1). DCDT marks the covered regions starting from
�max, and recursively visiting neighboring triangles (findNeighbors() line 8-
11 of Algorithm 3). Figure 7 shows an example of the propagation process. In
Figure 7 (a), �max is completely covered and its neighboring triangles �11,
�12 and �13 (1-hop neighbors of �max) are partially covered in Figure 7 (b),
(c) and (d), respectively. In Figure 7 (e), the neighboring triangles of �max’s
1-hop neighbors, i.e., 2-hop neighbors of �max, are partially covered. Finally,
based on the returned result of checkCoverRegion() shown in Figure 7 (e),
DCDT constructs a new triangulation as shown in Figure 7 (f). Algorithm 3
describes the propagation process.
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‘Cr

(a) (b) (c)

(d) (e) (f)

Fig. 7. Example of checkCoverRegion()

Notice that DCDT covers a certain portion of R at every step, and therefore
the covered region grows as the number of k-NN searches increases. On the
contrary, QDD discards the returned result from a k-NN call when it does not
cover the whole subregion, which results in re-visiting the subdivisions of the
same region with 4 additional k-NN calls (see line 5-16 in Algorithm 1). Also
note that the cost of triangulation is negligible as compared to k-NN search
because triangulation is performed in memory and incrementally.

4 Experiments

In this section, we evaluate QDD and DCDT using both synthetic and real
GIS data sets. Our synthetic data sets use both uniform (random) and skewed
(exponential) distributions. For the uniform data sets, (x, y) locations are dis-
tributed uniformly and independently between 0 and 1. The (x, y) locations for
the skewed data sets are independently drawn from an exponential distribution
with mean 0.3 and standard deviation 0.3. The number of points in each data set
varies: 1K, 2K, 4K, and 8K points. Our real data set is from the U.S. Geological
Survey in 2001: Geochemistry of consolidated sediments in Colorado in the US
[13]. The data set contains 5,410 objects (points).

Our performance metric is the number of k-NN calls required for a given range
query. In our experiments, we varied a range query size between 1% and 10% of
the entire region of the data set. Different k values between 5 and 50 were used.
Each size of range queries was conducted for 100 trials and the average values
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Fig. 8. Number of k-NN calls for 4K synthetic data set with 3% range query
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Fig. 9. Number of k-NN calls for real data set with 3% range query

were reported. We present only the most illustrative subset of our experimental
results due to space limitation. Similar qualitative and quantitative trends were
observed in all other experiments.

First, we compared the performance of QDD and DCDT with the theoretical
minimum, i.e., the necessary condition (N.C.) �n

k �, where n is the number of
points in R. Figure 8 (a) and (b) show the comparisons of QDD, DCDT and
N.C. with uniformly distributed and exponentially distributed 4k synthetic data
sets, respectively. For both DCDT and QDD, the number of k-NN calls rapidly
decreased as the value of k increased in the range 5-15, and 5-10, for the uniformly
and exponentially distributed data, respectively. Then, it slowly decreased as the
value of k became larger, approaching to those of N.C. when k is over 35. The
results for the real data set have similar trends to those of the exponentially
distributed synthetic data set (Figure 9). Note that k is determined not by the
client but by the web interface and a typical k value in real applications ranges
between 5 and 20 [3]. In both synthetic and real data sets, DCDT needed a sig-
nificantly smaller number of k-NN calls compared to QDD. For example, with
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Table 2. The average percentage reduction in the number of k-NN calls (%)

data distribution query size k=5 10 15 20 25 30 35 40 45 50
uniform 3% 51.3 55.9 51.7 52.0 50.0 43.8 27.3 0 0 0

5% 56.3 53.5 56.9 56.3 55.6 52.5 54.0 43.8 35.7 0
10% 56.2 53.6 48.2 45.0 37.5 30.0 22.2 22.2 25.0 20.0

exponential 3% 60.5 58.8 58.6 56.9 51.1 40.0 37.5 37.5 20.0 20.0
5% 68.4 67.2 68.8 65.7 60.7 58.3 50 41.7 25.0 20.0
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Fig. 10. Percentage of coverage

the exponential data set (4K), DCDT showed 55.3% of average reduction in the
required number of k-NN searches compared to QDD. As discussed in Section 3,
DCDT covers a portion of the query region with every k-NN search while
QDD revisits the same subregion when a k-NN search fails to cover the en-
tire subregion. DCDT still required more k-NN calls than N.C. On the average,
DCDT required 1.67 times more k-NN calls than N.C. However, the gap became
very small when k was greater than 15.

Next, we conducted range queries with different sizes of query region: 3%,
5%, and 10% of the entire region of data set. Table 2 shows the average per-
centage reduction in the number of k-NN calls between DCDT and QDD for
4K uniformly and exponentially distributed synthetic data sets. On the average,
DCDT resulted in 50.4% and 58.2% of reduction over QDD for the uniformly
and exponentially distributed data set, respectively. The results show that the
smaller the value of k is, the greater the reduction rate.

In Figure 10, we plotted the average coverage rate versus the number of k-
NN calls required for DCDT on 4K synthetic uniformly distributed data set.
Figure 10 (a) shows the average coverage rate of the DCDT algorithm while
varying the value of k. For example, when k=7, 50% of the query range can be
covered by first 8 k-NN calls while the entire range is covered by 40 k-NN calls.
The same range query required 24 calls for 90% of coverage and this number is
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approximately 60% of the total required number of k-NN searches. Figure 10 (b)
shows the average coverage rate of DCDT while varying query size. For 5%
range query, 12 and 31 k-NN searches were required for 50% and 90% coverage,
respectively.

5 Related Work

Some studies have discussed the problems of data integration and query pro-
cessing on the web [4,5]. A query processing framework for web-based data
integration was presented in [4]. It also implemented the evaluation of query
planning and statistics gathering modules. The problem of querying web sites
through limited query interfaces has been studied in the context of information
mediation systems in [5].

Several studies have focused on performing spatial queries on the web [6,3,7].
In [6], the authors demonstrated an information integration application that
allows users to retrieve information about theaters and restaurants from various
U.S. cities, including an interactive map. Their system showed how to build
applications rapidly from existing web data sources and integration tools. The
problem of spatial coverage using only the k-NN interface was introduced in [3].
The paper provided a quad-tree based approach. A quad-tree data structure was
used to check the complete coverage. Our work defines a more general problem
of range queries on the web and provides two different solutions with detailed
experiments and comparisons. The problem of supporting k-NN query using
range queries was studied in [7]. The idea of successively increasing query range
to find k points was described assuming statistical knowledge of the data set.
This is the reverse of the problem we are focusing on.

The Delaunay triangulation and Voronoi diagram based approaches have been
studied for various purposes in wireless sensor networks [8,9,10]. In [9], the au-
thors used the Vornonoi diagram to discover the existence of coverage holes,
assuming that each sensor knows the location of its neighbors. The authors in
[10] proposed a wireless sensor network deployment method based on the Delau-
nay triangulation. This method was applied for planning the positions of sensors
in an environment with obstacles. It retrieved the location information of ob-
stacles and pre-deployed sensors, then constructed a Delaunay triangulation to
find candidate positions of new sensors. CDT was dynamically updated while
covering the query region with k-NN circles.

6 Conclusions

In this paper, we introduced the problem of evaluating spatial range queries on
the web data by using only k-Nearest Neighbor searches. The problem of finding
a minimum number of k-NN searches to cover the query range appears to be
hard even if the locations of the objects (points) are known.

The Quad Drill Down (QDD) and Dynamic Constrained Delaunay Trian-
gulation (DCDT ) algorithms were proposed to achieve the completeness and
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efficiency requirements of spatial range queries. For both QDD and DCDT , we
showed that they can cover the entire range even with the most restricted envi-
ronment where the value of k is fixed and on which users have no control. The
efficiencies of these two algorithms were compared each other as well as with the
necessary condition. DCDT provides a better performance than QDD.

We plan to extend our approaches for the cases in the presence of known
data distribution and more flexible k-NN interfaces, for example, when users
can change the value of k.
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