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Abstract— Inferring AS-level end-to-end paths can be a valu-
able tool for both network operators and researchers. A widely
known technique for inferring end-to-end paths is to perform
traceroute from sources to destinations. Unfortunately, traceroute
requires the access to source machines and is resource consuming.

In this paper, we propose two algorithms for AS-level end-to-
end path inference. The key idea of our algorithm is to exploit the
AS paths appeared in BGP routing tables and infer AS paths
based on these known AS paths. In addition, our algorithms
infer AS paths on the granularity of destination prefix instead of
destination AS. That is, we infer AS paths from any source AS
to any destination prefix. This is essential since routing in the
Internet is determined based on destination prefixes instead of
destination ASs. The validation results show that our algorithm
yields accuracy up to 95% for exact match and accuracy up to
97% for path length match. We further extend our algorithm
to infer a set of potential AS paths between a source AS and a
destination prefix. We find that on average, 86% of inferred AS
path sets are accurate in the sense that one of the paths in the
set matches the actual AS path. Note that our algorithms require
BGP routing tables only and do not require additional data trace
or access to either sources or destinations. We also demonstrate
that the accuracy of this BGP-based inference approach cannot
go beyond 90%.

I. INTRODUCTION

The Internet has evolved into the largest man-made dis-
tributed system in the world. The selection of end-to-end
Internet paths depends on both routing protocols deployed and
a large number of network operators involved. Yet, the ability
to infer end-to-end Internet paths is essential for network
operators as well as network researchers to perform traffic
engineering, network diagnosis, and overlay network routing.

A well-known existing tool for inferring end-to-end paths is
to perform traceroute from a source host to a destination host.
However, traceroute is limited since it requires access to source
hosts and it is resource consuming given a large set of paths
are to be inferred. Access to a large collection of hosts in the
Internet is challenging due to the distributed administration
of Internet hosts. Although there have been around 1,000
traceroute/looking glass servers around the world [1], the
provided sources are still far too few given the enormous scale
and heterogeneity of the Internet.

Alternatively, BGP (Border Gateway Protocol) [2] routing
information provides a relatively comprehensive view of AS
level topology. Although it is infeasible to query the AS level
paths from the BGP routers of the more than 20,000 ASs on
the Internet, the public BGP information has been shown to
be able to provide relatively complete and up-to-date Internet
AS-level topologies [3] and part of routing policies [4]. Such
information can be exploited to infer AS level end-to-end paths

while no need to access either of the sources or the destinations
and perform the resource-consuming probing.

Nevertheless, the BGP-based AS Path inference is not
trivial. Internet path selection largely depends on routing
policies, which in turn are defined independently by network
operators in each individual AS and are seldom publicly
available. Mao et al [5] are the first to conduct an intensive
study on inferring AS paths between any two ASs based on
BGP routing information. Their algorithm is based on a new
AS relationship inference algorithm, and assumes the shortest
AS path routing policy among available paths. They claimed
accuracy up to 60% in the sense that one of the inferred
shortest paths matches with the actual AS path, and accuracy
up to 62% in terms of path length match. They further propose
a novel scheme to infer the first AS hop by assuming the access
to destination hosts. The evaluation results show that given the
first AS hop information, the accuracy of path length match
can be improved up to around 70%.

The AS Path inference can benefit a broad spectrum of
network applications. For instance, in the overlay networks,
knowing the AS Paths between any two nodes helps to find the
nearest adjacent peering nodes in the AS-level [6]. Meanwhile,
even knowing the length of the AS Path is enough. An example
is that [7] shows that the AS Path length change dominates
the end-to-end delay performance and can be utilized in the
overlay network to choose best relay nodes in terms of delay
performance. Also, in [8], the authors need to know the
length of AS path from a remote AS to the local prefixes
to perform ingress traffic engineering at the local AS. In
addition, knowing all possible AS paths from a source AS to a
destination prefix is also helpful. In the overlay networks, the
overlay links should be disjoint so as to achieve independent
underlay link performance [7], [6]. The knowledge of all
potential AS Paths between nodes helps to explore the disjoint
overlay links.

In this paper, we formulate two problems for the AS path
inference. One is the single AS path inference problem, which
infers a single AS path from an AS to a prefix. The other one
is the potential AS path inference problem, which infers a set
of AS paths from an AS to a prefix. Note that in contrast to
[5], we infer AS-level end-to-end paths on the granularity of
destination prefix instead of destination AS.

The key idea of our inference algorithms is to exploit known
AS paths appeared in BGP routing tables. Using only BGP
routing tables, our algorithm can yield accuracy up to 95% and
average accuracy around 60% for the exact match. Because
the inference of AS path length is also meaningful in some
context, we also check the performance in terms of path length
match. It shows that our algorithm is able to yield accuracy



up to 97% and average accuracy around 81%. Moreover, as
suggested in [5], given the first hop AS, the average accuracy
for AS path match can be improved to 78% for the exact match
and 88% for path length match.

For the potential AS path inference problem, we find that
by incorporating the path set stored at an AS node for a
destination prefix, the inferred AS path set contains the actual
AS path in 78% of our validation cases. Furthermore, we can
extend our algorithm to achieve average accuracy of 86% in
the sense that one of the paths in the inferred path set is
the actual path although we limit the number of paths in the
path set to no more than 10 only. Meanwhile, our experiments
demonstrate that it is due to the incompleteness of AS graph
derived from BGP routing tables that the inference accuracy
cannot be higher than 90%. In this sense, our algorithm is able
to capture 95% of the inferable AS paths.

We further perform intensive experiments to validate the
robustness of our algorithms and examine the impact of the
selection of the BGP vantage points, which provide the BGP
routing tables for inference, on the accuracy. Besides that, de-
spite the novel features that our algorithms have incorporated,
they are still simple, efficient, and able to provide near real-
time inference results.

The rest of the paper is organized as follows. The next
section summarizes the related work. We introduce the models,
formulate the problems and identify the challenges in section
3. Section 4 describes the details of our inference algorithms.
In section 5, we first investigate the properties of the data
that we will use for evaluation and then show the evaluation
results. Finally, section 6 concludes the paper.

II. RELATED WORK

The related work in the area of Internet topology inference
and discovery are in two folds: some mainly utilize the
traceroute-like active measurement tools and the others heavily
rely on the passive analysis of BGP routing information.
Traceroute is a widely used network diagnostic tool to actively
discover the router-level forwarding path between two end
hosts. Based on traceroute, a number of sophisticated tech-
niques and tools have been developed to discover the network
topology in various granularities. Mercator [9] discovers the
Internet router-level topologies. Rocketfuel [10] measures the
PoP-level ISP topologies. Skitter [11] provides a relatively
complete view of the Internet AS-level topology. Mao et al
[12], [13] developed tools to discover AS-level forwarding
with some systematic IP-to-AS mapping techniques. Internet
topology inference based on BGP routing information is
another approach. BGP routing tables are widely exploited
to construct Internet AS-level topologies to characterize the
Internet topology properties. For instance, Faloutsos et al
[3] unveiled the Power-Laws in the Internet topologies. Gao
[4] further modeled the commercial relationships between
ASs and several heuristics were proposed to infer the AS
relationships [4], [14], [15]. Furthermore, the AS relationships
are found to skew the AS paths [16] and classify the ASs into
hierarchical tiers [17], [14]. The information in BGP routing
updates is also explored. Dimitropoulos et al [18] mined
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the AS path information in BGP updates to discover more
complete Internet topologies. Andersen et al [19] explored
the temporal correlations of the routing updates to find the
geographical adjacency of these prefixes.

III. MODELS AND PROBLEM FORMULATION

We use a simplified AS-level topology model for the AS
path inference. The difference between our model and others
is that the topological information of the prefixes is also
integrated into the AS topology, which enables our inference
algorithm to infer the AS paths specific to destination prefixes
instead of destination ASs.

A. Topology Model

The Internet AS topology can be modeled as an AS graph
G = (V,E) where V is the set of ASs and E is the set of
peering sessions between two neighboring ASs. A path in the
AS graph is a loop-free AS sequence, i.e. P = (vkvk−1 · · · v1)
where vi �= vj if i �= j. |P | represents the length of path P ,
i.e. the number of AS nodes of P . ψ denotes an empty path
whose length is 0.

In the inter-domain routing system, two neighboring ASs
exchange paths according to their commercial agreements
[4]. Typically, the relationships can be classified into three
categories: provider-to-customer, peer-to-peer and sibling-to-
sibling. Each edge in the AS graph is labeled with the types
of the AS relationships. The import and export policies com-
plying with AS relationships lead to the valley-free property
of the AS paths in an AS graph; that is, in a valid AS path, a
provider-to-customer or peer-to-peer edge should be followed
by a provider-to-customer edge only. In an AS graph with AS
relationships, a valid path must be loop-free and valley-free.

In an AS graph, two valid paths can be concatenated into
one valid path with operator ”+”, i.e. (vi · · · v1)+(uj · · ·u1) =
(vi · · · v1uj · · ·u1) if this resulting path is both loop-free and
valley-free; otherwise, the result is an empty path ψ.

We are able to find the paths from an AS to another AS in
an AS graph, as has been done in [5]. However, BGP provides
AS paths based on a source AS and a destination prefix but not
two ASs. In order to infer the AS paths specific to destination
prefixes, the topological information of the prefixes should be
encoded into the AS graph. As shown in Figure 1, we also
model the destination prefixes as nodes. The AS-prefix graph
G = (V, Vp, E,Ep) is composed of AS set V , the prefix set

2



Vp, the AS edge set E, which consists of the edges between
ASs that are labeled with AS relationships, and the AS-prefix
edge set Ep, which comprises of links connecting ASs to their
originated prefixes. Note that a prefix is attached to the ASs
that originate it. It is possible that a prefix might connect to
multiple ASs [20]. A path in an AS-prefix graph can append
a prefix at the tail of the path, but a prefix cannot appear at
the other positions of the path. The length of a path counts
for the number of ASs only.

Since the BGP information provides the AS path informa-
tion specific to source ASs and destination prefixes only, for
one AS, our algorithm can infer one AS path specific to one
destination prefix only. Although there might be multiple paths
from one source AS to one destination prefix in the inter-
domain routing system, our measure results show that among
all the known source AS and destination prefix pairs, only
0.8% of them have multiple paths, i.e. our model fit with
the reality of the Internet in 99.2% cases. Meanwhile, our
algorithms are capable of providing a set of candidate paths
from a source AS to a destination prefix.

B. BGP Policy-driven path selection procedure

In this section, we first go through the path selection
procedure of BGP and then see how the policy driven nature
of BGP poses challenges to the AS path inference problem.

For a specific prefix p, an AS u maintains a path set
rib in(u)[p] that contains all the feasible paths from u to p
learned from u’s neighbors. Among these paths, u will choose
the best one as its path to p, as is denoted by path(u)[p].

BGP is specified as a policy-based routing protocol
[2]. Each AS path is associated with several configurable
path attributes, such as local preference, MED (Multi-Exit-
Discriminator), etc. These attributes enable BGP to select
the best path by comparing relevant path attributes according
to a complicated path decision process [21]. Network ad-
ministrators implement their routing policies by manipulating
these path attributes. In other words, given an AS u and a
prefix p, path(u)[p] is chosen with a path selection procedure
bestpathu,p() from path set rib in(u)[p], i.e. path(u)[p] =
bestpathu,p(rib in(u)[p]).

The rib in of u is updated in the following way: once u
receives a path P from one of its neighbors, if (u) + P is a
valid path and conforms to u’ path import policies, u updates
rib in(u)[p] by an operator ”�”: rib in(u)[p] = rib in(u)[p]�
{(u) + P}. ”�” is different from the ordinary union operator
”∪” in the sense that if rib in(u)[p] previously installed a
path from the same neighbor, the old path will be replaced by
the new one. Next, the path selection procedure bestpathu,p()
is triggered. Then the output best path path(u)[p] is in turn
announced to the relevant neighbors according to u’s export
policies.

C. AS Path Inference Problems

The objective of the paper is to infer the exact AS path that
an AS uses to reach a destination prefix, which is referred to
as the single AS path inference problem. Within the context
of the BGP policy-driven path selection model, a general

algorithm for the problem can be described as follows: to
find an function bestpath′() for any AS u and prefix p, such
that its output is most likely the output of bestpathu,p().
Note that bestpathu,p() is specific to p and controlled by the
local routing policies of u. Because the local routing policies
can be arbitrarily configured and usually independent of the
configurations of the other ASs, it is extremely difficult to
obtain the local information only relying on the BGP routing
tables of several vantage points instead of the direct access to
either the sources or the destinations. This policy-driven nature
of BGP determines that we cannot infer AS path with 100%
percentage accuracy except that we are able to accurately infer
the local policies of any source AS for any destination prefix.

In practice, the routing policies of most of the ASs conform
to a typical routing preference strategy, i.e. an AS prefers
the paths through its customer links to those through its peer
and provider links [22], [23]. It seems that bestpath′() can
be implemented according to the inferred AS relationships to
conform to the typical routing preference strategy. However,
the model of AS relationship is only an ideal model to
describe the common commercial relationships between ASs.
In practice, the ASs conduct routing configurations following
the commercial contracts, but not the strictly defined ideal
model [24]. Besides, the available AS relationship inference
algorithms [4], [14], [15] can not guarantee 100% accurate
inference [5]. In fact, it is reported that the adoption of
typical routing preference strategy in an AS graph would cause
routing divergence [23]. In [5], the authors adopted a shortest
path first (SPF) path comparison procedure to compute the
paths. In this paper, we also adopt the SPF-based path selection
procedures. In contrast to [5], besides SPF, we also exploit
some heuristics to explicitly figure out the possible best path
among the potential ones.

Due to the policy-driven nature of BGP, no matter how
we design the best path selection procedure bestpath′(), it is
still challenging to rely on a uniformly defined procedure and
some metrics derived from the public BGP routing information
to infer AS paths that match with the actual path selection
procedure bestpathu,p() for any particular u and p. Therefore,
we also try to propose a relatively easier alternative of the
single AS path inference problem, i.e. the potential AS path
inference problem: to infer a set of AS paths from a source AS
to a destination prefixes and some of these paths are potentially
the actual paths that the source AS uses to reach the destination
prefix.

IV. INFERENCE ALGORITHMS

A. Methodology

Our algorithms rely on the snapshots of BGP routing tables
from a number of vantage points. The inter-domain topology
information can be obtained from three major data sources.
The first one is to use traceroute-based tools to explore the
inter-domain path. However, this approach, relying on large
amounts of active measurements, not only is costly in terms of
traffic overhead and time-consuming (usually weeks [11]) but
also cannot guarantee to capture complete and up-to-date path
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information in a short time period. The second one is the Inter-
net Routing Registries [25], which maintain the routing poli-
cies of each AS. However, the information in the databases,
provided and updated by the administrators voluntarily, might
be out-of-date, inaccurate and incomplete [26]. The last and
the most frequently used one is the collection of BGP data
provided by several public data repositories. Although even the
collection of BGP tables cannot provide a perfectly ”complete”
Internet AS topology due to the partial views of a limited
number of vantage points [27], the combined data can provide
a much more complete and up-to-date AS topology than
the other two sources regarding the time and the resource
constraints. Moreover, the BGP tables are easy to access and
can be processed with low costs. More importantly, the routes
to majority of the prefixes in the Internet have been found to
be stable for days [28]. Among the available data sources,
only the BGP information can be obtained and processed
within hours while ensuring the relative completeness and
accuracy. Therefore, similar to [5], we also exploit the BGP
routing tables from several vantage points to infer the AS
paths. Because we utilize BGP routing tables as the basis of
our inference algorithm, we are able to provide near real-time
inference results based on the most recent BGP table dumps.
We have setup a website [29] to provide an online AS path
inference service. Users are able to access our inference results
through the provided web interfaces or APIs. Our goal is to
provide a general-purpose AS path inference service to the
research communities.

We proposed two algorithms to solve the single AS path
inference problem and the potential AS path inference prob-
lem. Similar to [5], the algorithms infer the path based on
the AS-prefix graph extracted from BGP routing tables and
use SPF-like criteria to compute the paths. Two major points
described below distinguish our algorithms from that in [5].

B. Incorporating Known Paths

The AS-prefix graph is extracted from the BGP tables of
N given vantage point ASs. For each destination prefix p,
we know at most N known paths to this destination before
we perform the inference algorithm. A disadvantage of [5]’s
approach is that it does not utilize these known paths. Thus, it
does not guarantee the inference accuracy even for the vantage
point ASs themselves. The intuition of our algorithm is to
incorporating these known paths into inference process. The
details are described as follows.

Suppose that path Pk = (vkvk−1 · · · v1p) = loc rib(vk)[p]
is the known path from a vantage point vk to a destination
prefix p. According to the BGP model, the best path of vk is
derived from the best path of vk−1 with path concatenation.
Thus one of the best path of vk−1 to p at this time MUST
be the sub-path Pk−1 = (vk−1vk−2 · · · v1p). Similarly, one
of the best path of vk−2 to p must be the sub-path Pk−2 =
(vk−2 · · · v1p), and so forth. Thus we can derive (k − 1) best
paths from a known path of length k. We call both the known
path Pk and the derived best path Pk−1, · · · , P1 as sure paths.
The ASs that have the sure paths are the base ASs.

When we combine the sure paths derived from the routing
tables of the N vantage points, a base AS might have multiple
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paths to the same destination prefix. In this case, a path
attribute frequency index, denoted by P.freq for a sure path P ,
is introduced to identify the frequency that path P is observed
by the vantage points. For a prefix p, if one of its sure path is
the sub-path of the AS paths of n vantage points, we say the
frequency index of this sure path to p is n. For instance, in
Figure 2, AS A and AS C are vantage points. The frequency
index of the sub-path (DE) is 2 and that of the sub-path
(CDE) is 1. Intuitively, assuming that the vantage points are
evenly distributed over the Internet, the frequency index should
be a reasonable metric that indicates how frequently this sub-
path is possibly used by the other ASs to reach the destination
prefix node.

[30] found that it was prevalent in the Internet that the AS
paths from different ASs to a destination will finally converge
to some shared sub-paths at some intermediate ASs. In the
context of this paper, this observation implies that the sure
paths of some base ASs to a destination prefix are frequently
reused by the other ASs to reach this prefix. Therefore, we are
able to infer the AS paths from an AS to a destination prefix
by extending the sure paths to this AS instead of inferring the
AS paths from this AS to the destination hop by hop.

A sure path can be extended in the following way. As shown
in Figure 3, given a AS-prefix graph G and the sure path P
of AS u, for a neighbor of u, say v, if the new path (v) + P
is valid, i.e. (v) + P �= ψ, sure path P can be extended to an
extended path (v) + P for v. Furthermore, for a neighbor of
v, say w, if (wv) +P �= ψ, the extended path (v) +P can be
further extended to (wv) + P for w.

We associate two path attributes to an extended path. One
is the unsure length, denoted by Pv.ulen for the extended
path Pv , which is the length of the extended part of the
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INITACTIVEQUEUE(p, queue,G, baseASset)
1 for v ∈ baseASset
2 do APPEND(queue,∪v)
3 path(v)[p]← sure path of v
4 SORT(rib in(v)[p])

KNOWNPATH(p,G = (V,E), baseASset)
1 queue← ∅
2 INITACTIVEQUEUE(p, queue,G, baseASset)
3 while queue.length > 0
4 do u← POP(queue, 0)
5 for v ∈ peers(u)
6 do Pu ← rib in(u)[p][0]
7 if v /∈ baseASset and (v) + Pu �= ψ
8 then tmppath← rib in(v)[p][0]
9 rib in(v)[p]← rib in(v)[p] � {(v) + Pu}

10 SORT(rib in(v)[p])
11 if tmppath �= path(v)[p][0] and v /∈ queue
12 then APPEND(queue, v)
13 return {rib in(v)|∀v ∈ V }

Fig. 4. Pseudo codes of the KNOWNPATH algorithm that incorporates known
paths

extended path. For instance, for the extended path (v) + P ,
its unsure length is 1 and for (wv) + P , its unsure length is
2. The other path attribute is the frequency index, denoted by
Pv.freq for the extended path Pv, which has the same value
as the frequency index of its base sure path. Intuitively, the
unsure length of an extended path is the measure of uncertainty
of the path extending operation since the longer the sure
path is extended, the less confident we are of the inference
accuracy. The frequency index of an extended path also has
some intuitive meaning. For a source AS and a destination
prefix, given two inferred paths with the same unsure length,
we would say that the one that has a higher frequency index
might be the correct one since we have seen more ASs using
the sure path of this path to reach the destination than the
other one.

Our inference algorithm is derived from the Bellman-Ford
algorithm. The Bellman-Ford algorithm iteratively computes
the shortest paths from all other nodes to a destination node,
starting from the initial state in which only the path of the
destination node is known. On the contrary, our inference
algorithm, which is called KNOWNPATH, starts from the initial
state in which all the base ASs install their sure paths. Then
the algorithm computes the shortest paths for all the other
ASs by extending the sure paths. The pseudo codes of the
KNOWNPATH algorithm is shown in Figure 4. The algorithm
maintains a global variable queue which stores the ASs whose
best paths have been changed. In the initial state, all the base
ASs install their sure paths and thus are put into queue. Later,
in each iteration, it is the turn of an AS in queue to propagate
its best path to its neighbors. If the best path of one of its
neighbors changes, this neighbor will be put into queue. Note
that the base ASs will never be added into queue after the
initial round.

We apply SPF-based path comparison procedures to select
the best path, which provides a monotonic ranking of the paths
in rib ins [31]. Thus the path selection procedure bestpath′()
can be implemented by simply sorting the paths in rib in in
descending order of preference and then returning the first one.
Thus the resulting rib in is an ordered set and the best path

COMPAREPATHSPF(P1 = (uv1 · · · p), P2 = (uv2 · · · p))
1 if |P1| �= |P2|
2 then return |P1| − |P2|
3 if P1.ulen �= P2.ulen
4 then return P1.ulen− P2.ulen
5 if P1.freq �= P2.freq
6 then return P2.freq − P1.freq
7 return v1 − v2

COMPAREPATHLUF(P1 = (uv1 · · · p), P2 = (uv2 · · · p))
1 if P1.ulen �= P2.ulen
2 then return P1.ulen− P2.ulen
3 if P1.freq �= P2.freq
4 then return P2.freq − P1.freq
5 if |P1| �= |P2|
6 then return |P1| − |P2|
7 return v1 − v2

Fig. 5. Pseudo codes of the two path comparison procedures

is rib in(u)[p][0]. According to the formulations of the single
AS path inference problem and the potential AS path inference
problem, given the ordered path set rib in(u)[p] for a source
AS u and destination prefix p, the solution to the single AS
path inference problem is its best path rib in(u)[p][0] and the
solution to the potential AS path inference problem is its path
set rib in(u)[p] or the first K paths of rib in(u)[p], denoted
by rib in(u)[p][: K], if the size of a potential path set is
limited by a given parameter K.

[5] employees the shortest path length as the single criterion
to select the best paths, which might lead to multiple best paths
between two ASs. In contrast to [5], equipped with the two
additional path attributes unsure length and frequency index,
we try to apply some SPF-based path comparison heuristic
to figure out the single best path. As shown in Figure 5, the
first strategy is the procedure COMPAREPATHSPF, which is
almost the basic form of the SPF strategy expect that we utilize
the unsure length and the frequency index of the extended
paths for the further tie breaking. In this procedure, given two
paths in the rib in of an AS, in the first step, the shorter one
will be preferred; in the second step, the one with a shorter
unsure length is preferred; in the third step, the one with a
higher frequency index is preferred; finally, in order to get
a deterministic result, the one that has lower first hop AS
number is preferred. We call this path comparison strategy as
Shortest Path First (SPF) strategy. The second strategy is the
procedure COMPAREPATHLUF, which utilize the intuitions
about the unsure length and the frequency index to try to
minimize the unsure length and maximize frequency index
of the path. The procedure is similar to COMPAREPATHSPF
except the priorities of the criteria. The second and third steps
are performed prior to the first step. We call this strategy as
Least Uncertainty First (LUF) strategy. In the path inference
algorithm, once the rib in of an AS is updated, the AS
will sort the paths in its rib in by calling one of the path
comparison procedures. We will compare the performance of
the inference algorithms adopting these two path comparison
strategies in the experiments.

C. Incorporating Potential Paths

In the Bellman-Ford algorithm, a node propagates a single
best path to its neighbors. A disadvantage of the single path
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MULTIPATHS(p,G = (V,E), baseASset,M)
1 queue← ∅
2 INITACTIVEQUEUE(p, queue,G, baseASset)
3 while queue.length > 0
4 do u← POP(queue, 0)
5 for v ∈ peers(u)
6 do if v /∈ baseASset
7 then tmppathset← path(v)[p][: M ]
8 for Pu ∈ rib in(u)[p][: M ]
9 do if (v) + Pu �= ψ

10 then rib in(v)[p]← rib in(v)[p] ∪ {(v) + Pu}
11 for (vx · · · p) ∈ rib in(v)[p]
12 do if x == u and (x · · · p) /∈ rib in(u)[p]
13 then rib in(v)[p]← rib in(v)[p]− {(vx · · · p)}
14 SORT(rib in(v)[p])
15 if tmppathset �= path(v)[p][0 : M ] and v /∈ queue
16 then APPEND(queue, v)
17 return {rib in(v)|∀v ∈ V }

Fig. 6. Pseudo codes of MULTIPATHS algorithm that allow the multiple
paths advertisement

inference algorithm is that the inference inaccuracy of the
predecessor ASs’ paths will be inherited by the successor ASs.
Thus, the inference accuracy of the best path will exponentially
decrease with the growth of the unsure length. Our experi-
mental results show that if we look at the best M paths in
rib in instead of the first one, the chance that the actual path
shows in these M paths can increase significantly. If the best
M paths are allowed to be propagated to the neighbors, the
successor ASs will have higher chance to acquire the correct
paths. Consequently, the chance that we are able to find the
correct path in the successors’ rib in(u)[p]s will be increased
and the inference accuracy for the potential AS path inference
problem will be improved. Therefore, on the basis of the
previous codes, we further modify the KNOWNPATH algorithm
to support the advertisement of multiple paths, which is called
MULTIPATHS, as shown in Figure 6.

In the MULTIPATHS algorithm, maximal M paths are al-
lowed to be propagated from an AS to its neighbors, where
M is a configurable parameter. In each iteration, an AS u
propagates its best M paths to its neighbors. At first, the
M paths are added to each neighbor’s rib in. We use the
ordinary union operator ”∪” instead of ”�” to add the new
path. Then each neighbor will withdraw the paths that are
previously learned from u but now no longer show in u’s first
M paths. Once the rib in of a neighbor is updated and a path
change is detected, this AS will be put into queue.

V. EXPERIMENTS AND VALIDATION

In this section, we use BGP data to validate the performance
of the algorithms. Before doing this, we first introduce the
selection of the data sources of BGP routing tables.

A. Data Sources

In this paper, we use the routing tables from ROUTEVIEWS
[32], RIPE RIS project [33] and CERNET BGP VIEW [34].
All of them have been collecting BGP routing data around
the world for several years. In the experiments, we mainly
focused on the BGP data collected at 16:00 PM GMT on
10/10/2004. In order to evaluation the performance of the
algorithm over time, we also examine the performance of the
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Fig. 7. Weight of the unsure length in the AS paths of the examined ASs

algorithms over the data sets collected at 00:00 AM GMT on
7/10/2004, 12/22/2004 and 3/20/2005 respectively.

We mainly use the routing tables from ROUTEVIEWS as
the basis of inference. Table I listed these ASs and their
relevant information in ascending order of AS number. The
third column of the table shows their names and countries and
the fourth column shows the tiers that these ASs located in
the Internet hierarchy [14] and their degrees as well as degree
ranks. The information shows that these ASs provide a view
set that has adequate diversities in terms of both geographical
locations and Internet hierarchical positions. Based on the BGP
tables of these ASs, we construct the AS-prefix graph, infer
the AS relationships, and then perform our algorithms. The
AS relationship inference algorithm in [4] is adopted in this
paper.

We analyze the statistics of the sure paths in the routing
tables of those ASs in Table I in 10/10/2004 data set. It is
found that the number of distinct paths in these routing tables
is 5, 687, 631 while the number of the derived sure paths is
7, 379, 993. Surprisingly, the number of sure paths expands
by 1.3 times only. In addition, except those origin ASs of the
prefixes, the number of base ASs is 1081 only out of the totally
18382 ASs. The numbers suggest that the Internet have a core
composed of a few ASs and the paths of these intermediate
ASs be frequently used by the edge ASs to reach the other part
of the Internet. This observation is confirmed with the findings
of [30]. We also examine the number of sure paths between
the any pair of source AS and destination prefixes. We found
that 99.2% of them have single path only and 8% have two
or more paths, which shows our assumption that there is one
path for a pair of AS and destination holds in most cases.

We mainly use the routing tables from the other two sources
rather than ROUTEVIEWS for the purpose of validation.
These ASs are listed in Table II in ascending order of
AS number. The information pertaining to the geographical
locations and the Internet hierarchical positions is also listed
in the table. In addition, based on the known paths of the
ASs in Table I, Figure 7 shows the average unsure length and
the average percentage of unsure part of the paths for all the
prefixes for each of the examined ASs in the table. Intuitively,
the average unsure length measures the average distance of
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TABLE I

ROUTING TABLES FOR AS PATH INFERENCE

ASN IP Address Name/Country T/D/R
0 286 134.222.85.45 KPN/NL 2/264/26
1 293 134.55.200.1 ESN/US 3/111/62
2 1221 203.62.252.26 Telstra/AU 3/86/78
3 1239 144.228.241.81 Sprint/US 1/1737/3
4 1299 213.248.83.240 TeliaNet/SE 1/288/22
5 1668 66.185.128.48 AOL/US 2/102/66
6 2493 206.186.255.223 Sprint/CA 5/1/12702
7 2497 202.232.0.2 JPNIC/JP 2/200/38
8 2828 65.106.7.139 XO Comm/US 1/450/16
9 2905 196.7.106.245 UUNET/ZA 3/27/267

10 2914 129.250.0.11 Verio/US 1/637/7
11 3257 213.200.87.254 Tiscali/DE 2/256/30
12 3277 194.85.4.55 RUSNet/RU 5/80/86
13 3292 195.249.0.135 TDC/DK 2/276/25
14 3303 164.128.32.11 Swisscom/CH 1/526/14
15 3333 193.0.0.56 RIPE/NL 3/127/55
16 3356 4.68.0.243 Level3/US 1/1189/4
17 3549 208.51.134.254 GlobalCrossing/US 1/598/9
18 3561 206.24.210.26 Savvis/US 1/614/8
19 4513 195.66.224.82 Globix/US 2/532/13
20 5056 167.142.3.6 IowaNetS/US 3/13/594
21 5459 195.66.232.254 London IX/GB 3/159/43
22 5511 193.251.245.6 France Telecom/FR 1/185/39
23 5650 208.186.154.35 Elec. Lightwave/US 1/185/40
24 6079 207.172.6.227 RCN/US 3/127/56
25 6395 216.140.8.59 Broadwing/US 1/311/18
26 6453 195.219.96.239 Teleglobe/CA 1/261/28
27 6461 209.249.254.19 Metromedia/US 3/588/10
28 6509 205.189.32.44 Canarie/CA 3/36/190
29 6539 216.18.63.137 Group/CA 3/263/27
30 6939 216.218.252.145 Hurricane/US 2/310/19
31 7018 12.0.1.63 AT&T/US 1/1929/2
32 7660 203.181.248.233 APAN/JP 3/28/261
33 7911 64.200.151.12 Williams/US 1/284/24
34 8001 209.123.12.51 Net Access Corp/US 2/225/36
35 8075 207.46.32.32 Microsoft/US 3/210/37
36 9942 203.194.0.12 COMindico/AU 2/146/48
37 11537 198.32.8.196 Abilene/US 3/77/93
38 11608 207.246.129.14 Accretive/US 3/98/69
39 12956 213.140.32.146 Telefonica/ES 2/227/35
40 15290 216.191.65.126 Allstream/CA 2/163/42
41 16150 217.75.96.60 Port80 AB/SE 3/36/196

these ASs to the sure paths. It shows that on average the
examined ASs are 0.3 ∼ 2.9 AS hops away from the base ASs
and have a percentage of unsure length of 7 ∼ 52%. Given
the high diversities exhibited in terms of both the locations
and the unsure length statistics of these ASs, we have some
confidence of having a representative sample of ASs in the
Internet. We believe that these ASs will not lead to a biased
evaluation of the performance of our algorithms.

B. Upper bounds on inference accuracy

Before the validation, we first use the data collected on
10/10/2004 to investigate how the inaccuracy of the topology
information of the resulting AS-prefix graph impact the per-
formance of the AS path inference algorithm.

We first use the BGP tables of those ASs in Table I to extract
the AS-prefix graph and infer the AS relationships. Then we
check the AS paths in the tables of those in Table II to see
how many paths can be found in the resulting AS graph. There
are two possible reasons that a path cannot be found in the
graph. The first is that this path contains the links that are
invisible to the vantage points in Table I. We categorize this
kind of paths as the missing-link paths; the other reason is that
this path is not valley-free in the resulting AS-prefix graph.
We categorize this kind of paths as the invalid-policy paths.

TABLE II

ROUTING TABLES FOR VALIDATION

# ASN IP Address Name/Country T/D/R
0 513 192.65.184.3 CERN/CH 3/16/471
1 1103 195.69.144.34 SURFnet/NL 3/35/199
2 1853 193.203.0.1 ACOnet/AT 3/25/292
3 2116 194.68.123.149 Catch Comm./NO 3/17/449
4 3741 168.209.255.2 Internet Solution/ZA 4/44/151
5 4538 202.112.60.251 CERNET/CN 3/14/549
6 4608 202.12.29.64 APNIC/AU 5/1/12885
7 4777 202.12.28.190 APNIC NSPIXP2/AU 3/3/2699
8 5392 217.29.66.5 TELNET/IT 4/3/2709
9 5417 195.69.144.99 Demon/GB 3/8/977

10 6762 195.69.144.196 Telecom/IT 2/79/89
11 8251 195.69.144.52 Cistron IP/NL 3/10/796
12 8434 194.68.123.66 Telenor AB/SE 3/67/104
13 9177 212.47.190.1 SOLPA AG/CH 4/8/1009
14 12779 217.29.66.65 ITGATE.Net/IT 4/8/1033
15 12793 193.203.0.52 eTel/AT 3/18/440
16 12859 195.69.144.200 BIT/NL 3/25/304
17 13030 198.32.160.103 Init Seven/CH 3/28/264
18 13129 212.20.151.234 Cogent/DE 2/57/118
19 13237 195.69.144.212 LambdaNet/FR 2/135/53
20 15837 80.81.192.126 Tele GmbH/DE 5/16/493
21 20854 194.153.154.35 Mega Provider/NL 3/3/3825
22 20932 192.65.185.142 SIG/NL 3/9/937
23 25232 195.69.144.121 Rokscom/NL 5/19/417
24 25560 80.81.192.106 rh-tec/DE 4/8/1069
25 29686 195.69.145.56 Probe/DE 2/17/469
26 31477 193.111.172.55 DUOCAST/NL 5/2/11863
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These two kinds of paths are referred to as uninferable paths
(In contrast, the other paths are inferable for this AS-prefix
graph.). Note that these two categories might be overlapped
since a path cannot be found due to both missing links and
policy violations. The percentage of the uninferable paths for
each examined tables is shown in Figure 8. It shows that on
average about 10.5% of paths cannot be found in the given
AS-prefix graph. Although [5] found that the results of AS
relationships inference could impact the performance of AS
path inference, our finding shows that there are only a few
invalid-policy paths in most of the tables except those of
AS15837 and AS31477. But even if the AS relationships are
inferred with 100% accuracy, there still remain average 10%
of paths uninferable due to the missing links. The existence
of these uninferable paths provides an upper bound to the AS
path inference accuracy given that the inference is performed
over the given AS-prefix graph.
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C. Validation

In this section, we are going to validate the performance of
our inference algorithms. The AS paths of the ASs in Table II
are inferred on the basis of the AS-prefix graph extracted from
the routing tables of the vantage points in Table I.

Because each run of the algorithm is able to infer the
AS paths of all the ASs to a destination prefix, we need
to run around 150, 000 to check the general performance of
the algorithms for all the prefixes. However, many prefixes
shared identical AS paths [35]. By clustering the prefixes that
share the identical AS paths, we get only about 27, 000 prefix
clusters. For each prefix cluster, we pick only one prefix as
the destination prefix and feed it to the inference algorithms.
The resulting AS paths are used for all the prefixes belonging
to this prefix cluster. Thus the actual running time for the
validation is significantly reduced by 7 times. We took the
validation experiments on a desktop equipped with Pentium
IV 2.8 GHz CPU and 1 GB RAM. In order to get the results
for all the prefixes, we need to run the algorithms around
24∼48 hours, i.e. it takes around 4∼8 seconds to infer the AS
paths of all the ASs to one particular destination prefix.

In order to evaluate the performance of the algorithm, we
use the similar metrics defined in [5] for evaluation. For an
examined AS u and a particular prefix p, by comparing the
path lengths of the inferred path and the actual path, the result
can be longer, shorter or length match; by checking whether
the actual path is the best path or just shows up in the rib in,
the result can be exact match (the inferred best path is the
actual path) or one match (one of the paths in the rib in
matches with the actual path). Besides these metrics, we also
define a metric (one) match in K which indicates whether the
actual path is in the first K paths in the rib in. The metrics
longer, shorter, length match and exact match are used for
the evaluation for the single AS path inference problem and
the metrics one match and match in K are for the potential
AS path inference problem. In order to show the inference
upper bound imposed by the inaccuracy of the given AS-prefix
graph, we use metric upper bound to refer to the percentage
of the inferable paths, which can be directly derived from the
ratios of uninferable paths shown in Figure 8.

We mainly checked the performance of the algorithms on
the data set collected on 10/10/2004. We ran KNOWNPATH

that uses COMPAREPATHSPF and COMPAREPATHLUF re-
spectively and the multiple path version MULTIPATH algo-
rithm with parameter M = 3. For the sake of comparison, we
also ran the basic Bellman-Ford algorithm that incorporates
neither known paths nor multiple potential paths, which is the
similar approach adopted in [5].

In [5], the authors developed a novel technique to detect the
first AS hop that a source AS will use to reach a destination.
They showed that if the first AS hop information had been
provided, their inference accuracy of length match could be
improved by up to 15% to around 70%∼88%. In this paper,
we also check how the performance of the algorithms will
be improved by incorporating the first AS hop information
assuming that the information had been available beforehand.

Graphs in Figure 9 show the performance of KNOWNPATH

in difference scenarios. The x axis in the graphs represents
the indexes of the examined vantage points in Table II and y
axis indicates the value of each performance metric.

Figure 9(a) shows the performance of KNOWNPATH that
leverages the SPF path comparison procedure and Figure 9(b)
shows that of the LUF path comparison procedure. In the
case of the SPF strategy, the percentage of the shorter paths
is apparently more than longer paths while the percentages
of the shorter and longer paths are nearly comparable in
the later case. We find that the average performances of the
other metrics are approximately the same in two figures. But
for the individual ASs, in terms of exact match, the two
strategies yield distinct performances for different vantage
points. For instance, the SPF strategy yields less than 40% ex-
act match paths for AS12859, AS13030, AS13237, AS20854
and AS31477; the worst case (AS12859) is only 16% while
the best case (AS4608) is up to 95%. In contrast, the LUF
strategy yields less than 40% exact match paths for AS513,
AS13129, AS20854, AS25232 and AS31477; AS31477 is the
worst case (7%) and AS4608 is the best case (95%). Such
various performances of the two path comparison procedures
for different vantage points suggests that the routing policies
adopted by each individual AS are highly diverse and we
cannot apply an uniformly defined path selection procedure to
all the ASs. This observation also suggests a possible future
direction for the AS path inference problem, i.e. to apply
different routing selection procedure for particular ASs.

It is worthy of mentioning that in the experiments, we
also tried several other path comparison procedures. For ex-
ample, we tried the typical routing preference strategy, i.e.
the customer routes are superior to the peer and provider
routes no matter how long the paths are. We also tried
other path comparison procedures by exchanging the priorities
of each criterion in the procedures COMPAREPATHSPF or
COMPAREPATHLUF. However, we found that on average the
SPF and the LUF strategies significantly outperform the other
path comparison strategies even the strategy that employees the
typical routing preference. The observation might suggests that
most of the ASs in the Internet not utilize the local preference
to set the routing policies but still rely on the shortest path first
strategy as default for most of the prefixes. Another interesting
observation is that although the authors in [23] observed route
oscillations in the AS graph with inferred AS relationships if
they adopted the typical routing preference path comparison
strategy, we did not observe route oscillations when we use
the same path comparison procedure in our KNOWNPATH

algorithm. Note that [23] found that the oscillations are caused
by the provider-to-customer cycles in the AS graph. Our
observation suggests that the introduction of the known paths
into the graph be able to separate the provider-to-customer
cycle in the AS graph and prevent route oscillations.

We find that by incorporating the first AS hop information
into AS path inference, the performance of the KNOWNPATH

algorithm is improved significantly no matter which path
comparison procedure is used, as shown in Figure 9(c) and
9(d). Moreover, the algorithms produce comparable inference
accuracy for different vantage points. The observation again
suggests the importance of the local routing policies to the AS
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Fig. 9. Performance of the KNOWNPATH algorithm

TABLE III

AVERAGE PERFORMANCE OF THE ALGORITHMS

length exact one
(%) longer shorter match match match

NOPATH 5 25 69 33 49
NOPATH

+ first hop 7 16 78 51 52

KNOWNPATH w/
SPF 6 15 78 60 78

KNOWNPATH w/
LUF 10 8 81 58 79

KNOWNPATH w/
SPF + first hop 8 4 88 77 78

KNOWNPATH w/
LUP + first hop 9 3 88 78 80

MULTIPATHS w/
LUF 8 10 81 59 86

MULTIPATHS w/
LUP + first hop 10 3 87 77 86

NOPATH for
ASs in Table I 0 24 76 40 73

path inference.
For comparison, the averages of the performance metrics in

different scenarios are listed in Table III. We use term NOPATH

to refer to the basic algorithm that neither incorporates known
AS paths nor propagates multiple potential paths. We are
able to observe the influence of different factors on the
performance. By leveraging known paths, there is a 25∼27%
improvement in terms of exact match from 33% to 57 ∼ 59%
and a 10∼12% improvement in terms of length match from
69% to 78 ∼ 81%. Furthermore, if the first AS hop informa-
tion is given, there is another 20% gain in terms of exact match

to 78% and another 7% improvements in terms of length match
to 88%. In addition, since the MULTIPATHS algorithm adopts
the same path comparison procedure as KNOWNPATH, there is
no apparent differences in the performance metrics pertaining
to the single AS path inference problem. On the other hand, in
terms of the performance metrics related to the potential AS
path inference problem, the MULTIPATHS algorithm yields the
average accuracy as high as 86% for one match, which is about
95% of all inferable paths for the examined vantage points.

Furthermore, for the basic algorithm NOPATH, we also
check its inference accuracy for the ASs in Table I. The routing
tables of these ASs are used to construct the AS-prefix graph
for the inference. The results are shown in the last row of
Table III. It shows that the algorithm only yields an average
accuracy of 40% in terms of exact match and 73% in terms
of one match even for the ASs whose AS paths have been
known. In contrast, our algorithms are able to guarantee 100%
inference accuracy for these ASs.

Figure 10 shows the distribution of average value of the
performance metric match in K against the value of K
for different algorithms and scenarios. For the curve of the
KNOWNPATH algorithm, we observe a sharp increase in the
first 5 paths. Later, the improvement of the performance metric
of match with K becomes almost negligible. Therefore, if we
lower the objective of the single AS path inference problem
to solve the easier potential AS path inference problem, the
accuracy can be increased. This also suggests the intuition
behind the MULTIPATHS algorithm. Figure 10 shows that there
is an 8% improvement to 86% in terms of one match if we
allow multiple paths advertised to the neighbors. We can also
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observe the similar abrupt increase of the inference accuracy
in the first few paths. It shows that we can find nearly 86%
paths within the first 10 paths. In addition, we found that the
incorporation of first hop AS information does not improve
the performance of one match but it do help the algorithm
identify the best paths.

When we employ the MULTIPATHS algorithm, it is found
that the first AS hop information improve the accuracy of
exact match. But the improvement is approximately the same
degree as that to the KNOWNPATH algorithm. There still
remain about 10% paths that have been correctly inferred and
stored in rib in but cannot be identified as the best path. The
observation suggests that we might need some other additional
information to identify the rest of the best paths. We tried
several approaches. At first, we tried to exploit the information
in IRR. We extracted the AS relationships according to the
routing registry information of RIPE NCC with the similar
methodology introduced in [26]. By applying the calibrated AS
relationships, some paths in rib ins are eliminated due to the
violation of the valley-free property. An improvement of about
0.5% is observed. In addition, [36] reported that there exists
a Global Education and Research Network (GERN) in the
Internet which is composed of several continental and national
educational and research backbones, such as Abilene in US,
GÉANT in Europe and APAN in Asia & Pacific. The paths
between the ASs in GERN most likely stay in GERN instead
of going out through commercial backbones. By applying the
heuristic that two ASs in GERN prefer paths within GERN,
we get another 0.3% improvement of inference accuracy. The
improvement led by these heuristics seems negligible, but
they suggest that we might be able to improve the inference
accuracy by applying some specific routing policies.

D. Factors influencing the inference accuracy

Because of the limitation of the available data sources, we
are able to evaluate the performance of our algorithms for a
limited number of ASs. It seems unconvincing to conclude
that our algorithms could yield the similar inference accuracy
for the rest of the ASs. However, we argue that our inference
algorithm could guarantee the similar performance for most
of the ASs in the Internet. The reasons are as follows. First,

we have shown that the selection of the ASs for validation
exhibit adequate diversity in terms of not only the geographical
and hierarchical positions but also the distribution of unsure
lengths. The second, we performed intense experiments to
check the impact of the numbers and the selections of the
vantage points on the inference accuracy and the stability of
the inference accuracy over time using various combinations
of the available BGP routing tables. The experiments are
described as follows. In these experiments, we only discuss
the performance of the KNOWNPATH algorithm with the SPF
path comparison strategy.

The impact of the vantage points on the performance of
the algorithm: In order to check the impact of the selection of
vantage points on the performance of the algorithm, we tried
as many the combinations of the known vantage points as
possible to perform our algorithms. We group the 42 vantage
points in Table I and II into several groups and incorporate
the AS paths of each group into the inference process to
examine whether the selection of the known vantage points
will influence the performance. First, we group the ASs into
4 groups, which include the ASs in Table I with index 0 ∼ 9,
10 ∼ 20, 21 ∼ 30 and 31 ∼ 42 respectively. Each group has
the tables of around 10 vantage points. The inference results
for the ASs in Table II are shown in Figure 11(a). Then we
divided the top 21 and the bottom 21 ASs into two groups as
inference basis. The performance of the algorithm are shown
in Figure 11(b). Third, we grouped the top 31 and the bottom
31 ASs into two groups. The inference results based on these
ASs for the ASs in Table II are shown in Figure 11(c). Finally,
we use the last 15 ASs in Table I and the 27 ASs in Table II
to compose another 42 ASs to construct an AS graph to infer
the AS paths of the first 27 ASs in Table I. This AS set is
referred to as set #2 and the AS set in Table I is referred to
as set #1. We compare the results of this experiment based on
the ASs in the set #2 with the previous results based on the
set #1 in Figure 11(d). According to the charts in Figure 11,
it is find that if the numbers of the known vantage points are
approximately the same, the influent of the selection of vantage
points on the average performance of the algorithm seems
minor. For instance, the accuracy in terms of exact match is
around 47%∼49% if the number of vantage points is around
10; it is around 52%∼54% if the number is 21; it is around
56%∼57% if the number is 31; and the accuracy is around
58%∼60% if the number is 42. But it is clear that the selection
of vantage points do influence the inference performance. It is
still worthy of investigating how to select the vantage points in
the most efficient way such that it achieve the best inference
accuracy.

The impact of the number of vantage points on the
performance of the algorithm: In addition, based on the
previous experiments, we are able to examine the impact of the
number of vantage points on the performance of the algorithm.
We compare the performance metrics of the KNOWNPATH

algorithm that incorporate the AS paths of different number
of vantage points. We checked the cases that the known
paths of the first 10, 21 and 31 vantage points in Table I
are incorporated. The results are shown in Figure 12. We
find that by incorporating the AS paths of more vantage
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Fig. 11. Impact of the selection of the vantage points on the performance of the algorithm
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Fig. 13. Stability of the performance of the algorithm over time

points, the performance of the algorithm is improved. But
the marginal utility of the vantage points decreases. The
observation suggests that although it shows that the more
the known vantage points, the more accurate the inference
results, we are able to achieve good enough performance by
exploiting the BGP routing tables of a moderate number of
vantage points.

Stability of the inference accuracy over time: In order to
check the stability of the algorithm’s performance to different
data set over time, we apply the algorithm to the data sets
collected on the other three dates: 7/10/2004, 12/22/2004 and
3/20/2005. The change trends in terms of exact match, length

match, one match and upper bounds are shown in Figure 13.
It is found that the curves fluctuate within an acceptable range
over time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed several novel techniques to solve
the single AS path inference problem and the potential AS
path inference problem. At first, by introducing the topological
information of the destination prefixes into the AS graph, we
are able to infer the AS paths specific to prefixes instead
of ASs. Second, by incorporating the known paths of the
vantage points into inference process, our algorithms achieve
an average accuracy of 60% in terms of exact match and an
average accuracy of 81% in terms of length match for the
single AS path inference problem. At last, by incorporating
multiple potential paths in the inference process, our algorithm
achieves an average accuracy of 86% in terms of one match
for the potential AS path inference problem.

There still remain some open questions to answer. At
first, although the number of vantage points is the major
factor that influences the inference accuracy, in the case that
the number of vantage points are limited, it is worthy of
investigating how the selection of the vantage points impact
the inference results. It has been shown that the first AS
hop information help improve the inference accuracy, but the
measurement approach proposed in [5] need the access to the
destination network, which still seems infeasible in practice
for most of the destination prefixes. Further investigations of
the methodologies that detect the first AS hop information and
discover other local routing policies are worthwhile for the AS
path inference problem.
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