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ABSTRACT
We consider a two-stage sensing scheme for cognitive radios where
coarse sensing based on energy detection is performed in the first
stage and, if required, fine sensing based on cyclostationary detec-
tion in the second stage. We design the detection threshold param-
eters in the two sensing stages so as to maximize the probability of
detection, given constraints on the probability of false alarm. We
compare this scheme with ones where only energy detection or cy-
clostationary detection is performed. The performance comparison
is made based on the probability of detection, probability of false
alarm and mean detection time.

Index Terms— Two-stage spectrum sensing, cognitive radios,
energy detection, cyclostationary detection

1. INTRODUCTION

Cognitive radios have emerged as a promising solution to improv-
ing spectrum utilization. It has been widely recognized that while
there is a perceived scarcity of radio spectrum, large portions of li-
censed spectrum remain under-utilized [4]. Cognitive radios deter-
mine empty portions of licensed spectrum, and utilize such portions
for secondary use in order to meet regulatory constraints of limiting
harmful interference to licensed wireless systems. The determina-
tion of empty spectrum is typically done by spectrum sensing and
is a critical challenge in cognitive radios. In particular, (i) spectrum
sensing has to reliably determine the presence or absence of ongoing
licensed transmissions, and (ii) sensing of multiple radio channels
(possibly spanning several hundreds of MHz) has to be done as fast
as possible.

Two sensing techniques that have been commonly considered in
cognitive radios are energy detection [1], [2], [9] and cyclostationary
detection [6], [8]. While energy detection is a simple detection tech-
nique, its performance is not robust to noise and is known to be poor
at low SNRs. Cyclostationary detection on the other hand provides
better detection but is computationally more complex and needs a
much higher sensing time.

In this paper, we consider a two-stage sensing approach based
on energy detection and cyclostationary detection. For a given chan-
nel, in the first stage, energy detection is performed. If the energy is
above a certain threshold λ, the channel is declared to be occupied.
Else, cyclostationary detection is performed in the second stage. If
the decision metric in this stage exceeds a certain threshold γ, the
channel is declared to be occupied. Else, it is declared to be empty
and available for secondary use. We analyze the performance of
such a two-stage sensing approach in terms of the probabilities of
detection and false-alarm and the mean detection time to determine
occupancy of a channel. Thresholds λ and γ that maximize the prob-
ability of detection under this approach, with the probability of false

alarm being constrained, are also determined.
A two-stage sensing based on energy detection with different

sensing bandwidths in the two stages was proposed in [7]. Our work
differs from [7] in two ways. We consider two-stage sensing over
the channel bandwidth, whereas [7] first searches over a larger band-
width in the coarse sensing stage and then over the channel band-
width in the fine sensing stage. Moreover, in [7], both stages are
based on energy detection. Further, our approach in this paper is
to design the detection thresholds so as to optimize detection perfor-
mance and study the performance trade-offs of the two-stage sensing
scheme with the resulting thresholds.

The remainder of the paper is organized as follows. In Section 2,
we first present the two-stage sensing scheme. Section 3 analyzes
the scheme from a detection performance and mean detection time
viewpoint. In Section 4, we present simulation results of two-stage
sensing for an OFDM signal and finally in Section 5, we draw con-
clusions.

2. TWO-STAGE SPECTRUM SENSING

The two-stage spectrum sensing that we propose is shown in fig-
ure 1. We assume that there are L channels to be sensed and that
channels are sensed serially. In the coarse sensing stage, the channel
is sensed using energy detection. If the decision metric is greater
than a threshold λ, the channel is declared to be occupied. Else, the
received signal is analyzed by fine sensing consisting of cyclosta-
tionary detection. If the constituent detection metric is greater than
a threshold γ, the channel is declared occupied, else it is declared to
be empty. In the following we shall discuss the two stages of energy
detection [2], [9] and cyclostationary detection [3], [6] in the context
of two-stage sensing.

Energy Detection

λ

If D , declare channel  occupied
c
> λ

Else

Cyclostationary
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γ If D , declare channel  occupied

Else, declare channel  vacant

f
> γ

Fig. 1. Two-stage spectrum sensing scheme.

2.1. Coarse Sensing

An energy detector which serially searches every channel within the
band is used as coarse sensing stage. The energy detector accumu-
lates the energy of M c samples and then compares it with a threshold
λ to decide whether the primary user is present or not.
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Denoting H1 and H0 as the respective probabilities of primary
user presence and absence, the energy detector makes its decision
based on M c observations xk, k = 1, . . . , M c, given by

xk =

{
nk under H0

sk + nk under H1
(1)

with the primary user’s signal and receiver noise denoted by sk and
nk, respectively. The noise is assumed to be an i.i.d. random Gaus-
sian process with zero mean and variance σ2

n, while the signal is
assumed to be an i.i.d. random process of zero mean and variance
σ2

s .
The decision rule used by the energy detector is given by

Dc =
Mc∑
k=1

x2
k

H1
≷
H0

λ. (2)

The test statistic Dc for large M c can be modeled by a Gaussian
distribution as follows [2],

Dc ∼
{N (M cσ2

n, 2M cσ4
n) under H0

N (M c(σ2
n + σ2

s), 2M c(σ2
n + σ2

s)2) under H1.
(3)

Then, the probability of false alarm, P c
f , and probability of detection,

P c
d, for the energy detector stage are

P c
f = Q

(
λ − M cσ2

n√
2M cσ4

n

)
, (4)

P c
d = Q

(
λ − M c(σ2

n + σ2
s)√

2M c(σ2
n + σs

2
)2

)
, (5)

where Q(a) is the Q-function.

2.2. Fine Sensing

Upon detection of the possible empty channels in the coarse sensing
stage, a final decision about the vacancy of the channel is made after
the fine sensing stage. For the fine sensing stage, a cyclostationary
detector, which has better performance than the energy detector, par-
ticularly for low SNR, is employed.

Cyclostationary processes are random processes for which the
statistical properties such as the mean and autocorrelation change
periodically as a function of time [5]. Many of the signals used in
wireless communications and radar systems possess this property.
Cyclostationarity may be caused by modulation and coding [5], or
it may be intentionally produced to help channel estimation, equal-
ization or synchronization such as the use of the cyclic prefix (CP)
in an OFDM signal [8]. In our work, we use the second-order time
domain cyclostationary detector presented in [3].

A random process xk, k = 1, . . . , M f is wide-sense second-
order cyclostationary if there exists a K > 0 such that

μx(k) = μx(k + K), ∀k

and
Rx(k, κ) = Rx(k + K, κ), ∀(k, κ)

where μx(k) = E[xk] is the mean value of the random process xk,
Rx(k, κ) = E[xkx∗

k+κ] is the autocorrelation function, and K is
called the cyclic period.

Due to the periodicity of the autocorrelation Rx(k, κ), it has a
Fourier-series representation as follows [3]:

Rx(k, κ) =
∑

α

Rα
x (κ)ejαk,

where the Fourier coefficients are

Rα
x (κ) = lim

M f→∞
1

M f

M f−1∑
k=0

Rx(k, κ)e−jαk

with α called the cyclic frequency and Rα
x (κ) called the cyclic auto-

correlation function.

To check if Rα
x (κ) is null for a given candidate cycle, consider

the following estimator of Rα
x (κ)

R̂α
x (κ) =

1

M f

M f−1∑
k=0

xkx∗
k+κe−jαk

= Rα
x (κ) + εα

x (κ) (6)

where εα
x (κ) represents the estimation error which vanishes as

M f → ∞. Due to the error εα
x (κ), the estimator R̂α

x (κ) is seldom
exactly zero in practice, even when α is not a cyclic frequency. This
raises an important issue about deciding whether a given value of

R̂α
x (κ) is ”zero” or not. To answer this question statistically, we use

the decision-making approach of [3].

In general, we consider a vector of R̂α
x (κ) values rather than

a single value in order to check simultaneously for the presence of
cycles in a set of lags κ.

Let κ1, ..., κN be a fixed set of lags, α be a candidate cyclic
frequency, and

R̂x =
[�{R̂α

x (κ1)}, ...,�{R̂α
x (κN )},

�{R̂α
x (κ1)}, ...,�{R̂α

x (κN )}]
represent a 1 × 2N row vector consisting of cyclic correlation esti-
mators from (6) with � and � representing the real and imaginary
parts, respectively. If the asymptotic value of R̂x is given as Rx

where

Rx =
[�{Rα

x (κ1)}, ...,�{Rα
x (κN )},

�{Rα
x (κ1)}, ...,�{Rα

x (κN )}].
Then, we can write R̂x = Rx + εx where

εx =
[�{εα

x (κ1)}, ...,�{εα
x (κN )},

�{εα
x (κ1)}, ...,�{εα

x (κN )}]
is the estimation error vector.

In [3], the test statistic related to the cyclostationary detector has
been derived as follows

Df = M fR̂xΣ̂
−1R̂H

x (7)

where Σ̂ is the covariance matrix of R̂x. In [3], it is shown that the
test statistic Df under the hypothesis H0, asymptotically has a cen-
tral chi-squared distribution, while under the hypothesis H1 follows
a Gaussian distribution. Hence, for a large M f we can write

Df ∼
{

χ2
2N under H0

N (M fR̂xΣ̂
−1R̂H

x , 4M fR̂xΣ̂
−1R̂H

x ) under H1
(8)

Having the asymptotic distribution of the test statistic Df, we say
that if Df ≥ γ we can declare α is a cyclic frequency for some κn

and therefore the primary user is present. Else, we declare α is not
a cyclic frequency and thus the primary user is absent, which means
that this band is empty and can be used by the cognitive radio.

The probability of detection, P f
d, and the probability of false

alarm, P f
f , can be obtained as

P f
f = P (Df ≥ γ|H0) =

Γ(γ/2, N)

Γ(N)
, (9)

P f
d = P (Df ≥ γ|H1) = Q

(
γ − M fR̂xΣ̂

−1R̂H
x√

(4M fR̂xΣ̂−1R̂H
x )

)
, (10)

where Γ(a) is the gamma function and Γ(a, x) is the incomplete
gamma function (Γ(a, x) =

∫ ∞
x

ta−1e−tdt).
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3. PROBLEM FORMULATION AND ANALYSIS

In the two-stage sensing scheme, a false alarm occurs if, under H0,
(i) Dc > λ, or (ii) Df > γ given that Dc ≤ λ. Similarly, a correct
detection occurs if, under H1, (i) Dc > λ, or (ii) Df > γ given
that Dc ≤ λ. Hence, the overall probabilities of false alarm and
detection for a single channel are given by

Pf = P c
f + (1 − P c

f )P f
f , (11)

Pd = P c
d + (1 − P c

d)P f
d. (12)

The goal is to design a decision strategy (determination of λ and
γ) in order to maximize the probability of detection of each chan-
nel subject to a false alarm rate constraint (equivalent to minimizing
the interference to the primary user subject to an information rate
constraint). Therefore the corresponding problem is given by

max
(λ,γ)

Pd(λ, γ)

s.t. Pf ≤ β. (13)

The inequality constraint in the problem (13) can be reduced to
an equality constraint by the following theorem.

Theorem 4.1: The optimal value of the probability of detection
in (13) is attained by Pf = β.

Proof: Pd is a differentiable and decreasing function of the
thresholds λ and γ. Thus, the first derivative of Pd with respect to λ
and γ is negative. Hence, the maximum Pd is attained for the lowest
possible λ and γ. Furthermore, the first derivative of Pf with respect
to λ and γ is also negative, using a similar explanation as before. As-
sume (λ∗, γ∗) to be the optimal solution of (13) corresponding to
Pf < β. Suppose we keep λ∗ to be constant but decrease γ until
we get to Pf = β. In this case, a higher probability of detection
is attained for γ < γ∗. Therefore (λ∗, γ∗) can not be the optimal
solution of the problem. The same explanation holds if we keep γ∗

constant and decrease λ until we get to Pf = β. Thus, the optimal
Pd is attained by Pf = β. �

Hence, we can rewrite the problem (13) as

max
(λ,γ)

Pd(λ, γ)

s.t. Pf = β. (14)

Furthermore, for a given false alarm rate constraint β, we have
the following relation between λ and γ

λ = f(γ) = Q−1

(
β − Γ(γ/2,N)

Γ(N)

1 − Γ(γ/2,N)
Γ(N)

)√
2M cσ4

n + M cσ2
n. (15)

Therefore, the problem (14) can be simplified to an unconstrained
problem as follows

max
γ

Pd(f(γ), γ). (16)

The optimal γ and λ = f(γ) can then be obtained from (16) and
(15). We can show that the problem is unimodal in γ and therefore
can be solved by an unconstrained optimization algorithm such as
the gradient descent algorithm.

3.1. Mean Detection Time Analysis

In order to compare the agility of the two-stage sensing scheme with
energy detection and cyclostationary detection, we need to compare
their mean detection time. The mean detection time of the two-stage
sensing has two terms as follows

T̄ = T̄c + T̄f

where T̄c is the coarse sensing time which is equal to LT1, with
T1 = Mc

2W
(W is the channel bandwidth) the sensing time in each

channel for the coarse sensing stage and T̄f is the fine sensing stage
mean detection time. T̄f can be derived as follows

T̄f = E[K]T2 (17)

where E[K] is the mean number of reported channels for the fine

sensing stage and T2 = M f

2W
is the sensing time of each channel.

K is a random variable which follows a binomial distribution, with
parameters L and Prep, where Prep is the probability that a channel
would be reported to the fine sensing stage and is given by

Prep = Pr(H0)(1 − P c
f ) + Pr(H1)(1 − P c

d). (18)

Hence, the mean detection time of the fine sensing stage is

T̄f = LPrepT2, (19)

and the total mean detection time is

T̄ = L(T1 + PrepT2). (20)

4. SIMULATION RESULTS

In this section, we compare the detection performance of the pro-
posed two-stage sensing scheme with energy detection and cyclo-
stationary detection. A DVB OFDM signal with 10 channels and a
channel bandwidth of 8 MHz is employed. Each OFDM signal has
8192 carriers with a CP of length 1024. In these simulations, we
have used an OFDM signal consisting of 18 OFDM symbols. Fur-
thermore, a Kaiser window of length 61 is applied in the simulations.
Denoting the OFDM symbol length by Ts, the described OFDM sig-
nal exhibits cyclostationarity with cyclic frequencies of α = 2πm

Ts
,

m = ±1,±2, ... [6]. Here, we only use α = 2π
Ts

as the cyclic fre-
quency which has to be detected by the cyclostationary detector.

Fig. 2 shows the probability of detection variation with γ for
different values of β for two-stage sensing with sensing times T1 =
2 ms and T2 = 18 ms at SNR= −17 dB. From the figure, it be-
comes clear that the maximum probability of detection is attained
when the probability of false alarm satisfies constraint (13) with
equality as shown in Theorem 4.1.
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Fig. 2. Probability of Detection versus γ

In the following scenarios, we assume that all the channels ex-
perience the same SNR and have the same probability of false alarm
constraint, β = 0.1. Therefore, they will all have the same prob-
ability of detection. The same probability of false alarm constraint
is imposed on all three sensing schemes. Fig. 3 shows the detection
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performance versus SNR for the three sensing schemes for sensing
times T1 = 2 ms and T2 = 18 ms. As we can see, for an SNR that
is less than −12 dB, the two-stage sensing scheme performs better
than either energy detection or cyclostationary detection.

−20 −15 −10 −5 0

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Two−Stage Sensing
Cyclostationary Detector
Energy Detector

Fig. 3. Detection Performance Comparison

In order to see how the detection time looks like for the two-
stage sensing compared to the energy and cyclostationary detectors,
we present the mean detection time of the two-stage sensing for dif-
ferent SNRs. In Fig. 4 we consider Pr(H0) = 0.2. As we can see,
in the range where the two-stage sensing performs better than energy
detection, (SNR less than −12 dB), two-stage sensing outperforms
the cyclostationary detector in terms of mean detection time as well
as detection performance. In Fig. 5, where Pr(H0) = 0.8, and thus
Prep is higher, two-stage sensing does not always have a smaller
mean detection time than the cyclostationary detector.
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Fig. 4. Mean Detection Time Comparison for Pr(H0) = 0.2

5. CONCLUSIONS

We analyzed a two-stage sensing scheme in terms of its detection
performance and mean detection time. In particular, we designed
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Fig. 5. Mean Detection Time Comparison for Pr(H0) = 0.8

optimum thresholds for the energy detection and cyclostationary de-
tection stages so as to maximize the probability of detection given
constraints on the probability of false alarm. Using a DVB OFDM
signal, we showed the performance trade-offs for the proposed sens-
ing scheme. We observed that at low SNR, where the energy detector
is not reliable, the two-stage sensing scheme provides improved de-
tection. Furthermore, we show that the mean detection time of the
two-stage sensing scheme is much lower than the cyclostaionarity
detection scheme for most of the SNR range.
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