
A quantitative study of Web cache
replacement strategies using simulation

Sam Romano and Hala ElAarag

Abstract
The Web has become the most important source of information and communication for the world. Proxy servers are
used to cache objects with the goals of decreasing network traffic, reducing user perceived lag and loads on origin
servers. In this paper, we focus on the cache replacement problem with respect to proxy servers. Despite the fact that
some Web 2.0 applications have dynamic objects, most of the Web traffic has static content with file types such as
cascading style sheets, javascript files, images, etc. The cache replacement strategies implemented in Squid, a widely used
proxy cache software, are no longer considered ‘good enough’ today. Squid’s default strategy is Least Recently Used.
While this is a simple approach, it does not necessarily achieve the targeted goals. We simulate 27 proxy cache
replacement strategies and analyze them against several important performance measures. Hit rate and byte hit rate
are the most commonly used performance metrics in the literature. Hit rate is an indication of user perceived lag, while
byte hit rate is an indication of the amount of network traffic. We also introduce a new performance metric, the object
removal rate, which is an indication of CPU usage and disk access at the proxy server. This metric is particularly
important for busy cache servers or servers with lower processing power. Our study provides valuable insights for
both industry and academia. They are especially important for Web proxy cache system administrators; particularly in
wireless ad-hoc networks as the caches on mobile devices are relatively small.

Keywords
cache replacement, proxy cache, simulation, Web

1. Introduction

With the debut of Web 2.0, many researchers were
interested in studying their workload characteristics in
order to design more efficient servers. YouTube is an
example of a very popular Web 2.0 site and hence it was
the choice for many to conduct such research.1,2 Gill
et al.1 conducted an extensive analysis of YouTube
workload and observed 25 million YouTube transac-
tions over a 3-month period that included the down-
loads of 600,000 videos. They compared traditional
Web workload characteristics with that of YouTube
and found many similarities. They concluded that traf-
fic characterization of YouTube suggests that caching
popular video files on Web proxy servers reduces net-
work traffic and increases the scalability of YouTube
servers.1

There are several decisions that must be made, such
as cache placement and replacement. Many proposals
are covered in the literature regarding these Web cache

decision processes. Our main focus will be the cache
replacement problem, the process of evicting objects
in the cache to make room for new objects, applied to
Web proxy servers.

There are many replacement strategies to con-
sider when designing a proxy server. The most com-
monly known cache replacement strategies are Least
Frequently Used (LFU) and Least Recently Used
(LRU). Research in this area has been active for at
least 10 years. Podlipnig and Boszormenyi3 provided a
survey of Web cache replacement strategies. They have

Simulation

Department of Mathematics and Computer Science, Stetson University,

Deland, FL, USA.

Corresponding author:

Hala ElAarag, Department of Mathematics and Computer Science,

Stetson University, 421 North Woodland Boulevard, Deland,

FL 33327, USA

Email: helaarag@stetson.edu

Simulation: Transactions of the Society for

Modeling and Simulation International

88(5) 507–541

� The Author(s) 2012

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549711414152

sim.sagepub.com

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


done well to not only list well-known strategies, but
also categorize the strategies into five groups.

Although both a survey and classification of these
strategies are available, there is not a known record of
results comparing the majority of the cache replacement
algorithms. Balamash and Krunz4 compared cache
replacement policies qualitatively rather than quantita-
tively. Many of the works consulted for this paper pre-
sented results for different strategies against, at most,
three to five other strategies. However, their results
cannot be compared effectively because most of the lit-
erature devised their experiments with differences in
their implementations, such as the use of auxiliary cach-
ing, representation of Web object characteristics, etc.
There is also the difference in trace files between exper-
iments, and a large range of different sizes used for the
cache space. Lastly, different proposals used different
criteria on when to cache an object such as ignoring
PHP files, cgi-bin scripts, POST requests, or simply
just using all requests presented in a particular trace file.

Wong5 believes that Web caching is a crucial part of
today’s Internet and there are enough good replace-
ment strategies for general proxy servers. Any new
technique will only provide a very small improvement
over existing techniques and hence there is no need to
devise new policies for traditional environments.

In spite of the many cache replacement policies pro-
posed in the past 10 years, the most popular Web proxy
software, Squid, uses LRU as its default strategy. We
believe that this is because there has not been a com-
prehensive study presented that compares these strate-
gies quantitatively. As Wong5 mentions ‘all policies
were purported to perform better than others, creating
confusion as to which policy should be used’. Many of
the new policies proposed divide the cache into parts
where one part of the cache handles cache replacement
using traditional methods.6

Our research studies cache replacement strategies
designed for static Web content, as opposed to dynamic
Web content seen in some Web 2.0 applications. Most
caching that occurs with dynamic content occurs on the
browser side and does not occur from the standpoint of
proxy servers. As a result, these strategies have not been
considered. We have researched how proxy servers can
still improve performance by caching static Web con-
tent such as cascading style sheets, javascript source
files, and most importantly larger files such as images
(jpeg, gif, etc.).

Our work is particularly important in wireless ad-
hoc networks. In such networks, mobile devices act as
proxy servers for a group of other mobile devices.
However, they have limited storage space. The exten-
sive research on cache replacement policies we provide
in this paper is crucial for such environments with small
cache sizes and limited battery life

In this paper, we extend our previous work7 and
present 27 cache replacement strategies we simulated
against different performance metrics. To the best of
the authors’ knowledge, this is the most comprehensive
quantitative analysis of Web cache replacement
strategies.

The rest of the paper is structured as follows. In
Section 2, we define several terms used throughout
the paper and their use in the simulations, and present
some of the related work. We describe the cache
replacement categorization, rationale and example pol-
icies in Section 3. Section 4 discusses our simulation
and certain data structures used for the algorithms.
We define the metrics used to measure the performance
of each strategy, and also propose a new metric in
Section 5. Section 6 presents the results and observa-
tions of our simulation. We present the conclusions in
Section 7. Lastly, we suggest several areas of future
research in Section 8.

2. Background Information and related
work

It is necessary to have a clear and precise definition of
when a Web object is allowed to be cached. A thorough,
well-defined definition allows Web cache users to under-
stand what requests they make could potentially be
cached and, in addition, is necessary for system admin-
istrators as a good tool in improving Quality of Service
(QoS) for end users. For this paper, a Web object is a
term used for all possible objects (HTML pages, images,
videos, etc.) transferred through the HTTP protocol
that can be stored in a proxy cache.3

2.1. Web request

Web request is a reference made through the HTTP
protocol to a Web object, primarily referenced by
their Uniform Resource Locator (URL). Requests are
also identified by the size of the requested Web object
from the origin server (at the time the request was
made), a HTTP return code, and the time the proxy
received the request. We define a cacheable request to
have the following criteria:

. There must be a defined size, in bytes, for the
request, and that size must be less than the total
size of the cache and greater than zero.

. The request must be a GET request and its status
code must be one of the following, as set by the
HTTP 1.1 protocol:1 200, 203, 206, 300, 301 or 410.
Table 1 shows the status codes and their meanings.

Separate from cacheable request, we also ignore any
requests with URLs containing ‘/cgi-bin/’ as well as any

508 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


URLs that are queries (those that contain a question
mark in their URL after the last ‘/’).

Once a request is known to be cacheable and is
received by the proxy, several things will occur in a
sequential order. In a basic proxy server model, if a
cache hit occurs, then the object being referenced is in
the cache and the data can be copied and sent to the
client. On a cache miss, when no object in the cache
matches the request, the Web object will be retrieved
from the origin server and the cache placement strategy
decides whether the object will be placed into the cache.
If there is not enough room for the new object to be
added, then the cache replacement strategy is invoked.
However, in order to understand how these strategies
work, we define several aspects of objects these strate-
gies will consider.

2.2. Characteristics of Web objects

Web objects are identified by several different charac-
teristics. Each replacement strategy requires usually a
small sub-set of the characteristics; however, all Web
objects must be identified by their URL, since this is the
only unique factor. The most important characteristics
of Web objects are as follows:3

. Recency: information relating to the time the object
was last requested.

. Frequency counter: number of requests to the object.

. Size: the size, in bytes, of the Web object.

. Cost: the ‘cost’ incurred for fetching the object from
the origin server. Also known as the miss penalty.
This will be covered in detail later in Section 5.2.

. Request value: the benefit gained for storing the
object in the cache. This is generally a heuristic
based on other characteristics, since an actual
request value of an object cannot be determined
without a priori information.

. Expiration time: Also generally a heuristic, either
defined by the proxy or by the origin server of
when the object will become stale and should be
removed or refreshed in the cache. Also known as
the time-to-live (TTL).

Most strategies use a combination of these charac-
teristics to make their replacement decisions. The expi-
ration time is the only characteristic mentioned that
was not utilized in our simulation and is primarily
referenced when dealing with the problem of cache con-
sistency, which is out of the scope of this research. The
request value is an abstract characteristic, primarily
used by Function-based strategies, and defined by a
characteristic function that pursues a total, well-defined
ordering of the objects. (Essentially, any characteristic
could be the request value, if the algorithm makes
its decision based on one variable that has a total,
well-defined ordering.)

2.3. Related work

Many researchers are interested in Web caching and its
associated problems.9–13 Oritz et al.14 exploited the
large infrastructure of today’s Web proxy caching sys-
tems to interactively transmit JPEG2000 images, while
Liu and Xu15 used them for media streaming. Luo
et al.16 focused on making proxy caching work for
database-backed Web sites. Many proposals can be
found in the literature regarding the Web cache deci-
sion processes. Houtzager et al.17 proposed an evolu-
tionary approach to find an optimal solution to the
Web proxy cache placement problem, while Aguilar
and Leis,18 for example, addressed the replacement
problem. Fagni et al.6 proposed a static dynamic
cache. They store the most popular Web queries in a
static, read-only portion of a cache. The remaining
cache entries are dynamic and store other queries that
cannot be satisfied using the static cache. The dynamic
cache is managed by any replacement policy. In 2009,
Kaya et al.19 devised an admission-control policy to
screen documents based on a mathematical expression
that is function of average delay per request. They use
this policy to identify cacheable and non-cacheable doc-
uments then use LRU for cache replacement. Goyal
et al.20 developed Vcache: a client-side caching tech-
nique for dynamic objects. Kim et al.21 used Squid
cache server and studied the effect of large file transfer
in network environments with high bandwidths. They
proposed a P2P Web caching technique that solves the
cache bandwidth problem.

Many cache replacement policies use artificial intel-
ligence techniques for decision making. For example,
Cobb and ElAarag22 and Romano and ElAarag23 use
neural networks, while Sabegi et al.24 and Calzarossa
and Valli25 use fuzzy logic for improving cache replace-
ment decisions. A survey on applications of neural net-
works and evolutionary techniques in Web caching was
presented by Venketesh et al.26

With the widespread use of mobile devices, wireless
environments are specialized environments where cache

Table 1. HTTP status code meanings

Code Meaning

200 Ok

203 Non-authoritative information

206 Partial content

300 Multiple choices

301 Moved permanently

410 Gone (synonymous with deleted)

Romano and ElAarag 509

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


replacement policies are used to improve performance.
To mention a few woks in this area, Katsaros and
Manolopoulos27 propose a policy to not only reduce
latency but conserve scarce network resources in
mobile wireless networks. Kumar et al.28 implement a
prototype that utilizes multi-layered caching techniques
to improve performance of mobile devices.

Abhari and co-workers29,30 improved the perfor-
mance of the Apache server, the most popular open
source proxy cache. They used an effective prefetching
technique that proved to reduce page latency. The tech-
nique prefetches images and multimedia components
embedded in Web pages from the disk to the memory
of the proxy cache. They used trace files provided by
IRcache31 and showed that their prefetching technique
has a better cache hit ratio by 9.35% and better byte hit
ratio by 2.93% over a period of 1 day access to Web
objects. Abhari and Soraya2 developed a workload
generator to study the workload characteristics of
YouTube that generated workload with the same char-
acteristics as real YouTube videos. They proved that
the distribution model of YouTube workload follows
a Zipf-like behavior. After simulating several scenarios
with variable workload parameters, similar to Gill
et al.,1 they proved that caching the most popular
videos can reduce network traffic and increase scalabil-
ity of YouTube Web site.

Content Distribution Networks (CDNs) have the
same objectives as Web proxy caches. Their goal is to
provide short access time and consume less network
bandwidth.32 However, they differ in design. In an
attempt to improve the service quality, the main idea
behind CDNs is to distribute a selective set of the con-
tents from the origin server to servers scattered over the
Internet and serves a request from a server closer to the

client. That is, the CDN servers are geographically scat-
tered but located at the edge of the network. Figure 1
shows how a client accesses a copy of the data nearest
to it, as opposed to all clients accessing the same central
server. This architecture can be compared with the
architecture of proxy cache servers shown in Figure 2.
Su et al.33 focused on the Akamai CDN,34 the most
popular CDN with 15,000 servers operating in 69 coun-
tries. They investigated techniques for locating and uti-
lizing quality Internet paths without performing
extensive path probing or monitoring. Badam et al.35

developed HashCache which they believe suitable for
CDNs. HashCache provides the infrastructure for
caching applications. It has a wide range of configura-
tions that makes it very flexible to suit systems with
scarce resources as well as high-end systems. They
have also built on top of HashCache a Web proxy
cache called HashCache Proxy. Kangasharju et al.36

developed four heuristics to the NP complete problem
of replicating objects in such a way as to traverse the
minimum number of autonomous systems when the cli-
ents fetch objects from the nearest server. They also
provided insight into P2P content distribution. Doyle
et al.37 studied an important problem, which they called
the trickle-down effect: the heavy tail Zipf-like distribu-
tion of traffic loads, when using proxy servers and
CDNs. They used traces from IRcache31 to illustrate
this effect and further illustrate the implications of the
trickle-down effect on back-end servers. Gadde et al.38

derived hit ratios for multi-level caches then extended
their model for CDNs, especially a scenario that is
equivalent to a hierarchical proxy cache. Their results
showed some limitations to the benefits of CDNs when
the leaf populations are large. They also used real-
world data from IRcache31 to validate their model.

Figure 1. Content Distribution Network (CDN). Source http://cdn-comparison.com/.

510 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


3. Replacement strategies

In this research there is only one algorithm which
makes its decision on two levels of characteristics; the
rest decide primarily on one characteristic, or on a
characteristic function (request value) which is a prod-
uct of combined factors. Cache replacement strategies
can be categorized into five groups.: frequency based,
recency based, frequency/recency based, function
based, and randomized.3 Wong5 also categorizes

cache replacement strategies into five groups, but
instead of recency/frequency category, a size category
is suggested. We adopt the classification of Podlipnig
and Boszormenyi3 in this paper.

The first two groups, recency and frequency, are
based mainly on LRU and LFU, respectively. fre-
quency/recency strategies incorporate a mixture of an
object’s recency and frequency information together
along with other characteristics to refine LRU and
LFU. Function-based strategies have some defined
method that accepts certain pre-defined parameters
defining a request value to order the objects in the
cache. The last group, random, essentially picks an
object in a non-deterministic method. Owing to the
inconsistent nature of the last category, we decided
not to include any strategies that had a non-determi-
nate replacement strategy. Table 2 presents the replace-
ment categories, their rationale and some example of
available replacement policies.

4. Simulation details

This section provides the details for our simulation and
how some of the strategies were implemented. We also
describe other Web cache strategies and components we
used that were not part of our research, but integral to
building a functional Web cache.

4.1. Web cache components

As discussed in Section 1, there are several decisions
that must be made during the lifespan of a Web request.
The first decision, covered in Section 2.1, is to decide
whether the current request is cacheable. Once a request
is known to be cacheable, it is searched among the
objects in the cache to determine whether it already

Table 2. Cache replacement categories

Category Rationale Replacement policies

Recency based Derived from a property known as temporal
locality, the measure of how likely an object
is to appear again in a request stream after
being requested within a time span.39

LRU, LRU-Threshold,40 Pitkow/Reckers
strategy,41 SIZE,42 LOG2-SIZE,3

LRU-Min,40 Value-Aging,43 HLRU44 and
Pyramidal Selection Scheme (PSS)45

Frequency based Derived from an object’s popularity where those
that are most popular should be cached.3,5

LFU, LFU-Aging,46 LFU-DA46

and a – Aging,43 and LFU*47

Frequency/
Recency based

Attempt to combine both spatial and temporal locality
together maintaining their characteristics
of the previous two classes.

Segmented LRU (SLRU),48 Generational
Replacement,49 LRU*,50 HYPER-G,42

Cubic Selection Scheme (CSS),51 and
LRU-SP52

Function based Use a general characteristic function to define a
request value for objects.

Greedy Dual (GD)-Size,53 GDSF,54

GD*,55 Taylor Series Prediction (TSP),56

MIX,57 M-Metric,58 LNC-R-W3,59 and LUV60

Figure 2. Possible locations for proxy cache servers in the
Internet.

Romano and ElAarag 511

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


exists or not. If the object exists, it must be determined
whether the data in the cache has passed its expiration
time. If the expiration time is up or the object was
not in the cache, the object is retrieved from the
origin server, otherwise the Web object’s information
(recency, frequency counters, request value, etc.) is
updated and the next request is served.

Once an object is retrieved from the origin server, a
cache placement strategy is invoked, deciding whether
the cache will accept the object or not before it is sent to
the client. If not enough space exists in the cache the
cache replacement strategy is invoked.

Most proxy caches also use two limits to their space
available in the cache and make sure the cache can
respond well in the case of sudden increases in the
incoming number of requests. They set what are
known as two watermarks. One is called a low water-
mark, and is often denoted by L; the other is known
as the high watermark and is denoted as H. If the cur-
rent space occupied by the cache exceeds H, then
the replacement strategy, also known as the victim
selection process, is invoked until the space is less
than or equal to L. Typically, L is set to 60–75% of
the cache’s total space, and H set to 90–95% of the
total cache space.

However, in the case of our simulation we ignored
the watermark process, to see how much strain the Web
cache could take as well as how well the replacement
strategies worked when invoked under necessary con-
ditions (no space being left) as opposed to being
invoked prior to the cache being full.

In order to create these conditions, we also had to
ignore the expiration process. Typically, either the
object’s time to live (TTL; or amount of time till the
object is considered ‘expired’) is used, or a heuristic is
generated based on the file’s size, URL, etc. This was
not the focus of our research, and since the trace files
we utilized provided no information on the TTL of the
object at the time the traces were recorded, it was out of
our scope of this research to investigate known expira-
tion policies. Last, but not least, our cache placement
was a simple strategy. All objects whose requests were
deemed cacheable were immediately intended to be
cached.

Some of the literature makes a distinction in its
cache placement strategy, admitting only those objects
which will add an overall benefit to the cache so in the
case that the replacement strategy must be invoked
the benefit of the object being added must outweigh
the benefit of those objects being removed from the
cache.

In essence, this treats the caching problem as the
famous knapsack problem, which is an excellent com-
parison. However, most definitions are ambiguous as to
what the benefit is measured by. Also, the benefit

should be dynamic and decreasing due to objects’ expi-
ration times. If expiration time is not a factor, then the
benefit would need to consider recency information.
However, in considering recency information, we also
have to consider how recently the last request to the
object being considered occurred, leading to more space
overhead for objects not in our cache, which adds even
more complexity to the entire process.

Without considering recency, expiration, or any
factor involving durations of time, then the cache will
suffer a similar pollution to what LFU tends to create,
which is the caching of only those objects deemed to be
beneficial overall. This is exactly the outcome one
would expect in terms of the knapsack problem; but
in terms of the caching problem, this is what we wish
to avoid. Thus, we decided against considering more
complex placement procedures due to there being no
previous method available to calculate benefit, and to
focus on the replacement process.

4.2. Simulation architecture

Our simulator was built as a discrete-event simulator
where each request was treated as a discrete event. The
simulation clock was advanced forward by the amount
of time that passed from request to request so that the
time in the simulation was artificially equivalent to the
time that the request in the trace took place at. Trace
files were parsed and cleansed prior to the simulation.
We identified requests referring to the same URI and
gave all unique URI’s a specific unique identification
number. Figure 3 illustrates the request life cycle and
how simulation statistics are recorded.

4.3. Details of implemented strategies

Table 3 contains commonly used variables and their
descriptions. If a strategy uses a variable not defined
in the table, then it will be defined in its corresponding
implementation detail. Any use of the logarithmic func-
tion, denoted as log, is assumed to be of base 2, unless
otherwise specified.

Note that some strategies require the use of an aux-
iliary cache. An auxiliary cache holds information
about all Web objects that have been seen by the
proxy cache. Without this stored information, particu-
lar strategies tend to produce less-than-optimal results
as explained later.

4.3.1. Implementation of recency-based
strategies. This set of strategies uses recency informa-
tion as a significant part of its victim selection process.
Recency-based strategies are typically straightforward
to implement taking advantage of queues and linked
lists.

512 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


1. LRU: One of the most commonly used strategies in
many areas of data management. This algorithm
removes the least recently used (referenced) object,
or in other terms the object with the largest DTi. A
simple linked list (queue) allows this algorithm to be
efficiently implemented and is referred as a LRU list.

2. LRU-Threshold:40 Just like LRU, except an object is
not permitted into the cache if its size, Si, exceeds a
given threshold.

3. Pitkow/Reckers strategy:41 Objects that are most
recently referenced within the same day are

differentiated by size, choosing the largest first.
Object references not in the same period are sorted
by LRU. This strategy can be extended by varying
the period of which objects are differentiated by their
size (such as an hour, 2 days, 1 week, etc.).

4. SIZE:42 Removes the largest object first. If objects
are of the same size, then their tie is broken by LRU.

5. LOG2-SIZE:3 Sorts objects by their floor[log(Si)],
differentiating objects with the same value by
LRU. This strategy tends to invoke LRU more
often between similar-sized objects as compared
with SIZE.

6. LRU-Min:40 This strategy attempts to remove as few
documents as possible while using LRU. Let T be
the current threshold, Lo be the least recently used
object (tail of a LRU list), and L an object in the list.
Then LRU-Min follows as in the following
procedure:
1. Set T to Si of the object being admitted to the

cache.
2. Set L to Lo.
3. If L is greater than or equal to T, then remove L.

If it is not, set L to the next LRU object in the list
and repeat this step again until there is enough
space or the end of the list is reached.

4. If the end of the list is reached, then divide T by 2
and repeat the process from step 2.

Is requested
object cacheable?

Is requested
object cached?

Trace Data

Retrieve next
request

Advance Time,
Update Overall Statistics

Can object fit
in cache?

Replacement Strategy
invoked and chooses
one object to remove

Remove Chosen
Object

Record Cache Miss

Record Cache Hit

Insert Object
into Cache

No

No

Yes

Yes

YesNo

Figure 3. Simulated request lifecycle.

Table 3. Characteristic symbols

Variable Description

Si Size of an object i

Ti Time object i was last requested

DTi Time since object i was last request

Fi Frequency counter of object i

DFi Number of references to occur since
last time object i was referenced

li Access latency for object i

Ci Cost of object i

Ri Request value of object i

M Size of the cache

Romano and ElAarag 513

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


7. Value-Aging:43 Defines a characteristic function
based on the time of a new request to object i, and
removes the smallest value, Ri. Letting Ct be the cur-
rent time, Ri is initialized to

Ri ¼ Ct �
ffiffiffiffiffi
Ct

2

r
ð1Þ

At each request, Ri is updated to

Ri ¼ Ct �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ct � Ti

2

r
ð2Þ

8. HLRU:44 Standing for History LRU, this uses a slid-
ing window of h request times for objects. This algo-
rithm is fairly complicated compared with most
algorithms in this set, requiring additional informa-
tion to be held for each object, even after the object
has been removed from the cache. It is entirely pos-
sible to implement the algorithm without an auxil-
iary cache, but we found the results to be far less
than optimal. The author of the algorithm also
defined the algorithm with an auxiliary cache in
mind. The hist value is defined for an object x with
n indexed request times, t, where ti is equivalent to
the ith request time of object x.

histðx, hÞ ¼ tn�h n � h
0 n\ h

�
ð3Þ

HLRU chooses the object with the maximum hist
value. If multiple objects have hist values of zero,
then they are sorted based on LRU.

9. Pyramidal Selection Scheme (PSS):45 This classifica-
tion makes what is known as a ‘pyramidal’ hierarchy
of classes based on their size. Objects of a class j,
have sizes ranging from 2j-1 to 2j – 1. Inversely, an
object i belongs to the class j¼ floor[log(Si)]. There
are N¼ ceil [log(Mþ 1)] classes. Each class is man-
aged by its own LRU list. To select the next victim
during the replacement process, the recently used
objects of each class are compared based on their
value, Si* DFi. In Section 4.3.5, we demonstrate an
efficient way to calculate DFi in O(1) time without
keeping record of the request stream.

4.3.2. Implementation of frequency-based
strategies. Obviously, this category is tied strongly to
the frequency/access counts of Web objects. Unlike
recency-based strategies, these simple algorithms
require complex data structures, such as binary heaps
(also known as priority queues) to help decrease
the time overhead in making their decisions. Some
strategies, such as SIZE and HLRU, also take

advantage of binary heaps. However, we considered
this to be a detail oddity compared to most recency-
based strategies.

Most of these algorithms are an extension of the
common algorithm LFU. There are two ways to imple-
ment these algorithms, one requiring use of an auxiliary
cache, and the other not. Comparatively, most recency-
based strategies only need to keep track of the most
recent values seen by the proxy cache, simplifying the
record of a Web object’s data to the time it is in the
cache even if it is removed and added repeatedly.
However, frequency counts do not pertain only to the
lifespan of a particular object in the cache, but can also
be persistent across multiple lifetimes of the object. The
persistent recording of data for an object’s frequency
counts is known as perfect LFU, which inevitably
requires more space overhead. The tracking of data
while the object is only in the cache is known as in-cache
LFU.

In either perfect or in-cache implementations, the
cache can suffer cache pollution, objects with high-
frequency counts that persist in the cache despite no
longer being popular. Objects accumulating high popu-
larity in many bursts over long periods of time create a
problem with perfect LFU. However, in-cache suffers
from missing the objects that slowly accumulate popu-
larity over a long period, caching only those that happen
to accumulate high popularity in the short run. There
are flaws with both implementations; some in this sec-
tion and the next will seek to break those down.

Since there is space overhead with perfect LFU, we
will assume the in-cache variants of these algorithms.

10. LFU: The base algorithm of this class, removes the
least-frequently used object (or object with the
smallest frequency counter).

11. LFU-Aging:46 This strategy attempts to remove the
problem of cache pollution due to objects that
become popular in a short time period. To avoid
it, this strategy introduces an aging factor. When
the average of all of the frequency counters in the
cache exceeds a given average frequency threshold,
then all frequency counts are divided by 2 (with a
minimum of 1 for Fi). There is also a maximum
threshold set that no frequency counter is allowed
to exceed.

12. LFU-DA:46 Since the performance of LFU-Aging
requires the right threshold and maximum fre-
quency, LFU-DA tries to remove this problem.
Upon a request to object i, its value, Ki, is calcu-
lated as

Ki ¼ Fi þ L ð4Þ

where L is a dynamic aging factor. Initially L is set
to zero, but upon the removal of an object i, L is set

514 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


to Ki. This strategy removes the object with the
smallest Ki value.

13. a–Aging:43 This is a periodic aging method that can
use varying periods and a range, [0, 1], for its aging
factor, a. Each object in this strategy uses a value,
K, which is incremented by 1 each cache hit, much
like a frequency counter. At the end of each period,
an aging factor is applied to each object:

Knew ¼ a � K, 0 � a � 1 ð5Þ

Changing a from 0 to 1, one can obtain a spectrum
of algorithms ranging from LRU (a¼ 0) to LFU
(a¼ 1). Of course this is only true if LRU is used
as a tie-breaker.3

4.3.3. Implementation of frequency/recency-based
strategies. These strategies tend to be fairly complex
in their structure and procedures.

14. Segmented LRU (SLRU):48 This strategy partitions
the cache into a two-tier system. One segment is
known as the unprotected segment, and the other
as the protected segment. The strategy requires
space set aside for the protected segment. Objects
that belong to this segment cannot be removed
from the cache once added. Both segments are
managed by the LRU replacement strategy. When
an object is added to the cache, it is added to the
unprotected segment, removing only objects from
the unprotected space to make room for it. There is
an implicit size threshold for objects, where the
minimum object size allowed to be cached is min{-
size of the protected segment, M – size of protected
segment}. Upon a cache hit of an object, it is moved
to the front of the protected segment. If the object
is in the unprotected segment and there is not
enough room in the protected segment, the LRU
strategy is applied until there is enough room for
the object to be moved into it. Objects removed
from the protected segment are moved to the
head of the unprotected segment.

15. Generational Replacement:49 This strategy uses n
(n> 1) LRU lists. Each list is indexed, 1, 2. . . n.
Upon being added to the cache, an object is
added to the head of list 1. Upon a cache hit, an
object belonging to list i is moved to the head of list
iþ 1, unless i¼ n, and then the object is moved to
the head of list n. Victim selection begins at the end
of list 1, and moves to the next consecutive list only
when preceding lists have been depleted.

16. LRU*:50 This method combines a LRU list and
what is known as a ‘request’ counter.3 When an
object enters the cache, its request counter is set
to 1 and it is added to the front of the list. On a

cache hit, its request counter is incremented by 1
and also moved to the front of the list. During
victim selection, the request counter of the least
recently used object (the tail of the list) is checked.
If it is zero, the object is removed from the list; if it
is not zero, its request counter is decremented by
one and moved to the front of the list and the same
process is applied until the new object can be
added.

17. HYPER-G:42 This strategy combines LRU, LFU
and SIZE. At first the least frequently used object
is chosen. If there is more than one object with the
same frequency value, the cache chooses the least
recently used among them. If this still does not
give a unique object to replace, the largest object
is chosen.

These next two strategies are extensions of the
recency-based PSS strategy mentioned in Section 4.3.1.

18. Cubic Selection Scheme (CSS):51 As the name
implies, CSS uses a cube-like structure to select its
victims. Like PSS, CSS assigns objects to classes,
except rather than being indexed only by size, CSS
indexes classes by size and frequency counts. Each
class, like PSS, is a LRU list. Objects in a class (j, k)
have sizes and frequencies ranging from 2(j,k)-1

to 2(j,k) – 1. Inversely, an object i belongs to class
(j, k)¼ (floor[log Si], floor[log Fi]). The width, which
is the largest value of j is the same as in PSS, since it
is based on cache size. However, in order to limit
space overhead, there must also be a maximum fre-
quency, MaxF, set to limit the height of the cube.
Thus, the height of the cube is floor[log MaxF]þ 1.
CSS uses a complicated procedure to select its vic-
tims, considering the diagonals of the cube and the
LRU objects in each list. There is also an ‘aging
mechanism’ applied based on the MaxF set for
the cube.

19. LRU-SP:52 Like PSS, this class utilizes classes man-
aged by LRU and has the same number of classes
as PSS, each managed by LRU. However, this
class accounts for frequency counts as well. An
object i is assigned to class j¼ floor[log(Si/Fiþ 1)].
Essentially, as an object is requested more fre-
quently, it decreases the class it is in. When a
victim is to be selected, all of the LRU objects
of each list are compared based on the value
(DTi*Si)/Fi.

4.3.4. Implementation of function-based
strategies. These functions use a general characteristic
function to define a request value for objects. Most of
these algorithms are straightforward requiring a binary

Romano and ElAarag 515

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


heap to sort objects; however, several can become quite
time consuming once the recency variable, DTi, has
been introduced, requiring a resorting/recalculation of
objects when the cache replacement strategy must be
invoked. If it is not stated, then we assume that the
strategy always picks the object with the smallest
request value.

20. Greedy Dual (GD)-Size:53 Defines a request value,
Ri, for the object which is recalculated upon inser-
tion of on a cache hit:

Ri ¼
Ci

Si
þ L ð6Þ

where L is an aging factor like in LFU-DA
described in Section 4.3.2, and initialized to zero.
Whenever an object is removed, L is set to that
removed object’s Ri value. Here Ri is calculated
upon an object request as it is placed in the cache.
The factor, Ci/Si, is known as the ‘normalized cost’.
The normalized cost is meant to describe a propor-
tion of an object’s request cost to its size as opposed
to a typical Landlord algorithm, which assumes
uniform size.55

21. GDSF:46 An extension of GD-Size, this uses the
frequency information as well to define a value.
The request value is defined as:

Ri ¼
Fi � Ci

Si
þ L ð7Þ

L is an aging factor used exactly like in GD-Size.

22. GD*:54 An extension of GDSF, this method uses a
predetermined calculation of temporal locality sig-
nified in a variable, b, known as the reference cor-
relation. Reference correlation is measured by the
distribution of reference interarrivals for equally
popular objects.3 The variable is meant to be fig-
ured optimally by using trace files. However, the
authors of the algorithm found the optimal variable
to be 1.66, which seemed to produce the optimal
metrics for us as well. The request value is calcu-
lated as

Ri ¼
Fi � Ci

Si

� �1=b

þL ð8Þ

where L is an aging factor used exactly like in GD-
Size.

23. Taylor Series Prediction (TSP):55 TSP calculates
the request value as follows:

Ri ¼
Fi � Ci

Si � Tt
ð9Þ

where TT is the ‘temporal acceleration’ of an object
with respect to the current time, and its last and next
to last request times. Here TT¼ tp – tc, where tp is
the predicted time for the next request and tc, the
current time. The predicted time is solved using a
second-order Taylor series. It should be noted that
the variable TT is similar in concept to DTi, which
means it must be recalculated before the cache
replacement process begins.

24. MIX:56 A heavily parameterized strategy, MIX is
an all-around algorithm which can be tuned for any
metric. There are four parameters, referenced as ri
{i | 1, 2, 3, 4}. The request value is calculated as
follows:

Ri ¼
lr1i � Fr2

i

Sr3
i � DTr4

i

ð10Þ

According to Podlipnig and Boszormenyi,3 the
authors of the algorithm used r1¼ 0.1, and
r{2,3,4}¼ 1. There are no defined ranges, but adjust-
ing the parameters greatly adjusts the factors
making the algorithm fairly robust. The only excep-
tion is that no aging method is applied in this strat-
egy, but an extension could introduce an aging
factor much like GD-Size, etc.

25. M-Metric:57 This strategy takes three parameters: f,
s, and t. With these in mind, it defines the request
value as

Ri ¼ Ff
i � Ss

i � DTt
i ð11Þ

where f should be positive so as to give weight to
popular objects. A positive s value will give higher
weight to larger objects, while a negative value will
give higher weight to smaller objects; t reflects how
much recency is taken into account. A positive
value gives weight to older objects, while a negative
value will result in younger objects taking prece-
dence over older. Based on the parameter values,
this algorithm will decide in exactly the same
manner as LRU (f¼ 0, s¼ 0, t< 0), LFU (f> 0,
s¼ 0, t¼ 0), and SIZE (f¼ 0, s< 0, t¼ 0).

26. LNC-R-W3:58 This method sets a parameter b,
which is meant to change the importance of
object sizes as in M-Metric. There is also a param-
eter K, which designates the past K request times to
keep track of. Letting t be the current time, and tk
be the oldest request time in the sliding window of
K requests for an object i, fi is set as

fi ¼
K

tc � tkð Þ � Sb
i

ð12Þ

fi is then used to calculate the request value as

Ri ¼
fi � li
Si

ð13Þ

516 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


27. LUV:59 Like the other function-based strategies,
Least Unified Value (LUV) also defines a request
value for each object i:

Ri ¼W ið Þ � p ið Þ ð14Þ

WðiÞ ¼ Ci

Si
ð15Þ

where W(i) is known as the normalized, or relative,
cost to fetch the object from its origin server. The
other factor in the request value represents the
‘probability’ that an object i will be referenced
again. Here p(i) is defined as

pðiÞ ¼
XFi

k¼1
H tc � tkð Þ ð16Þ

HðxÞ ¼ 1

2

� �lx

0 � l � 1ð Þ ð17Þ

where tc is the current time, and tk is the reference
time in a sliding window of Fi request times. It
should also be noted that F(x) can be any function,
so long as the function is decreasing. We have only
provided the function suggested by Bahn et al.59

and used in our simulations.

4.4. Other implementation details

The implementation language we decided to use was
Java SDK 6.0. Although we are mainly concerned
with speed, Java performed well on the simulation
machine in Ubuntu 7.04 with Intel Core 2 Duo E6600
(2.4GHz) and 2 GB of RAM. We were able to paralle-
lize the simulations, being able to take advantage of the
dual core processor. The only limitations we encoun-
tered were memory intensive algorithms, which require
use of an auxiliary cache in order to make their deci-
sions. Our solution to the problem was to flag those
algorithms which were memory intensive and run
only one memory intensive algorithm at a time
(memory intensive algorithms could run with other
algorithms, as long as they were not also memory
intensive).

The main reason we utilized Java was to minimize
debugging time, and focus more on the development of
the algorithms themselves. Unlike Cþþ, Java’s static
Math class provided most of the functionality we
needed in order to calculate the complex request
values of the function-based algorithms. Also, with
the addition of template programming and for-each
loops in Java 5.0 and higher, it simplified the code for
many strategies to a high degree. Lastly, Java’s

Hashtable and PriorityQueue classes supplied the most
functionality.

Java’s PriorityQueue class is an implementation of a
binary heap. Many algorithms were able to take advan-
tage of this data structure, decreasing the complexity
for victim selection from Q (n)to Q (lg2 n). All function-
based algorithms took advantage of this process.
However, many function-based algorithms which rely
on the time that has passed since the last reference to an
object had to be recalculated at each invocation of the
replacement strategy. Most of these algorithms’ litera-
ture did not discuss appropriate means to calculate
their request values efficiently in a timely manner.
Bahn et al.59 proved an efficient way in calculating
the request value for LUV (Section 4.3.3), which used
all of the previous request times as opposed to a
sliding window of request times like LNC-R-W3
(Section 4.3.3).

Algorithms which required a sliding window of K
request times, or relied on a certain history of the
past reference times presented another challenge in
our implementation as well. These algorithms were
HLRU (Section 4.3.1), TSP (Section 4.3.4), and LNC-
R-W3 (Section 4.3.4). At first thought, it would be easy
to develop a linked list per object, but the extra space
and time overhead in manipulating pointers demon-
strated much inefficiency. A simple circular buffer
cleared these inefficiencies and worked relatively fast.
In fact, since the buffer needs only to be filled one
way, it is only necessary to know where the next request
must be placed, leading to one array of length K, and a
pointer to the oldest reference time in the buffer.

Two other algorithms, PSS (Section 4.3.1) and
LRU-SP (Section 4.3.2), require a unique variable,
DFi, which measures the number of references that
occurred since the last time an object i was referenced.
Originally, a histogram was used and replayed back to
see when and how many references occurred since the
last time object i was referenced. There is sometimes a
large time overhead in ‘replaying’ this information
through. A rather simple solution of giving each request
a unique number, which followed that of the previous
request, brought the complexity down to Q (1). Then,
in place for less space and time, we kept track of the last
request number that referenced object i and the current
request ID and were able to calculate DFi with a simple
subtraction.

The last detail to cover is the use of auxiliary caches,
storing of past information about objects not currently
cached. Although we ran a complete simulation set
without auxiliary caches on most algorithms, we
found algorithms such as HLRU performed so poorly
without the use of this information that they may have
not existed at all. Thus, the auxiliary cache had to be
implemented.

Romano and ElAarag 517

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


In our case, we did not delete information from the
hash table, associated by the objects’ URLs, when the
object was evicted from the cache. This meant that all
information about the objects was kept during the
course of the simulation, which lead to large space com-
plexities, and hence the memory-intensive situations.

Normally, the auxiliary cache has its own cache
strategies it applies, deleting information of unpopular
objects over a certain time period. However, due to the
short period our trace files contained (1 week), we
decided that the time span was too small to apply any
significant strategies to this information.

The algorithms which utilized the auxiliary cache
information, and deemed memory intensive, are
HLRU, CSS, LRU-SP, GDSF, GD*, TSP, MIX, M-
Metric, LNC-R-W3, and LUV. No algorithms included
in Section 4.3.2 made use of the auxiliary caches. Please
refer to that section for a more thorough explanation.

5. Performance metrics and cost
models

5.1. Performance metrics

Performance metrics are designed to measure different
functional aspects of the Web cache. We used three
measures. The first two have been used extensively
before. The third is a measure of how often the algo-
rithm was invoked.

. Hit rate: This metric is used to measure all generic
forms of caching. This is simply the number of cache
hits, as defined in Section 2.1, to the total number of
cacheable requests seen by the proxy. It is important
to realize that on average, 35–55% of the trace files
we used were non-cacheable requests. It is also
important to note that the ratio of cache hits to
total number of requests will produce the same rank-
ing of strategies relative to this metric, however the
numbers are much smaller, and due to floating point
errors, are harder to separate and rank.

. Byte hit rate: This metric is similar to hit rate, except
it emphasizes the total bytes saved by caching certain
objects. Letting hi be the total number of bytes saved
from all cache hits that occur for an object i and ri be
the total number of bytes for all cacheable requests to
object i, and n, the total number of unique objects
seen in a request stream, then the byte hit ratio is

Pn
i¼0 hiPn
i¼0 ri

ð18Þ

. Object removal rate: This metric came about as an
observation of LRU-Min (Section 4.3.1) compared

with other similar algorithms. Most algorithms oper-
ate under the assumption that disk access or CPU
time is far less than the network latency needed to
send the data to the client. However, on proxy ser-
vers such as those for university campuses or small
businesses, the time to sort through 10,000 or more
Web objects during the cache replacement strategy
may be comparable to the network latency to the
client. The object removal rate is essentially the mea-
sure of the amount of times the cache replacement
strategy removes an object from a cache to the
number of cacheable requests that occur. In a
cache where watermarks may be set, this measure
may tend to be very similar among many objects.
However, in a cache where the replacement method
is invoked when only necessary, this shows some
surprising results of how well objects are at making
the right decisions and how often they have to.
Letting ki be the number of times object i was
removed from the cache, and zi be the number of
times object i was admitted to the cache, the object
removal rate is

Pn
i¼0 kiPn
i¼0 zi

ð19Þ

It is important to keep in mind that hit rate and the
byte hit ratio cannot be optimized for at the same time.
No cache replacement strategy can be deemed as the
best because there is a tendency in request streams for
smaller documents to be requested more often than
larger ones due to the download time it takes to
gather these objects. Strategies that optimize for hit-
rate typically give preference to objects in a smaller
size range, but in doing so tend to decrease byte-hit
rate by giving less consideration to objects not in a
particular size range.

A high removal rate may suggest several possibili-
ties: that many small objects are being removed for
larger objects, or that a poor decision is being made
in relating object size to the number of objects to
remove for that object. If the algorithm has a complex
process per decision, then it is an indication that the
algorithm may not be decreasing the number of docu-
ments or outside references the proxy has to make.
However, it may be decreasing network latency as it
may be giving preference to objects that have high
latency/network costs, which is a factor the cost
models use.

5.2. Cost models

One of the most important characteristics of a Web
object is the object’s cost to fetch it from the origin
server. There are several ways to relate a Web object

518 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


to its cost. In this section, we note all of the different
models we came across. Also, in the following, let Si

represent the size of a particular Web object i.

. Uniform model: This assumes that the cost to
fetch all objects is the same and so sets the costs
of all objects to some constant greater than or
equal to 1.

. Byte model: This assumes that the network latency is
the same for all servers, and so the only deciding
factor in the cost for getting the object will be its
size (as the size will decide the time to fetch the
object). Thus, this method sets the cost to the size
of the object.

. Time model: This uses the past latency (download
time) information to predict the future download
time for an object. Thus the object’s cost is set to
the predicted time it would take to fetch an object
from a server. This has the unique advantage over
the byte model in the rare occasion that small files
that are on slow servers will have a higher cost,
allowing them to have precedence over files that
are similar in size. Since latency information
cannot be gathered directly from the trace files, we
used the Time Model technique as shown by
Hosseini-Khayat,60 which randomly assigns a time
cost as

Ci ¼ x ðqÞ þ Si

y
ð20Þ

where x is an exponential random variable repre-
senting network latency with a mean y and y,
which represents network throughput.

. Network cost: This is similar to the byte model, but
rather than predict future network latency and
throughput, this simply estimates the number of
packets that must be sent for a particular object.
Thus, the cost based on the number of approximate
packets for an object i is

Ci ¼ 2þ Si

536

� �
ð21Þ

6. Experiment setup and results

6.1. Trace files

In our experiment, we used trace files, which are files
with recorded Web requests, to test each replacement
strategy. The trace files were provided by IRCache.31

These trace files are used in much of the previous
proxy cache research.29,30,37,38,61 IRCache gathers
the trace files and other data on Web caching from
several different proxy servers located around the
United States. More than enough information is

provided in these files to indicate which requests were
cacheable.

Originally, the trace files were provided with data
spanning only a day of recorded Web requests. While
some researchers in the literature used 1 hour or at
most 1 day of requests, we strung seven consecutive
trace files together to create a week-long trace file
from each proxy that the data came from. Once this
was done, we then ‘cleaned’ the files to have only the
cacheable requests (refer to Section 2.1 for a definition
of a cacheable request) in them as to decrease the sim-
ulation time. We also exchanged each unique URL that
appeared in the file with a unique integer identifier so
that string comparison time could be decreased as well.

Table 4 presents statistics about the three traces we
used for this simulation. These particular trace files
were chosen due to their differences in size and cache-
able request rates. Non-cacheable requests were
extracted from the files prior to our experiment. Each
trace represented varying levels of temporal locality,
spatial locality, total bandwidth and number of
requests testing the various limits of the replacement
strategies. All trace files represent 1 week of recorded
requests caught by IRCache from 12:00 A.M, Tuesday,
10 July 2007 to 12:00 P.M, Monday, 16 July 2007. This
reflects realistic Internet traffic.

6.2. Simulation setup and parameters

The cost model we chose for our simulation was the
time model, which produced similar results to both net-
work and byte models. We used the same values as
Hosseini-Khayat60 suggested, with the mean of the
exponential variable, x, set to 1000ms, and y being a
uniform random variable between 1 byte/ms to 1000
bytes/ms.

Some of the strategies presented in Section 4 had
one or more parameters. Table 5 shows a list of these
strategies and their corresponding parameters. We ran
several simulations of each strategy with different
values for each parameter. In Section 6.3, we present
only the instances of the parameters that reflected the
best result for the corresponding strategy. If there is
more than one parameter, Table 5 also shows the
order these parameters are listed in the graphs
described in Section 6.3. For example, in Figure 4,
AlphaAging(3600000/0.25) means that a–Aging per-
formed best with Interval¼3600000ms (or 1 hour)
and a¼ 0.25.

We simulated the algorithms with varying limits of
the cache size available on the disk. We started at 50
MB, then 100 MB, and finally ended with 200 MB. The
reason for the small amount of disk space, when typical
proxy cache servers might operate in terms of gigabytes
was to engage the cache replacement algorithm as

Romano and ElAarag 519

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


frequently as possible. Note also that as the maximum
disk size allowed increased, all of the replacement
strategies performed better with respect to each
metric. However, the general increase in performance
did not significantly change the ranking indexed by a
particular metric in any of the simulations. For this
reason, we present the best instance of each strategy
when the cache size was set to 200 MB. Significant dif-
ferences for particular instances of strategies will be
noted later.

Prior to running each test, we warmed up the cache
with a smaller trace file from Boulder, Colorado. By
using another trace file different from the others, we
could guarantee that no files from that trace run
would conflict with the other trace files. As a result,
the cache would be filled by the time we started our sim-
ulation, putting our cache replacement strategies in

effect immediately upon starting our tests. Therefore,
all of the results presented in Section 6.3 are the full
results of the cache replacement strategies.

6.3. Simulation results

First, we present the results of individual strategies cat-
egorized as set by Section 3 for each metric. Then, as a
global comparison, we take the top three strategies
from each category for a particular metric and compare
them overall, to get a better sense of how the strategies
from each category rank. After the presentation for
each metric and trace file, we discuss the results as a
whole. Second, we note peculiarities between different
traces for individual strategies such as MIX (Section
4.3.4), M-Metric (Section 4.3.4), CSS (Section 4.3.3),
etc. Many strategies that utilized parameters will also

Table 5. Order and description of parameters in the results

Strategy Parameters

LRU-threshold (Section 4.3.1) Threshold: The maximum size threshold of the cache.

Pitkow/Reckers strategy (Section 4.3.1) Interval: Interval set to either daily or hourly describing
when objects are differentiated by size.

HLRU (Section 4.3.1) h: The hist-value to use in a sliding window of h-requests.

LFU-Aging (Section 4.3.2) Average frequency threshold: The aging factor.
Maximum frequency threshold: The maximum frequency counter of any given object.

a – Aging (Section 4.3.2) Interval: Interval, in milliseconds, of when the aging factor is applied.

a: The aging factor.
Segmented - LRU (Section 4.3.3) Protected Segment: The size, as a percentage of the total cache size of

the protected segment.

Generational replacement (Section 4.3.3) Generations: Number of generations used.

Cubic selection scheme (Section 4.3.3) Max Frequency: The maximum frequency counter, always a power of 2.

GD* (Section 4.3.4) b: Parameter describing reference correlation.

MIX (Section4.3.4) r1, r2, r3, r4: Refer to Section 4.3.4 for more information.

M-metric (Section 4.3.4) f: Frequency weight

s: Object size weight
t: Recency factor.

LNC-R-W3 (Section 4.3.4) K: Describes the size of the sliding window of past k requests.

B: Object size weight.
LUV (Section 4.3.4) l: Describes an exponential scaling factor for F(x)

Table 4. Trace file statistics for requests and bandwidth

Trace file Urbana-Champaign, IL (UC) New York, NY (NY) Palo Alto, CA (PA)

Total requests 2,485,174 1,457,381 431,844

Cacheable requests 55.31% 51.70% 23.61%

Total bytes 71.99 GB 17.70 GB 5.601 GB

Cacheable bytes 95.62% 90.55% 88.30%

Unique requests 1,306,758 (52.58%) 708,901 (48.64%) 241,342 (55.89%)

Unique cacheable 73.78% of unique requests 73.71% of unique requests 33.89% of unique requests

520 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


need further analysis to see how different combinations
of parameters affect the overall functionality. Lastly,
we discuss how certain attributes about the request
streams affect certain strategies comparatively.

We have tested the reliability of these results by first
validating our implementations of LRU and LFU. By
running our simulation and verifying the results against
a smaller version of a trace file and with smaller cache
limits, we were able to compare the results against an
expected result set.

The reader should note that the graphs presented in
this paper do not start at an origin of zero and in fact
many of the graphs start at different origins. This was
done to be able to graphically demonstrate our results
in an easy to see and comparative manner. If the origin

is at zero, most results would not be seen clearly. While
some results are close, it is important to note that slight
differences in percentage points of these metrics can
equate to thousands of missed requests or bytes.

6.3.1. Hit rate. Figures 4–18 show the hit rates for
our simulations. Figures 4–7 shows the results for the
frequency, recency, recency/frequency, and function-
based categories, respectively, using the UC trace file.
Figures 8–11 shows the results for the four categories
using the PA trace, while Figures 12–15 shows those for
NY trace files. Figures 16–18 show the overall compar-
ison of all strategies selecting the best three from each
category, using the UC, PA, and NY trace files, respec-
tively. Results of the recency category for the UC trace

UC Trace File - Recency

18 20 22 24 26 28 30

PSS

LRU-Min

SIZE

Pitkow Reckers (Daily)

LOG2SIZE

HLRU (4)

Value Aging (LRU)

LRU Threshold (1.0%)

LRU

Figure 5. Hit rate for recency using the UC trace file.

UC Trace File - Frequency

20 21 22 23 24

LFU

LFU-DA

LFU-Aging (5.5)

Alpha Aging
(3600000/0.25)

Figure 4. Hit rate for frequency using the UC trace file.

Romano and ElAarag 521

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


in Figure 5 have a smaller variance compared with the
PA trace in Figure 8, demonstrating the effect of its
high request rate.

In the recency category PSS performed the best
for UC, PA, and NY traces as shown in Figures 5, 8,
and 12, demonstrating that using recency along with
grouping similar objects by size demonstrated its ability
to intelligently remove the correct objects. However,
the gain from its complicated decision process is ques-
tionable, as shown in the aforementioned figures,
because simpler algorithms such as SIZE performed
almost just as well. By examining Figures 5, 8 and 12,
one can clearly notice that among the recency category
the four algorithms: PSS, SIZE, LOG2SIZE, and
LRU-Min did well consistently and demonstrate that

when considering recency, size should also be consid-
ered at the same time for hit rate.

One can also notice from the figures that LRU, the
parent strategy of the recency category, consistently did
the worst. This is by far a revealing development
because LRU is so widely used commercially in place
of many of these other strategies. Simply considering
the object size or using a little more complicated strat-
egy such as LRU-Min gains a considerable amount of
performance over LRU; in conclusion, when recency is
used as a base factor, derivative algorithms on other
object characteristics will generally do far better.

This observation, however, does not apply to
the frequency-based strategies. LFU as shown in
Figures 4, 9, and 13 always outperformed its derivative

UC Trace File - Function

16 18 20 22 24 26 28 30 32

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-0.5)

M-Metric (1/-1/-1) w/AUX

LNC-R-W3 (2/2.0) w/AUX

MIX (0.1/1/1/1)

LNC-R-W3 (2/2.0)

GDSF w/AUX

GD* (1.0) w/AUX

LUV(0.0010) w/AUX

GD* (1.5)

GDSF

GD-Size

TSP

LUV(1.0)

Figure 7. Hit rate for function using the UC trace file.

UC Trace File - Frequency/Recency

CSS (16)

LRU-SP

Generational
Replacement (5)

SLRU (50.0%)

HYPER-G

LRU *

1816 20 22 24 26 28 30 32

Figure 6. Hit rate for frequency/recency using the UC trace file.

522 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


strategies. One reason may be that over the course of
the simulated week, aging the frequency counters may
not be needed since we used in-cache frequency. In that
respect, when an object is removed, and if it should
enter the cache again, it would have to accumulate its
frequency count again; essentially this is an aging factor
in itself, although instead of being applied globally as
LFU-DA and LFU-Aging attempt to do, it is applied
when the object is removed; applying global aging fac-
tors on top of in-cache frequency may actually lead
to an imbalanced weighting of frequency counts.
Owing to this flaw, the Frequency strategies are
always outperformed by the other categories’ best in
the overall charts as shown in Figures 16–18.

From Figures 6, 10, and 14, it is clear that for fre-
quency/recency strategies, however, LRU-SP and CSS
did the best consistently. Although it is not displayed
here, CSS for any parameter generally did the same
with an incredibly small variance (this is also true
across all other metrics as well). LRU-SP generally
did as well as PSS or a little better. With the exception
of HYPER-G, all of the algorithms did outperform
LRU in hit-rate, holding our earlier observation valid.

Figures 7, 11, and 15 show the results of hit rate for
function-based strategies. These strategies hold the
widest range of results. With the idea of auxiliary
caches, along with several different parameters, it
should be of no surprise that these are the most

PA Trace File - Recency

26 27 28 29 30 31 32 33

PSS

SIZE

LOG2SIZE

LRU-Min

Value Aging (LRU)

HLRU (3)

LRU Threshold (1.0%)

Pitkow Reckers (Daily)

LRU

Figure 8. Hit rate for recency using the PA trace file.

PA Trace File - Frequency

28.5 28.6 28.7 28.8 28.9 29 29.1 29.2

LFU

Alpha Aging
(3600000/1.0)

LFU-Aging (5.5)

LFU-DA

Figure 9. Hit rate for frequency using the PA trace file.

Romano and ElAarag 523

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


complicated to implement and can require long
durations of parameter tuning. An entire body of liter-
ature could explain the effect of each parameter on each
of the appropriate algorithms, and yet, with the addi-
tion of a weighting factor such as that in GD* from
GDSF, that it could be grounds for an entirely new
strategy in of itself. In fact, MIX and M-Metric are
so similar that in a uniform cost model, either could
be used to model the other with the appropriate
parameters.

Owing to the nature of the parameters, what would
perform well on one trace would almost certainly not
be the same for the other traces. In an actual environ-
ment, this would require system administrators to be
carefully tuning the metrics and be able to understand

the parameter’s relations to characteristics of the
request stream. This would also require use of some
type of metric to measure characteristics of request
streams, which although not discussed in this literature,
are as opposed to hit rate and byte hit rate for most
cases.

Some general cases can be made for function-based
strategies. The use of an auxiliary cache to keep further
information on Web objects generally added to the hit
rates of many strategies. The only exception to this was
the M-Metric strategy. It is unclear as to why this
oddity would occur in M-Metric and not in MIX
with similar values, but the consideration of latency
in MIX seems to have been enough where the addition
of the auxiliary cache made all the difference.

PA Trace File - Function

24 25 26 27 28 29 30 31 32 33

M-Metric (1/-1/-0.5)

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-1) w/AUX

MIX (0.1/1/1/1)

LNC-R-W3 (2/2.0) w/AUX

LNC-R-W3 (2/2.0)

GD* (0.6) w/AUX

GDSF w/AUX

GD* (0.6)

LUV(1.667E-5) w/AUX

GDSF

GD-Size

TSP

LUV(1.667E-5)

Figure 11. Hit rate for function using the PA trace file.

PA Trace File - Frequency/Recency

28 28.5 29 29.5 30 30.5 31 31.5 32 32.5

CSS (16)

LRU-SP

SLRU (20.0%)

HYPER-G

Generational
Replacement (5)

LRU*

Figure 10. Hit rate for frequency/recency using the PA trace file.

524 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


We expected the results for cost-based algorithms to
be lower than the rest for a rather simple reason when it
came to hit-rate: Users do not make judgments based
on the latency cost of acquiring an object because in
terms of those objects which are most frequently
accessed (the smaller ones usually), the user may only
feel a half a second lag. Relative to having to acquire a
larger file, most users will ignore the delay for those
objects which would affect hit rate the most. Thus,
information pertaining to latency and/or network
costs of acquiring an object will generally decrease the
hit rate when used as a factor in the decision process.

Overall, Figures 16–18 show that CSS outperformed
all other strategies consistently by utilizing a strong
balance between size, frequency and recency

information to make its decisions. Followed closely
by function-based strategies, which after parameter
tuning will generally do almost as well at balancing
characteristics, and as we will see later have the ability
to capture more than just hit rate. When modified from
LRU and SIZE, recency strategies clearly outper-
formed the frequency strategies (keep in mind that
LFU outperformed LRU greatly). Frequency/recency
strategies held their own, outperforming straight
recency strategies on average.

6.3.2. Byte hit rate. In previous literature, it has been
noted that byte hit rate tends to be inversely related to
hit rate. If a strategy increases its hit rate, generally it
will decrease its byte hit rate. This is mainly due to the

NY Trace File - Frequency

17 17.5 18 18.5 19 19.5 20

LFU

LFU-Aging (5.5)

LFU-DA

Alpha Aging
(3600000/0.25)

Figure 13. Hit rate for frequency using the NY – 200 MB trace file.

NY Trace File - Recency

17 18 19 20 21 22 23 24 25 26 27

LRU-Min

SIZE

PSS

LOG2SIZE

Pitkow Reckers (Daily)

HLRU (3)

Value Aging (LRU)

LRU Threshold (1.0%)

LRU

Figure 12. Hit rate for recency using the NY – 200 MB trace file.

Romano and ElAarag 525

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


fact that larger Web objects are accessed less often
because these files are updated less frequently and
have high latency to acquire. Also, generally the net-
work cost to access the object one time is much larger
than most other files.

However, this is also an advantage to proxy caches
because they can save large amounts of bandwidth with
these assumptions as well. Objects with high cost and
large size are generally targets for system administra-
tors trying to cut down on bandwidth costs for servers.
Thus, there is a tradeoff between saving bandwidth and
decreasing user perceived lag. In one, the users will feel
the effects of the proxy cache, where as in the other, the
origin servers will witness a cut in bandwidth costs.

Thus, it should be of no surprise that LOG2SIZE,
SIZE, LRU-Min, and PSS, which did well under hit
rate, perform the worst in byte hit rate shown in
Figure 19. The one exception occurs in the PA trace
file, Figure 20. In fact, the exception occurs again in
comparison with other categories in the PA trace results
of Figure 21 as well. LRU-SP, derived from PSS also
has similar effects. These out of line occurrences may be
due to the fact that the PA trace file has a sparse request
stream with less than a quarter of cacheable requests.
Strategies that relatively compare objects’ characteris-
tics adapt to the density of request streams as opposed
to completely falling out. Also, strategies that compare
static characteristics, characteristics that do not vary

NY Trace File - Function

12 14 16 18 20 22 24 26 28 30

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-0.5)
M-Metric (1/-1/-1) w/AUX

MIX (0.1/1/1/1)

LNC-R-W3 (2/2.0) w/AUX
LNC-R-W3 (2/2.0)

GD* (1.66) w/AUX
GDSF w/AUX

GD* (1.4)
GDSF

GD-Size

LUV(1/60,000) w/AUX
TSP

LUV(0.75)

Figure 15. Hit rate for function using the NY – 200 MB trace file.

NY Trace File - Frequency/Recency

18 19 20 21 22 23 24 25 26 27 28

CSS (16)

LRU-SP

HYPER-G

Generational
Replacement (5)

SLRU (50.0%)

LRU*

Figure 14. Hit rate for frequency/recency using the NY – 200 MB trace file.

526 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


much over the course of the simulation, also tend to do
well on sparse request streams. For instance, M-Metric
and MIX represented in Figure 22 are outperformed
by the Greedy-Dual derivatives and LNC-R-W3.
However, it should be noted that the majority of func-
tion-based strategies greatly outperform many of the
other categories, and as well have a low deviation
from one another.

Another observation is that HLRU does well in the
UC trace, Figure 19, and NY trace, Figure 23, and also
manages to do the best for the PA’s Recency set,
Figure 20. This may suggest that considering when
the past hth request (Section 4.3.1) occurred is some-
how relevant to the size of objects. Value-Aging also

did fairly well in comparison with other recency strat-
egies, but did only mediocre overall. This is most likely
due to the fact that Value-Aging slowly increases as the
time grows, which is an advantage to larger objects,
which tend to have long periods between requests.

In terms of function-based strategies Figures 22, 24,
and 25 all represent a different ranking between one
another. For UC Figure 24, MIX on top and PA,
Figure 22, with GD* and GDSF and NY, Figure 25,
with LNC-R-W3 and GD*, all had LNC-R-W3 in the
top three. This makes sense since HLRU did well in
recency, which utilizes a sliding window scheme of h
requests like LNC-R-W3. However, LNC-R-W3 also
uses information about frequency and size, which

PA Trace File - Overall

28 28.5 29 29.5 30 30.5 31 31.5 32 32.5

CSS (16)

M-Metric (1/-1/-0.5)

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-1) w/AUX

LRU-SP

PSS

SIZE

LOG2SIZE

SLRU (20.0%)

LFU

Alpha Aging (3600000/1.0)

LFU-Aging (5.5)

Figure 17. Hit rate for overall using the PA trace file.

UC Trace File - Overall

20 22 24 26 28 30 32

CSS (16)

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-0.5)

M-Metric (1/-1/-1) w/AUX

LRU-SP

PSS

LRU-Min

SIZE

Generational Replacement (5)

LFU

LFU-DA

LFU-Aging (5.5)

Figure 16. Hit rate for overall using the UC trace file.

Romano and ElAarag 527

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


enhances its comparisons over HLRU to optimize pri-
marily for byte hit rate.

In terms of the frequency class, Figures 26–28, LFU-
aging seems to perform well. Again, the frequency-
based methods did worse overall, Figures 21, 29, and
30, but it is still too little data to rule out frequency as
being an irrelevant characteristic, as LFU still outper-
forms LRU each simulation. Also, the aging factors for
LFU-DA and LFU-Aging, which were a problem for
hit rates, actually work to the advantage of large
objects under byte hit rate. In this condition, since no
frequency counter can be less than 1, usually the aging
factors have no effect on large objects when the
aging factors have been applied. Thus, the objects

with higher frequencies are brought down in compari-
son with the large objects giving some larger objects an
equal chance to stay in the cache as their smaller
counterparts.

6.3.3. Removal rate. The removal rate highlights a
third tradeoff with respect to the proxy server itself.
As stated in Section 5.1, removal rates can be a signif-
icant indicator of CPU usage and storage accesses. For
a high removal rate, generally we can assume that the
strategy on average exchanges smaller objects for larger
objects. A low removal rate suggests the strategy
removes larger objects first in exchange for the place-
ment of many smaller objects.

UC Trace File - Recency

18 20 22 24 26 28 30 32 34 36 38 40

HLRU (2)

LRU Threshold (1.0%)

Value Aging (LRU)

Pitkow Reckers (Hourly)

LRU

PSS

LRU-Min

SIZE

LOG2SIZE

Figure 19. Byte hit rate for recency using the UC trace file.

NY Trace File - Overall

15 17 19 21 23 25 27 29

CSS (16)

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-0.5)

LRU-SP

M-Metric (1/-1/-1) w/AUX

LRU-Min

SIZE

PSS

HYPER-G

LFU

LFU-Aging (5.5)

LFU-DA

Figure 18. Hit rate for overall using the NY trace file.

528 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Clearly, under these assumptions, SIZE and other
similar strategies that performed well under hit rate
but not so well in byte hit rate will perform optimally
here. This suggests that hardware will be in more use to
serve the users more than save on bandwidth, which has
a greater effect on the origin servers. In this strategy,
smaller objects are constantly swapped for other
equally sized objects, while larger objects are removed
first before smaller ones. Figures 34–48 show the
removal rates for our simulations. Figures 34–37
shows the results for the recency, frequency, recency/
frequency and function based categories, respectively,
using the UC trace file. Figures 38–41 shows the results
for the four categories using the PA trace, while Figures
42–45 shows those for NY trace files. Figures 46–48
show the overall comparison of all strategies selecting

the best three from each category, using The UC, PA
and NY trace files, respectively.

In the function-based strategies Figures 37, 41 and
45, the strategies follow the general rankings as set by
the byte hit rate. However, an odd occurrence in PA’s
trace file, Figure 41, shows that the deviation between
the highest and lowest simulations is between 50% and
60%. It is an interesting occurrence because in hit rate,
Figure 11, the greatest deviation is about 5–7% of the
highest and lowest, and the byte hit rate, Figure 22, has
an even smaller deviation. NY trace results have a
much larger deviation on both, and yet a rather
stable removal rate.

This suggests that while deviations of hit rates and
byte hit rates may be low, there is no clear pattern
between removal rate and the other two metrics despite

PA Trace File - Recency

15.5 16 16.5 17 17.5 18

HLRU (3)

Value Aging (LRU)

PSS

Pitkow Reckers (Daily)

LRU Threshold (40.0%)

LRU

LRU-Min

SIZE

LOG2SIZE

Figure 20. Byte hit rate for recency using the PA trace file.

PA Trace File - Overall

17 17.2 17.4 17.6 17.8 18 18.2

GD* (1.0) w/AUX

GDSF w/AUX

LNC-R-W3 (3/1.5)

LRU-SP

HYPER-G

LFU

Generational Replacement (5)

HLRU (3)

Value Aging (LRU)

LFU-DA

LFU-Aging (5.5)

PSS

Figure 21. Byte hit rate for overall using the PA trace file.

Romano and ElAarag 529

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


that it generally may be otherwise. In the case of PA’s
results, it would be a much wiser decision based on a
sparse request stream, to implement M-Metric and
MIX because they will have less drive access, making
smarter decisions about which objects to replace, while
having almost identical byte hit rate to Greedy-Dual’s
derivations and doing far better in hit-rate than other
function-based methods.

7. Conclusion

Proxy servers have been used extensively to reduce net-
work traffic and improve the availability and scalability
of the network. We have shown how one aspect of
the Web cache, the cache replacement strategy, can
adversely affect the performance. This paper has

provided an exhaustive quantitative analysis of cache
replacement strategies based on three metrics. The met-
rics are very important as they indicate the amount of
bandwidth (or network traffic), user perceived lag (or
delay time), and CPU usage (or disk access).

A comprehensive study of 27 algorithms was
included along with details of their implementation.
First, we presented the results of individual strategies
categorized as recency, frequency, recency/frequency,
or function based for three different trace files and
three different metrics. Then, as a global comparison,
we took the top three strategies from each category for
a particular metric and compared them overall, to get a
better sense of how the strategies from each category
rank. Second, we noted peculiarities between different
traces for individual strategies. Many strategies that

NY Trace File - Recency

15 17 19 21 23 25 27 29 31

HLRU (3)

Value Aging (LRU)

LRU Threshold (10.0%)

LRU

Pitkow Reckers (Hourly)

PSS

LRU-Min

SIZE

LOG2SIZE

Figure 23. Byte hit rate for recency using the NY – 200 MB trace file.

PA Trace File - Function

14 14.5 15 15.5 16 16.5 17 17.5 18

GDSF w/AUX

GD* (1.0) w/AUX

LNC-R-W3 (3/1.5)

LNC-R-W3 (3/1.5) w/AUX

MIX (0.1/2/1/1) w/AUX

M-Metric (2/-1/-1)

GD* (1.7)

MIX (0.1/1/1/1)

M-Metric (1/-1/-1) w/AUX

GDSF

GD-Size

TSP

LUV(1.667E-5) w/AUX

LUV(1.667E-5)

Figure 22. Byte hit rate for function using the PA trace file.

530 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


UC Trace File - Frequency

33.5 34 34.5 35 35.5 36 36.5 37

LFU-Aging (5.5)

LFU-DA

LFU

Alpha Aging
(3600000/0.5)

Figure 26. Byte hit rate for frequency using the UC trace file.

NY Trace File - Function

15 17 19 21 23 25 27 29 31

LNC-R-W3 (3/0.0) w/AUX

GD* (1.66) w/AUX

MIX (1/1/1/1) w/AUX

LNC-R-W3 (3/0.75)

GD* (1.5)

GDSF w/AUX

GDSF

M-Metric (1/-0.5/-1)

M-Metric (1/-1/-1) w/AUX

GD-Size

MIX (0.1/1/1/1)

LUV(0.5) w/AUX

TSP

LUV(1.0)

Figure 25. Byte hit rate for function using the NY trace file.

UC Trace File - Function

30 31 32 33 34 35 36 37 38 39 40

MIX (0.1/2/1/1) w/AUX

LNC-R-W3 (3/1.0) w/AUX

M-Metric (1/-0.5/-1)

M-Metric (1/-1/-1) w/AUX

GD* (1.66) w/AUX

LNC-R-W3 (3/0.5)

MIX (0.1/1/1/1)

GD* (1.66)

GDSF w/AUX

GDSF

GD-Size

LUV(0.75) w/AUX

TSP

LUV(1.0)

Figure 24. Byte hit rate using the UC trace file.

Romano and ElAarag 531

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


UC Trace File - Overall

36 36.5 37 37.5 38 38.5

MIX (0.1/2/1/1) w/AUX

LNC-R-W3 (3/1.0) w/AUX

M-Metric (1/-0.5/-1)

SLRU (10.0%)

HLRU (2)

LRU Threshold (1.0%)

Value Aging (LRU)

LFU-Aging (5.5)

LFU-DA

LRU*

Generational Replacement (2)

LFU

Figure 29. Byte hit rate for overall using the UC trace file.

NY Trace File - Frequency

24.5 25 25.5 26 26.5 27 27.5 28 28.5

LFU-Aging (5.5)

LFU

LFU-DA

Alpha Aging
(3600000/0.25)

Figure 28. Byte hit rate for frequency using the NY – 200 MB trace file.

PA Trace File - Frequency

16 16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8

LFU

LFU-DA

LFU-Aging (5.5)

Alpha Aging
(3600000/0.75)

Figure 27. Byte hit rate for frequency using the PA trace file.

532 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


PA Trace File - Frequency/Recency

17.25 17.3 17.35 17.4 17.45 17.5 17.55 17.6 17.65 17.7 17.75 17.8

LRU-SP

HYPER-G

Generational
Replacement (5)

LRU*

SLRU (50.0%)

CSS (128)

Figure 32. Byte hit rate for frequency/recency using the PA trace file.

UC Trace File - Frequency/Recency

32 33 34 35 36 37 38

SLRU (10.0%)

LRU*

Generational
Replacement (2)

HYPER-G

LRU-SP

CSS (64)

Figure 31. Byte hit rate for frequency/recency using the UC trace file.

NY Trace File - Overall

25.5 26 26.5 27 27.5 28 28.5 29

LNC-R-W3 (3/0.0) w/AUX

HLRU (3)

LFU-Aging (5.5)

SLRU (30.0%)

GD* (1.66) w/AUX

MIX (1/1/1/1) w/AUX

Value Aging (LRU)

HYPER-G

LFU

Generational Replacement (5)

LFU-DA

LRU Threshold (10.0%)

Figure 30. Byte hit rate for overall using the NY trace file.

Romano and ElAarag 533

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


UC Trace File - Frequency

75.5 76 76.5 77 77.5 78 78.5

LFU-DA

LFU

LFU-Aging (5.5)

Alpha Aging
(3600000/0.5)

Figure 35. Removal rate for frequency using the UC trace file.

NY Trace File - Frequency/Recency

18 20 22 24 26 28 30

SLRU (30.0%)

HYPER-G

Generational
Replacement (5)

LRU*

LRU-SP

CSS (128)

Figure 33. Byte hit rate for frequency/recency using the NY trace file.

UC Trace File - Recency

55 60 65 70 75 80 85

SIZE

LRU-Min

LOG2SIZE

PSS

Pitkow Reckers (Daily)

LRU Threshold (1.0%)

HLRU (4)

Value Aging (LRU)

LRU

Figure 34. Removal rate for recency using the UC trace file.

534 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


PA Trace File - Recency

20 30 40 50 60 70 80

SIZE

LOG2SIZE

LRU-Min

PSS

Pitkow Reckers (Daily)

LRU Threshold (1.0%)

HLRU (2)

Value Aging (LRU)

LRU

Figure 38. Removal rate for recency using the PA trace file.

UC Trace File - Frequency/Recency

55 60 65 70 75 80

CSS (16)

LRU-SP

SLRU (10.0%)

Generational
Replacement (5)

HYPER-G

LRU*

Figure 36. Removal rate for frequency/recency using the UC trace file.

UC Trace File - Function

55 60 65 70 75 80 85

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-1/-1) w/AUX

LNC-R-W3 (2/2.0) w/AUX

GD* (1.5) w/AUX

LUV(0.0010) w/AUX

GDSF

TSP

Figure 37. Removal rate for function using the UC trace file.

Romano and ElAarag 535

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


PA Trace File - Function

0 10 20 30 40 50 60 70 80

M-Metric (1/-2/-1)

M-Metric (1/-1/-1) w/AUX

LNC-R-W3 (2/2.0)

GD* (0.6)

GDSF w/AUX

GD-Size

TSP

Figure 41. Removal rate for function using the PA trace file.

PA Trace File - Frequency/Recency

20 30 40 50 60 70 80

CSS (4)

LRU-SP

SLRU (20.0%)

HYPER-G

Generational
Replacement (5)

LRU*

Figure 40. Removal rate frequency/recency using the PA trace file.

PA Trace File - Frequency

62 63 64 65 66 67 68 69

Alpha Aging
(86400000/0.5)

LFU

LFU-Aging (5.5)

LFU-DA

Figure 39. Removal rate for frequency using the PA trace file.

536 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


NY Trace File - Frequency/Recency

40 45 50 55 60 65 70 75 80 85

CSS (16)

LRU-SP

SLRU (10.0%)

HYPER-G

Generational
Replacement (5)

LRU*

Figure 44. Removal rate for frequency/recency for the NY trace file.

NY Trace File - Frequency

77.5 78 78.5 79 79.5 80 80.5 81 81.5

LFU

LFU-Aging (5.5)

LFU-DA

Alpha Aging
(3600000/0.25)

Figure 43. Removal rate for frequency using the NY trace file.

NY Trace File - Recency

40 45 50 55 60 65 70 75 80 85

SIZE

LOG2SIZE

LRU-Min

PSS

Pitkow Reckers (Daily)

HLRU (2)

LRU Threshold (1.0%)

Value Aging (LRU)

LRU

Figure 42. Removal rate for recency using the NY trace file.

Romano and ElAarag 537

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


UC Trace File - Overall

55 60 65 70 75 80

CSS (16)

MIX (0.1/1/1/2) w/AUX

M-Metric (1/-2/-1)

SIZE

LRU-Min

LOG2SIZE

M-Metric (1/-1/-1) w/AUX

LRU-SP

SLRU (10.0%)

LFU-DA

LFU

LFU-Aging (5.5)

Figure 46. Removal rate for overall using the UC trace file.

NY Trace File - Function

50 55 60 65 70 75 80 85 90

M-Metric (1/-2/-1)

M-Metric (1/-1/-1) w/AUX

LNC-R-W3 (2/2.0) w/AUX

GD* (0.55) w/AUX

GD* (1.4)

LUV(1/60,000) w/AUX

TSP

Figure 45. Removal rate for function using the NY trace file.

PA Trace File - Overall

20 30 40 50 60 70 80

SIZE

LOG2SIZE

CSS (4)

M-Metric (1/-2/-1)

MIX (0.1/1/1/2) w/AUX

LRU-Min

LRU-SP

M-Metric (1/-1/-1) w/AUX

Alpha Aging (86400000/0.5)

SLRU (20.0%)

LFU

LFU-Aging (5.5)

Figure 47. Removal rate for overall using the PA trace file.

538 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


utilized parameters needed further analysis to see how
different combinations of parameters affect the overall
functionality. We discussed how certain attributes
about the request streams affect certain strategies com-
paratively. Several explanations were provided detail-
ing various performance issues of the strategies
individually and as a category. We also demonstrated
that the sparseness of request streams has a large effect
on an algorithm’s performance and that some algo-
rithms thought to be resilient to temporal locality,
such as many function-based methods, were far more
sensitive than previously thought.

The Squid proxy server provides a choice between
LFU-DA, GDSF, a heap-based variation of LRU,
and by default enables a linked-list version of its LRU
variant. Based on the research presented in this paper, it
is obvious that algorithms such as PSS, CSS, M-Metric,
MIX, and GDSF would allow system administrators
greater control over their proxy servers. System admin-
istrators should configure Squid to use one of the more
advanced strategies, GDSF or LFU-DA, instead of the
default LRU that was clearly demonstrated to perform
the worst consistently in our research.

Most of the strategies we covered are relatively simple
to implement and incorporate a relative low CPU and
space overhead and should be deployed in commercial
proxy cache servers to allow system administrators and
ISPs greater control over the QoS of their services. Our
results are particularly important in ad-hoc wireless net-
works where mobile devices have limited cache size.

8. Future Work

Cache replacement strategies that work in collabora-
tion with multiple proxy servers should also be

researched. Cooperation of multiple clusters could
lead to a generally faster Web on the whole.
Replacement strategies based on neural networks,
genetic algorithms and fuzzy logic should also be ana-
lyzed in hopes of devising strategies that are resistant to
changes in the request stream.

Cache placement strategies should be surveyed in a
similar way as replacement strategies were. Many
models are based on probability and heuristics, also
incorporating expiration, and other general character-
istics that are not normally considered in replacement
strategies. Once analyzed, combinations of placement
strategies with replacement strategies can be studied to
find how these two decisions affect one another.

Likewise, cache replacement strategies dealing with
dynamic Web content should be surveyed and simu-
lated in a similar manner. As the Web evolves, new
dynamic strategies will need to be devised and this
paper can be used as the basis to analyze how these
replacement strategies perform.

Funding

This research has been partially funded by a SURE grant
from Stetson University.

Acknowledgment

The authors are very grateful to the three anonymous

reviewers and the associate editor for their comments and
critique which improved the quality of this paper.

References

1. Gill P, Arlitt M, Li Z and Mahanti A. YouTube traffic
characterization: a view from the edge. In Proceedings of

the 7th ACM SIGCOMM Conference on Internet

Measurement, San Diego, CA, 2007, pp. 15–28.

NY Trace File - Overall

45 50 55 60 65 70 75 80 85

SIZE

CSS (16)

LOG2SIZE

LRU-Min

M-Metric (1/-2/-1)

MIX (0.1/1/1/2) w/AUX

LRU-SP

M-Metric (1/-1/-1) w/AUX

SLRU (10.0%)

LFU

LFU-Aging (5.5)

LFU-DA

Figure 48. Removal rate for overall using the NY trace file.

Romano and ElAarag 539

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


2. Abhari A and Soraya M. Workload generation for

YouTube. Multimedia Tools Appl 2010; 46: 91–118.

DOI 10.1007/s11042-009-0309-5.
3. Podlipnig S and Boszormenyi L. A survey of Web cache

replacement strategies. ACM Comput Surveys 2003; 35:

374–398.
4. Balamash A and Krunz M. An overview of Web caching

replacement algorithms. Commun Surveys Tutorials 2004;

6: 44–56.

5. Wong K. Web cache replacement policies: A pragmatic

approach. IEEE Network 2006; 20: 28–34.

6. Fagni T, Perego R, Silvestri F and Orando S. Boosting

the performance of Web search engines: Caching and

prefetching query results by exploiting historical usage

data. ACM Trans Inform Syst 2006; 24: 51–78.
7. Romano S and ElAarag H. A quantitative study of

recency and frequency based Web cache replacement stra-

tegies. In 11th Communication and Networking Symposium

(CNS.08), Spring Simulation Multiconference, Ottawa,

Canada, 14–17 April 2008, pp. 70–78.
8. Hypertext Transfer Protocol—HTTP/1.1, 14 August 2007.

Available at: http://www.w3.org/Protocols/rfc2616/rfc2616.

html.
9. Gan Q and Suel T. Improved techniques for result cach-

ing in Web search engines. In Proceedings of the 18th

International Conference on World Wide Web, Spain,

2009, pp. 431–440.
10. Pallis G, Vakali A and Pokorny J. A clustering-based

prefetching scheme on a Web cache environment.

Comput Electrical Engng 2008; 34: 309–323.
11. Kumar C and Norris JB. A new approach for a proxy-

level web caching mechanism. Decision Support Syst

2008; 46: 52–60.

12. Chiang IR, Goes P and Zhang Z. Periodic cache replace-

ment policy for dynamic content at application server.

Decision Support Syst 2007; 43: 336–348.
13. Kastaniotis G, Maragos E, Dimitsas V, Douligeris C

and Despotis DK. Web proxy caching object replace-

ment: frontier analysis to discover the ‘good-enough

algorithms’. In 15th International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, October 2007, pp.132-137.
14. Ortiz JPG, Ruiz VG, Lopez MF and Garcia I. Interactive

transmission of JPEG2000 images using Web proxy cach-

ing. IEEE Trans Multimedia 2008; 10: 629–636.
15. Liu J-C and Xu J-L. Proxy caching for media streaming

over the Internet. IEEE Commun Mag 2004; 42(8): 88–94.
16. Luo Q and Naughton J. Form-based proxy caching for

database-backed web sites: Keywords and functions.

VLDB J 2008; 17: 489–513.

17. Houtzager G, Jacob C and Williamson C. An evolution-

ary approach to optimal Web proxy cache placement. In

IEEE Congress on Evolutionary Computation 2006.
18. Aguilar J and Leis EL. A coherence-replacement protocol

for web proxy cache systems. Int J Comput Appl 2006; 28:

12–18.
19. Kaya CC, Zhang G, Tan Y and Mookerji V. An admis-

sion-control technique for delay reduction in proxy cach-

ing. Decision Support Syst 2009; 46: 594–603.

20. Goyal V, Sanyal S and Agrawal DP. Vcache: Caching

dynamic documents. In CoRR, 2010.

21. Kim H-C, Lee D, Chon K, Jang B, Kwon T and Choi Y.

Performance impact of large file transfer on Web proxy

caching: A case study in a high bandwidth campus

network environment. J Commun Networks 2010; 12(1):

52–65.

22. Cobb W and ElAarag H. Web proxy cache replacement

scheme based on back propagation neural network.

J Syst Software 2008; 81: 1539–1558.
23. Romano S and ElAarag H. A neural network proxy

cache replacement strategy and its implementation

in the Squid proxy server. Neural Comput Appl Vol. 20,

2011, pp. 59–78, Springer-Verlag.
24. Sabegi M and Yaghmaee M. Using fuzzy logic to

improve cache replacement decisions. Int J Comput Sci

Network Security 2006; 6(3A): 182–188.

25. Calzarossa M and Valli G. A fuzzy algorithm for Web

caching. Simulation 2003; 35: 630–636.

26. Venketesh P and Venkatesan R. A survey on applications

of neural networks and evolutionary techniques in web

caching. IETE Tech Rev 2009; 26: 171–180.
27. Katsaros D and Manolpoulos Y. Web caching in broad-

cast mobile wireless environments. IEEE Internet Comp

2004; 8(3): 37–44.
28. Kumar N, Gangopadhyay A and Karabatis G.

Supporting mobile decision making with association

rules and multi-layered caching. Decision Support Syst

2007; 43: 16–30.
29. Lewycky N, Benhan B and Abhari A. Improving the

performance of the Squid proxy cache. In 9th

Communications and Networking Simulation Symposium

(CNS 2006), Huntsville, AL, 2–6 April 2006.

30. Serbinski AA and Gusic. Improving the performance of

Apache web server. In Proceedings of the 2007 Spring

Simulation Multiconference, Volume 1, 2007, pp.166–169.
31. IRCache Home. Available at: http://www.ircache.net/

32. Peng G. CDN: Content Distribution Network. Technical

Report TR-125, Experimental Computer Systems Lab,

Stony Brook University, February 2008.

33. Su A-J, Choffnes DR, Kuzmanovic A and Bustamante

FE. Drafting behind Akamai: Inferring network condi-

tions based on CDN redirections. IEEE/ACM Trans

Networking 2009; 17(6): 1752–1765.
34. Akamai CDN. Available at: http://www.akamai.com.
35. Badam A, Park KS, Pai VS and Peterson LL.

HashCache: cache storage for the next billion. In NSDI

’09: 6th USENIX Symposium on Networked Systems

Design and Implementation, 2009.

36. Kangasharju J, Roberts J and Ross K. Object replication

strategies in content distribution networks. Comput

Commun 2002; 25: 376–383.
37. Doyle RP, Chase JS, Gadde S and Vahdat AM. The

trickle-down effect: Web caching and server request dis-

tribution. Comput Commun 2002; 25: 345–356.
38. Gadde S, Chase J and Rabinovich M. Web caching and

content distribution: A view from the interior. In

Proceedings of the 5th International Web Caching and

Content Delivery Workshop, Lisbon, Portugal, May 2000.

540 Simulation: Transactions of the Society for Modeling and Simulation International 88(5)

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


39. Davison B. A Web caching primer. IEEE Internet
Comput 2001; 5(4): 38–45.

40. Abrams M, Standridge CR, Abdulla G, Williams S and

Fox E. Caching proxies: limitations and potentials. In
Proceedings of the 4th International World Wide Web
Conference, 1995.

41. Pitkow J and Recker M. A simple yet robust caching

algorithm based on dynamic access patterns. In
Proceedings of the 2nd International World Wide Web
Conference, 1994, pp. 1039–1046.

42. Williams S, Abrams M, Standridge CR, Abdulla G and
Fox EA. Removal policies in network caches for
world-wide web documents. In Proceedings of ACM

SIGCOMM. New York: ACM Press, 1996, pp.293–305.
43. Zhang J, Izmailov R, Reinniger D and Ott M.Web caching

framework: Analytical models and beyond. In Proceedings

of the IEEEWorkshop on Internet Applications. Piscataway,
NJ: IEEE Computer Society, 1999.

44. Vakali A. Proxy cache replacement algorithms: A his-
tory-based approach. World Wide Web 2001; 4: 277–297.

45. Aggarwal CC, Wolf JL and Yu PS. Caching on the
World Wide Web. IEEE Trans Knowedge Data Eng
1999; 11: 94–107.

46. Arlitt MF, Cherkasova L, Dilley J, Friedrich RJ and Jin
TY. Evaluating content management techniques for
Web proxy caches. ACM SIGMETRICS Performance

Evaluation Rev 2000; 27: 3–11.
47. Arlitt M. A Performance Study of Internet Web Servers.

MSc Thesis: University of Saskatchewan, 1996.
48. Arlitt MF, Friedrich RJ and Jin TY. Performance

Evaluation of Web Proxy Cache Replacement Policies.
Technical Report HPL-98-97(R.1), Hewlett-Packard
Company, Palo Alto, CA, 1999.

49. Osawa N, Yuba T and Hakozaki K. Generational replace-
ment schemes for a WWW proxy server. In High-
Performance Computing and Networking (HPCN’97)

(Lecture Notes in Computer Science, Vol. 1225). Berlin:
Springer-Verlag, 1997, pp. 940–949.

50. Chang C-Y, McGregor T and Holmes G. The LRU*

WWW proxy cache document replacement algorithm.
In Proceedings of the Asia Pacific Web Conference, 1999.

51. Tatarinov I. An Efficient LFU-like Policy for Web
Caches. Technical Report NDSU-CSORTR-98-01,

Computer Science Department, North Dakota State
University, Wahpeton, ND, 1998.

52. Cheng K and Kambayashi Y. A size-adjusted and

popularity-aware LRU replacement algorithm for Web
caching. In Proceedings of the 24th International Computer
Software and Applications Conference (COMPSAC).

Piscataway, NJ: IEEE Computer Society, 2000, pp.48–53.
53. Cao P and Irani S. Cost-aware WWW proxy caching

algorithms. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems, 1997, pp. 193–206.

54. Jin S and Bestavros A. GreedyDual*: Web caching
algorithms exploiting the two sources of temporal locality
in Web request streams. In Proceedings of the 5th

International Web Caching and Content Delivery
Workshop, 2000.

55. Yang Q, Zhang HH and Zhang H. Taylor series predic-

tion: A cache replacement policy based on second-

order trend analysis. In Proceedings of the 34th
Hawaii International Conference on Systems Sciences.
Piscataway, NJ: IEEE Computer Society, 2001.

56. NiclausseN,LiuZandNainP.Anewefficient cachingpolicy
for theWorldWideWeb. In Proceedings of theWorkshop on
Internet Server Performance 1998, pp. 119–128.

57. Wessels D. Intelligent Caching for World-Wide-Web

objects. Boulder, CO: MSc thesis, University of
Colorado at Boulder, 1995.

58. Scheuermann P, Shim J and Vingralek R. A case for delay-

conscious caching ofWeb documents. InProceedings of the
6th International WWW Conference, 1997.

59. Bahn H, Koh K, Min SL and Noh SH. Efficient replace-

ment of nonuniform objects in Web caches. IEEE
Computing 2002; 35: 65–73.

60. Hosseini-Khayat S. Investigation of Generalized Caching.

PhD Dissertation, Washington University, St Louis, MO,
1997.

61. Sajeev GP and Sebastian MP. A novel content classification
scheme for web caches. Evolving Syst 2010; 2(2): 101–118.

Sam Romano is a software engineer at Lockheed
Martin Corporation, Orlando, Florida. He obtained
his BSc in computer science from Stetson University
in 2008. He has multiple publications in the area of
Web proxy cache replacement. His current research
interests include artificial intelligence, knowledge base
and rule engines, task scheduling problem analysis
with algorithm design, concurrent performance on dis-
tributed system architectures, and Web application
software architecture. His work at LMCO is mostly
based on logistics and training Web applications for
more thorough management in military logistics and
training programs across the world.

HalaElAarag is anassociate professor of computer science
at Stetson University, DeLand, Florida. She received her
PhD degree in Computer Science from the University of
CentralFlorida in2001,herMScandBSc fromAlexandria
University in 1991 and 1989, respectively. Her research
interests include computer networks, operating systems,
evolutionary computation, modeling and simulation and
performance evaluation.Shehasnumerouspublications in
prestigious international journals and conference proceed-
ings. She obtained Stetson University research award in
2005 and Best Paper Award at the 11th Communication
and Networking Symposium (CNS’08). She was
co-general chair of Communication and Networking
Simulation Symposium 2009. She is Program Chair and
board member of Consortium of Computing Sciences in
Colleges Southeastern Region. She is Vice General Chair
andGeneralChairof Society forModelingandSimulation
International (SCS) Spring Simulation Multiconference
2011 and 2012, respectively. She serves on the technical
committee formany international conferences and reviews
for multiple journals

Romano and ElAarag 541

 at PENNSYLVANIA STATE UNIV on September 18, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/



