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Abstract

In network performance tomography, characteristics of the network interior, such as link loss and
packet latency, are inferred from correlated end-to-end measurements. Most work to date is based on
exploiting packet level correlations, e.g., of multicast packets or unicast emulations of them. However,
these methods are often limited in scope—multicast is not widely deployed—or require deployment of
additional hardware or software infrastructure.

Some recent work has been successful in reaching a less detailed goal: identifying the lossiest net-
work links using only uncorrelated end-to-end measurements. In this paper we abstract the properties
of network performance that allow this to be done and exploit them with a quick and simple inference
algorithm that, with high likelihood, identifies the worst performing links. We give several examples
of real network performance measures that exhibit the required properties. Moreover, the algorithm is
sufficiently simple that we can analyze its performance explicitly.

1 Introduction

1.1 Motivation

Network performance tomography is the science of inferring performance characteristics of the network

interior by correlating sets of end-to-end measurements. Several methods have been proposed over the last

few years to infer link level packet loss and latency, and even the underlying network topology. Initial work

exploited the inherent correlations between copies of a multicast packet seen at different endpoints; see

[6, 15, 13, 5] and the review in [1]. Subsequent work emulated this approach using clusters of diversely

addressed unicast packets [8], and other packet group techniques; see [9, 10, 20, 21, 22, 23], and [8] for a

review. Probing and measurement collection functions for tomography have been embedded within transport

protocols, thus co-opting suitably enabled hosts to form impromptu measurement infrastructures; see [7] and

[20].

A key advantage of tomographic methods is that they require no participation from network elements

other than the usual forwarding of packets. This distinguishes them from well-known tools, such as tracer-

oute and ping, that require ICMP responses from routers in order to function. In practice, ICMP response is

restricted by some network administrators (presumably to prevent probing from external sources).
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Figure 1:ABSENCE OFIDENTIFIABILITY FROM UNCORRELATEDMEASUREMENTS: trees have different
link transmission probabilities but identical end-to-end transmission probabilities.

There are several challenges in bringing network performance tomography to fruition and enabling

widespread performance tomography. Multicast is not widely deployed. Even for methods based on unicast

probing, there are development and administrative costs associated with deploying probing and data collec-

tion software. This has motivated the goal of reducing such costs by developing inference methods that can

work with readily available end-to-end measurements.

1.2 The Need for Correlated Measurements

The requirement of network tomography for correlated measurements is illustrated by the following model.

Consider the two leaf tree of Figure 1(left), where the transmission rate on the link terminating at nodek

is φk (thus1− φk is the corresponding loss rate). The transmission probabilities from the source at node0

to the leaves at nodes2 and3 are the productsp2 = φ1φ2 andp3 = φ1φ3 respectively. (The transmission

probability for a path is the product of the transmission probabilities for its links). Thus the end-to-end

transmission probabilities are the same when the link probabilities are adjusted as in Figure 1(right), for any

multiplicative factorx betweenmax{φ2, φ3} and1/φ1. (This condition yields link probabilities less than

or equal to1). Consequently, independent measurement of the (two) transmission rates from the root0 to

each of the leaf nodes2 and3 is insufficient to determine the (three) link transmission probabilitiesφ1, φ2

andφ3 uniquely. Theφi are notnot statistically identifiablefrom the data, meaning that different sets of

parameters exist that give rise to the same statistical distribution of data.

1.3 Measurement and Packet-Level Correlation

The inherentpacket levelcorrelation of multicast packets can be exploited for tomography. When a given

multicast probe is observed at multiple end points, the contribution to packet performance from the common

portion of the packets’ paths is identical. This is the property that makes the link performance parameter

identifiable. Unicast tomography aims to reproduce similar correlations in groups of unicast packets. One

approach has been to emulate a multicast probe with a “stripe” of closely spaced unicast packets with

different IP destination addresses. The idea is that in the common portion of the packet path, the performance
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experienced by the packets will be strongly correlated. If the correlation were perfect, the behavior of the

probes, and the inferences drawn, would be identical to that of a notional multicast packet that followed the

same routing tree. Experimental studies using stripes to the same destination confirm that the correlation is

strong, although not perfect. The paper [14] proposed enhancing this approach with a form of data selection

that gives more weight to stripes that exhibited the strongest correlation. A related proposal in [9] is to take

the imperfect correlations explicitly into account through introducing more parameters into the link model,

then to reduce back the number of independent parameters by coupling the parameters through a queueing

model in order to render the model identifiable.

1.4 Inference in the Absence of Packet Level Correlations

Despite the methodological advances described in the previous section, the need to install measurement

software at receivers represents a barrier to widespread deployment. A recent approach to overcome these

barriers has been proposed in [18]. By measuring the packet stream at or near a web server, loss statistics

for the end-to-end paths from the server to each client are determined by observing TCP retransmissions.

In distinction from the work mentioned above, this approach does not assume or attempt to exploit any

packet-level correlations in the network experience of packets destined for different clients. Packets are

only assumed to have the same probability of being lost on given link, independent of the path they take

through it. The set of server-to-client paths forms a tree. The aim is to use the end-to-end data to infer the

loss rates on the logical links joining the branch points of the tree, at least with sufficient accuracy to identify

the lossiest links.

From the discussion in Section 1.2 it should be clear that the link rates in the model of [18] are not iden-

tifiable. Nevertheless some of the inference methods proposed in [18] are quite successful in identifying the

lossier links, both in a class of model networks (particularly when lossy links are rare), and in real topologies

where the lossiest links tend to be at the clients. However, the most accurate methods are computationally

very intensive. By understanding the structural properties that underpin these methods, we aim instead to

develop classes of quick and simple estimators for the worst performing links for a range of performance

characteristics. This will be the focus of the present paper.

1.5 Performance Level Correlation

The ability to identify the worst performing links relies on a structural assumption about link performance.

Even if we do not perform correlated end-to-end measurements at the individual packet level, it is still

reasonable to expect that two distinct packet streams that pass through a given link over the same period

of time would exhibit some correlation in performance at a statistical level. A model for this is as follows.

When a packet stream traverses a link, each packet may be subjected to a performance impairment: it

can be lost or delayed. If each packet’s impairment were known, one could calculate a summary statistic

(e.g. loss rate or mean delay) that would be mapped down to a binary performance measure by setting a

threshold. When the statistic exceeds the threshold, the performance is classified as “bad”; otherwise, it
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is classified as “good”. Clearly, the same classification could be made for paths comprising multiple links,

although different thresholds might be used in each case. The above scheme is generic and makes no specific

assumptions. The possibility for performance inference comes if the binary performance measure satisfies

the following conditions:

(A1) There is a class of packet streams such that all streams in the class experience either good or bad

performance. Accordingly, we say that the link is good or bad.

(A2) A path is bad if and only if at least one link on the path is bad.

In this case we say that the performance measure isseparable. The interpretation of separability is as

follows. (A1) says that the binary performance (“good/bad”) is perfectly correlated for packet streams in the

class. (A2) says that a bad path cannot arise through a set of “partially” bad links. This property gives us the

terminology of separability, meaning that the characteristics of good and bad paths are sufficiently distinct.

In Section 2 we will describe a number of network models in which the separability assumption, or a

weaker version of it, hold. For now we observe that a separable binary performance model maps exactly

onto the model for loss of a single multicast packet propagating down a multicast tree, with badness cor-

responding to packet loss. In more detail, (A2) is analogous to saying that if a packet is lost on a link, it

reaches no leaves descended from that node; (A1) is analogous to saying that if a packet does not reach

a leaf, it must have been lost on some link en route. This structural equivalence means that we have, in

principle, all methods available from multicast loss inference at our disposal in order to infer the distribution

of link badness.

1.6 Contribution and Summary

In this paper we develop the framework outlined above and show how it can be used to infer the locations

of badly performing links.

(a) Section 2 defines the notion of separability for performance measures and argues that it is satisfied

both by performance models treated in the literature, including those of [18]. We also introduce a

notion of weak separability in which good links always give rise to good paths (but the converse

need not be true). We show that any binary performance model can always be adjusted so that weak

separability holds.

(b) Section 3 describes a static algorithm—the smallest consistent failure set (SCFS) algorithm—for in-

ferring the locations of bad links in a routing tree, using a single measurement of the good/bad status

of each source-to-leaf path.

(c) The SCFS algorithm is sufficiently simple that its performance can be analyzed explicitly. In Section 4

we derive its false positive rate and detection rate for identifying bad links under the assumptions of

strict separability. We show that the false positive rate is very small for a likely range of probabilities

for a link to be bad. We confirm the results of the analysis with some model-based computations.
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(d) Although the false positive rate is low, the detection rate for bad links can be noticeably less than 1.

Section 5 describes an algorithm in which iterative application of measurement and inference is use to

detect all bad links. We compute the overhead, i.e., the amount by which the number of candidate bad

links exceed the actual number of bad links. We show that the excess is quite small for likely model

parameters.

(e) Section 6 extends the analysis of Section 4 to the general weakly separable case. We define the notion

of a critical link as a link which makes all paths through it bad. We obtain bounds for the false positive

rate and the detection rate in terms of general characteristics of the critical link. We illustrate with

some measured path performance data from the internet.

(f) Section 7 compares the performance of SCFS with the algorithms in [18] and another method recently

proposed in [3]. SCFS has a noticeably better false positive rate than the other methods.

(g) We conclude in Section 8. In a discussion of potential further work, we outline how time series of

path measurements can be used to infer the probabilities of link badness when these vary according

to a stochastic process. This is achieved by mapping the problem into the multicast loss inference

problem that was solved in [6].

(h) Proofs of the Theorems are deferred to the Appendix.

1.7 Related Work

The approach of this paper was first proposed in the conference report [11], where the analytical results in

Section 4 for the strictly separable case were presented without proof. The current paper supplies the proofs;

the methods and analysis in Sections 5 (exhaustive inspection) and 6 (the weakly separable case) are new.

Partly in response to our paper [11], a recent paper [3] reported network level simulations of SCFS, some

of the algorithms from [18], and a new proposed algorithm COBALT. In a comparison of different inference

algorithms, SCFS was found to have the lowest false positive rate, being about one third the rate of the next

best algorithm. The detection rate (or coverage, i.e., the proportion of bad links correctly identified) was

as good as other methods when bad links were rare but fell off when they were more common. The strong

experimental performance of SCFS against other algorithms is one motivation for completing our theoretical

performance study in the present paper. These results are discussed further in Section 7.

We mention also some recent work in which measurements of sets of packets (rather than individual

packets) were correlated for tomographic purposes. The paper [2] proposed correlating flow records in

order to identify congested links. The idea here is that the throughput of elastic traffic flows will become

correlated during a common congested period. In [12], aggregate loss statistics reported by multicast session

users using the RTP protocol are correlated in order to infer link loss rates. The idea is that even though

the loss statistics are aggregated over multiple packets, correlations due to loss of individual packets are still

visible. Fault isolation in multicast networks using scoped multicast traceroute (mtrace) has been proposed
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in [19]. Unlike the tomographic methods, this requires participation by network routers (to respond to

mtrace requests).

2 Network and Performance Model

We start in Section 2.1 by recording our terminology for trees. Section 2.2 formalizes the separation of links

into good and bad subsets, and Section 2.3 describes some examples.

2.1 Tree Model and Terminology

We assume that the network topology is known. The topology is represented as a directed treeT = (V, L)

comprising a set of nodesV joined by links inL. A packet source (e.g. a server) is located at the root node

0, while a set of destinations (e.g. clients) are located at the leaf nodesR. The interior nodes of the tree

represent the branch points of the routing tree from the source to the destinations, and the linksL are the

logical links that connect these branch points. We say nodej is the parent of nodek if (j, k) ∈ L, and write

j = f(k). Other ancestors ofk are defined byfn(k) = f(fn−1(k)) with f1 = f . We writej ≺ k if j is a

descendant ofk, i.e., if k = fm(j) for somem. The set of children of nodek is d(k) = {j ∈ V : (k, j) ∈
L}. For convenience we sometimes writeU = V \ {0}, i.e., the set of all non-root nodes. We will often

refer to the link terminating at nodek as “link k”. The root node0 is assumed to have a single child, denoted

by 1. If, not the tree can be disjoined into subtrees with this property.`k will denote the depth of the nodek

from the root.

2.2 Link Performance and Separability

Our performance model is as follows. During some measurement period, the source dispatches a set of

packets to each destination. On traversing linkk, a packet is subject to a performance degradation (e.g.

loss or delay) according to a distribution specified by a parameterφk. The degradation is independent

across different links and different packets. If the source-destination path comprises linksk1, . . . , km, the

performance degradation along the path follows a composite distribution described by the parametersφ =

{φk1 , . . . , φkm}.
Let ψ be the expected value of some statistic computed from link or path performance distributions; we

write ψk(φk) andψk1,...,km(φk1 , . . . , φkm) respectively. For each link or path we partition the setΨk1,...,km

of possibleψ values into two subsets that we we call “good” and “bad”. Likewise, we call the link or path (or

their parameters) bad if and only if the expected statisticψk1,...,km(φk1 , . . . , φkm) is bad. The key property

that captures the ability to detect the presence of badly performing links from end-to-end measurements is

as follows:

Definition

• The partitions are calledseparablewhen a path is bad if and only if at least one of its constituent links

is bad.
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• The partitions are calledweakly separablewhen a path being bad implies at least one of its constituent

links is bad.

We use the word “separable” because, if the good and bad link parameter sets are too close together, it will

not be possible to distinguish between them in the composite path measurements. Weak separability means

that paths with all good links are correctly identified, but some bad links may go undetected.

Note that we can always arrange for weak separability by definingΨgood
k1,...,km

= {ψ(φk1 , . . . , φkm) |
ψ(φki) ∈ Ψgood

ki
}. The extent to which this is useful then depends how frequently a good path does, in fact,

contain a bad link. We return to this question in Section 6. For now we illustrate the separability framework

with some examples.

2.3 Examples of Separable Performance Models

Connectivity If a link or a path is good, it transmits all packets; if bad, it transmits none. Thus the path is

bad if and only if at least one link of the path is bad.

High-Low Loss Model Packets traverse linkk independently with probabilityφk. The ranges of trans-

mission probabilities for good and bad links are separated. Good linksk have transmission rateφk > x;

bad links have transmission rateψ = φk < y, with y < x` where` is the depth of the tree (i.e. maximum

hop count from root to leaf). For a path traversing links1, . . . , m we takeψ =
∏m

i=1 φki , i.e., the path

transmission rate.

The minimum transmission rate on a path containing no bad link isx`, while the maximum transmission

rate on other paths isy. Picking anyz betweeny andx`, we call a path good if its transmission rate exceeds

z, and bad otherwise. Then a path is bad if and only if it contains at least one bad link.

In the modelLM1 of [18], good links have loss rates1−φk uniformly distributed between0% and1%;

bad links have loss rates uniformly distributed between5% and10%. Taking the threshold between good

and bad path transmission rates as0.95, this model is separable if the tree depth does not exceed5.

General Loss Model In a more general loss model, given a threshold link transmission probabilityt, we

call the linkk good if its transmission probabilityφk > t; otherwise it is bad. The model is weakly separable

if each comprising̀ links is designated as good if and only if its path transmission probability exceedsφ`
k.

The model is not in general strictly separable unless further conditions are imposed on the distribution of

transmission probabilities, e.g, as in theLM1 model described above.

In the related modelLM2 from [18], the bad links have loss uniformly distributed between1% and

100%. In this case the ranges of transmission probabilities for good and bad links are contiguous, with

thresholdt = 0.99. We choset` = 0.99` to be the threshold transmission rate separating good and bad

paths of̀ hops, then the partition is weakly separable: all paths containing only good links are designated

as good.
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Consider a path{k1, . . . , k`}. Conditioned on one of the links, sayki, being bad, the chance for a path

to be designated good is

P[
∏̀

j=1

φj > t` | i bad] = P[
∏̀

j=1

φj > t` | φi < t] ≤ P[φi > t` | φi < t] = P[φi ∈ (t`, t) | i bad] (1)

Note that this bound depends on the probability for a link to be bad only through the thresholdt; otherwise

it depends only on the distribution of loss rates of bad links. For theLM2 model, the bound is1− 0.99`−1,

e.g., about a 4% chance for` = 5. Thus the paths containing bad links can still be identified with high

probability. We make a systematic study of the impact of departures from strictly separability in Section 6,

including some examples based on network measurements of packet loss.

General Additive High-Low Model The above model type generalizes to a class of models in which link

performance is independent, and the statisticφ is any characteristic that is additive over links:

ψk1,...,km(φk1 , . . . , φkm) =
m∑

i=1

ψki(φki) (2)

The loss model above falls into this class if we take asφ, instead of the transmission probability, its loga-

rithm. Other examples of additive statistics are delay mean and variance.

Delay Spike Model Measurement of network round trip times (RTT) have shown the presence of “delay

spikes”, namely intervals of highly elevated round trip times; see [25]. To get a rough idea of what is

observed, in one data set, delay spikes of median delay 16.9 standard deviations above the mean RTT had

median durationds = 150ms. The spike episodes were found to be well modeled by a Poisson process, with

typical mean interarrival timeτs of the order of10s to a few hundreds of seconds. We assume that for a given

application, delay spikes with round-trip times exceeding a certain levelz are not tolerable. Consequently,

paths with (some statistic of) the spike delay greater thanz will be designated as bad.

We model of the occurrence of delay spikes as follows. Packets are potentially subject to delay spikes

on each link, although links may not exhibit any delay spikes at all. We assume

(A1) Delay spikes are short enough that a given packet will likely encounter only one spike on a network

path.

(A2) Spikes on a given link are assumed frequent enough that at least one packet of the set destined to a

given receiver will encounter a delay spike on a link that exhibits them.

Under these assumptions, we choseψ as the some quantile (e.g. the maximum) of the delay spike distri-

bution. If a path measurement yieldsψ > z (the threshold describes above), then according to assumption

(A1), a delay spike of that size was present on at least one of the links of the path: we will call such links

bad. By Assumption (A2) this delay spike should be present on all the paths through the bad links. Hence,

the division into good and bad links and paths is expected to be separable.
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We show that the delay spike processes observed in [25] are consistent with assumptions (A1) and (A2).

Here we attribute delay spikes to individual links, and characterize them by mean durationds and mean

interarrival timeτs. (In our model, the delays are one-way, rather than RTTs).

First, (A1). The probability for a packet to encounter a delay spike on a single link isds/τs. Assuming

that spikes occur independently, the probabilityq for a packet to encounter more than one delay spike on a

path comprising̀ hops isq = 1 − (1 − ds/τs)` − `(1 − ds/τs)`−1ds/τs. This probability increases with

path length. Taking̀ = 30, larger than most paths today (see [17]) andds = 150ms, thenq ranges from

0.02 for τs = 20s, down to3 × 10−5 for τs = 600s. Thus the chance of encountering more than one spike

is very small for the observed spike characteristics.

Now, (A2). Consider measurement over an interval of durationT with probe packets at frequencyr.

The average number of spikes encountered by the probes is aboutn = dsrT/τs, while the probability that at

least one probe encounters at least one spike is aboutp = (1− (1− ds/τs)rT . Consider a 10 kByte/s probe

stream comprising one 200 byte packet every 20ms, equivalent to a compressed audio transfer; thusr = 50.

Assuming a measurement period ofT = 600s, then(n, p) = (225, 1) for τs = 20s, and(7.5, 0.9995) when

τs = 600s. Hence, Assumption (A2) is reasonable in this case; at least a handful of probes will encounter a

spike during the measurement interval on average, and the chance for at least one probe-spike encounter is

close to1.

3 Smallest Consistent Failure Set (SCFS) Inference Algorithm

This section defines the algorithm for inferring the identity of bad links. The Smallest Consistent Failure Set

(SCFS) algorithm designates as bad only those links nearest the root that are consistent with the observed

pattern of bad paths. Define an indicator variableZk to be1 if link k is good, and0 if it is bad; for the root

node0 setZ0 = 1 by convention. For each path from the root0 to the nodek, let Xk = 1 if the path is

good, and0 if it is bad. Under the separability assumption, we can write

Xk =
∏

jºk

Zj (3)

i.e. the product of the link indicatorsXj for ancestorsj of k (includingk itself).

Let Rk denote the set of leaf nodes inR that are descended fromk. Write Yk = maxj∈Rk
Xj for k ∈ U

and setY0 = 1 by convention.Yk = 1 if and only if at least one source-destination path routed through

k is good. Clearly, ifYk = 1, then the path segment from0 to k is composed entirely of good links. If

Yk = 0 butYf(k) = 1 we call the subtree rooted atk amaximal bad subtree. A cautious approach would be

to declare as bad linkk and all links in the subtree. In practice, this is probably not very useful due to the

cost of inspecting all the links for badness.

The SCFS algorithm takes the other extreme by designating as bad the link in the subtree that is most

likely to be amongst the set of bad links, namely, the linkk. For suppose, on the other hand, thatk is not

bad. Then all the path segments fromk to the destinations inR(k) must be bad. This is, of course, possible,

which is why we cannot pin down the bad links with certainty. However, if the rate of occurrence of bad
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1. input: TopologyT ; End-to-end measurements{Xk}k∈R;
2. Y0 = 1;
3. W = ∅;
4. recurse(1);
5. output: W ;
6.
7. subroutine recurse(k) {
8. if (k ∈ R) {Yk = Xk};
9. else{
10. Yk = maxj∈d(k) Yj ;
12. foreach(j ∈ d(k)){
13. if (Yj = 0 && Yk = 1){
14. W = W ∪ {j};
15. }
16. }
17. }

Figure 2: Recursive Implementation of SCFS algorithm. Recall1 denotes the single child node of the root
node0.

links is sufficiently small, then, as we shall see, it is far more likely that the linkk is bad. Anticipating this,

we form an inference algorithm which designates linkk to be bad and all its descendant links good. Put

another way, we estimateZk by Ẑk = 0, while for all linksj with j ¹ k we estimateZj by Ẑj = 1.

Smallest Common Failure Set (SCFS) Algorithm

1. Input: TreeT , End-to-end measurements{Xk}k∈R;

2. W ′ = {k ∈ U | maxj∈Rk
Xj = 0};

3. W = {k ∈ W ′ | f(k) /∈ W ′};
4. Output: W ;

An explicit implementation of the SCFS algorithm determinesW by recursion on the tree; see Figure 2.

The setW contains those linksk for which nodek is the root of a maximal bad subtree. The action of the

SCFS algorithm is illustrated in Figure 3. On the left, given the data{Xk}k∈R, we display the valuesYk

for each nodek. NoteYk = Xk for leaf nodesk. We can only infer with certainty that the paths from the

root 0 to leaf nodesk with Yk = 1 nodes are good. Hence, the status of the linksa andb, and the subtrees

descended from them is uncertain. The right figure shows the action of the inference algorithm. The links

a andb are designated as bad while all the links in the subtrees descended from these links are designated

good. A special case is whenk is a bad leaf link whose parent has a good path routed through it. In this case,

k can unambiguously be declared bad since the maximal bad subtree descended throughk has one member,

namely,k itself.
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badness to common path (linksa andb) and designates remaining nodes as good.

4 SCFS Performance Analysis: Strictly Separable Case

The SCFS algorithm codifies a parsimonious approach that might well be taken without the benefit of anal-

ysis, specifically, attributing a pattern of bad paths as being due to badness in the smallest possible set of

interior links consistent with the pattern. This section analyzes the performance of the SCFS algorithm under

a statistical model for the distribution of bad links in the network. Following [18] we assume that links are

good or bad independently. Thus theZk are independent random variables, and we denote byαk = P[Zk]

the probability thatXk is good. In the next section we analyze the performance of the inference algorithm

under this statistical model. For compactness we will use the notationα = 1− α in what follows.

4.1 False Positive Rate

We now provide a justification of the inference algorithm by analyzing its performance. Recall that the

inference algorithm designates linkk as bad when nodek routes no good paths to its descendant leaves

(Yk = 0), but a path through its parent is known to be good (Yf(k) = 1). The false positive rate (FPR)

associated with a link is the probability that the link was designated as bad when it was in fact good. The

FPR for linkk is thus

FPRk = P[Yk = 0, Yf(k) = 1|Zk = 1] (4)

The tree average FPR is the expected number of false positives divided by the expected number of good

nodes, i.e.,

FPR =
∑

k∈U FPRkαk∑
k∈U αk

(5)

The main work of this section is to find bounds for the FPR under various levels of generality. To this

end, we will find it useful to define a number of subsidiary quantities. Set

βk := P[Yk = 1|Xf(k) = 1] (6)
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Figure 4: Bounds forFPRk for identification of bad link, as function of the fractionα of good links, for
branching ratiosr = 2, 3 and10.

Let Yf(k),k = maxj∈Rf(k)\Rk
Xj . This takes the value1 if and only if a packet reaches at least one of the

leaves descended fromf(k), but not including those leaves descended throughk. Setγf(k),k = P[Yf(k),k =

1]. An exact expression for the FPR is as follows.

Theorem 1 FPRk = (1− βk/αk)γf(k),k exceptFPR1 = 1− β1/α1.

Now βk is expressed through the recursion:

βk = 1− P[Yk = 0|Xf(k) = 1]

= 1− P[Zk = 0]− P[Zk = 1]
∏

j∈d(k)

P[Yj = 0|Xk = 1]))

= αk(1−
∏

j∈d(k)

βj), (7)

with the convention that for leaf nodesk ∈ R, an empty product is0. The value ofβk depends on the

topology. First consider a uniform tree with branching ratior andαk = α. Sinceβk must be equal for all

siblings, we can write

βf(k) = Bα,r(βk) := α(1− β
r
k) (8)

As we move up the tree, the value ofβk decreases towards a limit which is a fixed point of the iteration

of Bα,r. The following Theorem summarizes the main technical properties of the iteration that we shall

employ.

Theorem 2 (i) Whenαr > 1, the equationβ = Bα,r(β) as a unique fixed pointβ∗(α, r) in the interval

(0, 1).

(ii) Whenαr ≤ 1, the equationβ = Bα,r(β) has exactly one fixed pointβ∗(α, r) = 0.

(iii) The sequenceβ(n+1) = Bα,r(β(n)) with β(0) = α is decreasing.

(iv) The sequence{β(n)} converges toβ∗(α, r).
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(v) β∗(α, r) ≥ β∗(α, r′) for r > r′.

(vi) β∗(α, r) ≥ β∗(α′, r) for α > α′

Since{β(n)} is decreasing, we can bound the expression of (57) to find an upper bound on the false

positive rate. This extends to anarbitrary tree with a non-uniform fraction of bad links. In an arbitrary

tree, letαmin
k = min{αj : j ¹ k} be the minimum of probabilitiesαj for links to be good on the subtree

descended fromk, and letrmin
k = min{#d(j) : j ¹ k, j /∈ R} be the minimum branching ratio in the

subtree descended fromk.

For the special caser = 2, β∗(α, 2) can be computed explicitly as a solution toβ = α(1 − (1 − β)2),

namely

β∗(α, 2) =
{

1− α/α, α > 1/2
0, otherwise

(9)

Combined with the bound Theorem 2(v), this property enables us to establish explicit bounds on the FPR in

general topologies, as we now show.

Theorem 3 (i) In a perfectly balanced tree with branching ratior and constantαk = α,

FPRk ≤ F (α, r) := 1− β∗(α, r)
α

≤ F (α, 2) = min{1, (α/α)2} (10)

(ii) In an arbitrary tree, thenβj ≥ β∗(αmin
k , rmin

k ) for anyj ¹ k, and hence

FPRk ≤ 1− β∗(αmin
k , rmin

k )
αk

(11)

We plot the boundF (α, r) for r = 2, 3 and10 in Figure 4. We call this the worst case bound, since by

Theorem 2(iii), it is exceeded at no node in the tree. On the other hand, we knowFPRk ≤ 1 − β(1)/α for

a nodek whose children are leaf nodes. We call this the best case bound. We observe the following general

behavior in Figure 4.

• FPRk approaches1 for largeα (i.e. small fraction of bad links).

• The curve ofFPRk becomes flat asα approaches1. HenceFPRk is insensitive to the fractionα of

bad links, provided this is small.

This behavior is confirmed by the following:

Theorem 4 Asα → 0,

(i) β∗(α, r) = α− αr(1 + O(α)).

(ii) F (α, r) = αr(1 + O(α)).
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4.2 Detection Rate for Bad Links

In the previous section we saw that the linkk at the head of a maximal bad subtree is increasingly likely

to be bad when bad links are rare. However, we did not exclude the possibility of bad links elsewhere in

the subtree. We now evaluate the performance of the inference algorithm in identifying all bad links. The

detection rate (or coverage) of bad links is the probability that a bad link will be designated as bad, i.e.,

Ck = P[Yk = 0, Yf(k) = 1|Zk = 0] (12)

The detection rateC of bad links over the whole network is the expected total number of bad links designated

as bad divided by the total number of bad links, i.e.,

C =
∑

k∈U Ckαk∑
k∈U αk

(13)

We now establish lower bounds for the detection rate. LetAk =
∏

jºk αk denote the probability for the

entire path between the root0 and nodek to be composed of good links.

Theorem 5 (i) Ck = γf(k),k exceptC1 = 1.

(ii) γf(k),k = Af2(k)(βf(k) − βkαf(k))/βk

(iii) In a uniform tree withαk = α and branching ratior

γf(k),k ≥ Af2(k)α/(1/β∗(α, r)− 1) (14)

(iv) In a general tree

γf(k),k ≥ Af(k)(1/αmin
f(k) − 1)/(1/βmin

f(k) − 1) ≥ Af(k) max{0, 1− αmin
f(k)/αmin

f(k)} (15)

For completeness we remark that the chanceDBk that linkk is designated bad is

DBk = P[Yk = 0, Yf(k) = 1] = P[Yk = 0|Xf(k) = 1]P[Yf(k),k = 1] = βkγf(k),k (16)

This takes the valueAf2(k)(βf(k) − βkαf(k)), exceptDB1 = β1.

We have implemented symbolic computation ofCk using Mathematica [24]. LetTα(r1, . . . , rn) denote

the perfectly balanced tree of depthn+1 with successive branching ratiosr1, . . . , rn, and uniform probabil-

ity α for a link to be good. We plotC for several topologies in Figure 5. The left figure is for trees of depth 2

but increasing branching ratio. The detection rate is relatively insensitive to the branching ratio. This reflects

a trade-off: on the one hand, we have seen in Figure 4 that the probability of correct designation of a bad

link at the root of a maximal bad subtree increases with the branching ratio. On the other hand, the impact of

an incorrect designation increases with branching ratio, sinceYk = 0 butAk = 1 requires a higher number

of bad nodes in the subtree rooted atk. An even higher number of nodes is impacted similarly when the tree

depth increases: the middle figure shows thatC decreases as the depth increases at constant branching ratio.
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tree depth. Right: insensitivity to tree depth in the constant path failure rate scaling.

4.3 Asymptotic Behavior when Bad Links are Rare

We now examine the behavior ofFPRk and Ck for small α, i.e., when bad links are rare. We expect

considerable simplification of the analytic results in this regime. Firstly,FPRk should be approximately∏
j∈d(k) αj for smallα, i.e., the chance for all child links to be bad. Secondly, the detection rate computed

in the previous section was found to be insensitive to (large) branching ratio.

These observations are made precise by the following result. LetSk =
∑

jºk αk andTk =
∏

j∈d(k) αj

with Sj = Tj = 0 for j = 0 andj ∈ R. Let α+ = maxk∈U αk andα− = mink∈U αk. IΩ denotes the

indicator function of the setΩ.

Theorem 6 Consider the limit in whichαk → 1 for all k ∈ U , with α−/α+ bounded.

(i) βk = αk − Tk(1 + O(α−)).

(ii) γf(k),k = 1− Sf(k) − Tf(k)/αk + O(α2−)

(iii) FPRk = Tk(1 + O(α−)) and henceFPR = (#U)−1
∑

k∈U Tk(1 + O(α−)).

(iv) C = 1−
P

k αkSf(k)+Tf(k)P
k αk

+ O(α2−)

(v) C → 1 andC ≥ 1− `α− + O(α2−) in the limitα → 0, where` = maxk `k is the depth of the tree.

(vi) LetC(α) denote the detection rate of bad links in a tree with uniformαk = α.

C′(1) = (#U)−1
∑

k∈U

`k − 1 + I{#d(f(k))=2} (17)

(vii) In a perfectly balanced tree with depth` and branching ratior and uniformαk = α,

C′(1) =

{
`r`

r`−1
− r

r−1 if r 6= 2
`−1

1−2−` if r = 2
(18)
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Tα(2, 2) exact approx. bound
α C 1− C′(1)α 1− `α

0.95 0.890 0.886 0.85
0.90 0.789 0.771 0.7
0.80 0.611 0.543 0.4

Tα(2, 2, 2, 2) exact approx. bound
α C 1− C′(1)α 1− `α

0.95 0.810 0.794 0.75
0.90 0.649 0.587 0.5
0.80 0.404 0.174 0

Tα(5, 5) exact approx. bound
α C 1− C′(1)α 1− `α

0.95 0.913 0.911 0.85
0.90 0.831 0.823 0.7
0.80 0.676 0.645 0.4

Tα(5, 5, 5, 5) exact approx. bound
α C 1− C′(1)α 1− `α

0.95 0.825 0.812 0.75
0.90 0.675 0.625 0.5
0.80 0.436 0.250 0

Table 1: Detection RateC: Exact vs. Approximation and Bound from Theorem 6 for several uniform trees.

Example: LM2 model. Consider again theLM2 type model from Section 2.3. Specifically, consider

link probabilitiesαk = α and consider the regime with smallα. Then

FPRk ≈ (α)#d(k) (19)

Ck ≈ 1− `k α− (α)#d(k)−1 (20)

Take a binary tree (#d(k) = 2) of depth5 with each link having a probabilityα = 0.95 to have a good

transmission rate exceeding the thresholdt = 0.99. Put another way, only5% of links have a loss rate

greater than1%. ThenFPRk ≈ 0.0025 while the worst caseCk (for `k = 5) is 0.7

In the case of uniformαk = α, we can use the derivativeC ′(1) from Theorem 6(iv) to form the approx-

imation

C ≈ 1− C′(1)α (21)

for smallα. We compare this approximation, together with the bound from Theorem 6(iv), against the exact

value ofC in Table 1. The approximation works well (accurate to within a couple of percent in the cases

examined) for low loss rates withα = 0.95, and reasonably well (accurate to within about 10%) when

α = 0.9. Agreement is better for larger branching ratios and shallower trees.

4.4 Scaling Behavior For Deep Networks

If the tree depthd increases whileα remains constant, then the chanceαd for a given path to be good

decreases towards zero. But over the long timescales of network buildout, as network path lengths grow,

the links must perform better in order to maintain the same path quality. Thus, in modeling deep networks

we considerconstant path failure ratescaling, in which the chance for a link to be good isα1/d, so that the

chance for a path to be good remains constant.

Figure 5(right) shows the behavior ofC as the tree depth increases in the constant path failure rate scal-

ing, using depthd treesTα1/d(2, . . . , 2) for d = 2, 3, 4, 5. Observe that for mostα, C is almost independent
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1. START: Conduct end-to-end measurements.
2. Apply SCFS algorithm to measurements.
3. if (no candidate bad links exist){
4. exit
5. }
6. else{
7. inspect candidate bad links and repair any that are bad.
8. go toSTART.
9. }

Figure 6: Exhaustive Inspection Algorithm under SCFS

of the tree depth. In fact, it can be shown that in a perfectly balanced tree with constant branching ratio

r > 2 and uniform link probabilitiesα, the slope ofC is always shallower than1. Summarizing, we can say

that the fraction of correctly identified bad links is roughly equal to the fraction of good paths in any such

topology.

5 The Overhead for Exhaustive Inspection

5.1 Exhaustive Inspection

What is the cost of false positives? One way to measure this is to ask how many candidate bad links must

be inspected before all true bad links are found. We focus on an iterative scheme in which we repeat mea-

surement, inspection and (if necessary) repair of candidate bad links until no more bad links remain. This

exhaustive inspectionalgorithm is described in Figure 6. In this scheme we assume an initial assignment

of good and bad links. The first iteration starts with end-to-end measurements to which the SCFS algorithm

is applied. Candidate bad links are then inspected and repaired if necessary. After this step, any inspected

link k is known to be good; either the inspection found it good, or it was repaired and hence made good.

Likewise all ancestorsj of such a linkk are also known to be good, sinceYf(k) = Xf(k) = 1 for all candi-

date linksk. In the next iteration it remains only to determine the good/bad status of nodes descended from

those just inspected. Iteration stops when no candidate bad links remain; at this point, all links were either

good initially, or were bad and repaired.

5.2 Inspection Overhead: Computation

Let I denote the expected total number of inspections carried out using the exhaustive inspection algorithm.

The expected number of bad links isB =
∑

k∈U αk. The inspection overheadIO is the expected amount

by which the number of inspections carried out in the exhaustive inspection algorithm exceeds the expected

number of bad links, expressed as a fraction of the latter , i.e.,

IO = (I −B)/B (22)
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We computeI as follows. First note that inspection and repair proceeds top down from the root node0.

Thus, after inspection and (if necessary) repair of nodek, it is known thatXk = 1, even ifYk = 0 before

the repair. We letQk denote the event thatXk = 1 after inspection. Letηk be the number of inspections

carried out at linkk and all links in the subtree below it. Define

Lk = E[ηk|Qf(k), Yk = 0] Mk = E[ηk|Qf(k)] Nk = E[ηk|Yf(k) = 1] (23)

SinceX0 = 1 we have

I = M1 and hence IO =
M1∑
k∈U αk

− 1 (24)

These quantitiesL,M,N obey the following recursions:

Mk = E[ηk|Qf(k)] (25)

= P[Yk = 1|Xf(k) = 1]
∑

j∈d(k)

E[ηj |Yk = 1] (26)

+ P[Yk = 0, Zk = 0|Xf(k) = 1]


1 +

∑

j∈d(k)

E[ηj |Qk]


 (27)

+ P[Yk = 0, Zk = 1|Xf(k) = 1]


1 +

∑

j∈d(k)

E[ηj |Qk, Yj = 0]


 (28)

Eq. (26) represents the caseYk = 1: link k is not inspected. In (27) linkk is inspected becauseYk = 0.

Inspection reveals a bad link (Zk = 0). The link is repaired (settingQk = 1). The links belowk, i.e.,

the variables{Zk : k ≺ j} are not constrained sinceYk = 0 is attributable toZk = 0. In (28), link k is

inspected becauseYk = 0, but is found to be good (Zk = 1): this was a false positive. This fact constrains

{Zk : k ¹ j} because although the path tok is now known to be good, no path belowk is good. Hence

the subsequent inspections are conditioned onQk andYk = 0. The recursions forNk andLk follow in a

similar manner:

Nk = E[ηk|Yf(k) = 1] (29)

= P[Yk = 1|Yf(k) = 1]
∑

j∈d(k)

E[ηj |Yk = 1] (30)

+ P[Yk = 0, Zk = 0|Yf(k) = 1]


1 +

∑

j∈d(k)

E[ηj |Qk]


 (31)

+ P[Yk = 0, Zk = 1|Yf(k) = 1]


1 +

∑

j∈d(k)

E[ηj |Qk, Yj = 0]


 (32)

Lk = E[ηk|Qf(k), Yk = 0] (33)

= 1 + P[Zk = 0|Xf(k) = 1, Yk = 0]
∑

j∈d(k)

E[ηj |Qk] (34)

+ P[Zk = 1|Xf(k) = 1, Yk = 0]
∑

j∈d(k)

E[ηj |Qk, Yj = 0] (35)
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Figure 7: Inspection Overhead (as a percentage) for some uniform trees. Left: as a function of branching
ratio. Right: as a function of tree depth.

Simplifying, and using the fact thatβk = γk/Af(k), we have

Mk = βk + βk

∑

j∈d(k)

Nj + αk

∑

j∈d(k)

Mj + (αk − βk)
∑

j∈d(k)

Lj (36)

Nk =
βkγf(k),k

γf(k)
+

γk

γf(k)

∑

j∈d(k)

Nj +
αkγf(k),k

γf(k)

∑

j∈d(k)

Mj +
(αk − βk)γf(k),k

γf(k)

∑

j∈d(k)

Lj (37)

Lk = 1 +
αk

βk

∑

j∈d(k)

Mj +
(

1− αk

βk

) ∑

j∈d(k)

Lj (38)

The edge conditions fork ∈ R are

Mk = αk, Nk = αkγf(k),k/γk, Lk = 1 (39)

5.3 Inspection Overhead: Performance and Conclusions

The inspection overhead for some uniform trees is computed and displayed in Figure 7. The left figure

confirms that overhead decreases with branching ratio. This is to be expected from Theorem 6(v): as the

branching ratio increases the false positive rate decreases since a given node the requires more (child) nodes

in order to be falsely designated as bad. The right figure shows that overhead increases relatively slowly

with tree depth. Note that in all cases the overhead is quite small, being less than 10% in the worst case

considered, namely, a binary tree of depth 6 with bad links occurring with a 20% probability.

From the analysis of this section we conclude that iterative inspection of candidate bad links provides

a very effective way of incorporating linkwise measurements (from inspection) into the network in order to

locate all bad links. This holds even for trees that are deep and in which bad links are not vanishingly rare.
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6 SCFS Performance: Weakly Separable Case

The analysis so far has been based on the assumption that statisticsφ satisfy the separability assumption.

How does the performance of the SCFS algorithm behave under violations of separability? In this section we

consider the weakly separable case; in Section 2.2 we noted that weak separability can always be arranged

through judicious choice in the definition of the good paths.

6.1 Critical Links

In the weakly separable case a good path(0, k1, . . . , k`) may have bad links, i.e., whileZki = 1, i = 1, . . . , `

impliesXk`
= 1, the converse is not true. We introduce a more refined notion of bad links, that ofcritical

links, which helps us fill this gap. A link is critical if no path that contains it can be good. More precisely,

letPk denote the set of partial paths that pass throughk, i.e.,

Pk = {(j1, j2, . . . , jm) : m = 1, 2, . . . , ji = f(kj+1), i = 1, . . . , m− 1, k = ji somei} (40)

Since we work with a tree, each such pathp ∈ Pk is determined by its end points, call thems(p) ande(p),

wheres(p) Â e(p). Let X(p) be a random variable taking the value1 if the path froms(p) to e(p) is good,

while taking the value0 if it is bad.

For each linkk we define the set of criticalψ valuesΨcrit
k ⊂ Ψk to be the set for which

ψk(φk) ∈ Ψcrit
k ⇒ sup

p∈Pk

X(p) = 0 (41)

Note thatψk(φk) ∈ Ψcrit
k implies in particular thatXk = 0 andYk = 0. We will say that the link (or

its parameterφk) is critical if ψk(φk) ∈ Ψcrit
k . Note that the event thatk is critical is independent of the

{Zj : j 6= k}, since the implication is required to hold for all choices of theseZj . Clearly, critical links in

a weakly separable model are also bad, since if linkk were both critical and good, then any path throughk

with all other links good would itself be good, in contradiction withYk = 0.

The point of this definition that if a bad link is, with high probability, critical, then bad links are very

likely to cause bad paths. Thus, the analysis of Section 2.2 for the separable case will hold approximately.

We define thecritical probability for link k:

Kk = P[k is critical |k is bad]. (42)

One way to understandKk is thatKk = 1−Kk bounds the chance for a bad link to be part of a good path,

since

P[Yk = 1|Zk = 0] ≤ P[ sup
p∈Pk

X(p) = 1|Zk = 0] ≤ 1− P[k is critical |Zk = 0] = Kk (43)

Example: General Loss Model.We take a loss model with link transmission probabilitiesφk, andt` is

the threshold transmission probability between good and bad paths of length`. Consider a path comprising
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links k1, . . . , k`. Link ki is critical if
∏`

j=1 φkj
< t` for any possible set of{φkj

: kj 6= ki}. Thuski is

critical if and only ifφki
< t`. Thus for any linkk

Kk = P[φk < t`max(k)]/P[φk < t] (44)

where`max(k) is the length of the longest path throughk. Note that1−Kk is just the bound from (1) applied

to the longest path length̀max(k). Kk depends of the probabilities of the good and bad states through the

thresholdt sinceαk = P[φk ≥ t].

Now a weakly separable model should approximate the strictly separable case well ifKk is close to one.

From (44) we see this is likely to be the case if the mass of the conditional distribution ofφk givenk bad is

distributed mostly away from the thresholdt. We illustrate this with an example and a counterexample.

Example: LM2 model. Consider anLM2 type model from Section 2.3, where good linksi have

transmission probabilitiesφk uniformly distributed in(t, 1] and bad links have transmission probabilitiesφi

uniformly distributed in[0, t]. According to (44),

Kk = t`max(k)−1 ≈ 1− t(`max(k)− 1) (45)

Hence we expect a reasonable approximation to the separable case to require at least thatt`max(k) ¿ 1.

Counterexample: Power Laws. Suppose that the distribution of link transmission rates is governed by

the power law:P[φk ≤ x] = xp. Let t ∈ (0, 1) be the boundary between good and bad transmission rates.

Then

Kk = tp(`max(k)−1) (46)

ThusKk tends to be small whenp > 1. This is because, in this case, the density ofφk is increasing and

hence the transmission rates of bad links are bunched towards the thresholdt: the good and bad transmission

rates are far from separable.

6.2 False Positive Rate and Detection Rate

To analyze the behavior of SCFS, we will compare the actual processX with the idealized processX ′ that

would arise under strict separability with the same link probabilities{αk}. Thus

Xk ≥ X ′
k :=

∏

jºk

Zj (47)

Similarly, we defineY ′
k = maxj∈Rk

X ′
j . We will also needYf(k),k = maxj∈Rf(k)\Rk

Xj and its separable

analogY ′
f(k),k = maxj∈Rf(k)\Rk

X ′
j . In what follows, the quantitiesβk, γk andγf(k),k will refer to the

quantities defined for the strictly separable analog.

Theorem 7 In the weakly separable case,

(i) FPRk ≤ (1− βk/αk)γf(k),k + Θk where Θk =
∑

jºk Kjαj/αk

(ii) C1 = 1 and the detection rate is bounded below asCk ≥ Kkγf(k),k.

21



Comparing with Theorem 1 we see thatΘk represents the increase inFPRk that is attributable to departures

from separability. WhenKk is close to one, then clearly the bounds of Theorem 7 are close to the the exact

expressions in the strictly separable case.

Example: LM2 model. Consider again theLM2 type model from Section 2.3. Specifically, consider

link probabilitiesαk = α and consider the regime with smallα and critical threshold holdt close to1. Then

FPRk ≈ (α)#d(k) + α t `2
k (48)

Ck ≈ 1− `k α− (α)#d(k)−1 − `k t (49)

Comparing with (19) and (20), observe that the last terms in each expression represent the contribution

due to weak separability. Consider, as before, a binary tree (#d(k) = 2) of depth5, whose links have a

probabilityα = 0.95 to be good, meaning that their transmission rate exceeds the thresholdt = 0.99. In

the worst case (`k = 5) we findFPRk ≈ 0.015 (compared with0.0025 in the strictly separable case) while

Ck ≈ 0.65 (compared with0.7). Although the effect on FPR is quite marked, it still remains at about1% in

this example.

Example: Generalized Loss Model with Measured Rates.Ideally, we would wish to determine the

critical probability for a distribution of actual loss rates over a set of network links. Such data is not generally

available. As a proxy we use the distribution of time-averaged loss rate measured across a set of internet

paths in [25]. The data comprises 3,779 individual rates, each of which represents an average over one hour.

Their cumulative distribution is displayed in Figure 8; note the logarithmic horizontal axis. From this graph,

we can read off the dependence of the threshold (between the good and bad states) on the probabilityα to

be in the good state: this is the cumulative probability for loss to attain at most the threshold value. For

illustration, for a threshold loss of1% (i.e. a threshold transmission rate0.99) theα value is about0.8.

Figure 9 shows the associated critical probabilityK (on the left) and boundΘ on the increase in the false

positive probability (on the right) for link depths̀= 5, 15, 50. We see that the critical probability exhibits

a roughlyU -shaped, with a minimum roughly at loss rates between0.01 and0.03, depending on link depth.

In the depth 5 case considered previously, the minimum critical probability is about0.2 found near the loss

threshold1% (i.e., the transmission thresholdt = 0.99), rising to about 0.8 for loss rate10−5. The critical

probabilities are small for deeper links.

The boundΘ is (mostly) decreasing as a function of loss threshold. At1% loss threshold,Θ is about

0.19. For loss thresholds above about1%, there is little dependence ofΘ on the link depth. We can compare

with theFPR in the strictly separable case as follows. First, for a given threshold loss threshold we read of

the correspondingα value from the CDF in Figure 8. According to Theorem 3 we can bound theFPR in

the strictly separable case by1 − β∗(α, r)/α, which has worst case branching ratior = 2, leading to the

boundFPR ≤ (α/α)2.

For loss threshold1% we read offα ≈ 0.8 from Figure 8, leading toFPR ≈ 0.06 in the separable

case; compare withΘ ≈ 0.19. For loss threshold10% we read offα ≈ 0.98 from Figure 8, leading to

FPR ≈ 0.0004 in the separable case; compare withΘ ≈ 0.014.
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α F C C0

0.95 0.0%—0.08% 59%—81% 95%
0.9 0.0%—0.22% 35%—66% 90%
0.8 0.0%—0.34% 11%—42% 80%

Table 2: Approx. 1000 node tree. False Positive RateF , detection rateC, and detection rateC0 under
constant path failure scaling, as function of fractionα of good links.

7 Performance Comparisons with Other Methods

Model Comparisons. We first describe some comparisons of our model analysis with the simulation results

for three methods (random, linear programming and Gibbs) applied to the LM 1 model in [18]. Both

our analysis and the simulations used topologies of 1,000 nodes with maximum branching ratio10. Our

model calculations ran over 10 topologies containing roughly 1,000 nodes with depth between 3 and 10.

This set included uniform topologies with branching ratio2 and10, namelyTα(2, 2, 2, 2, 2, 2, 2, 2, 2, 2) and

Tα(10, 10, 10) respectively.

Table 2 shows the range false positive ratesF and detection rateC for SCFS over all model calculations .

Comparing with Figure 3 of [18] it appears that forα = 0.95, the SCFS false positive rate is at least as good

as any method simulated, while the detection rate is as good as the linear programming and Gibbs methods.

(The “random” method from [18] had higher detection rate but a very high false positive rate). However,

comparing with Figure 4 of [18], it is evident that while the false positive rate of SCFS remains quite small

(less than1%), asα decreases, the detection rate falls off steeply compared with the other methods.

Simulation Comparisons. Partly in response to [11], a recent paper [3] reported network level simula-

tions of SCFS, the random and Gibbs algorithms from [18], and a new proposed algorithm COBALT. The

model had somewhat separated loss regimes (good links had losses from 0 to 0.5%), bad links had losses

between 1% and 3%. In our terminology, this would only be strictly separable for trees with maximum

depth 2; otherwise it would be weakly separable. The network topologies were generated using the BRITE

two-level hierarchical model [4] and comprised 800 nodes connect by 1,400 links.ns-2 was used to simu-

late the download of large files from a server by 100 randomly chosen clients. In this context, bad links are

those whose loss rate exceeds a given level. In the comparison, SCFS was found to have the lowest false

positive rate, being about one third the rate of the next best algorithm. The detection rate was as good as

other methods when bad links were rare (5% of links were bad) but fell off when they were more common

(20% of links were bad). But even for the other methods, the detection rate was far from perfect, being

around 65% for the range ofα considered (0.95, 0.9 and 0.8).

Computational Aspects. We expect our algorithm to be less complex than LP and far less complex than

the general most accurate method presented, Gibbs Sampling. In [3], running times for SCFS and COBALT

were found to be an order of magnitude less than for Gibbs.

Constant Path Failure Rate Scaling. Table 2 also shows the detection rateC0 in the constant path

failure scaling. This is barely sensitive to topology, and approximately equal to the proportion of good links.
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Discussion. To some extent, the set of algorithms studied here and in other papers [18] and [3] exhibit

a trade-off between false positives and false negatives (as represented by imperfect detection rate). Any

choice between algorithms must take account of the relative costs of false positives and negatives in the

target application. We believe that in the networking context the false positive cost is typically quite high

due to the administrative costs of inspecting potentially faulty components. This favors a scheme with a low

false positive rate.

8 Discussion and Further Work

This paper has argued that when network link performance characteristics can be well separated into two

categories, good and bad, a simple inference algorithm can be effective in identifying candidate bad links

on a tree from end-to-end measurements. The algorithm, which attributes path failure to the smallest set of

consistent link failures, is justified by the observation that when bad links are uncommon, two or more badly

performing intersecting paths likely have a bad link in their intersection. Moreover, the likelihood for this

to happen is relatively insensitive to changes in the fraction of bad links if this fraction is small. Conversely,

the false positive rate is very low in this regime because it is very rare that a good link will lie at the head of

a maximal bad subtree.

On the negative side, with single execution of SCFS the detection rate for bad links is less than unity.

We regard this as the price paid for using uncorrelated measurements. Previous work on tomography used

measurements correlated at the packet level, and estimators of link loss rates and packet latencies were

unbiased under the same packet and linkwise independence conditions that we assumed in our setup in

Section 2. Thus, misidentification of bad links only occurred due to statistical variability of the estimators

and vanished as the number of probes grew. In the SCFS approach, we can, in fact, achieve a unit detection

rate by iterating the SCFS approach with limited link inspection. For some applications, this need not be

regarded as a deficiency. Suppose the cost to “repair” bad links, i.e., to make them good, is high. Depending

on context, repair may entail replacing a bad component or rerouting traffic away from it. The overhead

in repeated inspection is small if the false positive rate is low. This motivated the Exhaustive Inspection

algorithm of Section 5.

In this paper we assume that the ambient failure probabilities are known a priori; these determine the

boundary between good and bad states. Another potential approach is to adaptively set the threshold between

good and bad based on clustering properties of the measured end-to-end path characteristics. The difficulty

with this approach is that there may be trivial clustering properties even when bad links occur. A clear

example is when the first link next to the root suffers heavy performance impairment but all others have no

impairment. In this case, the measured end-to-end properties will appear the same at all leaves, so clustering

does not help in setting the boundary between good and bad performance.

We now outline some generalizations of the present work that we would like to investigate in the future.

Enlarged State Space.A natural generalization of our work is to increase the size of the state space beyond

the two states in the good/bad classification. One benefit of this would be to further reduce the false positive
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probability. Consider a good nodek with two children, each of which lie at the head of a maximally bad

subtree. In the two state classification, the good nodek is classified as bad. However, if the bad state is split

into substates, then a separation between the path states measured on each subtree would most likely indicate

separate causes of badness, rather than a common cause in badness of linkk. A downside of enlarging the

state space is a more complex relation between link and path states.

General Network Topologies.To extend the method from tree topologies to general network topologies,

we can take the approach of [5] and cover a network with a set of trees, and conduct measurements on each

tree. An obvious approach is to infer on each tree independently using the methods of this paper. Exhaustive

inspection in the manner of Section 5 can share information on known good links amongst the different

inference problems which may potentially reduce the number of iterations needed to render all links good.

Inference from Measurement Time Series.Suppose now that rather than being static, the good/bad status

of each link can fluctuate over time. This corresponds to the Gilbert model of [18]. Consider the delay spike

example of Section 2.3. Divide time into consecutive intervals{St : t = 1, 2, . . .} of equal duration. If a

delay spike of sufficient size occurs on a link during intervalSt, then that link is bad for that interval. Note

that the probabilityαi for link i to be good during an interval is a nonincreasing function of the interval

duration. In the stationary case,αi is proportional to the duration of the measurement interval. LetZi,t be

the good/bad indicators for linki in interval t, and define the path indicatorXi,t =
∏

jºi Zi,t accordingly.

Suppose we now assume that:

(i) The tree topology is the same for all measurement intervals

(ii) The delay spike model is separable

(iii) Delay spikes are independent over different links

(iv) Delay spikes are independent over different time intervals

Under these assumptions it is evident that the link probabilitiesαi can be inferred from the timeseries

{Xi,t : i ∈ R, t = 1, 2, . . .} of path good/bad status as measured at the leaf node, using the methods of [6].

We remark that the topology itself can also be inferred from the same measurements. We defer to another

paper a study of the effectiveness of this method and its behavior under weak separability.

Experimental Evaluation. Much of the work of this paper has been devoted to performance analysis of

the SCFS algorithm and its iterative generalization. An important and complementary approach will be to

evaluate performance under representative network topologies and patterns of performance degradation, as

determined from network measurements. In particular, it is desirable to quantify the trade-off in practice be-

tween reducing network measurement complexity (as compared with packet-level correlated measurements)

and increasing false positives and negatives for the detection of bad links.
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Appendix: Proofs of Theorems

Proof of Theorem 1

FPR1 = P[Y1 = 0|Z1 = 1] = P[Y1 = 0, Z1 = 1]/P[Z1 = 1] (50)

= (P[Y1 = 0]− P[Z1 = 0])/P[Z1 = 1] = 1− β1/α1 (51)

For all otherk:

FPRk = P[Yk = 0, Yf(k) = 1|Zk = 1] (52)

= P[Yk = 0, Yf(k) = 1, Zk = 1]/P[Zk = 1] (53)

= (P[Yk = 0, Yf(k) = 1]− P[Yk = 0, Yf(k) = 1, Zk = 0])/P[Zk = 1] (54)

= (P[Yk = 0, Yf(k),k = 1]− P[Zk = 0, Yf(k),k = 1])/P[Zk = 1] (55)

= (P[Yk = 0|Xf(k) = 1]− P[Zk = 0|Yf(k),k = 1])P[Yf(k),k = 1]/P[Zk = 1] (56)

= (1− βk/αk)γf(k),k (57)

Proof of Theorem 2 : (i,ii) For r ≥ 2 andα > 0, Bα,r is a strictly concave increasing function from[0, 1]

onto[0, α], with B′
α,r(0) = αr andB′

α,r(1) = 0. Hence the equationBα,r(β) = β is a solutionβ∗ in (0, 1)

if and only if rα > 1, and this solution is unique in(0, 1). Otherwise there is only one solution, namely,

β∗ = 0. See Figure 10 forr = 3, α = 1/2.

(iii,iv) Bα,r(α) < α. SinceBα,r is increasing,B◦(n+1)
α,r (α) < B◦n

α,r(α). (HereB◦n denotes ann-fold

composition). Hence the sequence{β(n)} is decreasing. SinceBα,r is continuous on[0, 1] and bounded, the

sequence is bounded, and hence convergent to some limitβ̌ by the monotone convergence theorem. Since

Bα,r is continuous,β̌ must be a fixed point ofBα,r. Whenαr > 1, this fixed point cannot be0, since
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Bα,r(0) = 0 andB′
α,r(0) = αr > 1 impliesBα,r(x) > x in some neighborhood(0, ε). Thus{β(n)} cannot

be a decreasing sequence converging to0.

(v) SupposeB◦n
α,r(α) ≥ B◦n

α,r′(α). (This is trivially true for the starting valueB◦0
α,r(α) = α. Then

B◦(n+1)
α,r (α) = Bα,r(B◦n

α,r(α)) ≥ Bα,r′(B◦n
α,r(α)) ≥ Bα,r′(B◦n

α,r′(α)) = B
◦(n+1)
α,r′ (α) (58)

sinceBα,r(x) is increasing in bothα andr. The result follows from (iv) on taking the limitn →∞.

(vi) SupposeB◦n
α,r(α) ≥ B◦n

α′,r(α
′). (This is trivially true for the starting valueB◦0

α,r(α) = α. Then

B◦(n+1)
α,r (α) = Bα,r(B◦n

α,r(α)) ≥ Bα′,r(B◦n
α,r(α)) ≥ Bα′,r(B◦n

α′,r(α
′)) = B

◦(n+1)
α′,r (α′) (59)

sinceBα,r(x) is increasing in bothα andr. The result follows from (iv) on taking the limitn →∞.

Proof of Theorem 3 : (i) By Theorem 2(iii),β∗(α, r) < βf(k) < βk, and henceFPRk ≤ 1− β∗(α, r)/α.

By Theorem 2(v), the greatest upper bound is obtained forr = 2. In this caseβ∗(α, 2) = max{0, 1−α/α},
and henceF (α, 2) = min{1, (α/α)2}.

(ii) Supposej ¹ k with j /∈ R. Then

βj = αj(1−
∏

i∈d(j)

(1− βi)) (60)

≥ αmin
k (1− (1− min

i∈d(j)
βi)#d(j)) (61)

≥ αmin
k (1− (1− min

i∈d(j)
βi)rmin

k ) (62)

= Bαmin
k ,rmin

k
( min
i∈d(j)

βi) (63)

For a leaf nodei, βi = αi ≥ αmin
k ≥ β∗(αmin

k , rmin
k ). We now proceed by induction. Suppose

βi > β∗(αmin
k , rmin

k ) for all i ∈ d(j). SinceBα,r(·) is increasing, (60) implies that

βj ≥ Bαmin
k ,rmin

k
(β∗(αmin

k , rmin
k )) = β∗(αmin

k , rmin
k ). (64)

The bound onFPRk then follows from Theorem 1.

Proof of Theorem 4 : From Theorem 2(v) and (9), whenα < 1/2 thenβ∗(α, r) ≥ β∗(α, 2) = 1 − α/α.

Thusβ∗(α, r) = α(1 − (1 − β∗(α, r)r) ≥ α(1 − (α/α)r) ≥ α − αrα1−r. This establishes (i), and (ii)

follows easily from the definition ofF (α, r) in (10).

Proof of Theorem 5(i)

P[Yk = 0, Yf(k) = 1|Zk = 0] = P[Yk = 0, Yf(k),k = 1|Zk = 0] (65)

= P[Yf(k),k = 1|Zk = 0] (Zk = 0 ⇒ Yk = 0) (66)

= P[Yf(k),k = 1] (Yf(k),k, Zk are independent) (67)
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(ii)

γf(k),k = P[Xf(k) = 1]


1−

∏

j∈d(f(k))\{k}
P[Yj = 0|Xf(k) = 1]


 (68)

= Af(k)


1−

∏

j∈d(f(k))\{k}
βj


 (69)

= Af2(k)(βf(k) − αf(k)βk)/βk (by (7)) (70)

(iii,iv) Applying the bound onβj from Theorem 3(ii) to (69)

γf(k),k ≥ Af(k)

(
1− β

∗(αmin
f(k), r

min
f(k))

#d(f(k))−1
)

(71)

≥ Af(k)

(
1− β

∗(αmin
f(k), r

min
f(k))

rmin
f(k)

−1
)

(72)

= Af(k)(1/αmin
f(k) − 1)/(1/βmin

f(k) − 1) (73)

This establishes the first inequality in (iv), of which (iii) is a special case. The second inequality in (iv)

follows from Theorem 2(iii) usingβ(α, 2) = max{0, 1− α/α}.

Proof of Theorem 6: (i) Whenk ∈ R, βk = αk. Whenk = f(j) for somej ∈ R, thenβk = αk(1− Tk).

The remaining cases we prove by induction. Suppose (i) holds for allj ∈ d(k). Then

βk = αk


1−

∏

j∈d(k)

(αj + Tj(1 + O(α−)))


 (74)

= αk(1− Tk

∏

j∈d(k)

(1 + (Tj/αj)(1 + O(α−)))) (75)

= αk(1− Tk(1 + O(α−))) = αk − Tk(1 + O(α−)) (76)

sinceTj/αj ≤ (α−)2/α+ andα−/α+ is bounded.

(ii) Similarly to the proof of (i),

γf(k),k = Af(k)(1−
∏

j∈d(f(k))\{k}
βj) (77)

= (1− Sf(k) + O(α2
−))


1−

∏

j∈d(f(k))\{k}
(αj + Tj(1 + O(α−)))


 (78)

= 1− Sf(k) − Tf(k)/αk + O(α2
−) (79)

(iii) follows from (i), (ii) and Theorem 1.

(iv) follows from (ii) and (13).

(v) From (iv) we see that1− C is O(α−) and henceC → 1 in the limit. The lower bound onC follows

becauseSf(k) ≤ (`k − 1)α− ≤ (`− 1)α−, while Tk ≤ α−.
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(vi). In the uniform caseαk = α, Sk = α`k while Tk = α#d(k). The latter’s contribution to(1− C)/α

is thenα#d(k)−2, yielding1 in the limit if #d(k) = 2, and0 otherwise.

The forms in (vii) then follow by summation: forr 6= 2 we have
∑`

i=1(i − 1)ri−1/
∑`

i=1 ri−1. For

r = 2, we take this sum and add
∑`

i=2 ri−1/
∑`

i=1 ri−1.

Proof of Theorem 7 : The bounds established previously would still hold wereX,Y to be replaced by

X ′Y ′. Our strategy is to find out how closely these bounds hold. We now derive bounds for the various

terms in (54). We first boundP[Yk = 0, Yf(k) = 1, Zk = 0] below. Since{Yk = 0, Yf(k) = 1} = {Yk =

0, Yf(k),k = 1},
P[Zk = 0, Yk = 0, Yf(k),k = 1] = P[Yk = 0|Zk = 0, Yf(k),k = 1]P[Zk = 0|Yf(k),k = 1]P[Yf(k),k = 1]

≥ P[k is critical |Zk = 0, Yf(k) = 1]αkP[Yf(k),k = 1]

= KkαkP[Yf(k),k = 1] (80)

Here the inequality follows from (41) sincek critical impliesYk = 0 (for a weakly separable model) while

Zk is independent ofYf(k),k = 1, and the final inequality follows since criticality ofk is independent of

{φj : j 6= k}.
We next boundP[Yk = 0, Yf(k) = 1] above. SinceX ≥ X ′ andY ≥ Y ′,

P[Yk = 0, Yf(k) = 1] = P[Yk = 0, Yf(k),k = 1]

≤ P[Y ′
k = 0, Yf(k),k = 1]

= P[Y ′
k = 0, X ′

f(k) = 1, Yf(k),k = 1] + P[X ′
f(k) = 0, Yf(k),k = 1] (81)

The first term in (81) is equal to

P[Y ′
k = 0|X ′

f(k) = 1, Yf(k),k = 1]P[X ′
f(k) = 1, Yf(k),k = 1] ≤ P[Y ′

k = 0|X ′
f(k) = 1]P [Yf(k),k = 1]

= βkP [Yf(k),k = 1] (82)

The second term in (81) is bounded above by
∑

jÂk P[Yf(k),k = 1|Zj = 0]αj ≤
∑

jÂk Kjαj . Combining

with (82) we obtain the upper bound sought:

P[Yk = 0, Yf(k) = 1] ≤ βkP[Yf(k),k = 1] +
∑

jÂk

Kjαj . (83)

The upper bound onFPRk now follows by inserting (80) and (83) into (54):

αkFPRk ≤
(
βk −Kkαk

)
P[Yf(k),k = 1] +

∑

jÂk

Kjαj (84)

Sinceβk ≤ αk andKk ≤ 1, the term in parenthesis in (84) is non-negative and hence

αkFPRk ≤ (αk − βk)γf(k),k +
∑

jºk

Kjαj (85)

(ii) For k = 1, the detection rate isC1 = 1. Otherwise the detection rate is

Ck = P [Yk = 0, Yf(k) = 1|Zk = 0] = P[Yk = 0, Yf(k),k = 1, Zk = 0]/P[Zk = 0] (86)

≥ KkP[Yf(k),k] ≥ Kkγf(k),k (87)
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