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Abstract

In network performance tomography, characteristics of the network interior, such as link loss and
packet latency, are inferred from correlated end-to-end measurements. Most work to date is based on
exploiting packet level correlations, e.g., of multicast packets or unicast emulations of them. However,
these methods are often limited in scope—multicast is not widely deployed—or require deployment of
additional hardware or software infrastructure.

Some recent work has been successful in reaching a less detailed goal: identifying the lossiest net-
work links using only uncorrelated end-to-end measurements. In this paper we abstract the properties
of network performance that allow this to be done and exploit them with a quick and simple inference
algorithm that, with high likelihood, identifies the worst performing links. We give several examples
of real network performance measures that exhibit the required properties. Moreover, the algorithm is
sufficiently simple that we can analyze its performance explicitly.

1 Introduction
1.1 Motivation

Network performance tomography is the science of inferring performance characteristics of the network
interior by correlating sets of end-to-end measurements. Several methods have been proposed over the last
few years to infer link level packet loss and latency, and even the underlying network topology. Initial work
exploited the inherent correlations between copies of a multicast packet seen at different endpoints; see
[6, 15, 13, 5] and the review in [1]. Subsequent work emulated this approach using clusters of diversely
addressed unicast packets [8], and other packet group techniques; see [9, 10, 20, 21, 22, 23], and [8] for a
review. Probing and measurement collection functions for tomography have been embedded within transport
protocols, thus co-opting suitably enabled hosts to form impromptu measurement infrastructures; see [7] and
[20].

A key advantage of tomographic methods is that they require no participation from network elements
other than the usual forwarding of packets. This distinguishes them from well-known tools, such as tracer-
oute and ping, that require ICMP responses from routers in order to function. In practice, ICMP response is
restricted by some network administrators (presumably to prevent probing from external sources).



Figure 1: ABSENCE OFIDENTIFIABILITY FROM UNCORRELATEDMEASUREMENTS trees have different
link transmission probabilities but identical end-to-end transmission probabilities.

There are several challenges in bringing network performance tomography to fruition and enabling
widespread performance tomography. Multicast is not widely deployed. Even for methods based on unicast
probing, there are development and administrative costs associated with deploying probing and data collec-
tion software. This has motivated the goal of reducing such costs by developing inference methods that can
work with readily available end-to-end measurements.

1.2 The Need for Correlated Measurements

The requirement of network tomography for correlated measurements is illustrated by the following model.
Consider the two leaf tree of Figure 1(left), where the transmission rate on the link terminating @t node
is ¢ (thusl — ¢ is the corresponding loss rate). The transmission probabilities from the source @& node
to the leaves at node&sand3 are the productg, = ¢1¢2 andps = ¢1¢3 respectively. (The transmission
probability for a path is the product of the transmission probabilities for its links). Thus the end-to-end
transmission probabilities are the same when the link probabilities are adjusted as in Figure 1(right), for any
multiplicative factorz betweenmax{¢s, ¢3} and1/¢;. (This condition yields link probabilities less than

or equal tol). Consequently, independent measurement of the (two) transmission rates from théoroot
each of the leaf nodeksand3 is insufficient to determine the (three) link transmission probabilitiesp,

and ¢s uniquely. Theg; are notnot statistically identifiabldrom the data, meaning that different sets of
parameters exist that give rise to the same statistical distribution of data.

1.3 Measurement and Packet-Level Correlation

The inherenpacket levetorrelation of multicast packets can be exploited for tomography. When a given
multicast probe is observed at multiple end points, the contribution to packet performance from the common
portion of the packets’ paths is identical. This is the property that makes the link performance parameter
identifiable. Unicast tomography aims to reproduce similar correlations in groups of unicast packets. One
approach has been to emulate a multicast probe with a “stripe” of closely spaced unicast packets with
different IP destination addresses. The idea is that in the common portion of the packet path, the performance



experienced by the packets will be strongly correlated. If the correlation were perfect, the behavior of the
probes, and the inferences drawn, would be identical to that of a notional multicast packet that followed the
same routing tree. Experimental studies using stripes to the same destination confirm that the correlation is
strong, although not perfect. The paper [14] proposed enhancing this approach with a form of data selection
that gives more weight to stripes that exhibited the strongest correlation. A related proposal in [9] is to take
the imperfect correlations explicitly into account through introducing more parameters into the link model,
then to reduce back the number of independent parameters by coupling the parameters through a queueing
model in order to render the model identifiable.

1.4 Inference in the Absence of Packet Level Correlations

Despite the methodological advances described in the previous section, the need to install measurement
software at receivers represents a barrier to widespread deployment. A recent approach to overcome these
barriers has been proposed in [18]. By measuring the packet stream at or near a web server, loss statistics
for the end-to-end paths from the server to each client are determined by observing TCP retransmissions.
In distinction from the work mentioned above, this approach does not assume or attempt to exploit any
packet-level correlations in the network experience of packets destined for different clients. Packets are
only assumed to have the same probability of being lost on given link, independent of the path they take
through it. The set of server-to-client paths forms a tree. The aim is to use the end-to-end data to infer the
loss rates on the logical links joining the branch points of the tree, at least with sufficient accuracy to identify
the lossiest links.

From the discussion in Section 1.2 it should be clear that the link rates in the model of [18] are not iden-
tifiable. Nevertheless some of the inference methods proposed in [18] are quite successful in identifying the
lossier links, both in a class of model networks (particularly when lossy links are rare), and in real topologies
where the lossiest links tend to be at the clients. However, the most accurate methods are computationally
very intensive. By understanding the structural properties that underpin these methods, we aim instead to
develop classes of quick and simple estimators for the worst performing links for a range of performance
characteristics. This will be the focus of the present paper.

1.5 Performance Level Correlation

The ability to identify the worst performing links relies on a structural assumption about link performance.
Even if we do not perform correlated end-to-end measurements at the individual packet level, it is still
reasonable to expect that two distinct packet streams that pass through a given link over the same period
of time would exhibit some correlation in performance at a statistical level. A model for this is as follows.
When a packet stream traverses a link, each packet may be subjected to a performance impairment: it
can be lost or delayed. If each packet’'s impairment were known, one could calculate a summary statistic
(e.g. loss rate or mean delay) that would be mapped down to a binary performance measure by setting a
threshold. When the statistic exceeds the threshold, the performance is classified as “bad”; otherwise, it



is classified as “good”. Clearly, the same classification could be made for paths comprising multiple links,
although different thresholds might be used in each case. The above scheme is generic and makes no specific
assumptions. The possibility for performance inference comes if the binary performance measure satisfies
the following conditions:

(Al) There is a class of packet streams such that all streams in the class experience either good or bad
performance. Accordingly, we say that the link is good or bad.

(A2) A pathis bad if and only if at least one link on the path is bad.

In this case we say that the performance measuseparable The interpretation of separability is as
follows. (Al) says that the binary performance (“good/bad”) is perfectly correlated for packet streams in the
class. (A2) says that a bad path cannot arise through a set of “partially” bad links. This property gives us the
terminology of separability, meaning that the characteristics of good and bad paths are sufficiently distinct.

In Section 2 we will describe a number of network models in which the separability assumption, or a
weaker version of it, hold. For now we observe that a separable binary performance model maps exactly
onto the model for loss of a single multicast packet propagating down a multicast tree, with badness cor-
responding to packet loss. In more detail, (A2) is analogous to saying that if a packet is lost on a link, it
reaches no leaves descended from that node; (Al) is analogous to saying that if a packet does not reach
a leaf, it must have been lost on some link en route. This structural equivalence means that we have, in
principle, all methods available from multicast loss inference at our disposal in order to infer the distribution
of link badness.

1.6 Contribution and Summary

In this paper we develop the framework outlined above and show how it can be used to infer the locations
of badly performing links.

(a) Section 2 defines the notion of separability for performance measures and argues that it is satisfied
both by performance models treated in the literature, including those of [18]. We also introduce a
notion of weak separability in which good links always give rise to good paths (but the converse
need not be true). We show that any binary performance model can always be adjusted so that weak
separability holds.

(b) Section 3 describes a static algorithm—the smallest consistent failure set (SCFS) algorithm—for in-
ferring the locations of bad links in a routing tree, using a single measurement of the good/bad status
of each source-to-leaf path.

(c) The SCFS algorithm is sufficiently simple that its performance can be analyzed explicitly. In Section 4
we derive its false positive rate and detection rate for identifying bad links under the assumptions of
strict separability. We show that the false positive rate is very small for a likely range of probabilities
for a link to be bad. We confirm the results of the analysis with some model-based computations.
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(d) Although the false positive rate is low, the detection rate for bad links can be noticeably less than 1.
Section 5 describes an algorithm in which iterative application of measurement and inference is use to
detect all bad links. We compute the overhead, i.e., the amount by which the number of candidate bad
links exceed the actual number of bad links. We show that the excess is quite small for likely model
parameters.

(e) Section 6 extends the analysis of Section 4 to the general weakly separable case. We define the notion
of a critical link as a link which makes all paths through it bad. We obtain bounds for the false positive
rate and the detection rate in terms of general characteristics of the critical link. We illustrate with
some measured path performance data from the internet.

(f) Section 7 compares the performance of SCFS with the algorithms in [18] and another method recently
proposed in [3]. SCFS has a noticeably better false positive rate than the other methods.

(g) We conclude in Section 8. In a discussion of potential further work, we outline how time series of
path measurements can be used to infer the probabilities of link badness when these vary according
to a stochastic process. This is achieved by mapping the problem into the multicast loss inference
problem that was solved in [6].

(h) Proofs of the Theorems are deferred to the Appendix.

1.7 Related Work

The approach of this paper was first proposed in the conference report [11], where the analytical results in
Section 4 for the strictly separable case were presented without proof. The current paper supplies the proofs;
the methods and analysis in Sections 5 (exhaustive inspection) and 6 (the weakly separable case) are new.

Partly in response to our paper [11], a recent paper [3] reported network level simulations of SCFS, some
of the algorithms from [18], and a new proposed algorithm COBALT. In a comparison of different inference
algorithms, SCFS was found to have the lowest false positive rate, being about one third the rate of the next
best algorithm. The detection rate (or coverage, i.e., the proportion of bad links correctly identified) was
as good as other methods when bad links were rare but fell off when they were more common. The strong
experimental performance of SCFS against other algorithms is one motivation for completing our theoretical
performance study in the present paper. These results are discussed further in Section 7.

We mention also some recent work in which measurements of sets of packets (rather than individual
packets) were correlated for tomographic purposes. The paper [2] proposed correlating flow records in
order to identify congested links. The idea here is that the throughput of elastic traffic flows will become
correlated during a common congested period. In [12], aggregate loss statistics reported by multicast session
users using the RTP protocol are correlated in order to infer link loss rates. The idea is that even though
the loss statistics are aggregated over multiple packets, correlations due to loss of individual packets are still
visible. Fault isolation in multicast networks using scoped multicast traceroute (mtrace) has been proposed



in [19]. Unlike the tomographic methods, this requires participation by network routers (to respond to
mtrace requests).

2 Network and Performance Model

We start in Section 2.1 by recording our terminology for trees. Section 2.2 formalizes the separation of links
into good and bad subsets, and Section 2.3 describes some examples.

2.1 Tree Model and Terminology

We assume that the network topology is known. The topology is represented as a direciee-ti@é L)
comprising a set of nodds joined by links inL. A packet source (e.g. a server) is located at the root node
0, while a set of destinations (e.g. clients) are located at the leaf f®dd$e interior nodes of the tree
represent the branch points of the routing tree from the source to the destinations, and tliedliakbe
logical links that connect these branch points. We say rjadéhe parent of nodg if (j, k) € L, and write

j = f(k). Other ancestors df are defined by" (k) = f(f" (k) with f! = f. We writej < kif jis a
descendant of, i.e., if k = f™(j) for somem. The set of children of nodeisd(k) ={j € V : (k,j) €

L}. For convenience we sometimes wrife= V' \ {0}, i.e., the set of all non-root nodes. We will often
refer to the link terminating at nodeas “link £”. The root nodd is assumed to have a single child, denoted
by 1. If, not the tree can be disjoined into subtrees with this propéstwill denote the depth of the node
from the root.

2.2 Link Performance and Separability

Our performance model is as follows. During some measurement period, the source dispatches a set of
packets to each destination. On traversing linka packet is subject to a performance degradation (e.g.
loss or delay) according to a distribution specified by a paramgterThe degradation is independent
across different links and different packets. If the source-destination path comprisek; links k,,, the
performance degradation along the path follows a composite distribution described by the parameters
{Pras s Dr -

Lety be the expected value of some statistic computed from link or path performance distributions; we
write ¢, (¢x) andvy, .k, (k.- - ., ¢k, ) respectively. For each link or path we partition the®gt ;.
of possibley values into two subsets that we we call “good” and “bad”. Likewise, we call the link or path (or
their parameters) bad if and only if the expected statigtic . (¢x,,- - -, ¢, ) is bad. The key property
that captures the ability to detect the presence of badly performing links from end-to-end measurements is

as follows:

Definition

e The partitions are calleseparablewhen a path is bad if and only if at least one of its constituent links
is bad.



e The partitions are calledeakly separablewhen a path being bad implies at least one of its constituent
links is bad.

We use the word “separable” because, if the good and bad link parameter sets are too close together, it will
not be possible to distinguish between them in the composite path measurements. Weak separability means
that paths with all good links are correctly identified, but some bad links may go undetected.

Note that we can always arrange for weak separability by defiﬁriifl’gikm = {Y(ryy- - Or,) |
V(or,) € \Ifij‘)d}. The extent to which this is useful then depends how frequently a good path does, in fact,
contain a bad link. We return to this question in Section 6. For now we illustrate the separability framework
with some examples.

2.3 Examples of Separable Performance Models

Connectivity If alink or a path is good, it transmits all packets; if bad, it transmits none. Thus the path is
bad if and only if at least one link of the path is bad.

High-Low Loss Model Packets traverse link independently with probability,. The ranges of trans-
mission probabilities for good and bad links are separated. Good Aitese transmission ratg, > z;
bad links have transmission rate= ¢, < y, with y < 2 where( is the depth of the tree (i.e. maximum
hop count from root to leaf). For a path traversing lirks. ., m we takey = [, ¢x,, i.e., the path
transmission rate.

The minimum transmission rate on a path containing no bad link ihile the maximum transmission
rate on other paths iz Picking anyz betweeny andz!, we call a path good if its transmission rate exceeds
z, and bad otherwise. Then a path is bad if and only if it contains at least one bad link.

In the modelL M, of [18], good links have loss ratés— ¢, uniformly distributed betwee6% and1%;
bad links have loss rates uniformly distributed betws&hand10%. Taking the threshold between good
and bad path transmission rate9d, this model is separable if the tree depth does not exéeed

General Loss Model In a more general loss model, given a threshold link transmission probabity
call the linkk good if its transmission probabiliy;, > t; otherwise itis bad. The model is weakly separable
if each comprisind links is designated as good if and only if its path transmission probability ex@éeds
The model is not in general strictly separable unless further conditions are imposed on the distribution of
transmission probabilities, e.qg, as in thé/; model described above.

In the related modeL M from [18], the bad links have loss uniformly distributed betwéé&h and
100%. In this case the ranges of transmission probabilities for good and bad links are contiguous, with
thresholdt = 0.99. We choset! = 0.99 to be the threshold transmission rate separating good and bad
paths of¢ hops, then the partition is weakly separable: all paths containing only good links are designated
as good.



Consider a patkky, ..., k¢}. Conditioned on one of the links, say, being bad, the chance for a path
to be designated good is

¢ ¢

P[] ¢; > 1ibad =P[[[ & >t | ¢ < 1] <Ples >t | ¢s <] =Plp; € (¢',1) [ibad (1)

j=1 J=1

Note that this bound depends on the probability for a link to be bad only through the thréesbibidrwise
it depends only on the distribution of loss rates of bad links. Forth& model, the bound i$ — 0.99¢"1,
e.g., about a 4% chance fér= 5. Thus the paths containing bad links can still be identified with high
probability. We make a systematic study of the impact of departures from strictly separability in Section 6,
including some examples based on network measurements of packet loss.

General Additive High-Low Model The above model type generalizes to a class of models in which link
performance is independent, and the statigtie any characteristic that is additive over links:

Uhyodin Bk > Ph) = > Uk, (01,) 2
=1

The loss model above falls into this class if we takebamstead of the transmission probability, its loga-
rithm. Other examples of additive statistics are delay mean and variance.

Delay Spike Model Measurement of network round trip times (RTT) have shown the presence of “delay
spikes”, namely intervals of highly elevated round trip times; see [25]. To get a rough idea of what is
observed, in one data set, delay spikes of median delay 16.9 standard deviations above the mean RTT had
median duratiord; = 150ms. The spike episodes were found to be well modeled by a Poisson process, with
typical mean interarrival time, of the order ofl 0s to a few hundreds of seconds. We assume that for a given
application, delay spikes with round-trip times exceeding a certain teast not tolerable. Consequently,
paths with (some statistic of) the spike delay greater thaill be designated as bad.

We model of the occurrence of delay spikes as follows. Packets are potentially subject to delay spikes
on each link, although links may not exhibit any delay spikes at all. We assume

(A1) Delay spikes are short enough that a given packet will likely encounter only one spike on a network
path.

(A2) Spikes on a given link are assumed frequent enough that at least one packet of the set destined to a
given receiver will encounter a delay spike on a link that exhibits them.

Under these assumptions, we chasas the some quantile (e.g. the maximum) of the delay spike distri-
bution. If a path measurement yielgs> = (the threshold describes above), then according to assumption
(Al), a delay spike of that size was present on at least one of the links of the path: we will call such links
bad. By Assumption (A2) this delay spike should be present on all the paths through the bad links. Hence,
the division into good and bad links and paths is expected to be separable.
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We show that the delay spike processes observed in [25] are consistent with assumptions (A1) and (A2).
Here we attribute delay spikes to individual links, and characterize them by mean dutatiod mean
interarrival timer,. (In our model, the delays are one-way, rather than RTTS).

First, (Al1). The probability for a packet to encounter a delay spike on a single lillis. Assuming
that spikes occur independently, the probabiitipr a packet to encounter more than one delay spike on a
path comprising hopsis¢g = 1 — (1 — dS/TS)@ — (1 — ds/Ts)fflds/rs. This probability increases with
path length. Takindg = 30, larger than most paths today (see [17]) alad= 150ms, theng ranges from
0.02 for 7, = 20s, down to3 x 10~° for 7, = 600s. Thus the chance of encountering more than one spike
is very small for the observed spike characteristics.

Now, (A2). Consider measurement over an interval of durafiomith probe packets at frequency
The average number of spikes encountered by the probes israboudtrT' /74, while the probability that at
least one probe encounters at least one spike is abeutl — (1 — d,/7,)"’. Consider a 10 kByte/s probe
stream comprising one 200 byte packet every 20ms, equivalent to a compressed audio transfef;ifws
Assuming a measurement periodiot= 600s, then(n, p) = (225, 1) for 7, = 20s, and(7.5,0.9995) when
7s = 600s. Hence, Assumption (A2) is reasonable in this case; at least a handful of probes will encounter a
spike during the measurement interval on average, and the chance for at least one probe-spike encounter is
close tol.

3 Smallest Consistent Failure Set (SCFS) Inference Algorithm

This section defines the algorithm for inferring the identity of bad links. The Smallest Consistent Failure Set
(SCFS) algorithm designates as bad only those links nearest the root that are consistent with the observed
pattern of bad paths. Define an indicator varialeto bel if link & is good, and if it is bad; for the root

node( setZ; = 1 by convention. For each path from the rdoto the nodek, let X;, = 1 if the path is

good, and) if it is bad. Under the separability assumption, we can write

X, =[] 2 3)
Jrk

i.e. the product of the link indicator¥ ; for ancestorg of & (including & itself).

Let R, denote the set of leaf nodesinhthat are descended frolm Write Y;, = max;cg, X; fork € U
and setYy = 1 by convention.Y,, = 1 if and only if at least one source-destination path routed through
k is good. Clearly, ifY = 1, then the path segment frointo & is composed entirely of good links. If
Y = 0 butYy(;) = 1 we call the subtree rooted ata maximal bad subtreeA cautious approach would be
to declare as bad link and all links in the subtree. In practice, this is probably not very useful due to the
cost of inspecting all the links for badness.

The SCFS algorithm takes the other extreme by designating as bad the link in the subtree that is most
likely to be amongst the set of bad links, namely, the link~or suppose, on the other hand, thas not
bad. Then all the path segments frérno the destinations i® (k) must be bad. This is, of course, possible,
which is why we cannot pin down the bad links with certainty. However, if the rate of occurrence of bad
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1. input: TopologyT; End-to-end measuremertXy }rcr;
3. W=

4. recursel);

5. output: W,

6.

7. subroutine recursek) {

9. else{

10. Y, = max;ed(k) }/j;

12. foreach(j € d(k)){

13. if (V; =0&& Y, =1){
14. W=wu{j}
15. }

16. }

17.}

Figure 2: Recursive Implementation of SCFS algorithm. Recdinotes the single child node of the root
nodeo.

links is sufficiently small, then, as we shall see, it is far more likely that theliiskbad. Anticipating this,
we form an inference algorithm which designates linto be bad and all its descendant links good. Put
another way, we estimaté, by Z;, = 0, while for all links j with j < k we estimateZ; by Z; = 1.

Smallest Common Failure Set (SCFS) Algorithm

Input: Tree7, End-to-end measurementXy } ke r;
W'={k € U | maxjcp, X; = 0};
W={keW'|f(k)¢ W'},

Output: W;

P wbdpRE

An explicit implementation of the SCFS algorithm determifiédy recursion on the tree; see Figure 2.
The setl contains those link for which nodek is the root of a maximal bad subtree. The action of the
SCFS algorithm is illustrated in Figure 3. On the left, given the d&a}cr, we display the valueg
for each nodé:. NoteY;, = X, for leaf nodest. We can only infer with certainty that the paths from the
root 0 to leaf nodes: with Y, = 1 nodes are good. Hence, the status of the lmksdb, and the subtrees
descended from them is uncertain. The right figure shows the action of the inference algorithm. The links
a andb are designated as bad while all the links in the subtrees descended from these links are designated
good. A special case is whétris a bad leaf link whose parent has a good path routed through it. In this case,
k can unambiguously be declared bad since the maximal bad subtree descendeditmasighe member,
namely,k itself.
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v’ good
v x  bad v
? undetermined

Figure 3:OPERATION OF THESCFS ALGORITHM: Y}, shown at each node Left: status of linka, b and
subtree descended from them are uncertain because paths to these subtrees are bad. Right: SCFS attribute:
badness to common path (linksandb) and designates remaining nodes as good.

4 SCFS Performance Analysis: Strictly Separable Case

The SCFS algorithm codifies a parsimonious approach that might well be taken without the benefit of anal-
ysis, specifically, attributing a pattern of bad paths as being due to badness in the smallest possible set of
interior links consistent with the pattern. This section analyzes the performance of the SCFS algorithm under
a statistical model for the distribution of bad links in the network. Following [18] we assume that links are
good or bad independently. Thus thg are independent random variables, and we denote,by P[Z}]

the probability thatX, is good. In the next section we analyze the performance of the inference algorithm
under this statistical model. For compactness we will use the not@tieri — « in what follows.

4.1 False Positive Rate

We now provide a justification of the inference algorithm by analyzing its performance. Recall that the
inference algorithm designates litkas bad when nodk routes no good paths to its descendant leaves
(Yx = 0), but a path through its parent is known to be god@{, = 1). The false positive rate (FPR)
associated with a link is the probability that the link was designated as bad when it was in fact good. The
FPR for linkk is thus

FPR; = P[Y}, = 0, Yy = 1|2, = 1] (4)

The tree average FPR is the expected number of false positives divided by the expected humber of good

nodes, i.e.,
_ ke FPRiay

> keu Ok
The main work of this section is to find bounds for the FPR under various levels of generality. To this

FPR 5)

end, we will find it useful to define a number of subsidiary quantities. Set

Br =Pl = 1| Xy = 1] (6)
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r=3: worst case —*— r=10: worst case —*—

0.8 0.8

0.6 r 0.6 r

FPR,

04 0.4
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Figure 4: Bounds foF'PRy, for identification of bad link, as function of the fractienof good links, for
branching ratiog = 2,3 and10.

Let Vi x = MaxX;je R\ Ry X;. This takes the valug if and only if a packet reaches at least one of the
leaves descended frofitk), but not including those leaves descended thraug®ety; ) i = P[Y )k =
1]. An exact expression for the FPR is as follows.

Theorem 1 FPRy, = (1 — ﬁk/ak)'yf(k),k excepttPR; =1 — Bl/al.

Now (. is expressed through the recursion:

B = 1—=P[Yr=0|Xypp =1]
= 1-P[Z,=0/-P[zy=1] [] PlY; =0/X; =1]))
jed(k)
= Oék(l - H Bj)a ()
jed(k)

with the convention that for leaf nodése R, an empty product i. The value ofg, depends on the
topology. First consider a uniform tree with branching ratiand«;, = «. SincegS, must be equal for all
siblings, we can write

Bik) = Bar(Br) = a(1 = B) (8)

As we move up the tree, the value ©8f decreases towards a limit which is a fixed point of the iteration
of B,,. The following Theorem summarizes the main technical properties of the iteration that we shall

employ.

Theorem 2 (i) Whenar > 1, the equatiors = B, () as a unique fixed point*(«, r) in the interval
(0,1).

(i) Whenar < 1, the equatiors = B,, () has exactly one fixed poipt (c, ) = 0.
(iiy The sequencg™*!) = B, (™) with 50 = « is decreasing.

(iv) The sequencg3™} converges t@*(a, r).
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) B*(a,r) > *(a, ) for r > 1.
i) g*(a,r) > B*(/,r) fora > o/

Since{s™} is decreasing, we can bound the expression of (57) to find an upper bound on the false
positive rate. This extends to ambitrary tree with a non-uniform fraction of bad links. In an arbitrary
tree, leta}™™ = min{«; : j < k} be the minimum of probabilities; for links to be good on the subtree
descended front, and letr™® = min{#d(j) : j < k,j ¢ R} be the minimum branching ratio in the
subtree descended froin

For the special case= 2, 5*(«, 2) can be computed explicitly as a solutiondo= a(1 — (1 — 3)?),
namely

5*(&,2):{ l1-a/a, a>1/2 ©)

0, otherwise

Combined with the bound Theorem 2(v), this property enables us to establish explicit bounds on the FPR in
general topologies, as we now show.

Theorem 3 (i) In a perfectly balanced tree with branching raticand constanty, = «,

B*(a,r)

«

FPRy < F(a,7) :=1— < F(a,2) = min{1, (@/a)?} (10)

(i) Inan arbitrary tree, thens; > B* (o, rin) for anyj < k, and hence

ﬂ* (aznin’ ,r;cnin)

093

FPR, < 1— (11)

We plot the bound?(«, r) for r = 2,3 and10 in Figure 4. We call this the worst case bound, since by
Theorem 2(iii), it is exceeded at no node in the tree. On the other hand, welkRBy < 1 — ﬂ(l)/a for
a nodek whose children are leaf nodes. We call this the best case bound. We observe the following general
behavior in Figure 4.

e PR, approaches for largea (i.e. small fraction of bad links).

e The curve ofFPR; becomes flat as approaches. HenceFPR,, is insensitive to the fractionr of
bad links, provided this is small.

This behavior is confirmed by the following:

Theorem 4 Asa — 0,
) 8*(a,r) =a—2a"(1+0(@)).

(i) F(a,r)=a"(1+ O(a)).
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4.2 Detection Rate for Bad Links

In the previous section we saw that the lidlat the head of a maximal bad subtree is increasingly likely
to be bad when bad links are rare. However, we did not exclude the possibility of bad links elsewhere in
the subtree. We now evaluate the performance of the inference algorithm in identifying all bad links. The
detection rate (or coverage) of bad links is the probability that a bad link will be designated as bad, i.e.,

Cr =P[Yr = 0,Yy) = 1|2}, = 0] (12)

The detection raté of bad links over the whole network is the expected total number of bad links designated
as bad divided by the total number of bad links, i.e.,

> ke Crlik

C = —
> ket Ok

(13)
We now establish lower bounds for the detection rate.Aet= [ [, , o denote the probability for the
entire path between the rodtand node: to be composed of good links.
Theorem S (i) Cx = vy €XCEPCY = 1.
() Yryn = Ap2) By — Brerpy)/ By,

(iii) In a uniform tree withay, = « and branching ratio
Yy ke = Ap/(1/8%(a,r) — 1) (14)
(iv) Inageneral tree
Ve = Agey(L/al — 1)/(1/B85 — 1) > Ay max{0, 1 — a#i /iy (15)
For completeness we remark that the chabdg, that link & is designated bad is
DBy, = P[Yy = 0, Yy = 1] = P[Y, = 01X px) = PV 0 = 1] = Brvyey (16)

This takes the valud s> ;) (B k) — Bra s ), exceptD By = By.

We have implemented symbolic computation(§fusing Mathematica [24]. Lét, (71, ..., r,) denote
the perfectly balanced tree of depth- 1 with successive branching raties . . . , r,, and uniform probabil-
ity « for a link to be good. We plaf’ for several topologies in Figure 5. The left figure is for trees of depth 2
but increasing branching ratio. The detection rate is relatively insensitive to the branching ratio. This reflects
a trade-off: on the one hand, we have seen in Figure 4 that the probability of correct designation of a bad
link at the root of a maximal bad subtree increases with the branching ratio. On the other hand, the impact of
an incorrect designation increases with branching ratio, sihce 0 but A, = 1 requires a higher number
of bad nodes in the subtree rooted:atAn even higher number of nodes is impacted similarly when the tree
depth increases: the middle figure shows thakecreases as the depth increases at constant branching ratio.
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Figure 5:DETECTION RATE: THE PROPORTION OFCORRECTLY IDENTIFIED BAD LINKS, AS FUNCTION
OF FRACTION OF GOOD LINKS Left: insensitivity to branching ratio. Middle: decrease with increasing
tree depth. Right: insensitivity to tree depth in the constant path failure rate scaling.

4.3 Asymptotic Behavior when Bad Links are Rare

We now examine the behavior &PR; andC, for small @, i.e., when bad links are rare. We expect
considerable simplification of the analytic results in this regime. FirBBR; should be approximately
Hjed(k) o; for small@, i.e., the chance for all child links to be bad. Secondly, the detection rate computed
in the previous section was found to be insensitive to (large) branching ratio.

These observations are made precise by the following resultSilLet > ., @y andTj, = [];c ) @
with S; =T; = 0for j = 0andj € R. Letay = maxyey ap anda— = mingey o Io denotes the
indicator function of the se®.

Theorem 6 Consider the limit in whiclay, — 1 for all k£ € U, witha_ /&, bounded.
() Bx = ar —Ti(1+ O(@-)).
(D) Yroye =1 = Sy — Trwy/ar + O(@2)
(i) FPRy, = T)(1+ O(a-)) and henc&PR = (#U) ' >, .y Ti(1 + O(a-)).
(V) € =1 ZEBIWI0 4 O(a2)

(V) C = 1landC > 1 — fa_ + O(a? ) in the limita — 0, wherel = maxy, £, is the depth of the tree.

(vi) LetC(«) denote the detection rate of bad links in a tree with uniferm= .

C'(1) = (#U) "D e = 1+ Igagsy)—2) (17)
keU

(vii) In a perfectly balanced tree with depftand branching ratia- and uniforma;, = «,

oty ;
C/(l) — { r«fll r—1 if - 7& 2 (18)

4
1{;4 if r=2
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T.(2,2) | exact| approx. | bound T,(2,2,2,2) | exact| approx. | bound
! C 1-C'(a | 1—4a o) C 1-C(a | 1—ta
0.95 | 0.890 0.886 0.85 0.95 0.810 0.794 0.75
0.90 | 0.789 0.771 0.7 0.90 0.649 0.587 0.5
0.80 | 0.611 0.543 0.4 0.80 0.404 0.174 0

T.(5,5) | exact| approx. | bound T,(5,5,5,5) | exact| approx. | bound

o C 1-C'(V)a | 1—ta ! C 1-C'(V)a | 1—ta
0.95 | 0.913 0.911 0.85 0.95 0.825 0.812 0.75
0.90 | 0.831| 0.823 0.7 0.90 0.675| 0.625 0.5
0.80 | 0.676 0.645 0.4 0.80 0.436 0.250 0

Table 1: Detection Raté: Exact vs. Approximation and Bound from Theorem 6 for several uniform trees.

Example: L M, model. Consider again thé M, type model from Section 2.3. Specifically, consider
link probabilitiesa, = « and consider the regime with small Then

FPR, ~ (a)#®) (19)
C. ~ 1—{lpa— (a)#d(k)_l (20)

Take a binary tree#d(k) = 2) of depth5 with each link having a probabilityy = 0.95 to have a good
transmission rate exceeding the thresholg 0.99. Put another way, onl$% of links have a loss rate
greater than %. ThenFPRy = 0.0025 while the worst casé;, (for ¢, = 5)is 0.7

In the case of unifornay, = «, we can use the derivative’ (1) from Theorem 6(iv) to form the approx-
imation

C~1-C'(1)a (21)

for smalla. We compare this approximation, together with the bound from Theorem 6(iv), against the exact
value ofC in Table 1. The approximation works well (accurate to within a couple of percent in the cases
examined) for low loss rates with = 0.95, and reasonably well (accurate to within about 10%) when
a = 0.9. Agreement is better for larger branching ratios and shallower trees.

4.4 Scaling Behavior For Deep Networks

If the tree depthi increases whilev remains constant, then the chaneéfor a given path to be good
decreases towards zero. But over the long timescales of network buildout, as network path lengths grow,
the links must perform better in order to maintain the same path quality. Thus, in modeling deep networks
we consideconstant path failure ratecaling, in which the chance for a link to be goodyi]éd, so that the
chance for a path to be good remains constant.

Figure 5(right) shows the behavior 6fas the tree depth increases in the constant path failure rate scal-
ing, using depthl treesT 1,4 (2,...,2) ford = 2, 3,4, 5. Observe that for most, C is almost independent
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START: Conduct end-to-end measurements.
Apply SCFS algorithm to measurements.
if (no candidate bad links exisf)
exit
¥

else{
inspect candidate bad links and repair any that are bad.
go to START.

©CoNOGOR~WDNE

Figure 6: Exhaustive Inspection Algorithm under SCFS

of the tree depth. In fact, it can be shown that in a perfectly balanced tree with constant branching ratio
r > 2 and uniform link probabilitiegy, the slope ot is always shallower thah Summarizing, we can say
that the fraction of correctly identified bad links is roughly equal to the fraction of good paths in any such

topology.

5 The Overhead for Exhaustive Inspection
5.1 Exhaustive Inspection

What is the cost of false positives? One way to measure this is to ask how many candidate bad links must
be inspected before all true bad links are found. We focus on an iterative scheme in which we repeat mea-
surement, inspection and (if necessary) repair of candidate bad links until no more bad links remain. This
exhaustive inspectioralgorithm is described in Figure 6. In this scheme we assume an initial assignment
of good and bad links. The first iteration starts with end-to-end measurements to which the SCFS algorithm
is applied. Candidate bad links are then inspected and repaired if necessary. After this step, any inspected
link k is known to be good; either the inspection found it good, or it was repaired and hence made good.
Likewise all ancestorg of such a linkk are also known to be good, sink) = X = 1 for all candi-

date linksk. In the next iteration it remains only to determine the good/bad status of nodes descended from
those just inspected. Iteration stops when no candidate bad links remain; at this point, all links were either
good initially, or were bad and repaired.

5.2 Inspection Overhead: Computation

Let I denote the expected total number of inspections carried out using the exhaustive inspection algorithm.
The expected number of bad linksiis= ), _;; @,. Theinspection overheadlO is the expected amount

by which the number of inspections carried out in the exhaustive inspection algorithm exceeds the expected
number of bad links, expressed as a fraction of the latter , i.e.,

10 = (I - B)/B (22)
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We computd as follows. First note that inspection and repair proceeds top down from the roobnode
Thus, after inspection and (if necessary) repair of nodéis known thatX; = 1, even ifY, = 0 before
the repair. We let);, denote the event thaf, = 1 after inspection. Let), be the number of inspections
carried out at linkk and all links in the subtree below it. Define

Ly = E[ng|Qpry, Y = 0] My = E[mi|Qryl Nk = E[ng|Yy) = 1] (23)
SinceXy = 1 we have v

I=M, andhence I0=——1+ —1 (24)

> ke Ok

These quantitied, M, N obey the following recursions:
My = E[mklQsw)] (25)
= PYi=1Xpp =1] > E|¥i=1] (26)
jed(k)

+P[Y, =0,Z = 0[ Xy =1] | 1+ Eln;|Qx] (27)

jed(k)
+ Py =0,Z = 1| Xf) = 1] (1 + > EmlQrY; = 0]) (28)

jed(k)

Eq. (26) represents the ca®g = 1: link & is not inspected. In (27) link is inspected becausg, = 0.
Inspection reveals a bad linkZ{ = 0). The link is repaired (settin@; = 1). The links belowk, i.e.,
the variables Z;, : k£ < j} are not constrained sindg, = 0 is attributable taZ; = 0. In (28), link k is
inspected becausg, = 0, but is found to be good4, = 1): this was a false positive. This fact constrains
{Zk : k < j} because although the path#ds now known to be good, no path beldwis good. Hence
the subsequent inspections are conditioned)gprandY;, = 0. The recursions fotv;, and L, follow in a
similar manner:

N = E[mlYrw =1] (29)
= P =1[Y¢u =1 Y Elp[Vi=1] (30)
jed(k)

+PYr=0,Z =0y =1] | 1 + Z Enj|Qk] (31)
jed(k)

+PYe=0,Zk = 1Yy = 1] [ 14+ D E[nj|Q,Y; =0] (32)
jed(k)

Ly = E[mlQpw): Y = 0] (33)

= 1+ P[Zk = O‘Xf(k) =1Y, = O] Z E[T]j‘Qk] (34)
jed(k)

+P[Zk =1Xpgy = L,Ye =0] > E[n;|Qs,Y; =0] (35)

jed(k)
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Figure 7: Inspection Overhead (as a percentage) for some uniform trees. Left: as a function of branching
ratio. Right: as a function of tree depth.

Simplifying, and using the fact thak, = /A, we have

My = Bu+Be Y Nj+ar > M+ (ar—5) Y. Ly (36)
JEd(k) JEd(k) JEd(k’)
N, - ﬁwf(k), Z N+ QRS (k) k Z M+ = Br) Vs Z L, @7
Vf(k) 'Yf ®) a0k 7f( ) e Vf (k) jeath)
L = 1+ZM+(1—>ZL (38)
k jed(k) jed(k)

The edge conditions fot € R are
My, =ayg, Ni=aYra) e/ Le=1 (39)

5.3 Inspection Overhead: Performance and Conclusions

The inspection overhead for some uniform trees is computed and displayed in Figure 7. The left figure
confirms that overhead decreases with branching ratio. This is to be expected from Theorem 6(v): as the
branching ratio increases the false positive rate decreases since a given node the requires more (child) nodes
in order to be falsely designated as bad. The right figure shows that overhead increases relatively slowly
with tree depth. Note that in all cases the overhead is quite small, being less than 10% in the worst case
considered, namely, a binary tree of depth 6 with bad links occurring with a 20% probability.

From the analysis of this section we conclude that iterative inspection of candidate bad links provides
a very effective way of incorporating linkwise measurements (from inspection) into the network in order to
locate all bad links. This holds even for trees that are deep and in which bad links are not vanishingly rare.
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6 SCFS Performance: Weakly Separable Case

The analysis so far has been based on the assumption that statistitisfy the separability assumption.

How does the performance of the SCFS algorithm behave under violations of separability? In this section we
consider the weakly separable case; in Section 2.2 we noted that weak separability can always be arranged
through judicious choice in the definition of the good paths.

6.1 Critical Links

In the weakly separable case a good étlt:, . .., k) may have bad links, i.e., whilg,, =1,i=1,...,¢
implies X, = 1, the converse is not true. We introduce a more refined notion of bad links, tbaticsl

links, which helps us fill this gap. A link is critical if no path that contains it can be good. More precisely,
let P, denote the set of partial paths that pass thratugte.,

Pk:{<j1,j2,...,jm): m:1,2,..., ji:f(kj_:,_l),i:l,...,m—l, k::jisomez'} (40)

Since we work with a tree, each such patk Py, is determined by its end points, call thestp) ande(p),
wheres(p) > e(p). Let X (p) be a random variable taking the valué the path froms(p) to e(p) is good,
while taking the valu@ if it is bad.

For each linkk we define the set of critical valuesU{"* C W, to be the set for which

Vr(dr) € U™ = sup X(p) =0 (41)
PEP
Note thatyy(¢;) € U implies in particular that{;, = 0 andY;, = 0. We will say that the link (or
its parametery,) is critical if ¢y (¢r) € ¥t Note that the event thdt is critical is independent of the
{Z; : j # k}, since the implication is required to hold for all choices of th&seClearly, critical links in
a weakly separable model are also bad, since ifkinkere both critical and good, then any path throégh
with all other links good would itself be good, in contradiction with= 0.
The point of this definition that if a bad link is, with high probability, critical, then bad links are very

likely to cause bad paths. Thus, the analysis of Section 2.2 for the separable case will hold approximately.
We define theeritical probability for link &:

K}, = P[k is critical |k is bad]. (42)

One way to understanfi;, is thatK;, = 1 — K, bounds the chance for a bad link to be part of a good path,
since
P[Yy, = 1|Zy = 0] < P[sup X (p) = 1|Z;, = 0] <1 — Plkis critical | Z;, = 0] = K (43)
PEP
Example: General Loss Model.We take a loss model with link transmission probabilitigsandt is

the threshold transmission probability between good and bad paths of ler@omsider a path comprising
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links k1, ..., ky. Link k; is critical if H§=1 br; < t¢ for any possible set Ofpr, : kj # ki}. Thusk; is
critical if and only if ¢, < t¢. Thus for any linkk

Ky = P[gy < t'm=M]/P[gy < 1] (44)

wherel,,.« (k) is the length of the longest path throughNote thatl — K, is just the bound from (1) applied
to the longest path length,.« (k). K} depends of the probabilities of the good and bad states through the
thresholdt sinceay, = P[¢y, > t].

Now a weakly separable model should approximate the strictly separable caseiygliflose to one.
From (44) we see this is likely to be the case if the mass of the conditional distributigngden k& bad is
distributed mostly away from the threshaldWe illustrate this with an example and a counterexample.

Example: LM> model. Consider anl.M, type model from Section 2.3, where good linkbave
transmission probabilities;, uniformly distributed in(¢, 1] and bad links have transmission probabiliiigs
uniformly distributed in0, ¢]. According to (44),

Ky, = timox =1 o 1 F(fan (k) — 1) (45)

Hence we expect a reasonable approximation to the separable case to require at l#asthat< 1.
Counterexample: Power Laws Suppose that the distribution of link transmission rates is governed by
the power law:P[¢, < x] = 2P. Lett € (0,1) be the boundary between good and bad transmission rates.
Then
Ky, = tPmax(k)=1) (46)

Thus K, tends to be small when > 1. This is because, in this case, the densitypfis increasing and
hence the transmission rates of bad links are bunched towards the thriegheldood and bad transmission
rates are far from separable.

6.2 False Positive Rate and Detection Rate

To analyze the behavior of SCFS, we will compare the actual pro€esih the idealized procesk’ that
would arise under strict separability with the same link probabilifies}. Thus

Xz Xp= ]2 (47)
Jzk

Similarly, we defineY;, = max;cg, X;. We will also needy , = maXjer, . \R, X; and its separable
analogYJi(km = MaXjeR, .\ Ry X?. In what follows, the quantities}, vx and~y;) . will refer to the
guantities defined for the strictly separable analog.

Theorem 7 In the weakly separable case,
(i) FPRy < (1 — Br/ar)vsy e + Or where Op =3, Kja;/a

(i) C1 = 1and the detection rate is bounded belowCas> Ky k-
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Comparing with Theorem 1 we see tlt#t represents the increaseHiP Ry, that is attributable to departures
from separability. Whetk}, is close to one, then clearly the bounds of Theorem 7 are close to the the exact
expressions in the strictly separable case.

Example: LM> model. Consider again thé M, type model from Section 2.3. Specifically, consider
link probabilitiesa;, = « and consider the regime with smalland critical threshold holdclose tol. Then

Q

FPR; @*®) a2 (48)
Ch ~ 1—tlpa— @1 _y. 1 (49)

Comparing with (19) and (20), observe that the last terms in each expression represent the contribution
due to weak separability. Consider, as before, a binary ffegX) = 2) of depth5, whose links have a
probability o = 0.95 to be good, meaning that their transmission rate exceeds the thréskold99. In

the worst caseff, = 5) we findFPRy, =~ 0.015 (compared with).0025 in the strictly separable case) while

Cr =~ 0.65 (compared with).7). Although the effect on FPR is quite marked, it still remains at ab&uin

this example.

Example: Generalized Loss Model with Measured Ratesldeally, we would wish to determine the
critical probability for a distribution of actual loss rates over a set of network links. Such data is not generally
available. As a proxy we use the distribution of time-averaged loss rate measured across a set of internet
paths in [25]. The data comprises 3,779 individual rates, each of which represents an average over one hour.
Their cumulative distribution is displayed in Figure 8; note the logarithmic horizontal axis. From this graph,
we can read off the dependence of the threshold (between the good and bad states) on the probability
be in the good state: this is the cumulative probability for loss to attain at most the threshold value. For
illustration, for a threshold loss df% (i.e. a threshold transmission rdt®9) the o value is abou6.8.

Figure 9 shows the associated critical probabilityon the left) and boun® on the increase in the false
positive probability (on the right) for link depthfs= 5,15, 50. We see that the critical probability exhibits
a roughlyU-shaped, with a minimum roughly at loss rates betw@eh and0.03, depending on link depth.

In the depth 5 case considered previously, the minimum critical probability is &tibfdund near the loss
thresholdl% (i.e., the transmission threshald= 0.99), rising to about 0.8 for loss raté)—>. The critical
probabilities are small for deeper links.

The bound® is (mostly) decreasing as a function of loss threshold1%tloss thresholdP is about
0.19. For loss thresholds above abatit, there is little dependence 6fon the link depth. We can compare
with the FPR in the strictly separable case as follows. First, for a given threshold loss threshold we read of
the corresponding: value from the CDF in Figure 8. According to Theorem 3 we can bound'thg in
the strictly separable case lby— 5*(«, r)/«, which has worst case branching ratie= 2, leading to the
boundFPR < (a/a)?.

For loss threshold% we read offa ~ 0.8 from Figure 8, leading t&'PR =~ 0.06 in the separable
case; compare withh ~ 0.19. For loss threshold0% we read offa =~ 0.98 from Figure 8, leading to
FPR = 0.0004 in the separable case; compare withx 0.014.
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o F C ol
0.95 | 0.0%—0.08%| 59%—81%| 95%
0.9 || 0.0%—0.22%| 35%—66%| 90%
0.8 || 0.0%—0.34%| 11%—42%| 80%

Table 2: Approx. 1000 node tree. False Positive Rataletection rate”, and detection rat€’° under
constant path failure scaling, as function of fractioof good links.

7 Performance Comparisons with Other Methods

Model Comparisons We first describe some comparisons of our model analysis with the simulation results
for three methods (random, linear programming and Gibbs) applied to the LM 1 model in [18]. Both
our analysis and the simulations used topologies of 1,000 nodes with maximum branchirg).rafiar

model calculations ran over 10 topologies containing roughly 1,000 nodes with depth between 3 and 10.
This set included uniform topologies with branching r&iand10, namelyT,,(2,2,2,2,2,2,2,2,2,2) and
T,(10,10, 10) respectively.

Table 2 shows the range false positive rdteand detection rat€ for SCFS over all model calculations .
Comparing with Figure 3 of [18] it appears that for= 0.95, the SCFS false positive rate is at least as good
as any method simulated, while the detection rate is as good as the linear programming and Gibbs methods.
(The “random” method from [18] had higher detection rate but a very high false positive rate). However,
comparing with Figure 4 of [18], it is evident that while the false positive rate of SCFS remains quite small
(less thanl%), asa decreases, the detection rate falls off steeply compared with the other methods.

Simulation Comparisons Partly in response to [11], a recent paper [3] reported network level simula-
tions of SCFS, the random and Gibbs algorithms from [18], and a new proposed algorithm COBALT. The
model had somewhat separated loss regimes (good links had losses from 0 to 0.5%), bad links had losses
between 1% and 3%. In our terminology, this would only be strictly separable for trees with maximum
depth 2; otherwise it would be weakly separable. The network topologies were generated using the BRITE
two-level hierarchical model [4] and comprised 800 nodes connect by 1,400 ig#s. was used to simu-
late the download of large files from a server by 100 randomly chosen clients. In this context, bad links are
those whose loss rate exceeds a given level. In the comparison, SCFS was found to have the lowest false
positive rate, being about one third the rate of the next best algorithm. The detection rate was as good as
other methods when bad links were rare (5% of links were bad) but fell off when they were more common
(20% of links were bad). But even for the other methods, the detection rate was far from perfect, being
around 65% for the range of considered (0.95, 0.9 and 0.8).

Computational Aspects We expect our algorithm to be less complex than LP and far less complex than
the general most accurate method presented, Gibbs Sampling. In [3], running times for SCFS and COBALT
were found to be an order of magnitude less than for Gibbs.

Constant Path Failure Rate Scaling Table 2 also shows the detection r&te in the constant path
failure scaling. This is barely sensitive to topology, and approximately equal to the proportion of good links.
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Discussion To some extent, the set of algorithms studied here and in other papers [18] and [3] exhibit
a trade-off between false positives and false negatives (as represented by imperfect detection rate). Any
choice between algorithms must take account of the relative costs of false positives and negatives in the
target application. We believe that in the networking context the false positive cost is typically quite high
due to the administrative costs of inspecting potentially faulty components. This favors a scheme with a low
false positive rate.

8 Discussion and Further Work

This paper has argued that when network link performance characteristics can be well separated into two
categories, good and bad, a simple inference algorithm can be effective in identifying candidate bad links
on a tree from end-to-end measurements. The algorithm, which attributes path failure to the smallest set of
consistent link failures, is justified by the observation that when bad links are uncommon, two or more badly
performing intersecting paths likely have a bad link in their intersection. Moreover, the likelihood for this

to happen is relatively insensitive to changes in the fraction of bad links if this fraction is small. Conversely,
the false positive rate is very low in this regime because it is very rare that a good link will lie at the head of
a maximal bad subtree.

On the negative side, with single execution of SCFS the detection rate for bad links is less than unity.
We regard this as the price paid for using uncorrelated measurements. Previous work on tomography used
measurements correlated at the packet level, and estimators of link loss rates and packet latencies were
unbiased under the same packet and linkwise independence conditions that we assumed in our setup in
Section 2. Thus, misidentification of bad links only occurred due to statistical variability of the estimators
and vanished as the number of probes grew. In the SCFS approach, we can, in fact, achieve a unit detection
rate by iterating the SCFS approach with limited link inspection. For some applications, this need not be
regarded as a deficiency. Suppose the cost to “repair” bad links, i.e., to make them good, is high. Depending
on context, repair may entail replacing a bad component or rerouting traffic away from it. The overhead
in repeated inspection is small if the false positive rate is low. This motivated the Exhaustive Inspection
algorithm of Section 5.

In this paper we assume that the ambient failure probabilities are known a priori; these determine the
boundary between good and bad states. Another potential approach is to adaptively set the threshold between
good and bad based on clustering properties of the measured end-to-end path characteristics. The difficulty
with this approach is that there may be trivial clustering properties even when bad links occur. A clear
example is when the first link next to the root suffers heavy performance impairment but all others have no
impairment. In this case, the measured end-to-end properties will appear the same at all leaves, so clustering
does not help in setting the boundary between good and bad performance.

We now outline some generalizations of the present work that we would like to investigate in the future.

Enlarged State SpaceA natural generalization of our work is to increase the size of the state space beyond
the two states in the good/bad classification. One benefit of this would be to further reduce the false positive
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probability. Consider a good nodewith two children, each of which lie at the head of a maximally bad
subtree. In the two state classification, the good roideclassified as bad. However, if the bad state is split

into substates, then a separation between the path states measured on each subtree would most likely indicate
separate causes of badness, rather than a common cause in badnesk. ok lddwnside of enlarging the

state space is a more complex relation between link and path states.

General Network Topologies. To extend the method from tree topologies to general network topologies,

we can take the approach of [5] and cover a network with a set of trees, and conduct measurements on each
tree. An obvious approach is to infer on each tree independently using the methods of this paper. Exhaustive
inspection in the manner of Section 5 can share information on known good links amongst the different
inference problems which may potentially reduce the number of iterations needed to render all links good.

Inference from Measurement Time SeriesSuppose now that rather than being static, the good/bad status
of each link can fluctuate over time. This corresponds to the Gilbert model of [18]. Consider the delay spike
example of Section 2.3. Divide time into consecutive interf@s: ¢ = 1,2, ...} of equal duration. If a

delay spike of sufficient size occurs on a link during intet¥althen that link is bad for that interval. Note

that the probability; for link 7 to be good during an interval is a nonincreasing function of the interval
duration. In the stationary case; is proportional to the duration of the measurement interval. 4;gtbe

the good/bad indicators for linkin intervalt, and define the path indicatof; ; = Hjti Z; 1 accordingly.
Suppose we now assume that:

(i) The tree topology is the same for all measurement intervals
(i) The delay spike model is separable
(iii) Delay spikes are independent over different links
(iv) Delay spikes are independent over different time intervals

Under these assumptions it is evident that the link probabilitiesan be inferred from the timeseries
{Xit:i€e R, t=1,2,...} of path good/bad status as measured at the leaf node, using the methods of [6].
We remark that the topology itself can also be inferred from the same measurements. We defer to another
paper a study of the effectiveness of this method and its behavior under weak separability.

Experimental Evaluation. Much of the work of this paper has been devoted to performance analysis of

the SCFS algorithm and its iterative generalization. An important and complementary approach will be to
evaluate performance under representative network topologies and patterns of performance degradation, as
determined from network measurements. In particular, it is desirable to quantify the trade-off in practice be-
tween reducing network measurement complexity (as compared with packet-level correlated measurements)
and increasing false positives and negatives for the detection of bad links.
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Figure 10: lllustration o3, ,(z) = o(1—(1—=z)") in case whererr > 1: r = 3 anda = 1/2. Intersection
with functionz in (0, 1) is fixed points*(a, r)

Appendix: Proofs of Theorems

Proof of Theorem 1

FPR, = P[Yl = O‘Zl = l] = P[Yl =0, = 1]/P[Z1 = 1] (50)
= (PV1=0]-P[Z1=0])/P[Z1 =1]=1-51/y (51)
For all otherk:
FPR, = P[Yk = O,Yf(k,) = HZk = 1] (52)
= PV, = O,Yf(k) =1,7Z, =1]/P[Zx = 1] (53)
= (P[Yk = O,Yf(k) = 1] — P[Yk = O,Yf(k) =1,Z; = 0])/P[Zk = 1] (54)
= (PYe=0,Yruy =1 = P[Zr = 0,Yyy . = 1])/P[Z), = 1] (55)
= (P[Y& = 0| Xy = 1] = P[Z = 0|Y}(y e = U)P[Ys(ay e = 1/P[Z1 = 1] (56)
= (1=Be/ax)vime 1 (57)

Proof of Theorem 2 : (i,ii) Forr > 2 anda > 0, B, , is a strictly concave increasing function frgf 1]
onto[0, o], with B;, ,.(0) = ar and By, ,.(1) = 0. Hence the equatioB,, ,(3) = 3 is a solution3* in (0, 1)

if and only if ra. > 1, and this solution is unique if0, 1). Otherwise there is only one solution, namely,
B* = 0. See Figure 10 for = 3, a = 1/2.

(iii,iv) Ba,(a) < a. SinceBa, is increasing Baw ™ (a) < B2 (). (Here B°" denotes am-fold
composition). Hence the sequer{g&™ } is decreasing. SincB,, . is continuous oif0, 1] and bounded, the
sequence is bounded, and hence convergent to soméslinyithe monotone convergence theorem. Since
B, is continuous,3 must be a fixed point oB,,. Whenar > 1, this fixed point cannot b8, since
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Bar(0) = 0andB,,,.(0) = ar > 1implies B, ,(x) > x in some neighborhoofd, €). Thus{3™} cannot
be a decreasing sequence converging to
(V) SupposeB;’.(a) > B\ (). (This is trivially true for the starting valuB’, (o) = . Then
B (@) = Ba(BI() 2 Bagr(BI(@) 2 Bayr(B(a) = B (@) (58)

a,r!

sinceB,,(z) is increasing in botl andr. The result follows from (iv) on taking the limit — oo.
(vi) SupposeBy;.(a) > Bg,.(of). (This is trivially true for the starting valuB’, (o) = . Then

BT (@) = B (B () > Bur o (B%(a)) > Bur (B, (o)) = B (o) (59)

a',r
sinceB, () is increasing in botlw andr. The result follows from (iv) on taking the limit — oco. g

Proof of Theorem 3 : (i) By Theorem 2(iii),5* (o, 7) < B¢y < Bk, and henc& PRy, <1 — 3*(a,7)/cv.
By Theorem 2(v), the greatest upper bound is obtained fer2. In this cases*(«, 2) = max{0,1—a/a},
and hencd”(a, 2) = min{1, (@/a)?}.

(i) Supposg < k with j ¢ R. Then

B = a;(1= [[ 01-8) (60)
i€d(j)

> (1 — (1 — min 3)%90)) (61)
i€d(j)

> o1 —(1— min §)"* ) (62)
1€d(7)

- B min ,.min i ) 63

amin pn (fébl(?)ﬂ) (63)

For a leaf node, 8, = «o; > o™ > g*(af™™, 7). We now proceed by induction. Suppose
B; > B*(cinin pmin) for all i € d(j). SinceB,,,(-) is increasing, (60) implies that

Bj > Bgin yin (B (™™, 21)) = B* (gt ripi). (64)
The bound orFPR,, then follows from Theorem 1n

Proof of Theorem 4 : From Theorem 2(v) and (9), when< 1/2 theng*(a,r) > f*(a,2) = 1 — @/a.
Thusg*(a,r) = a(l — (1 — B*(a,7)") > a(l — (@/a)") > a — a"a!~". This establishes (i), and (ii)
follows easily from the definition of'(«, ) in (10) g

Proof of Theorem 5(i)
P[Yk = O,Yf(k) = 1‘Zk = O] = P[Yk = Oan(k),k = 1|Zk = 0] (65)

= P[Yf(k)“k = HZk = 0] (Z]C =0= Yk = O) (66)
= PYypr=1] (Yt (k1> Z1 are independent (67)
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(ii)

Twe = PXpw =1] (1 - JI P =0Xpm= 1]) (68)
Jed(f(R)\{k}
= A (1 - II Bj) (69)
Jed(f(R)\{k}
= Appy By — apmBr)/Br  (by (7)) (70)

(iii,iv) Applying the bound on3; from Theorem 3(ii) to (69)

Vi) = Af(k) (1 — B*(a}n(i]?),r]r{l(f))#d(f(k))—l) (71)
2%/ min _min 77" —1
= Ay (L/afl) —D/Q/B5 — 1) (73)

This establishes the first inequality in (iv), of which (iii) is a special case. The second inequality in (iv)
follows from Theorem 2(iii) using(c, 2) = max{0,1 —a@/a}. p

Proof of Theorem 6: (i) Whenk € R, B = ai. Whenk = f(j) for somej € R, theng), = ay(1 — Tj).
The remaining cases we prove by induction. Suppose (i) holds ferat (k). Then

B = o (1 11 <aj+Tj<1+0<a>>>) (74)
j€d(k)

= o(1-T, J] O+ (T3/@)(1+0@-)))) (75)
jed(k)

= (1 -Tp(14+0(@-))) = ap — T(1 + O(a-)) (76)

sinceT;/a; < (a_)*/a, anda_ /ay is bounded.
(ii) Similarly to the proof of (i),

Ywwe = Aw- I 8) (77)
JEA(f(k)\{k}
= (1-Spm +0(@@2)) (1 - 1] @+na+ O(@)))) (78)
Jed(f(k)\{k}
= 1- Sy — Typy/ar + O@2) (79)

(iii) follows from (i), (ii) and Theorem 1.

(iv) follows from (ii) and (13).

(v) From (iv) we see that — C is O(a_) and henc&€ — 1 in the limit. The lower bound og follows
becauseS ) < (6 — 1)a- < ({ —1)a_, while T}, < a_.
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(vi). In the uniform casey, = «, Sy, = @l}, while T, = a#(¥), The latter’s contribution t¢1 — C) /@
is thena#4(*)=2 yielding 1 in the limit if #d(k) = 2, and0 otherwise.

The forms in (vii) then follow by summation: for 2 we have} _, (i — 1)r~1/S2¢_ #=1. For
r = 2, we take this sum and add’_, r~'/ > =1, g
Proof of Theorem 7 : The bounds established previously would still hold w&reY” to be replaced by
X'Y’. Our strategy is to find out how closely these bounds hold. We now derive bounds for the various
terms in (54). We first bounB[Y; = 0, Yy = 1,7, = 0] below. SincelY;, = 0,Yyq) = 1} = {Y =
0, Yykyr = 1},
PlZk =0, =0,Ysuy = 1] = P[Yr=0[Zx =0,Ys)x = 1P[Zk = O[Y(y e = 1P [Yyiy e = 1]

= KyapP[Yig e = 1] (80)

Here the inequality follows from (41) sindecritical impliesY;, = 0 (for a weakly separable model) while
Zy is independent o¥(;) , = 1, and the final inequality follows since criticality éfis independent of

{¢j 5 # k}.
We next boundP[Y}, = 0, Yy, = 1] above. SinceX > X"andY > Y/,
PlYy = 0, Yrk) = 1] = P[Yx= 0, Yy ke = 1]
< Py =0,Ypmyr =1]
= P} =0,X}4 =1, Y0y = 1+ P[Xj4 =0,V =1 (81)
The first term in (81) is equal to
PV, = 01Xy = 1, Yy = UP[ Xy = LYy =11 < PIYY = 0|X}p = NPy s = 1]
= BpPYxyn = 1] (82)
The second term in (81) is bounded abovedBy. , P[Yyu)x = 1|Z; = Ola; < 3., K;@;. Combining
with (82) we obtain the upper bound sought:

P[Yk = O,Yf(k) = 1] < BkP[Yf(k),lc = 1] + ijaj. (83)
=k
The upper bound oRPR; now follows by inserting (80) and (83) into (54):

apFPRy < (Bk — Kkak) P[Yf(k),k: = 1] + Z?j@j (84)
j=k
Sincef, < a and K, < 1, the term in parenthesis in (84) is non-negative and hence
apFPR; < (Oék — 5k)7f(k),k + Z?J‘Ej (85)
Jjrk

(ii) For k = 1, the detection rate i§'; = 1. Otherwise the detection rate is
Cr = PlYp=0,Yp) =1Zy =0] =P[Yy =0,Yy)x = 1, Z = 0]/P[Z), = 0] (86)
> KpP[Yrayrl > Keviae B (87)

30



References

[1] A. Adams, T. Bu, R. @ceres, N.G. Duffield, T. Friedman, J. Horowitz, F. Lo Presti, S.B. Moon,

[2]

V. Paxson, D. Towsley, “The Use of End-to-End Multicast Measurements for Characterizing Internal
Network Behavior”, IEEE Communications Magazine, May 2000.

D. Arifler, G. de Veciana, and B. L. Evans, “Network Tomography Based on Flow Level Measure-
ments”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., Montreal, Canada, May 17-21,
2004.

[3] A. Batsakis, T. Malik, A. Terzis “Practical Passive Lossy Link Inference”, PAM 2005 (Passive and

[4]

Active Measurement Workshop), Boston, MA, MArch 31-April 01, 2005.

BRITE: Boston  university = Representative Internet  Topology  gEnerator. See:
http://www.cs.bu.edu/brite/

[5] T. Bu, N. Duffield, F. Lo Presti, D. Towsley, “Network tomography on general topologies”, Proceed-

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

ings ACM Sigmetrics 2002, Marina Del Rey, CA, June 15-19, 2002.

R. Caceres, N.G. Duffield, J.Horowitz D. Towsley. “Multicast-Based Inference of Network Internal
Loss Characteristics|EEE Trans. on Information Theor$4X(7), 2462-2480, 1999.

R. Caceres, N.G. Duffield, T. Friedman, “Impromptu measurement infrastructures using RTP”, Proc.
IEEE Infocom 2002, New York, June 23-27, 2002.

M. Coates, A. Hero, R. Nowak B. Yu, “Internet Tomography”, IEEE Signal Processing Magazine, May
2002.

M. Coates, R. Nowak. “Network loss inference using unicast end-to-end measur@moent,TC Conf.
IP Traffic, Modeling and Managemer8ept. 2000.

Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King and Yolanda Tsang, “Maxi-
mum Likelihood Network Topology Identification from Edge-Based Unicast Measurements”, ACM
Sigmetric 2002, Marina Del Rey, California, June 2002.

N.G. Duffield, “Simple Network Performance Tomography”, ACM SIGCOMM Internet Measurement
Conference 2003, Miami Beach, FI, October 27-29, 2003

N.G. Duffield, V. Arya, R. Bellino, T. Friedman, J. Horowitz, T. Turletti, D. Towsley “Network To-
mography from Aggregate Loss Reports”, Proc Peformance 2005, Juan-les-Pins, France, Octoer 3-7,
2005.

N.G. Duffield, J. Horowitz, F. Lo Presti, D. Towsley, “Multicast Topology Inference from Measured
End-to-End Loss”, IEEE Trans. on Information Theory, vol. 48, pp. 26-45, 2002.

31



[14] N.G. Duffield, F. Lo Presti, V. Paxson, D. Towsley, “Inferring link loss using striped unicast probes,”
in Proc. IEEE Infocom 2001, Anchorage, Alaska, April 22-26, 2001.

[15] F. Lo Presti, N.G. Duffield, J. Horowitz, and D. Towsley. Multicast-based inference of network-internal
delay distributionslEEE/ACM Trans. Netw10(6):761-775, 2002.

[16] Network Reliability Council (NRC) Reliability Issues - Changing Technologies Focus Group,
“New Wireline Access Technologies Subteam Final Report”, February 22, 1996. See:
http://mww.nric.org/pubs/nric2/fg3/4nwat.pdf

[17] “Packet Wingspan Distribution”, NLANR. Sdwstp://www.nlanr.net/NA/Learn/wingspan.htmi

[18] V. N. Padmanabhan, L. Qiu, and H. Wang, “Server-based Inference of Internet Link Lossiness”, IEEE
Infocom 2003, San Francisco, CA, USA April 2003.

[19] Anoop Reddy, Deborah Estrin, Ramesh Govindan, “Fault Isolation in Multicast Trees”, ACM SIG-
COMM, Stockholm, Sweden, August 2000.

[20] Yolanda Tsang, Mark Coates and Robert Nowak, “Passive Unicast Network Tomography using EM
Algorithms”, IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake
City, Utah, May 2001, Volume 3, pp. 1469-1472.

[21] Yolanda Tsang, Mark Coates and Robert Nowak, “Nonparametric Internet Tomography”, IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida, May 2002,
Volume 2, pp. 2045-2048.

[22] Yolanda Tsang, Mark Coates and Robert Nowak, “Network Delay Tomography”, IEEE Transaction of
Signal Processing in Networking, Aug. 2003, Volume 51, Issue 8, pp. 2125-2136.

[23] Yolanda Tsang, Mehmet Yildiz, Robert Nowak and Paul Barford, “Network Radar: Tomography from
Round Trip Time Measurement”, ACM Internet Measurement Conference, October, 2004, Taormina,
Sicily, Italy, pp. 175-180.

[24] Wolfram Research, Inc., Mathematica, Version 4, Champaign, IL, 1999.

[25] Y. Zhang, N.G. Duffield, V. Paxson, S. Shenker, “On the Constancy of Internet Path Properties”, ACM
SIGCOMM Internet Measurement Workshop 2001, San Francisco, CA, November 1-2, 2001.

32



