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Abstract

Software designers draw Message Sequence Charts for early modeling of the

individual behaviors they expect from the concurrent system under design. Can

they be sure that precisely the behaviors they have described are realizable by

some implementation of the components of the concurrent system? If so, can

we automatically synthesize concurrent state machines realizing the given MSCs?

If, on the other hand, other unspecified and possibly unwanted scenarios are
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“implied” by their MSCs, can the software designer be automatically warned and

provided the implied MSCs? In this paper we provide a framework in which all

these questions are answered positively. We first describe the formal framework

within which one can derive implied MSCs, and then provide polynomial-time

algorithms for implication, realizability, and synthesis.

1 Introduction

Message Sequence Charts (MSCs) are a commonly used visual description of design

requirements for concurrent systems such as telecommunications software [1, 2], and

have been incorporated into software design notations such as UML [3]. Requirements

expressed using MSCs have been given formal semantics, and hence, can be subjected

to analysis. Since MSCs are used at a very early stage of design, any errors revealed

during their analysis yield a high pay-off. This has already motivated the development

of algorithms for a variety of analyses including detecting race conditions and timing

conflicts [4], pattern matching [5], detecting non-local choice [6], and model checking [7],

and tools such as uBET [8], MESA [9], and SCED [10]. An individual MSC depicts

a potential exchange of messages among communicating entities in a distributed soft-

ware system, and corresponds to a single (partial-order) execution of the system. The

requirements specification is given as a set of MSCs depicting different possible execu-

tions. We show that such a specification can be subjected to an algorithm for checking

completeness and detecting unspecified MSCs that are implied, in that they must exist

in every implementation of the input set.
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Figure 1: Two seemingly “correct” scenarios, updating fuel amounts

Such implied MSCs arise because the intended behaviors in different specified MSCs

can combine in unexpected ways when each process has only its own local view of the

scenarios. Our notion of implied MSCs is thus intimately connected with the underlying

model of concurrent state machines that produce these behaviors. We define a set of

MSCs to be realizable if there exist concurrent automata which implement precisely the

MSCs it contains.

We study two distinct notions of MSC implication, based on whether the underlying

concurrent automata are required to be deadlock-free or not. Deadlocks in distributed

systems can occur, e.g., when each process is waiting to receive something that has yet

to be sent. We give a precise formalization of deadlocks in our concurrency framework.

Using our formalization, we show that MSCs can be studied via their lineariza-

tions. We then establish realizability to be related to certain closure conditions on

languages. It turns out that, while arbitrary realizability is a global requirement that

is computationally expensive to check (coNP-complete), safe (deadlock-free) realizabil-

ity corresponds to a closure condition that can be formulated locally and admits a

polynomial-time solution. We show that with a judicious choice of preprocessing and
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data structures, safe realizability can be checked in time O(k2n + rn), where n is the

number of processes, k is the number of MSCs, and r is the number of events in the

input MSCs. If the given MSCs are not safely realizable, our algorithm produces miss-

ing implied (partial) scenarios to help guide the designer in refining and extending the

specification.

We first describe our results in the setting of asynchronous communication with

non-FIFO message buffers between each pair of processes. In Section 8, we point out

how our results can be generalized to a variety of communication architectures in a

generic manner.

Related Work

The formalization of MSCs using labeled partially-ordered structures, or as Mazurck-

iewicz traces, has been advocated by many researchers [4, 6, 17], and we follow the same

approach. Many researchers have argued that in order to use MSCs in the automated

analysis of software, the information MSCs provide needs to be reconciled with and in-

corporated into the state-based models of systems used later in the software life-cycle,

and consequently, have proposed mechanical translations from MSC specifications to

state machines [11, 12, 13, 14, 15, 16, 17]. The question of implication is closely re-

lated to this synthesis question. In fact, we give a synthesis algorithm which is in the

same spirit as others proposed in the literature: to generate the state-machine corre-

sponding to a process P , consider the projections of the given scenarios onto process

P , and introduce a control point after every event of process P . However, our focus
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differs substantially from the earlier work on translating MSCs to state machines. First,

we are interested in detecting implied scenarios, and in avoiding deadlocks in our im-

plementations. Second, we emphasize efficient analysis algorithms, and in particular,

present an efficient polynomial-time algorithm to detect safely implied MSCs and solve

safe realizability, avoiding the state-explosion which typically arises in such analysis of

concurrent system behavior. Finally, we present a clean language-theoretic framework

to formalize these problems via closure conditions. A rigorous mathematical treatment

of the synthesis problem has been developed independently in [17]. Their formaliza-

tion differs from ours in two important ways. First, in [17], the MSCs specify only the

communication pattern, but not the message content, and the automata implementing

the MSCs can choose the message vocabulary. Second, the accepting conditions for the

communicating automata are specified globally, while in our framework each automa-

ton has its own local accepting states. The main result of [17] shows how to construct

a set of communicating automata that generates the behaviors specified by a regular

collection of MSCs, and thus, in their formalization, every finite set of MSCs would be

realizable. We believe that our definition, particularly, the accepting states being local,

is more suitable for distributed systems.

It is worth noting that inferring sequential state machines from example executions

is a well-studied topic in automata theory [18, 19]. In our setting, only “positive”

examples are given, but the executions are partially ordered and we infer “distributed”

implementations.

104



2 Sample MSC Inference

We motivate inference of missing scenarios using an example related to serializability

in database transactions (see, e.g., [20]). Consider the following standard example,

described in the setting of a nuclear power plant. Two clients, P1 and P2, seek to

perform remote updates on data used in the control of a nuclear power plant. In this

database the variable UR controls the amount of Uranium fuel in the daily supply at

the plant, and the variable NA controls the amount of Nitric Acid. It is necessary

that these amounts be equal in order to avoid a nuclear accident. Consider the two

MSCs in Figure 1 which describe how distinct transactions may be performed by each

of the clients, P1 and P2. The “inc” message denotes a request to increment the fuel

amount by one unit, while the “double” message denotes a request to double the fuel

amount. In the MSCs, we interpret the point where a message arrow leaves the time

line of a process to be the instance when the requested operation labeling the transition

is issued, and we interpret the point where a message arrives at the time line of its

destination process to be the instance when the requested operation is acted on and

executed.1 In the first scenario, P1 first increments the amounts of both ingredients,

and then, P2 doubles the amounts of both ingredients. In the second scenario, first P2

doubles the two amounts, and then, P1 increments both the amounts. In both scenarios,

after both transactions have finished, the desired property, equal amounts of uranium

and nitric acid, is maintained. However, these MSCs imply the possibility of MSCbad

1This interpretation is consistent with our concurrent state machine interpretation of MSCs in the

rest of this paper.
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Figure 2: Implied MSCbad: Incorrect fuel mix

in Figure 2. This is because, as far as each process can locally tell, the scenario is

proceeding according to one of the two given scenarios. However, the scenario results

in different amounts of uranium and nitric acid being mixed into the daily supply, and

in the potential for a nuclear accident. Note that either of the MSCs in Figure 1 alone

will not necessarily imply MSCbad, because in each case the protocol could specify that

client P1 updates the fuel levels first, followed by P2, or vice versa.

3 Message Sequence Charts

In this section, we define message sequence charts, and study the properties of execu-

tions definable using them. Our definition captures the essence of the basic MSCs of

the ITU standard MSC’96 [1], and is analogous to the definitions of labeled MSCs given

in [4, 7].

Let P = {P1, . . . , Pn} be a set of processes, and Σ be a message alphabet. We write

[n] for {1, . . . , n}. We use the label send(i,j,a) to denote the event “process Pi sends the

message a to process Pj.” Similarly, receive(i,j,a) denotes the event “process Pj receives

the message a from process Pi.” Define the set Σ̂S = {send(i, j, a) | i, j ∈ [n] & a ∈ Σ}
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Figure 4: Degeneracy in MSCs

of send labels, the set Σ̂R = {receive(i, j, a) | i, j ∈ [n] & a ∈ Σ} of receive labels, and

Σ̂ = Σ̂S ∪ Σ̂R as the set of event labels. A Σ-labeled MSC M over processes P is given

by:

1. a set E of events which is partitioned into a set S of “send” events and a set R

of “receive” events;

2. a mapping p : E 7→ [n] that maps each event to a process on which it occurs;

3. a bijective mapping f : S 7→ R between send and receive events, matching each

send with its corresponding receive;

4. a mapping l : E 7→ Σ̂ which labels each event such that l(S) ⊆ Σ̂S and l(R) ⊆ Σ̂R,

and furthermore for consistency of labels, for all s ∈ S, if l(s) = send(i, j, a) then
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p(s) = i and l(f(s)) = receive(i, j, a) and p(f(s)) = j;

5. for each i ∈ [n], a total order ≤i on the events of process Pi, that is, on the

elements of p−1(i), such that the transitive closure of the relation

≤
.
= ∪i∈[n] ≤i ∪ {(s, f(s)) | s ∈ S}

is a partial order on E.

Note that the total order ≤i denotes the (visual) temporal order of execution of the

events of process Pi. The requirement that ≤ is a partial order enforces the notion that

“messages cannot travel back in time”. Thus, an MSC can be viewed as a set E of

Σ̂-labeled events partially ordered by ≤. The partial order corresponding to the first

MSC of Figure 1 is shown in Figure 3.

Besides the above, we require our MSCs to satisfy an additional non-degeneracy

condition. We will say an MSC is degenerate if it reverses the order in which two

identical messages sent by some process Pi are received by another process Pj. More

formally, an MSC M is degenerate if there exist two send-events e1 and e2 such that

l(e1) = l(e2) and e1 < e2 and f(e2) < f(e1). To understand this notion, consider the

four MSCs in Figure 4. In both MSCI and MSCII , P1 sends two a’s and P2 receives

two a’s. The receiving process has no way to tell which of the messages is which,

since the messages themselves are indistinguishable. If one wants to distinguish the

two MSCs, then one needs to associate, e.g., time-stamps to the two messages. But

then we are really dealing with distinct messages, as in MSCIII and MSCIV . In these

scenarios, process P2 can clearly tell the distinct messages apart, and we in general
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accept such reorderings.2 Note that, the partial order on the events induced by MSCI

is more general than that induced by MSCII , in that it allows strictly more possible

interleaved executions. Henceforth, throughout the rest of this paper, MSCs refer to

non-degenerate MSCs.

Given an MSC M , a linearization of M is a string over Σ̂ obtained by considering

a total ordering of the events E that is consistent with the partial order ≤, and then

replacing each event by its label. More precisely, a word w = w1 · · ·w|E| over the

alphabet Σ̂ is a linearization of an MSC M iff there exists a total order e1 · · · e|E| of the

events in E such that (1) whenever ei ≤ ej, we have i ≤ j, and (2) for 1 ≤ i ≤ |E|,

wi = l(ei).

Not all sequences of send’s and receive’s can arise as legitimate linearizations of

MSCs. For example, a message received must already have been sent. What character-

izes the words that can arise as linearizations of MSCs? Let #(w, x) denote the number

of times the symbol x occurs in w. Let w|i denote the projection of the word w that

retains only those events that occur on process Pi (that is, events of type send(i,j,a) or

receive(j,i,a)). The two conditions necessary for a word to be in an MSC language are

the following:

Well-formedness. A word w over Σ̂ is well-formed if all receive events have matching

sends. Formally, a symbol x ∈ Σ̂ is possible after a word v over Σ̂, if, either x ∈ Σ̂S

or x = receive(i, j, a) with #(v, send(i, j, a)) − #(v, receive(i, j, a)) > 0. A word

w is well-formed if for every prefix vx of w, x is possible after v.

2When dealing specifically with FIFO architectures, via the general framework in section 8, we will

explicitly forbid crossing of the kind in MSCIV as well.
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Completeness. A word w over Σ̂ is complete if all send events have matching receives.

More precisely, a well-formed word w over Σ̂ is called complete iff for all processes

i, j ∈ [n] and messages a ∈ Σ, #(w, send(i, j, a)) − #(w, receive(i, j, a)) = 0.

It is easy to check that every linearization of an MSC is well-formed and complete. The

converse also holds:

Proposition 1 A word w over the alphabet Σ̂ is a linearization of an MSC iff it is

well-formed and complete.

Proof. It is easy to verify that any linearization of an MSC is well-formed and

complete. For the other direction, given a well-formed and complete word w, we build

from it a canonical MSC, msc(w). msc(w) is build progressively from prefixes of w,

starting with the empty prefix. For a prefix w′receive(i, j, a), we match the last receive

in the prefix with the first occurrence of send(i, j, a) in w′ which is yet to be matched.

By the fact that w is well-formed, we know this can always be done. By the fact that w is

complete, we know that all sends will be matched with corresponding receives. msc(w)

will automatically be non-degenerate, because we always match receive messages with

the first possible send message, so crossings on the same message cannot occur. In fact,

this is necessary because of non-degeneracy, hence msc(w) is the unique nondegenerate

MSC with linearization w.

Given an MSC M , define the projection of M on the ith process, denoted M |i,

to be the ordered sequence of labels of events occurring at process i in the MSC M .

Define similarly the projection w|i of a word w on the ith process to be the subsequence
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of w that involves the send and receive events of process Pi. Note that in the proof

of Proposition 1, the canonical MSC msc(w) only depends on the sequences w|i, and

not on the their actual interleaving in the linearization w. Since msc(w) is the only

nondegenerate MSC with linearization w, it follows that:

Proposition 2 An MSC M over {P1, . . . , Pn} is uniquely determined by the sequences

M |i, i ∈ [n]. Thus, we may equate M ∼= 〈M |i | i ∈ [n]〉.3 Likewise, a well-formed and

complete word w over Σ̂ uniquely characterizes an MSC Mw given by 〈w|i | i ∈ [n]〉.

For an MSC M , define L(M) to be the set of all linearizations of M . Note that, by

the proposition, any two different MSCs have disjoint linearization sets. For a set M

of MSCs, the language L(M) is the union of languages of all MSCs in M . We say

that a language L over the alphabet Σ̂ is an MSC-language if there is a set M of

MSCs such that L equals L(M). What are the necessary and sufficient conditions

for a language to be an MSC-language? First, all the words must be well-formed and

complete. Second, in the MSC corresponding to a word, the events are only partially

ordered, so once we include a word, we must include all equivalent words that correspond

to other linearizations of the same MSC. This notion of equivalence corresponds to

permuting the symbols in the word while respecting the ordering of the events on

individual processes and the matching of send-receive events. This notion is formalized

below.

Closure Condition CC1. Given a well-formed word w over the alphabet Σ̂, its in-

terleaving closure, denoted 〈w〉, contains all well-formed words v over Σ̂ such that

3Note that the MSC M is non-degenerate by assumption, and this assumption is required.
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for all i in [n], w|i = v|i. A language L over Σ̂ satisfies closure condition CC1 if

for every w ∈ L, 〈w〉 ⊆ L.

Note that CC1 considers only well-formed words, so matching of receive events is im-

plicitly ensured. Also, if a word is complete, then so are all the equivalent ones. Now,

the following theorem characterizes the calss of MSC-languages:

Theorem 3 A language L over the alphabet Σ̂ is an MSC-language iff L contains only

well-formed and complete words and satisfies closure condition CC1.

Proof. The proof follows immediately from the fact that one can recover uniquely an

MSC M from its projections M |i, as well as from w|i’s, where w is a linearization of M

(Proposition 2).

It is worth noting that CC1 can alternatively be formalized using semi-traces over

an appropriately defined independence relation over the alphabet Σ̂ (see, for instance,

[21]).

We will find useful the notion of a partial MSC. A partial MSC is given by a well-

formed, not necessarily complete, word v, or, equivalently, by the projections v|i of such

a sequence. We call an MSC M a completion of a partial MSC v ∼= 〈v|i | i ∈ [n]〉, if v|i

is a prefix of M |i for all i.

4 Concurrent Automata

Our concurrency model is based on the standard buffered message-passing model of

communication. There are several choices to be made with regard to the particular
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communication architecture of concurrent processes, such as synchrony/asynchrony and

the queuing disciplines on the buffers. We will show in section 8 that our results apply

in a general framework which captures a variety of alternative architectures. However,

for clarity of presentation in the main body of the paper, we fix our architecture to

a standard asynchronous setting, with arbitrary (i.e., unbounded and not necessarily

FIFO) message buffers between all pairs of processes. We now formally define our

automata Ai, and their (asynchronous) product Πn
i=1Ai, which captures their joint

behavior.

As in the previous section, let Σ be the message alphabet. Let Σ̂i be the set of

labels of events belonging to process Pi, namely, the messages of the form send(i, j, a)

and receive(j, i, a). The behavior of process Pi is specified by an automaton Ai over

the alphabet Σ̂i with the following components: (1) a set Qi of states, (2) a transition

relation δi ⊆ Qi×Σ̂i×Qi, (3) an initial state q0
i ∈ Qi, and (4) a set Fi ⊆ Qi of accepting

states.

To define the joint behavior of the set of automata Ai, we need to describe the

message buffers. For each ordered pair (i, j) of process indices, we have two message

buffers Bs
i,j and Br

i,j. The first buffer, Bs
i,j, is a “pending” buffer which stores the

messages that have been sent by Pi but are still “in transit” and not yet accessible by

Pj. The second buffer Br
i,j contains those messages that have already reached Pj, but

are not yet accessed and removed from the buffer by Pj. Define QΣ to be the set of

multi-sets over the message alphabet Σ. We define the buffers as elements of QΣ (FIFO

queues, on the other hand, can be viewed as sequences over Σ). Thus, for i, j ∈ [n],
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we have Bs
i,j, B

r
i,j ∈ QΣ. The operations on buffers are defined in the natural way: e.g.,

adding a message a to a buffer B corresponds to incrementing the count of a-messages

by 1.

We define the asynchronous product automaton A = Πn
i=1Ai over the alphabet Σ̂,

given by:

States. A state q of A consists of the (local) states qi of component processes Ai,

along with the contents of the buffers Bs
i,j and Br

i,j. More formally, the state set Q is

×n
i=1Qi × Qn2

Σ × Qn2

Σ .

Initial state. The initial state q0 of A is given by having the component for each

process i be in the start state q0
i , and by having every buffer be empty.

Transitions. In the transition relation δ ⊆ Q × (Σ̂ ∪ {τ}) × Q, the τ -transitions

model the transfer of messages from the sender to the receiver. The transitions are

defined as follows:

1. For an event x ∈ Σ̂i, (q, x, q′) ∈ δ iff (a) the local states of processes k 6= i are

identical in q and q′, (b) the local state of process i is qi in q and q′i in q′ such that

(qi, x, q′i) ∈ δi, (c) if x = receive(j, i, a) then the buffer Br
j,i in state q contains the

message a, and the corresponding buffer in state q′ is obtained by deleting a, (d)

if x = send(i, j, a), the buffer Bs
i,j in state q′ is obtained by adding the message

a to the corresponding buffer in state q, and (e) all other buffers are identical in

states q and q′.

2. There is a τ -labeled transition from state q to q′, iff states q and q′ are identical

except that for one pair (i, j), the buffer Bs
i,j in state q′ is obtained from the
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corresponding buffer in state q by deleting one message a, and the buffer Br
i,j in

state q′ is obtained from that in q by adding that message a.

Accepting states. A state q of A is accepting if for all processes i, the local state qi

of process i in q is accepting, and all the buffers in q are empty.

We associate with A = ΠiAi the language of possible executions of A, denoted L(A),

which consists of all those words in Σ̂∗ leading A from start state q0 to an accepting

state, where τ -transitions are viewed as ǫ-transitions in the usual automata-theoretic

sense. The following property of L(A) is easily verified from definitions:

Proposition 4 Given any sequence of automata 〈Ai | i ∈ [n]〉, L(ΠiAi) is an MSC-

language.

Note that for any MSC language L and MSC M , either L(M)∩L = ∅ or L(M) ⊆ L;

this follows from the fact that distinct MSCs have disjoint linearization sets. Hence,

for any set of concurrent automata Ai, the language L(ΠiAi) of the product of the

automata either contains all linearizations of an MSC M or it contains none.

5 Weak Realizability

When can we, given MSCs M, actually realize L(M) as the language of concurrent

automata? In other words, when are no other MSCs implied:

Definition 1 Given a set M of MSCs, and another MSC M ′, we say that M weakly

implies M ′, and denote this by

M
W

⊢ M ′
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if for any sequence of automata 〈Ai | i ∈ [n]〉, if L(M) ⊆ L(ΠiAi) then L(M ′) ⊆

L(ΠiAi).

We want to characterize this implication notion, and furthermore detect when a set M

is realizable:

Definition 2 A language L over the alphabet Σ̂ is weakly realizable iff L = L(ΠiAi)

for some 〈Ai | i ∈ [n]〉. A set of MSCs M is said to be weakly realizable if L(M) is

weakly realizable.

The reason for the term “weak” is because we have not ruled out the possibility that

the product automaton ΠiAi might necessarily contain the potential for deadlock. In

general we wish to avoid this. We will take up the issue of deadlock in the next section.

We now describe a closure condition on languages which captures weak implication and

thus weak realizability.

Closure Condition CC2. A language L over the alphabet Σ̂ satisfies closure condi-

tion CC2 iff for all well-formed and complete words w over Σ̂: if for every process

Pi there exists a word vi in L such that w|i = vi|i, then w is in L.

Condition CC2 says that if, for every process Pi, the events occurring on Pi in word w

are consistent with the events occurring on Pi in some word known to be in the language

L, and w is well-formed, then w must be in L, i.e., w is implied. Intuitively, this notion

says that L can be constructed from the projections of the words in L onto individual

processes. Note that CC2 immediately implies CC1. The other direction does not hold.
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Going back to our example from Section 2, the language L({MSC1, MSC2}) gener-

ated by the two given MSCs is not closed under CC2 but is under CC1. In particular,

consider the word w, a linearization of MSCbad, given by

send(P1, UR, inc)

receive(P1, UR, inc)

send(P2, UR, double)

receive(P2, UR, double)

send(P2, NA, double)

receive(P2, NA, double)

send(P1, NA, inc)

receive(P1, NA, inc).

The word w is not in L({MSC1, MSC2}), but the projections w|P1 and w|P2 are con-

sistent with both the MSCs, while the projection w|UR is consistent with MSC1 and

w|NA is consistent with MSC2. Thus, any language satisfying CC2 and containing

linearizations of MSC1 and MSC2 must also contain w. Thus

{MSC1,MSC2}
W

⊢ MSCbad.

The next theorem says that condition CC2 captures the essence of weakly realizable

languages.

Theorem 5 A language L over the alphabet Σ̂ is weakly realizable iff L contains only

well-formed and complete words and satisfies CC2.

Proof. Suppose L is weakly realizable. There exist automata Ai such that L = L(A)

for A = ΠAi. A can accept only well-formed and complete words. We show L satisfies
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CC2. Consider a well-formed, complete word w, and for each i, let vi ∈ L be a word

such that w|i = vi|i. Consider the accepting run of A on vi, retain only the transitions

corresponding to events in Σ̂i, and retain only the local state of process i. This gives

a sequence ri of states of Ai, which is an accepting run of Ai over w|i. Now, the local

runs ri can be combined to obtain an accepting run of the product A over w. During

this construction, we give priority to the τ -transitions: every transition labeled with

send(i,j,a) is immediately followed by a τ -transition that moves the message a from the

buffer Bs
i,j to Br

i,j.

Conversely, consider a language L with the CC2 property and containing only well-

formed and complete words. Define the languages Li over Σ̂i to contain the projections

w|i of the words w ∈ L. Let Ai be an automaton over Σ̂i that accepts Li (note that if

L is regular, then so is Li, ensuring that the automata Ai will be finite state). Let A be

the product ΠAi. We must show that L(A) equals L. It follows from definitions that

if w ∈ L, then w is accepted by A. On the other hand, if w is accepted by A, then for

each process i, w|i is accepted by Ai, and hence, w|i ∈ Li, and by CC2 closure of L, w

is in L.

We thus have characterizations of weak implication and realizability of MSCs:

Corollary 6 Given MSC set M, and MSC M ′: M
W

⊢ M ′ if and only if for each process

i ∈ [n], there is an MSC M i ∈ M such that M ′|i = M i|i. An MSC family M is weakly

realizable iff L(M) satisfies CC2.
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Figure 6: Concurrent automata corresponding to MSC3 and MSC4

6 Safe Realizability

The weakness of weak realizability stems from the fact that we are not guaranteed a

well behaved product ΠiAi. In particular, in order to realize the MSCs, or the language,

there may be no way to avoid a deadlock state in the product.

To describe this formally, consider a set Ai of concurrent automata and the product

A = ΠiAi. A state q of the product A is said to be a deadlock state if no accepting state

of A is reachable from q. For instance, a non-accepting state in which all processes are

waiting to receive messages which do not exist in the buffers will be a deadlock state.

The product A is said to be deadlock-free if no state reachable from its initial state is

a deadlock state.
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Definition 3 A language L over Σ̂ is said to be safely realizable if L = L(ΠAi) for

some 〈Ai|i ∈ [n]〉 such that ΠAi is deadlock-free. A set of MSCs M is said to be safely

realizable if L(M) is safely realizable.

Definition 4 Given an MSC set M, and a partial MSC, M ′, we say that M safely

implies M ′, and denote this by

M
S

⊢ M ′

if for any deadlock-free product ΠiAi such that L(M) ⊆ L(ΠiAi) there is some comple-

tion M ′′ of M ′ such that L(M ′′) ⊆ L(ΠiAi).

To see that weak realizability does not guarantee safe realizability, consider the

MSCs in Figure 5. They depict communication among two processes, P1 and P2, who

attempt to agree on a value (a or b) by sending each other messages with their pref-

erences. In MSC3, both processes send each other the value a, while in MSC4, both

processes send each other the value b, and thus, they agree in both cases. From these

two, we should be able to infer a partial scenario, depicted in MSC5, in which the two

processes start by sending each other conflicting values, and the scenario is then com-

pleted in some way. However, the language L({MSC3 , MSC4}) generated by MSC3

and MSC4, contains no such scenarios although it is closed under weak implication,

and thus, is weakly realizable. Concurrent automata capturing these two MSCs are

shown in Figure 6. Each automaton has a choice to send either a or b. In the product,

what happens if the two automata make conflicting choices? Then, the global state

would have A1 in, say, state u1, and A2 in state v2, and this global state has no outgo-

ing transitions, resulting in deadlock. We would like to rule out such deadlocks in our
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Figure 7: Safe realizability is not entirely captured by CC3

implementations. We need a stronger version of implication closure.

We will give two closure conditions which, taken together, will characterize safe

realizability in the same way that condition CC2 characterized weak realizability.

For a language L, let pref (L) denote the set of all prefixes of the words in L.

Closure Condition CC3. A language L over the alphabet Σ̂ is said to satisfy closure

condition CC3 iff for all well-formed words w: if for each process i there is a word

vi ∈ pref (L) such that w|i = vi|i, then w is in pref (L).4

An equivalent definition, which turns out to be easier to check algorithmically, is

the following:

Closure Condition CC3’. A language L over the alphabet Σ̂ is said to satisfy closure

condition CC3’ iff for all w, v ∈ pref (L) and all processes i: if w|i = v|i, and

wx ∈ pref (L) and vx is well-formed for some x ∈ Σ̂i, then vx is also in pref (L).

Proposition 7 L satisfies CC3 iff it satisfies CC3’.

4Note that this corresponds to the CC2 closure condition on pref (L), without the requirement of

completeness on w.
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Proof. Suppose L satisfies CC3, and suppose v, w ∈ pref (L) such that v|i = w|i,

and such that wx ∈ pref (L). Now, vx has the property that vx|j = v|j for j 6= i, and

vx|i = wx|i. Thus, if vx is well-formed, then by CC3, vx ∈ pref (L), establishing this

direction of the claim.

Suppose L satisfies CC3′. Consider a w which is well-formed and such that for all

i, w|i = vi|i, where vi ∈ pref (L). We will, by induction on the length of w show that

w ∈ pref (L). If |w| = 1, then from CC3′ we trivially get, using the fact that the empty

string is always in pref (L), that w ∈ pref (L).

Suppose w = w′x, where x occurs on some process i. Thus vi|i = (w′|i)x. By

induction, it is clear that w′ ∈ pref (L). Now, w′ and vi satisfy the condition of CC3′,

thus w′x = w is also in pref (L).

The basic intuition behind the above is the following. Consider two possible (partial)

scenarios w and v such that w|i = v|i. Then, from the point of view of process i, there

is no way to distinguish between the two scenarios. Now, if the next event executed by

process i in the continuation of the global scenario w is x, then x must be a possible

continuation in the context v also (unless x is a receive event which has no matching

send in v).

As our example shows, CC2 does not guarantee CC3. Going back to Figure 5, the

event send(1,2,a) is a possible partial scenario (according to MSC3), and the event

send(2,1,b) is a possible partial scenario (according to MSC4). Now, CC3 requires that

the sequence send(1,2,a), send(2,1,b) be a possible partial scenario (since its individual

projections are consistent with the input scenarios). However, neither MSC3 nor MSC4
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corresponds to this case, implying the existence of an additional scenario which com-

pletes these two events. Hence, although {MSC3 , MSC4} has the weak CC2 closure

property, it does not have the safe CC3 closure property. Notice that there is no unique

minimal safe realization which completes MSC5. The implied partial scenarios can be

completed in many incompatible ways, each of which would eliminate the possibility of

deadlock.

Safe realizability is not entirely captured by closure condition CC3 [22]. This is

illustrated by the example scenarios in Figure 7. If we just consider the two MSCs

MSC1 and MSC2, the set satisfies CC3. This is because the prefixes of the two MSCs

are all prefixes of MSC1. However, the two MSCs safely imply the scenario MSC3

(and also a symmetric scenario which contains only the message from P3 to P4). The

second closure condition we will need to capture safe realizability is in fact a restriction

of condition CC2, which is easier to check, and which allows one only to imply new

well-formed complete words that are themselves prefixes of words already in L:

Closure Condition CC2’. A language L over the alphabet Σ̂ satisfies closure con-

dition CC2’ iff for all well-formed and complete words w over Σ̂ such that w ∈

pref (L): if for all processes i there exists a word vi in L such that w|i = vi|i, then

w is in L.

The correspondence between safe realizability and conditions CC3 and CC2’ is es-

tablished by the next theorem.

Theorem 8 A language L over the alphabet Σ̂ is safely realizable iff L contains only

well-formed and complete words and satisfies both CC3 and CC2’.
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Proof. Suppose we have a deadlock-free product ΠiAi, with L = L(ΠiAi). Using

the fact that every partial execution of the automata can be extended to a complete

execution, we can show, in a way similar to the proof of Theorem 5, that every well-

formed word w which has its projections in pref (L) is itself in pref (L), thus condition

CC3 is satisfied. The fact that condition CC2’ is also satisfied follows directly from

Theorem 5, because safe realizability implies weak realizability, and condition CC2

certainly implies CC2’, which is just a restriction of it.

Suppose L satisfies CC3 and CC2’, and contains only well-formed and complete

words. Consider deterministic automata Ai which accept the sets Li of projections of

L onto process i, and assume all states in Ai reach an accepting state (other states

can be removed without changing the language accepted by Ai). We will show that

ΠiAi is deadlock-free, and that L = L(ΠiAi). During the execution of ΠiAi, at all

times the word w seen so far has the property that its projection on each process i

belongs to pref (Li). By CC3, w is in pref (L). Since the Ai’s are deterministic, the

product automaton must be able to reach an accepting state after processing w, simply

by processing the word w′ ∈ L such that w is a prefix of w′. Hence ΠiAi is deadlock

free. We need only show that w ∈ L iff w ∈ L(ΠiAi). The forward direction follows

easily from the construction of the Ai’s. Suppose w ∈ L(ΠiAi), then for each process i,

w|i ∈ Li. Since we have already established that w ∈ pref (L), we conclude, by CC2’,

that w ∈ L.

Corollary 9 An MSC family M is safely realizable iff L(M) satisfies CC3 and CC2’.
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7 Algorithms for Inference, Realizability, and Syn-

thesis

Now that we have the necessary and sufficient conditions, we are ready to tackle the

algorithmic questions raised in the introduction. Namely, given a finite set M of MSCs,

we want to determine automatically if M is realizable as the set of possible executions

of concurrent state machines, and if so we would like to synthesize such a realization.

If not, we want to find counterexamples, namely missing implied (partial) MSCs. Of

course, we want any realization to be deadlock-free, and thus we prefer safe realizations.

7.1 An Algorithm for Safe Realizability

Given MSCs M = {M1 . . . ,Mk}, where each MSC is a scenario over n processes

P1, . . . , Pn, we now describe an algorithm which, if M is safely realizable returns “YES”,

and if not it returns a counterexample, namely, an implied (possibly partial) MSC, M ′,

which must exist as a (possibly partial) execution of some MSC, but does not in M. By

Corollary 9, it suffices to check that L(M) satisfies CC3 and CC2’. We first describe

how to check closure condition CC3, followed by an algorithm for checking closure con-

dition CC2’. Combining these two algorithms, we obtain our algorithm for checking

safe-realizability, and if not inferring implied but unspecified (partial) MSCs:

1. Check CC3, and if the answer is no, then output an implied MSC and halt.

2. Otherwise, check CC2’. If the answer is no, output an implied but unspecified

MSC. If yes, then halt and output “Yes, M is safely realizable.”
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These results are summarized by the following theorem:

Theorem 10 Given a set M of MSCs, safe realizability of M can be checked in time

O(k2n + rn), where n is the number of processes, k is the number of MSCs, and r is

the number of events in the input MSCs.

7.1.1 Checking closure condition CC3

By Proposition 2, MSCs are determined by any of their linearizations, and thus by their

projections onto individual processes. We can therefore assume that M is presented to

us as a two dimensional table of strings, with M [l, i] giving the projection Ml|i of the

MSC Ml of M on process i, including an end delimiter. We use ‖M [l, i]‖ denote the

length of the string, and M [l, i, d] to denote the dth letter of the string.

A straightforward algorithm to check CC3 would have exponential complexity. We

show how to check CC3 in polynomial time, via its equivalence to CC3’. Figure 8 gives

a simple version of our polynomial time algorithm for checking CC3.

Correctness

The correctness of the algorithm is based on Proposition 7. Condition CC3’ is violated

if and only if the set M contains two MSCs Ms and Mt, the MSC Ms has a (well-

formed) prefix Ns, and for some process Pi the following property holds. The prefix

Ns of Ms agrees with Mt on process Pi (i.e. Ns|i is a prefix of Mt|i), the next event

on process Pi of Ms (respectively Mt) after the prefix is x (respectively, x′), the event

x′ is eligible to be appended to Ns (in place of x) in the sense that it would yield a

well-formed partial MSC N ′
s - that is, x′ is either a send event or it is a receive event
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proc Condition CC3(M) ≡
foreach (s, t, i) ∈ [k] × [k] × [n] do

T[s, t, i] := min {c | (M [s, i, c] 6= M [t, i, c])}
od;
/* T[s, t, i] gives the first position on */
/* process i where Ms and Mt differ */
/* If Ms |i = Mt |i then T[s, t, i] = ⊥ */
Let ≤s be the partial order of events in Ms.
foreach s ∈ [k] and event x in Ms do

foreach process j ∈ [n] do

U [s, x, j] :=


















‖M [s, j]‖ + 1 if ∀c x 6≤s M [s, j, c]

min {c | (x ≤s M [s, j, c])} otherwise

od;
od;
/* U[s, x, ∗] gives the events of Ms dependent on x */
foreach (s, t, j) ∈ [k] × [k] × [n]such thatT [s, t, j] 6= ⊥ do

c := T [s, t, j];
x := M [s, j, c]; x′ := M [t, j, c];
/* Determine if x′ is eligible to replace x. */
/* If x′ is a send event, it is always eligible. */
/* If x′ = receive(i, j, a) then x′ is eligible */
/* iff M [s, i][1 . . . U [s, x, i] − 1] contains more */
/* send(i, j, a)’s than M [s, j][1 . . . U [s, x, j] − 1] */
/* contains receive(i, j, a)’s. */
if x′ is eligible to replace x then

/* Find if some Mp realizes this replacement */
if ∃ p ∈ [k] such that

M [p, j, c] = x′ and
∀j′ ∈ [n] U [s, x, j′] ≤ T [s, p, j′]
then() /* This eligible replacement exists */
else

“M DOES NOT Satisfy CC3”
Missing Implied partial MSC given by ∀j′

M [s, j′][1 . . . U [s, x, j′] − 1] and M [s, j][c] := x′

return;
fi;

fi;
od;
“YES. M DOES Satisfy CC3”

Figure 8: Algorithm for Checking condition CC3
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Figure 9: Inference algorithm illustration

that can be matched to an unmatched send event of the prefix Ns - but the resulting

partial MSC N ′
s is not a prefix of any MSC Mp in the given set M. Stated in the above

form, the main source of complexity is that after fixing MSCs Ms and Mt of M, and the

process Pi, the number of prefixes of Ms can in general be exponential in the number

of processes. The choice of Ms, Mt and process Pi fixes the prefix Ns in process Pi: it

must include all events until the first disagreement between Ms and Mt, i.e. the first

step in which Ms performs an event x and Mt performs a different event x′. Obviously,

in the other processes we can not include in the prefix Ns any events that depend on

x (otherwise it will not be well-formed), but this still leaves much freedom. The key

observation underlying the algorithm is that we only need to check the condition for

the largest possible prefix of Ms, namely, the prefix that includes in the other processes

all events that do not depend on the event x of Pi. This situation is depicted in Figure

9, where the shaded regions in Ms and Mt denote those events that do not depend on

x and x′, respectively. The reason it suffices to check against the largest prefixes on

each process is that “possibility” of an event on process i can only become true and

cannot become false as the prefix on process j 6= i increases, while the prefix on i stays
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fixed. Thus, by considering only maximal prefixes, we are considering the maximal set

of events x′ eligible to take the place of x.

Time Complexity

The algorithm to check condition CC3 can be implemented with suitable data structures

to run in time O(k2 · n + r · n), where k is the number of MSCs, n is the number of

processes, and r is the total number of events in all the MSCs. The algorithm computes

first the table T . The table has size O(k2 · n), and can be computed with essentially

the same time complexity, as follows. For each process Pi, i ∈ [n], we can construct a

trie Si for the projections on i of all the MSCs of M. That is, Si is a rooted tree whose

edges are labeled with the event symbols and such that the root-to-leaf paths spell the

strings M [l, i]. For each node v of the trie we record the depth and we attach a list

list(v) of the indexes of all the MSCs Ml which go through that node, i.e., l ∈ list(v) iff

the string that labels the path from the root to the node is a prefix of M [l, i]. The trie

and the node lists can be constructed in a standard way incrementally, processing the

strings one by one, in time proportional to the sum of the lengths of the strings.5 Thus,

the time to construct all the tries Si is O(r). As usual, we can compress nodes that

have only one child (i.e. form compressed tries). The table T can be constructed now

easily from the tries and the associated node lists: for each pair of siblings v, w of Si, for

every s ∈ list(v) and t ∈ list(w), set T [s, t, i] equal to 1 plus the depth of the (common)

parent of v and w. Likewise, for each parent node v of Si, with children w1, . . . , wd, for

each s ∈ list(v) \ ∪d
j=1list(wj): for each t ∈ ∪jlist(wj), set T [s, t, i] equal to 1 plus the

5Provided we can index on the letters of the alphabet Σ, otherwise we have to multiply by a
logarithmic factor.
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depth of the parent v, and for each t′ ∈ list(v) \ ∪d
j=1list(wj), set T [s, t′, i] = ⊥. For a

leaf node v, and for all s, t ∈ list(v) set T [s, t, i] = ⊥.

The algorithm computes next U [s, x, j] for all MSCs Ms, events x of Ms, and pro-

cesses j ∈ [n]. There are rn such U entries and they can be computed in time linear

in their number: For each MSC Ms, order topologically the nodes (events) and process

them bottom up. An event x has at most two immediate successors: the next event (if

there is one) on the same process, and if x is a send event, the matching receive event.

If the process of event x is i, i.e., x = M [s, i, c] for some c, then U [s, x, i] = c. For

any other process j 6= i, the entry U [s, x, j] is equal to the minimum of the U entries

corresponding to the immediate successors of x.

The algorithm then considers every pair of MSCs Ms, Mt and every process j on

which the two MSCs differ, and determines if they yield a counterexample to the con-

dition CC3’. Namely, if the first disagreement between the j-projections of the MSCs

is in the cth step, where Ms has x whereas Mt has x′, the algorithm determines (i) if

x′ is eligible to be appended to the maximal prefix Ns(x) of Ms that does not contain

x, and (ii) if the resulting partial MSC is a prefix of some other MSC Mp of the given

set. Note that the maximal prefix Ns(x) is defined by the entries U [s, x, j]. We describe

now how to implement (i) and (ii) within the stated bounds.

For each MSC Ms and process i, we find the events that are eligible to replace the

events of Ms on process i, using a pass over the MSC from the top down as follows.

We process the events of Ms on process i one by one. As we process the events x

on i, we form the corresponding prefixes Ns(x), by incrementally extending the other
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processes j adding new steps up to U [s, x, j]. Every step of Ms is considered at most

once, when it is added for the first time in a prefix. We maintain an array A indexed

by the pairs (j, a), j ∈ [n], a ∈ Σ, for which process j sends message a to i. The array

is initialized to all 0. After processing event x of process i, the entry A[j, a] gives the

number of unmatched send(j, i, a) messages in the maximal prefix Ns(x) corresponding

to x; that is, A[j, a] is the difference between the number of send(j, i, a) events in the

first U [s, x, j]− 1 steps of process j and the number of receive(j, i, a) events in process

i before x. Clearly, the array A can be updated from one step of process i to the

next step in time proportional to the number of nodes of the other processes that are

added to the prefix. Thus, the total time spent in updating A over all events of process

i is O(|Ms|). When processing event x on process i, after the update of A, we first

determine which other events x′ need to be considered as potential replacements of x,

and then determine which of them are eligible. Note that x′ needs to be considered

if there is another MSC Mt which agrees with Ms on process i up to this step, and

which has x′ at this step. The set of possible x′ is given by the trie Si: if the event x

corresponds to the edge (u, v) of Si, then the set of the x′ is precisely the set of labels

of the other edges connecting u to its other children. For each such event x′, if x′ is a

send event then it is of course eligible, and if it is a receive event, say receive(j, i, a),

then it is eligible if A[j, a] > 0. The time spent to find the eligible replacement events

x′ for all events x of Ms on process i is certainly no more than O(k + |Ms|), and thus

the total time over all processes and all MSCs is no more than O(k2n+ rn). It remains

to determine for each eligible x′ whether there is an MSC Mp that contains the partial
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MSC formed by appending x′ to Ns(x). A straightforward test takes too much time.

We’ll describe below how to perform this check within our time bound.

Let Ms, Mt be two MSCs and consider for each process i the first event of Ms which

differs from Mt, i.e., the T [s, t, i]-th event. If one of these n events, say the one on

process i, precedes all the other events in the partial order of Ms, then we say that Mt

covers Ms on process i. Note that there can be at most one such process for which one

MSC covers another. Note furthermore that Mt covers Ms on process i if the prefix

Ns(x) of Ms is also a prefix of Mt, where x is the earliest step of Ms on process i on

which it disagrees with Mt. We determine for each pair of MSCs whether one covers

the other, and if so, we record the corresponding process. This can be done in time

O(k2n + r) as follows. For each MSC Ms, fix an arbitrary linearization and label each

node of Ms with its order in the linearization. This takes linear time. Consider another

MSC Mt. The entries T [s, t, i], i ∈ [n] give the earliest steps on each process in which

Ms disagrees with Mt. Look up their labels in Ms and determine the one that has the

smallest label, say the step on process i. Note that if one of these disagreement steps

precedes all the others in Ms (i.e., if Mt covers Ms), then it must be the step with

smallest label, thus the step on process i. Let x be that step. By the definition of U ,

step x precedes the steps on the other processes iff U [s, x, j] < T [s, t, j] for all processes

j. Thus, we can determine if Mt covers Ms and record the corresponding process i in

time O(n).

Consider now an MSC Ms, event x of Ms on process i, and an eligible replacement

x′ for x. Consider the set of MSCs that agree with Ms up to this step at which point
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they perform x′ instead of x; the set is available in the information recorded at the trie

Si: if x corresponds to the edge (u, v) of Si and x′ to the edge (u,w), then the set of

MSCs is given by the list attached to the node w. It follows from the definitions that

there is an MSC Mp that contains the partial MSC formed by appending x′ to Ns(x) if

and only if the list of node w contains an MSC Mp that covers Ms on process i. Thus,

we can determine if the eligible replacement x′ leads to a violation of safe realizability

in time proportional to the number of MSCs in the list of w. Summing over all events of

Ms on process i, this amounts to time O(k), and hence, summing over all the processes

and all the MSCs, the contribution of this part is O(k2n).

Therefore, the algorithm to check CC3 can be implemented as explained above to

run in time O(k2 · n + r · n).

As given, the algorithm stops as soon as it finds a single missing partial MSC. One

can easily modify the algorithm in several ways to find more missing scenarios if present.

One such modification would derive not only one implied partial MSC, but a complete

set of implied partial MSCs, in that for every MSC M implied by the given set, there

would be a partial MSC M ′ present in the derived set such that M is a completion of

M ′. This set contains at most k2 ·n partial MSCs. This upper bound holds because, in

the main loop, we need only check for each pair of MSCs, and for each process, whether

the first event where the two MSCs differ on that process introduces a new implied

MSC.

A second way in which the algorithm can be modified is to substitute not just the

first eligible event, x′ of Mt for x in Ms, but to use the longest eligible subsequence w′
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beginning at x′ on process j in Mt. That is, we can extend the prefix Ns(x) of Ms by

appending on process j the event x′ and all subsequent events of Mt which are either

send events or receive events that can be matched with unmatched send events, thus

yielding a well-formed partial MSC that is also safely implied by the given set. This

will fill out the partial MSCs, completing them as much as possible.

Finally, one can repeatedly apply the algorithm, inferring more and more partial

MSCs, until the set of implied partial MSCs closes, i.e., no more partial MSCs can be

implied. Of course, doing so could entail an exponentially large set of implied MSCs.

Example

Consider the two MSCs of Figure 1 as input to the algorithm, where we assume the

implication algorithm is modified according to the second suggestion above. To see

how MSCbad is derived by the algorithm, consider the first events on UR where MSC1

and MSC2 differ. In MSC1 the first event is x = receive(P1, UR, inc), whereas in

MSC2 the first event is x′ = receive(P2, UR, double). Since in MSC1 no events, other

than those on UR, depend on the first event x, the corresponding prefix N1(x) consists

of all events of MSC1 on the other processes, and no events on UR. The event x′ =

receive(P2, UR, double) of MSC2 on UR is eligible to replace x (since the corresponding

send is included in the prefix N1(x)), and so is the second event receive(P1, UR, inc) of

MSC2. The result of this replacement is precisely MSCbad, the inferred MSC in Figure

2.
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7.1.2 Checking closure condition CC2’

We now outline an efficient algorithm for checking that the set of MSCs M satisfies

CC2’. Each piece of the algorithm makes straightforward use of standard graph algo-

rithms. We will describe these only at a high level and not specify them in detailed

pseudo-code.

1. For each MSC Ms in M, and for each process Pi, compute vi = Ms|i. Compute

the set V i
s = pref (vi)∩{M |i | M ∈ M}, i.e., prefixes of vi that also constitute the

entire projection of some other MSC in M on process Pi. We can totally order

the set V i
s as {v1

i , . . . , v
ki

i }, such that for all j, v
j
i is a prefix of v

j+1
i . Define the

(ordered) multi-set of strings W i
s = {w1

i , . . . , w
ki

i } to be the “segments” of vi such

that w1
i w

2
i ...w

j
i = v

j
i .

2. Build a directed graph Gs = (Vs, Es), with nodes Vs = ∪n
i=1{t

1
i , . . . , t

ki

i }, such that

there is a node t
j
i associated with each segment w

j
i , and the set Es of edges contains

(tji , t
j+1
i ) for i ∈ [n], j ∈ {1, . . . , ki − 1} and (tji , t

j′

i′ ) if there exists a message sent

from segment w
j
i to w

j′

i′ or from w
j′

i′ to w
j
i .

3. Compute the strongly connected components of Gs and also compute the un-

derlying DAG G′
s = (V ′

s , E
′
s), whose nodes V ′

s are the SCCs, and whose edges

(C,C ′) ∈ E ′
s exist from one SCC to another iff there is an edge in Gs from a node

in C to a node in C ′.

4. For each sink SCC C of G′
s, remove from MSC Ms all messages in all segments

associated with nodes in C. Call this new MSC MC
s . (Note that by construction
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MC
s is indeed a valid, non-partial, MSC). Check that MC

s is in M. If not, halt,

output “No, does not satisfy condition CC2”’, and output MC
s as an implied but

unspecified MSC.

5. If for all Ms in M all such MSCs MC
s are found to be in M, output “Yes, Condition

CC2’ is satisfied.”

Correctness

Recall that we say MSC M is a prefix of another MSC M ′ iff for all processes Pi, the

projection M |i of M onto Pi is a prefix of the projection M ′|i of M ′ onto Pi.

According to CC2’, any MSC, M , which satisfies the following two conditions must

be in M:

1. M is a prefix of some MSC M ′ ∈ M.

2. For every process Pi, there exists an MSC Mi ∈ M, such that M |i = Mi|i.

Let us call an MSC that satisfies conditions (1) and (2) a candidate MSC.

Thus, in order to check CC2’, we need to check that for each Ms ∈ M, and for all

candidate MSCs M that are prefixes of Ms, M is itself in M.

Note that since M must satisfy condition (2), it must be the case that for each

process Pi, M |i = v
j
i , for some j ∈ {1, . . . , ki}, were v

j
i ’s were defined in step 1 of our

algorithm. Thus, we have no loss of generality by restricting our search for candidates

M to those prefixes of Ms where each projection Ms|i constitutes some sequence of

“segments” w1
i . . . w

j
i = v

j
i .
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On the other hand, if a send or receive event x occurring in segment wd
i is included

in candidate MSC M , and the message being sent/received has a corresponding re-

ceive/send event x′ occurring in some segment wd′

i′ , then segment wd′

i′ must also occur

in M . Also observe that, obviously, if a segment wd
i is in some candidate MSC M , then

so is its immediate predecessor segment wd−1
i .

Accordingly, in our graph Gs, there are edges (td−1
i , tdi ) between nodes associated

with successive segments on the same process, as well as two edges in both directions

{(tdi , t
d′

i′ ), (t
d′

i′ , t
d
i )} between the nodes associated with wd

i and wd′

i′ when there is any

communication between those two segments. We can think of these directed edges (u, v)

as indicating that the presence of the segment (associated with) v in any candidate MSC

which is a prefix of Ms necessitates the presence of the segment (associated with) u.

Thus, all segments associated with any SCC, C, of Gs must either be present or

absent from a candidate MSC which is a prefix of Ms.

Let an ideal, I, of the DAG, G = (V,E) be a subset of the nodes closed under

predecessors, i.e., if v ∈ I and (u, v) ∈ E, then u ∈ I.

By the arguments just given, there is a one-to-one correspondence between ideals I

of the DAG of SCCs, G′
s, and candidate MSCs MI which are prefixes of Ms. Given I,

we construct MI from all segments associated with all nodes t that are contained in all

SCCs C ∈ I.

We need to check, for each MSC Ms, that all such candidates MI are in our set M.

Note, however, that it suffices if we check that MI′ ∈ M for every maximal ideal I ′

which is a proper subset of the vertices of G′
s. This is so, by induction on the size of I ′,
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because since we check for candidate prefixes for every MSC Ms ∈ M, once we check

that MI′ ∈ M, we know that (inductively) we will for every I ′′ ⊂ I ′, also check that

MI′′ ∈ M.

Note that the maximal ideals I ′ of G′
s are precisely the sets that eliminate exactly

one sink node (SCC) C from the nodes V ′
s of G′

s. These are precisely the ideals that, in

our correspondence, give rise to the candidate MSCs MC
s . Thus, since step (4) of the

algorithm checks for the existence of all such candidates in M, our algorithm determines

precisely whether M satisfies condition CC2’.

Time Complexity

We now show that the algorithm for checking CC2’ can be implemented to run in

O(k2 · n + r) time where, again, k is the number of MSCs in our set, n is the number

of processes, and r is the total number of events in all MSCs in M.

Recall the tries Si, described in our complexity analysis for checking CC3 efficiently.

In our computation of the Si’s, we will additionally mark each node of the trie Si as

accepting if the projection of some MSC in M terminates at that node. Recall, we

can compute all Si’s in total time O(r), and this additional marking won’t alter that

analysis. Using the Si’s, for each MSC Ms ∈ M, we find all the “segments” w
j
i on each

process Pi as follows. Take Ms|i and walk down Si, noting the accepting nodes that are

traversed along the way. These nodes determine the segments w
j
i in an obvious fashion.

The time required for this walk down Si is linear in the size of Ms|i, thus the total time

required to compute all segments for all MSCs in M is linear: O(r).

Once we have found all segments w
j
i for Ms, we can build the graph Gs in time
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linear in |Ms|, the size of Ms. Gs itself obviously has size O(|Ms|). We can then, using

the standard DFS algorithm, compute the SCCs of Gs, and compute the DAG G′
s in

time O(|Ms|).

Next, for Steps 4 and 5 of the algorithm, we need to enumerate for each MSC Ms,

the candidate MSCs MC
s , for each sink SCC C of G′

s, and check that MC
s is in M. Let

Ds = {C1, . . . , Cl} be the sink SCCs of G′
s. Let PC denote the set of processes that

have a segment in SCC C. Note that PC1 , . . . , PCl form disjoint sets, and in particular

l ≤ n. We will maintain a boolean array Bs of size l to mark which MSCs MCi
s have

been encountered in the set M. Initially Bs[c] := false for all c ∈ [l]. Assume we

have already computed the table T [s, t, i] described in the algorithm for CC3. Our

analysis showed that T can be computed in time O(k2n). For each Mt ∈ M, we will

check in O(n) if Mt is a prefix of Ms, and if so, if Mt = M
Cj
s for some Cj ∈ Ds, as

follows. First, to check that Mt is a prefix of Ms, we check that for each process i, either

T [s, t, i] = ⊥ (i.e., the two projections are identical), or that T [s, t, i] = ‖M [t, i]‖ + 1

(i.e., the projection of Mt|i is a prefix of Ms|i. This can be done in time O(n). Next,

if this is so, we check if Mt = M
Cj
s for some j as follows. For any process i such that

T [s, t, i] 6= ⊥, i.e., Mt|i is a proper prefix of Ms|i, let Cj be the unique SCC in Ds that

contains a segment from process i. Since we already know Mt is a prefix of Ms, we can

check whether Mt = M
Cj
s by simply checking that for each process i, the length ‖M

Cj
s |i‖

is the same as T [s, t, i]−1. This can again be done in O(n) time. If Mt = M
Cj
s , then we

mark Bs[j] := true. Once we have checked Ms against all other MSCs Mt, the array

elements Bs[c] should be set to true for all c. If not, i.e., Bs[j] = false for some j, then
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we know that M
Cj
s is a candidate MSC that is a prefix of Ms but not in M, so we say

”Not safely realizable”, and output the implied candidate MSC, M
Cj
s . Since there are k

MSCs in M, and we have to compare each of them to all k − 1 other MSCs in M, and

each comparison and check against Ds takes only O(n) time (using the precomputed

array T), the total running time for steps 4 and 5 is O(k2n). Thus, the total running

time of the entire algorithm for checking CC2′ is O(k2n+ r). Consequently, the overall

time complexity of checking safe realizability is O(k2n + rn).

7.2 coNP-completeness of Weak Realizability

The less desirable realizability notion was weak realizability. There deadlocks may

occur. It turns out that this weaker notion is in fact more difficult to check. CC2

gives a straightforward exponential time algorithm (in fact, a violation can be detected

in NP) for checking weak realizability. The following theorem shows that we cannot

expect a polynomial time solution:

Theorem 11 Given a set of MSCs M, determining whether M is weakly realizable is
coNP-complete.

Proof. To check that a set M is not weakly realizable in NP is easy using CC2.

We guess for each process i ∈ [n] an MSC M i ∈ M and project it on process i, we

check that the projections M i|i are consistent, i.e., their combination is a well-formed,

complete MSC, and check that this MSC is not in the given set of MSCs M.

The proof of coNP-hardness is established by a reduction from the problem of check-

ing whether a relational database satisfies a given join dependency condition.

For a natural number r, let [r] = {1, . . . , r}. For a k-tuple a = (a1, . . . , ak), and a

set S = {s1, . . . , sl} ⊆ [k], where we have ordered si’s so that si < si+1, the projection
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of a on S, denoted a|S is the tuple (as1
, . . . , asl

). For a relation R ⊆ Uk, and a subset

S ⊆ [k], the projections of R on S denoted R|S is the set of projections of the tuples of

R, i.e.,

R|S = {b ∈ U |S| | ∃ a ∈ R such that a|S = b}

The join dependency problem (JDP) is the following:

Given a structure of the form 〈U,R,S〉 where U is a finite universe, R ⊆ Uk

is a k-ary relation over U , and S = {S1, . . . , Sk}, a multi-set of subsets of [k]

where for each i ∈ [k] there is some j such that i ∈ Sj (here k is not fixed,

but varies with the input), determine whether it holds that, for all a ∈ Uk,

if for all S ∈ S, a|S ∈ R|S, then a ∈ R.

We use the following fact:

Theorem 12 [23] JDP is coNP-complete.

Let WRP be the weak realizability problem for a set M of MSCs. The proof is by

a P-time reduction from JDP to WRP.

Assume we are given Γ = 〈U,R,S〉, an instance of the JDP, with R ∈ Uk. Also

assume that for each i ∈ [k], i belongs to at least two sets Si ∈ S. This can easily

be assured by repeating the sets in S (remember that S is a multiset). Clearly, such

repetition does not affect whether Γ ∈ JDP . Order the sets S = {S1, . . . , Sm} in some

fixed total order. Likewise, order the elements in each set Si = {si
1, . . . , s

i
li
} according

to the ordinary ordering of natural numbers; thus si
j < si

j+1.

We will build a set of MSCs, MΓ, over m processes, P1, . . . , Pm, one for each set Si.

MΓ will consist of one MSC for every tuple in the relation R. All MSCs will contain
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Figure 10: The example MSC template M ′

exactly the same pattern of communication. The only thing that will differentiate the

MSCs will be the actual messages exchanged; these will correspond to the entries of the

tuples. Moreover, there will only be one linearization for each given MSCs.

All MSCs are defined based on one template M(x1, . . . , xk), where the xi’s corre-

spond to the entries of a tuple. In Figure 10, we give a small example M ′ of the template

M(x1, . . . , xk) in the case when S = {S1, S2, S3}, with S1 = {1, 2, 3}, S2 = {2, 3, 4},

and S3 = {1, 3, 4}. Note that the projection of M ′ onto process i contains a message

xj, either sent or received, if and only if j ∈ Si, and that the messages xj that each

process sees are totally ordered based on the natural number ordering on the indices j.

We now describe the general template M(x1, . . . , xk). For each i ∈ [k], the total

ordering S1, . . . , Sm of the sets in S determines a total order on the sets that contain the

index i. Let this subsequence be Si1 , . . . , Sili
. Then the sequence of message exchanges

in the template M(x1, . . . , xk) is as follows: P11
begins the MSC, sending x1 to P12

,

which after receiving x1 sends x1 to P13
(if it exists), and so on until P1li

, which after

receiving x1, sends a special symbol “1” that does not occur in relation R to process

P21
. Then P21

sends x2 to P22
, and the entire process gets repeated, for each index i.
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It is easy to see that in M(x1, . . . , xk) process Pi sends or receives (or both) xj

precisely when j ∈ Si, and that Pi sees the xj’s in an order consistent with their total

order x1, . . . , xk.

Now we are ready to define MΓ. For a k-tuple (a1, . . . , ak) ∈ Uk, let M(a1, . . . , ak)

be the MSC obtained by substituting xi’s by ai’s in M(x1, . . . , xk). Define

MΓ = {M(a1, . . . , ak) | (a1, . . . , ak) ∈ R}

The following claim states the correctness of the reduction:

Claim 1 Γ ∈ JDP if and only if MΓ ∈ WRP .

First the “if” direction. If Γ 6∈ JDP , then there is some tuple a = (a1, . . . , ak) ∈ Uk

such that a|Si
∈ R|Si

for all i ∈ [m], but a itself is not in R. Since a|Si
∈ R|Si

, there is a

tuple bi of R that has the same projection on Si, i.e., such that a|Si
= bi|Si

. Consider

the MSC M(a). By the construction, the projection of this MSC on process i depends

only on a|Si
, hence it is equal to the projection of the MSC M(bi) on process i. The

MSCs M(bi), i ∈ [m], are all in MΓ, however the MSC M(a) itself is not in MΓ

because a is not in R. Thus MΓ is not weakly realizable.

The “only if” direction follows similarly, because for any M 6∈ MΓ, but such that

MΓ ⊢ M , we can “read off” from M tuples bi ∈ R|Si
, for each i, such that there is a

k-tuple a ∈ Uk such that a|Si
= bi for each i, but a 6∈ R.

That completes the proof.

7.3 Synthesis of State Machines

Given a set M of MSCs we would like to synthesize automata Ai, such that L(ΠAi)

contains L(M), and as little else as possible. In particular, if M is weakly realizable

143



we would like to synthesize automata such that L(ΠiAi) = L(M) (and, when safely

realizable, such that ΠiAi is deadlock-free).

Given the proof of Theorem 5, it is straightforward to synthesize the Ai’s. The

algorithm we provide is not new, and follows an approach similar to other synthesis

algorithms in the literature. What is new are the properties these synthesized automata

have in our concurrent context. Let the string language of M corresponding to process

i be given by Li = {M |i | M ∈ M}. We let Ai denote an automaton whose states Qi

are given by the set of prefixes, pref (Li), in Li, and whose transitions are δ(qw, x, qwx),

where x ∈ Σ̂, and w,wx ∈ pref (Li). Letting the accepting states be qw for w ∈ Li,

Ai describes a tree whose accepting paths give precisely Li. We can minimize the Ai’s,

which collapses leaves and possibly other states, to obtain smaller automata. Note that

the Ai’s can be constructed in time linear in M. Letting AM = ΠAi, we claim the

following:

Theorem 13 L(AM) is the smallest product language containing L(M). If L(M) is
weakly realizable, then L(M) = L(AM), and, if moreover L(M) is safely realizable,
then AM = ΠiAi is deadlock-free.

8 Alternative Architectures

Much of what we have discussed can be rephrased based on different concurrent ar-

chitectures, but rather than delve into the peculiarities of each architecture, we can

abstract away from these considerations and assume we are given a very general “en-

abled” relation

enabled : (Σ̂∗ × Σ̂) 7→ {true, false}
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which tells us, for a given prefix of an execution, what the possible next events in

the alphabet are. Architectural considerations like the queuing discipline and the

synchrony of the processes clearly influence the enabled function. Besides architec-

tural considerations, there are other constraints on enabled(w, x). For example, for

enabled(w, receive(i, j, a)) to hold, it must be that there are more send(i, j, a)’s in w

than receive(i, j, a)’s. We state the following axioms which are assumed to hold for

enabled(w, x), regardless of the architecture.

1. If enabled(w, receive(i, j, a)) then

#(w, send(i, j, a)) − #(w, receive(i, j, a)) > 0

2. If enabled(w, x) and enabled(w, y) and x and y occur on different processes, then

enabled(wx, y).

3. If enabled(w, x) and w′|i = w|i for all i, then enabled(w′, x).

Justification for these axioms is as follows: the first axiom is obvious. The second axiom

says that an event occurring on one process cannot disable an event from occurring on

another process, intuitively because unless the two processes communicate they cannot

effect each others behavior. The third axiom is another version of the second. It says

that the ability of an event to occur on a given process depends only on the sequence of

events that have occurred on each process so far, and not their particular interleaving

with events of other processes.

These three basic axioms can be augmented with other axioms to reflect the prop-

erties of specific architectures. Consider the following two specific instances:
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FIFO queues. When queues are required to be FIFO, for every pair i, j of processes,

the sequence in which process i sends messages to process j must coincide with

the sequence in which j receives messages from process i. Then, in addition

to the basic axioms, we require that enabled(w, receive(i, j, a)) only holds if the

first send(i, j, ⋆) in w for which there is no matching receive(i, j, ⋆) is indeed

send(i, j, a).

Synchronous communication. When the message exchanges are synchronous, a send-

ing process cannot continue until the message is received (and implicitly acknowl-

edged). To model this, for any event x on process i, we require that enabled(w, x)

holds only when all sends from process i have a matching receive in w.

We reformulate well-formedness, completeness, and the different closures conditions, in

this more general setting:

• Well-Formedness: for every prefix w′x of w ∈ L, enabled(w′, x) holds.

• Completeness: The definition of completeness remains exactly the same.

• Conditions CC2, CC2’, and CC3, also remain the same.

For each architecture, Theorems 5 and 8 remain true under these modified condi-

tions. Rather than prove the general theorems, we examine the specific architecture

with FIFO queues, to hopefully provide better intuition.

Suppose we are given a set of FIFO MSCs M which are weakly realizable in the

modified sense above. By FIFO MSCs we mean MSCs where the message arrows

between a pair of processes do not cross: there does not exist two send events e1 and e2
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between identical processes (i.e., with l(e1) = send(i, j, x) and l(e2) = send(i, j, y)) such

that e1 < e2 and f(e2) < f(e1). All linearizations of such MSCs will be well-formed

and complete in the above sense. We wish to show that M is weakly realizable (via a

FIFO architecture) iff L(M) satisfies CC2. Suppose there are 〈Ai | i ∈ [n]〉 which give

a realization A of M, i.e., L(A) = L(M). Let w be a well-formed and complete word

such that w|i = vi|i, with vi ∈ L(M) = L(A). Then, as in the proof of Theorem 5,

we can extract from an accepting run of A on vi, a run ri of Ai on vi|i = w|i. Thus,

since w fulfills the FIFO requirement (which is entailed in the requirement that w be

well-formed), we can combine the runs ri to a run of A on w. In the same way, one can

modify the argument for Theorem 5 to prove the other direction of the claim. Theorem

8 can be modified similarly to this setting.

To modify the inference and safe realizability algorithm of Figure 8 for the setting

with a FIFO architecture, we need simply to revise the interpretation of when an event

x′ is eligible to replace an event x to appropriately capture the FIFO settings. Recall

that the key property that allows us to test safe realizability in polynomial time, is that

147



for every choice of MSCs Ms, Mt and process i, where x, x′ are the earliest events of

process i in which Ms and Mt disagree, we need to consider only one prefix Ns(x) (the

maximal one) in examining whether replacing x by x′ yield a violation of the closure

condition CC3. The fundamental reason is that the following monotonicity properties

holds: if x′ can be ‘legally’ appended to a smaller prefix of Ms (that of course does not

include x and its descendants) in the sense that it yields a well-formed partial MSC, then

x′ can be also legally appended to the maximal prefix Ns(x). This property combined

with the obvious fact that if there is an MSC Mp of the given set that contains the

larger prefix then there is clearly one that contain also the smaller prefix, permits us to

consider only the maximal prefix. The three basic axioms of the predicate enabled imply

that the relevant monotonicity property holds in general: If a string wx′ is well-formed,

where x is an event on process i, and if the string ww′ is also well-formed where w′

consists of steps on other processes j 6= i, then the string ww′x′ is also well-formed. The

reason is that, by the axioms, execution of an event on one process cannot disable events

on another process. Therefore, the basic structure of the safe realizability algorithm is

sound in general. The only difference is that the specific enabled predicate in each case

determines whether event x′ is eligible to replace x. The efficiency of the algorithm

will depend on how efficiently eligibility can be determined. For FIFO architectures

or for synchronous communication, eligibility can be detected easily, but for arbitrary

architectures it depends on the complexity of the enabled predicate.
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9 Conclusions

We have presented schemes for detecting scenarios that are implied but unspecified.

The scenarios inferred by our algorithms can provide potentially useful feedback to the

designer, as unexpected interactions may be discovered.

We have given a precise formulation of the notion of deadlock-free implementation

and have provided an algorithm to detect safe realizability or else infer missing scenarios.

We have shown that our state machines synthesized from MSCs are deadlock-free if

the MSCs are safely realizable. Our algorithm for safe realizability is efficient, and

thus, the conventional “state-space explosion” bottleneck for the algorithmic analysis

of communicating state machines is avoided. Since scenario-based specifications are

typically meant to be only a partial description of the system, the inferred MSCs may

or may not be indicative of a bug, but the implied partial scenarios need to be resolved

by the designer one way or the other, and they serve to provide more information to

the engineer about their design.

A way in which we envision our framework can be used is depicted in Figure 11. A

user specifying MSCs in a requirements model can feed the MSCs to the inference algo-

rithm. If implied partial MSCs are discovered, the user will be prompted to complete

the MSCs. New complete MSCs are added to the requirements model. Meanwhile,

complete MSCs in the requirements model can be fed to to other analysis algorithms,

such as a model checker ([7]), and finally, once the requirements model is in satisfactory

shape, the state machine models for the communicating processes can be synthesized

from the MSCs.
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The algorithms of this paper can also be used for abstraction and/or verification

of programs. A single execution of a distributed program can be viewed as an MSC.

Thus, instead of obtaining the input set of MSCs as requirements from the designer, it

can be derived by executing the implemented program a certain number of times. The

automata synthesized by our algorithms can be considered as an (under-)approximation

of the source program, and can be subjected to analyses such as model checking. This

approach can be useful when the source program is too complex to be analyzed, or is

available only as a black-box (e.g. as an executable).

We have introduced a framework for addressing implication and realizability ques-

tions for the most basic form of MSCs. It would be desirable to build on this work,

extending it to address these questions for more expressive MSC notations, such as

MSCs annotated with state information (e.g., [11]), and high-level MSCs (as in, e.g.,

uBET [8]).
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