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Abstract

Business processes usually have to consider certain con-
straints like domain specific and quality requirements. The
automated formal verification of these constraints is de-
sirable, but requires the user to provide an unambiguous
formal specification. In particular since the notations for
business process modeling are usually visual flow-oriented
languages, the notational gap to the languages usually em-
ployed for the formal specification of constraints, e.g., tem-
poral logic, is significant and hard to bridge. Thus, our ap-
proach relies on UML Activities as a single language for
the specification of both business processes and the cor-
responding constraints. For the expression of such con-
straints, we have provided a process pattern definition lan-
guage based on specialized Activities. In this paper, we de-
scribe how model checking can be employed for formal ver-
ification of business processes against such patterns. For
this, we present an automated transformation of the busi-
ness process and the corresponding patterns into a transi-
tion system and temporal logic, respectively.

1 Introduction

Effective and reliable business processes are a major
building block for the success of modern enterprises. How-
ever, such business processes and their corresponding mod-
els can become very complex. For the design, understand-
ing, and maintenance of big and complex processes it is
necessary that process constraints, i.e., properties and re-
quirements related to the processes, can be verified.

In the context of business processes, such requirements
are for example legal, domain specific, or quality require-
ments. In particular with the rising popularity of modern
Total Quality Management (TQM) systems, the question
whether such quality requirements are fulfilled by a busi-

ness process becomes increasingly important.
The quality requirements contained in a TQM system are

usually given in natural language and are therefore difficult
to be checked against existing business processes. This is
also the usual case for other domain specific requirements
in organizations. In order to make requirements for pro-
cesses manageable and enable automated verification, they
need to be specified in a precise, formal way such that ex-
act methods can be applied to verify the correct fulfillment
of the specified requirements by given business processes.
Furthermore, it should also be possible to specify quality
requirements such that they are easy to formulate, read, and
to apply by humans like quality managers, domain experts,
and process designers.

These two different demands are at first sight contra-
dictory. One way out of this dilemma is to define a lan-
guage that allows specifying quality requirements in a user-
friendly way, yet having a clear formal underpinning. In
previous works, we have already proposed an approach for
modeling process constraints, in particular related to quality
management, that is based on process patterns [7]. These
process patterns can be visually modeled using a subset of
UML2.0 Activities [14] with light-weight extensions based
on stereotypes called the Process Pattern Specification Lan-
guage (PPSL). A complementary pattern-based develop-
ment process and some further extensions of the PPSL can
be found in [8].

UML Activities have become a widespread modeling
language for business processes. Such Activities are usually
represented as Activity Diagrams. Many process developers
are familiar with the syntax of Activity Diagrams and their
meaning. The PPSL as an extension to UML Activities al-
lows process developers to also model process constraints
based on the language they are familiar with.

In previous works we have described the construction of
business processes with respect to process patterns reflect-
ing quality constraints. Based on that, we propose the ver-



ification of existing processes to ensure conformance to a
given set of process constraints. The constraints are visu-
ally modeled as a process pattern using the PPSL. However,
the definition of a precise meaning of the PPSL elements
is a necessary prerequisite to allow verification of the pro-
cess constraints. Therefore, we will define the semantics of
the PPSL by presenting a translation of PPSL models into
temporal logic.

The next section discusses related work before section
3 introduces the PPSL together with a small example. In
Sect. 4, we present our approach in three consecutive steps.
First, we formalize the behavior of the business process as a
labelel transition system (LTS). Second, we provide an ex-
plicit translation of the PPSL elements into temporal logic.
Finally, we show how the temporal logic formulas can be
checked against the LTS representation by a state-of-the-art
model checker. We describe a preliminary tool chain imple-
mented as an integrated workbench to facilitate the design
and verification process for the business process designer.
Thus, our approach supports the business process designer
in determining if the behavior of the business process con-
forms to the requirements specified by a process pattern.

2 Related Work

For the topic of modeling constraints for business pro-
cesses using comprehensible visual notation consistent with
that of the business process, the related work falls into these
categories: workflow and process patterns, checking formal
properties of workflows and processes, modeling behavioral
predicates, and Activity Diagram semantics.

Van der Aalst et al. [18] have devised a number of work-
flow patterns concerning different types of control flows
in workflow systems. Their aim was mainly to demon-
strate the expressiveness and capabilities of existing work-
flow management systems and workflow specification lan-
guages. Unlike our approach, their process patterns cover
mainly technical concepts like all kinds of different basic
and complex control flows and they are focused on Petri-
nets. Approaches like [1] and [16] consider the applica-
tion of process patterns to software development processes.
However, these approaches cover aspects specific to soft-
ware development and contain no formal underpinning or
means for automatic checking.

There are approaches checking formal properties of
workflow models like Van der Aalst and Kindler [13].
These approaches focus on formally verifying general prop-
erties like soundness, fairness, termination etc. In contrast
to that our approach allows the verification of user-defined,
specific properties like quality management requirements or
domain specific requirements.

In [3], Deveraux and Chechik present an approach for
building behavioral models of event-driven systems. These

models can then be verified over a given software program
to conform to certain kinds of temporal or causal properties.
However, the approach assumes that the software program
is already presented as a Kripke structure and thus remains
at an abstract level. For our application area, this is not suf-
ficient as both the transformation of the actual application
language into such structures is not elaborated and the def-
inition of the properties to be checked is too general. Thus,
our approach employs similar basic ideas, but at a differ-
ent granularity and up to the level of the real application
language including a generic approach on defining process
constraints.

In [12], the authors propose an approach for model
checking of business processes using temporal logic. The
approach is based on a proprietary process modeling lan-
guage. The authors provide formalizations for some basic
sorts of constraints. However, there is no support for user-
defined constraints.

To allow model checking of UML Activity Diagrams,
we need to employ a formal semantics for Activities. In
[17], the authors provide a translation into Petri Nets. How-
ever, this translation does not consider some important se-
mantic properties of Activities like traverse-to-completion
etc. Also the non-local semantics of some model elements
like ActivityFinalNodes is not covered in this approach. In
[5], the author presents an in-depth coverage of a transla-
tion of UML Activities into the input language of NuSMV.
This semantics description is based on UML 1.x finite state
machine semantics for Activities. UML 2 Activities have a
completely different semantics based on token flow. Unfor-
tunately, the translation is therefore not applicable.

In [6], we have introduced the general idea of using
patterns to describe quality requirements for business pro-
cesses. In [7], we introduced a pattern language and built
the ground for a formulation of an abstract pattern-instance
relationship for process patterns. In this paper, we focused
on specifying the formal semantics of process patterns for
automatic conformance checking. Related work includes
general works on the application of process patterns as well
as the verification of behavioral properties in such pro-
cesses.

3 Quality Assurance in Business Processes

In this section we use as an example a business process
that is a slightly adopted version of one of the example pro-
cesses in the UML Specification [14, p. 312], as shown
in Fig. 1. To briefly recapitulate the PPSL, we state some
domain specific and quality management requirements and
model them using the PPSL. In succeeding sections we will
show how the corresponding process patterns can be trans-
lated into temporal logic and verified against given Activity
Diagram based processes. As a first process constraint we
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can state:

Process constraint #1: Before an order is being closed,
records of the received orders have to be made.

The constraint implies that the Action “report order” is exe-
cuted at some point before the Action “close order” is exe-
cuted, but it does not require that the Action “report order”
is executed directly before “close order”.

It is an important property of typical process require-
ments that they frequently contain rather loose or incom-
plete temporal/logical relationships between Actions. In a
concrete business process there may be many other Actions
executed in between “report order” and “close order” with-
out contradicting the pattern. Since the original semantics
of an ActivityEdge as described in the UML Superstruc-
ture is that Action “close order” is enabled immediately
when Action “report order” terminates [14], we introduced
the stereotype�after� for an ActivityEdge to express that
some Action has to be executed after another but not nec-
essarily directly following it. Stereotyping of model ele-
ments is the standard extension mechanism of the UML.
Using stereotypes, model elements can be given additional
or extended semantics. Figure 2a shows process constraint
#1 modeled in our PPSL. The curly line in Fig. 2a is a
visualization option of the �after� stereotype. In the re-
mainder, we refer to this sort of stereotyped ActivityEdge
as AfterEdge.

Being able to express such loose order relationships in
process patterns is also a necessary prerequisite to enable

flexible application of the process patterns since pattern ac-
tions and actions of the original business process usually
need to be weaved together. If the pattern designer wants to
specify that there may not be other Actions being executed
in between two Actions of a pattern, a regular ActivityEdge
without stereotype can be used in the pattern.

Process constraint #1 could be read in two directions. Ei-
ther “every time an order is closed this has to be preceeded
by reporting an order” or “every report of an order must
be followed by closing the order”. It is important to have
the possibility to distinguish these two cases in the process
constraint language. This can be done using the stereo-
type�all� for Actions. It denotes whether the implication
given by the AfterEdge in the constraint refers to all “close
order” Actions or all “report order” Actions. In the remain-
der, we will refer to an Action having an�all� stereotype
as AllAction. The multi-node in Figs. 2 and 3 are a visu-
alization option of the AllAction. It is also possible to use
AllActions on both sides of the AfterEdge or ActivityEdge
denoting that both implications have to be fulfilled. Conse-
quently, it is a well-formedness rule for our language that at
least one of two Actions being connected by an AfterEdge
or ActivityEdge is an AllAction.

The next process constraint that we want to consider is:

Process constraint #2: After each production action a
quality check has to be performed prior to delivery.

Process constraints #2 is similar to process constraint #1
but contains precisely spoken two different constraints put
together. The first requirement is that after each produc-
tion action there has to be a quality check and the second
requirement is that before shipping a product, the quality
has to be checked. This is why the actions “produce” and
“ship” in the process pattern are AllNodes. The use of a
regular ActivityEdge between ”test quality” and ”ship” sets
the requirement that shipping has to be directly preceded by
the quality test. There may not be other actions executed in
between these two actions.

If we now compare the process constraints with the ex-
ample business process in Fig. 1, we can see that it does
not have an action called “produce” like the pattern in Fig.
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2b. In particular if the pattern and the business process have
been developed by different persons, it will frequently be
the case that actions having different names refer to the
same behavior. Therefore, a mapping between the action
names of the business process and the process pattern based
on the action’s behaviors has to be established prior to the
verification of the process constraints. In our case, “pro-
duce part 1” and “produce part 2” of the business process
are both mapped to “produce” of the pattern.

Now we want to consider the following process con-
straints to demonstrate some additional aspects of the PPSL:

Process constraint #3: Before an order is being closed, ei-
ther records of payments made or records of the fact
that the order was rejected have to be taken. Each pay-
ment received shall be reported.

Process constraint #4: When an order is filled, a product
has to be shipped and an invoice has to be sent.

Figure 3a shows process constraint #3. It demands that
one of the two Actions “report rejected order” or “report
payment” has to be performed before the bill is being closed
while “report payment” has to be be executed after a pay-
ment was received. Conditional control flows, modeled by
Fork-, Join, Decision- and MergeNodes, can be used in the
PPSL like in regular Activity Diagrams to express such con-
straints.

Process constraint #4 is shown in Fig. 3b. Parallel con-
trol flows in the pattern mean that the actions of these con-
trol flows may be executed concurrently. When the pat-
tern is applied, the parallel control flows should generally
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Transition
System
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DMM +

GROOVE
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(Sect. 3.2)

Model
Checker
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Figure 4. Verification process.

be sustained in the resulting process. However, parallelism
in the process patterns can just be an expression of the fact
that the order in which Actions are executed is irrelevant.
Accordingly, in a business process any valid interleaving
between the concurrent actions of the pattern is a correct
application of the pattern as shown in Fig. 3c. This con-
forms to the semantics of parallel control flows described
in the UML 2.0 Superstructure that real parallelism is not
enforced.

In the remainder we want to give a precise, formal notion
to when a business process model conforms to a process
pattern and therefore respects the process constraints, such
as quality requirements, encoded in the pattern.

4 Formalization

The principal aim is to be able to check whether a con-
crete business process conforms to a given process pattern.
Fig. 4 describes the employed verification process.

To perform the conformance check we first need to spec-
ify the exact execution semantics of the given business pro-
cess. Then, we need to precisely define how patterns mod-
eled in the PPSL constrain this business process to finally
be able to check these process patterns.

To provide the execution semantics of the business pro-
cesses, we use the Dynamic Meta-Modeling (DMM) frame-
work developed at the University of Paderborn [4]. The
DMM framework is a semantics description method for vi-
sual modeling languages in general which combines a de-
notational meta modeling framework for expressing static
semantics with operational rules capturing the behavior of
the elements. For a detailed description of the DMM ap-
proach we refer to [4]. DMM has been successfully applied
to statecharts [4], to UML 1.x sequence diagrams [11], and
to UML 2.0 Activity Diagrams [10]. We briefly explain this
approach in the next section and we show how the resulting
interpretation of business process models is utilized in our
approach.

As shown in the previous section, the process patterns
specify logical and temporal constraints over the business
process. Therefore, the semantics of the PPSL is provided
by temporal logic formulas. We provide an explicit transla-
tion from a process pattern into temporal logic. This trans-
lation is defined and exemplified in Sect. 4.2. Please note
that the PPSL is designed to allow modeling, formalizing



and verifying constraints for business processes, it is not in-
tended to be a graphical notation for temporal logic in gen-
eral.

Furthermore we show how the example process patterns
of Sect. 3 are translated into temporal logic and whether
the business process of Fig. 1 conforms to these patterns.
Finally in Sect. 4.3 we show how the verification process
shown in Fig. 4 can be embedded in a tool chain, using
state-of-the-art model checkers. This tool support supports
the business process designer in verifying the application of
the process patterns he/she selected.

4.1 Generation of the Labeled Transition
System

The semantics of a visual language is defined in the
DMM framework by a semantic domain meta model and
a set of meta operations. The semantic domain meta model
describes the semantical concepts of the language. For ex-
ample, to be able to express the semantics of Activity Dia-
grams, the semantic concept ActionExecution is defined as
a class in the semantic domain meta model. This concept
denotes a currently running execution of an Action. For
each semantic concept that relates to behavior it captures
this behavior in a set of meta operations. The meta opera-
tions are defined by rules represented as UML communica-
tion diagrams. These communication diagrams are given a
formal interpretation based on graph transformation rules.

Given the set of DMM rules for a particular language
and a user-defined model expressed in the same language,
a labeled transition system (LTS) is generated by a DMM
interpreter that reflects all possible behaviors to the model.
In the DMM approach, the GROOVE (GRaphical Object-
Oriented VErification) tool set [15] has been chosen as
DMM interpreter to produce the resulting labeled system.

Using the GROOVE tool, the set of DMM rules for UML
2.0 Activity Diagrams, and given a user-defined Activity
Diagram, which is in our case the business process, we can
generate a LTS that specifies the exact execution paths of
the Activity Diagram. Figure 5 shows an excerpt of the re-
sulting LTS from the example in Fig. 1. Each state in the
LTS represents a state in the execution of the Activity Di-
agram. The labels in the states represent the fact that the
corresponding Action is actually executing.

A name of an Action in the business process refers to a
certain Behavior. Since the business process and the pro-
cess pattern may have been devised by different persons us-
ing different Behavior namespaces, a mapping needs to be
defined. This mapping is part of the tool chain described in
Sect. 4.3. For the formalization, without loss of generality,
we assume that the Behavior namespaces are synchronized.

The DMM approach for UML Activity Diagrams incor-
porates the semantics of the UML 2.0 Superstructure [14]

Figure 5. Excerpt of the transition system re-
sulting from the example business process in
Fig. 1b generated using DMM and GROOVE.

for model elements of the packages StructuredActivities and
IntermediateActivities. These semantics implemented in
DMM include all important issues described in the UML
Specification like traverse-to-completion, the fact that Ac-
tions capture all of their input tokens in one atomic step,
etc. Concurrency in the Activity Diagram leads to a transi-
tion system that contains all possible interleavings between
the concurrent Actions.

In the next section we specify how the process patterns
can be translated into temporal logic formulas which can be
checked against the transition system.

4.2 Formalization of Process Patterns

The formalization of the process patterns is presented in
two consecutive steps. First, the notion of Pattern Graph is
defined. Secondly, the translation of a process pattern into
temporal logic is established.

A process pattern is represented by a Pattern Graph.

Definition 1. A Pattern Graph (PG) is a tuple PG =
(N,E) where N is the set of nodes and E is the set of edges,
i.e., the set of tuples N×N. The notation e(n1, n2) is equiv-
alent with e ∈ E ∧ e = (n1, n2).
The set N is divided into different disjoint subsets, N =
Na ∪ Nd ∪ Nm ∪ Nf ∪ Nj where Na is the set of Ac-
tionNodes, Nd is the set of DecisionNodes, Nm is the set
of MergeNodes, Nf is the set of ForkNodes, and Nj is the
set of JoinNodes.
The set of ControlNodes, denoted by Nc, is defined as
Nc = Nd ∪Nm ∪Nf ∪Nj.
The set of edges E is divided into two disjoint sets E =
Ed ∪Ea, where
Ed is the set of ActivityEdges, Ea is the set of AfterEdges,
and Ed ∩Ea = ∅.
The set of AllActions is denoted by Nall ⊆ Na.

In the remainder of this section, we explain how process
patterns can be expressed by Linear-time temporal logic



(LTL) formulas. LTL has appropriate expressional power
for the formalization of the semantics of the PPSL. We use
the temporal connectives F to denote “some Future state”,
G to denote “all future states (Globally)”, X to denote “the
neXt state”. We use LTL with the past operators O to de-
note “previously” and Y to denote “the previous state”. The
use of LTL with past operators makes the formulation of
some of the formulas significantly shorter and more intu-
itive. It shall be noted that past operators do not increase
the complexity of LTL model checking and can be equiva-
lently converted to future-only LTL [9].

The translation of the pattern into temporal logic formu-
las is defined recursively. We first determine the translation
of the basic PPSL elements into temporal logic formulas as
shown in Tab. 1. Using this recursive translation, the trans-
lation of a pattern graph corresponding to a process pattern
is defined.

Actions. Let a ∈ Na, the Action is translated to a propo-
sition. This proposition corresponds to the name represent-
ing the Action in the transition system representing the busi-
ness process under study. The fixed set of propositions con-
sidered for the translation of the patterns is the set of the
action names occurring in the generated transition system
as described in Section 4.1.

Two Actions are connected through an Edge. We specify
as a well-formedness rule of the pattern graph that there has
to be an AllAction at one side at least of an Edge, i.e.,

∀e = (n1, n2) ∈ E : n1 ∈ Nall ∨ n2 ∈ Nall (1)

Row 2 to 4 in Tab. 1 each show the three possible ways
how Actions can be connected by an AfterEdge (conform-
ing to the well-formedness rule (1)) and their respective
translation to a LTL formula.

The LTL formula G(a → F b) (row 2, column 3) ex-
presses that each time a is executed it is eventually followed
by the execution of b. The formula G(b → O a) expresses
that if an execution of b exists, it has to be preceded by
the execution of a. The conjunction of both LTL formulas
states the meaning of an AllAction Node a connected to an
AllAction Node b through an AfterEdge.

As an example consider process constraint #1 (cf. Sect.
3). This requirement will be translated to the following LTL
formula:

G(close order → O report order) (2)

The AfterEdge specified in this pattern spans nearly the
whole business process. For the business process of Fig.
1 to fulfill this constraint it is important that the alterna-
tive and parallel parts of the business process are all merged
and joined properly. Thus it is guaranteed that the execu-
tion of the business process finally reaches “close order” at
some point after “report order”, so formula 2 holds. Check-
ing process constraint #1 has some interesting implications.

Say the business process designer wants to make an alter-
ation to the business process such that if the quality check
fails, the process should be terminated. Figure 6 shows the
alteration in the process model. The semantics of the Fi-
nalNode as described in the UML Specification is that all
tokens in the Activity that is executed will be terminated im-
mediately. The transition system resulting from the DMM
transformation reflects this behavior. Accordingly, formula
2 will evaluate to false after the alteration meaning that it is
now not guaranteed anymore that the order will be closed.
If somebody had put the alteration shown in Fig. 6 some-
where in the middle of a much bigger business process, such
deficiencies would probably be much harder to detect man-
ually.

Quality Requirement #2 results in two LTL formulas
which both have to be fulfilled.

G(produce → F test quality) (3)
G(ship → Y test quality) (4)

Similar to the case where two Actions are connected
through an AfterEdge, three cases can be distinguished
where two Actions are connected through a regular Activi-
tyEdge. Again an AllAction can be followed by an AllAction
or an AllAction can be followed by an Action or an Action
can be followed by an AllAction through an Edge. How the
three different constraints are translated is shown in row 5
to 7 in Tab. 1. These LTL formulas are equal to the LTL
formulas representing the corresponding kinds of Actions
connected through an AfterEdge, except that the temporal
connectives O and F are replaced Y and X , respectively.

The question now arises how control nodes in the pat-
tern graph have to be interpreted. Table 2 provides for each
control node a small example pattern fragment and the gen-
eral translation to LTL formulas in case of AfterEdges con-
nected to the control node. In the remainder of this section,
we explain the translation of the control nodes in detail.

There are two additional well-formedness rules for the
use of control nodes. For the DecisionNode and the ForkN-
ode, either the Action preceding the control node has to be
an AllAction or all nodes following the control node have

ship

close bill

report
payment

test 
quality

[fail]

[pass]

…

…
…

Figure 6. Alteration to the business process
of Fig. 1



Table 1. Translation of the PPSL elements into LTL.

Model element Notation Translation

Actiona b

a b

a b

a b

a b

a b

Action name ActionName

AfterEdge between
AllActions a b

a b

a b

a b

a b

a b

G(a → F b) ∧ G(b → O a)

AfterEdge between
AllAction and

Action

a b

a b

a b

a b

a b

a b

G(a → F b)

AfterEdge between
Action and
AllAction

a b

a b

a b

a b

a b

a b

G(b → O a)

ActivityEdge
between AllActions

a b

a b

a b

a b

a b

a b

G(a → X b) ∧G(b → Y a)

ActivityEdge
between AllAction

and Action

a b

a b

a b

a b

a b

a b

G(a → X b)

ActivityEdge
between Action and

AllAction

a b

a b

a b

a b

a b

a b G(b → Y a)

to be AllActions (5). For the MergeNode and the JoinN-
ode, a similar well-formedness rule applies in the opposite
direction (6).

e(a, c) ∈ E ∧ c ∈ Nd ∪Nf ∧ ∀i=1,...,n : ei(c, bi) ⇒
a ∈ Nall ∨ ∀i=1,...,n : bi ∈ Nall (5)

∀i=1,...,n : ei(ai, c) ∧ c ∈ Nm ∪Nj ∧ e(c, b) ∈ E⇒
∀i=1,...,n : ai ∈ Nall ∨ b ∈ Nall (6)

As already explained in case of two Actions connected
by an edge, generally different formulas have to be created
depending on whether the node(s) preceding or succeeding
the control node are AllActions. Therefore, for each control
node we will explain two cases.

DecisionNodes Let us at first assume all edges are Af-
terEdges. If a ∈ Nall and ∀i ∈ {1, . . . , n} : bi /∈ Nall,
the corresponding pattern is translated to the LTL formula
G(a →

∨
i=1,...,n Fbi). This formula expresses whenever

an Action a is executed, eventually at least one of the bi

(i ∈ {1, . . . , n}) will be executed, reflecting the choice se-
mantics of the DecisionNode. If some bi nodes are also
AllActions, this means that the execution of these bi Ac-
tions need to be eventually preceded by the exection of an

a Action. This implies that a formula G(bi → O a) needs
to be added for each bi ∈ Nall. If a is not an AllAction but
only the bi nodes are AllActions (remark that in this case,
following our well-formedness rule it is mandatory that all
bi nodes are AllActions) the corresponding pattern is trans-
lated to the LTL formula

∧
i=1,...,n G(bi → O a), only.

Regular ActivityEdges can also be used to connect an
Action with a DecisionNode and vice versa. There are al-
ways two edges of the pattern involved in each subpart of
the resulting formula, i.e., the edge from Action a to the
DecisionNode and the Edge from the DecisionNode to bi.
If both edges are regular ActivityEdges the translations as
specified in Tab. 2 have to be changed by replacing the
temporal connective O by Y and F by X . If at least one
of the two edges is an AfterEdge, it shall overrule the reg-
ular ActivityEdge and the temporal connectives F and O
remain. This does not only hold for DecisionNodes but for
each ControlNode.

MergeNodes Again with m ∈ Nm we make a distinction
between the case where ∀i=1,...,n : ei(ai,m) ∧ ai ∈ Nall

and the case where e(m, b) ∈ E ∧ b ∈ Nall. The first case
expresses that each execution of ai (for i = 1, . . . , n) is
eventually followed by an execution of b. The second case
expresses that each execution of b is preceded by at least one



Table 2. Translation of the control nodes into LTL

Model element Example General Translation

DecisionNode a

b1

bn

…

b

a1

an

…

a

b1…

b

…
bn

a1

an

a ∈ Nall ⇒
G(a →

∨
i=1,...,n F bi)

∧∧
i=1,...,n(bi ∈ Nall ⇒

G(bi → O a))

MergeNode

a

b1

bn

…

b

a1

an

…

a

b1…

b

…
bn

a1

an

∧
i=1,...,n(ai ∈ Nall ⇒

G(ai → F b))
∧
b ∈ Nall ⇒
G(b →

∨
i=1...n O ai)

ForkNodea

b1

bn
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execution of the Action ai (for i = 1, . . . , n). This results
in the LTL formula G(b →

∨
i=1...n O ai).

As an example consider again process constraint #3.
First of all, there is an AfterEdge from the Action “re-
ceive payment” to the Action “report payment” resulting
in formula 7. The Actions “report rejected order” and “re-
port payment” are connected to the MergeNode with Af-
terEdges. The MergeNode is connected to “close bill” via
an AfterEdge and the Action “close bill” is an AllAction.
Using our translation the following LTL formula is ob-
tained:

G(receive payment → F report payment) ∧ (7)
G(close bill →

(O report payment ∨O report rejected order)) (8)

The LTL formula 8 specifies that whenever the Action
close bill is executed, it has to be preceded by the execution
of the Action report payment or by the execution of the
Action report rejected order.

ForkNodes Let f ∈ Nf and a ∈ Nall and e(a, f) ∈ E
and ∀i = 1, . . . , n : ei(f, bi) and bi ∈ N, this results in

the LTL formula G(a →
∧

i=1,...,n F bi). This formula ex-
presses that on each path where a is executed, this execution
has eventually to be followed by the execution of all the bi

actions (∀i = 1, . . . , n). If at least one bi is an AllAction,
this results in the LTL formula

∧
bi∈Nall

G(bi → O a).
As an example consider again process constraint #4.

First of all, there is an AfterEdge from the Action “fill or-
der” to the ForkNode. The ForkNode has two outgoing Af-
terEdges that connect the ControlNode to the Action “ship”
and “send invoice” resp. . Using our translation the follow-
ing LTL formula is obtained:

G(fill order → (F ship ∧ F send invoice)) (9)

The LTL formula (9) specifies that whenever the Action
fill order is executed, it has to be eventually followed by
the execution of the ship Action and by the execution of the
send invoice Action.

JoinNodes Consider again j ∈ Nj and b ∈ Nall and
e(j, b) ∈ E and ∀i = 1, . . . , n : ei(ai, j) and ai ∈ N. This
results in the LTL formula G(b →

∧
i=1,...,n O ai) express-

ing that if Action b is executed it has to be preceded by the
execution of all Actions ai, where ai ∈ i = 1, . . . , n. Each



ai ∈ Nall results in the LTL formula G(
∧

ai∈Nall
F ai →

F b) expressing that after each ai ∈ Nall has been exe-
cuted, then also Action b has to be eventually executed.

4.3 Tool Chain

We have set up a tool chain for the verification pro-
cess (cf. Fig. 4) of process patterns in business processes.
Therefore, we have developed an integrated workbench as
an Eclipse plugin. Figure 7 shows a typical situation. On
the left hand side, different business processes and patterns
can be organized in projects. In the upper part, a business
process is being modeled using the build-in Activity Dia-
gram editor. In the middle part, process patterns can be
modeled using the PPSL. Triggered by user interaction, the
conformance of the business process with selected process
patterns can be checked automatically. The result of the
model checker is presented in the lower part of the work-
bench. The layout of the different editors and views of the
workbench can be customized by the user, as typical for the
eclipse workbench.

When the user triggers the verification, the complete tool
chain of Fig. 4 is enacted automatically. The transition
system generated by GROOVE is automatically translated
into the input language of the NuSMV model checker [2].
The selected process pattern is automatically translated into
temporal logic formulas as described in the previous sec-
tion. Finally, the model checker is started with the transition
system and the temporal logic formulas as input.

A future version is intended to allow for visual back-
annotation of the result of the model checker in the pattern
editor. Also, at a later stage, the system is intended to also
interactively assist a process developer in correctly imple-
menting process patterns into existing processes that do not
yet fulfill the requirements given by a process pattern.

The implementation of the verification process is written
in a modular way. Translating business process models and
translating the process patterns are independent activities as
well as the checking of the patterns. Therefore, single tools
can be exchanged unproblematically.

5 Discussion and Conclusion

In this paper, we have introduced an approach to auto-
matically check process constraints and demonstrated the
application for checking quality constraints in business pro-
cesses. In our approach, such process constraints are for-
mally described through process patterns based on UML
Activities. These patterns are the basis for checking busi-
ness processes for conformance with the respective process
constraints. For this, the process patterns are transformed
into temporal logic while the business process is trans-
formed into a transition system. Together, this enables the

application of model checking for ensuring conformance of
the business process to the patterns defining the required
process constraints. Thus, this technique allows formal ver-
ification of process constraints in business processes.

Furthermore, we have introduced tool support for defin-
ing and verifying such constraints by means of an Eclipse
plugin. In a current project, this tool will be used to ver-
ify large-scale industry processes from the banking sector.
Increasing “industrialization” in the finance business leads
to the demand for well-defined business processes that in-
teract seamlessly. Therefore, many requirements related to
the processes have to be defined and verified. This will also
be the basis to further investigate whether additional PPSL
model elements and corresponding semantics are necessary
to be able to express all typical sorts of constraints that oc-
cur in practice.

There are some more issues that need to be investigated.
Different patterns can depend on each other or even contra-
dict one another. The knowledge of these interdependencies
between patterns can be used in tool support to increase the
efficiency of the pattern checking process. Finally, we will
also investigate how the occurrence of a process pattern can
be located in a business process model.
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