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ABSTRACT: This article presents in a unified way, the various optimization criteria used by
researchers for optimal placement of piezoelectric sensors and actuators on a smart structure.
The article discusses optimal placement of piezoelectric sensors and actuators based upon six
criteria: (i) maximizing modal forces/moments applied by piezoelectric actuators, (ii) maxi-
mizing deflection of the host structure, (iii) minimizing control effort/maximizing energy
dissipated, (iv) maximizing degree of controllability, (v) maximizing degree of observability,
and (vi) minimizing spill-over effects. Optimal piezoelectric sensor and actuator locations on
beam and plate structures for each criterion and modes of interest are presented in a tabular
form. This technical review has two objectives: (i) practicing engineers can pick the most
suitable philosophy for their end application and (ii) researchers can come to know about

potential gaps in this area.
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Nomenclature
Y Young’s modulus of elasticity
o stress
i mass per unit length
I moment of inertia
¥ normalized modal function
Q; modal control force
w; modal frequency
Aj j-th modal eigenvalue of controllability
Grammian
¢ modal damping ratio
m; modal mass of i-th eigenmode
T time
w transverse deflection of the host structure
d3  piezoelectric strain constant
e3;  piezoelectric stress constant
M moments applied by actuator
M, maximum value of moments applied by
actuator
X, position of sensor/actuator
a, b, h length, breadth, thickness
ay,an  normalized length coordinates of sensor/actuator
Bi, B> mnormalized breadth coordinates of sensor/

actuator
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Q  driving frequency (dimensionless)
E. applied electric field in z-direction
d distance from piezoelectric sensor/actuator cen-
terline to host structure centerline
n;(f) time response of the i-th eigenmode
X state vector
Y system output
A system influence matrix
B position matrix of the actuator
C position matrix of the sensor
B, control influence vector
B, measurement influence vector
K feedback control gain
Vi voltage applied on i-th piezoelectric actuator
Vit external control voltage applied on the actuator.
G transfer function between actuator voltage and
plate deflection
G. controllability Gramian matrix
G, observability Gramian matrix
ay amplitude of external excitation
x  x-coordinate
D modal damping matrix
A diagonal eigenvalue matrix
Subscripts
s host structure
p  piezoelectric
j j-th mode
x, y in the x- or y-direction
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Superscripts
T transpose

INTRODUCTION

INCE TIME IMMEMORIAL, man has been controlling
Sstructural vibrations by modifying mass, stiffness,
and damping of the structure. This may increase overall
mass of the structure and is found to be unsuitable for
controlling low frequency vibrations (Fahy and Walker,
1998; Brennan and Ferguson, 2004). This method does
not suit applications where weight restrictions are pre-
sent and low frequency vibrations are encountered. For
such applications, smart structures are being developed,
which are lightweight and attenuate low frequency
vibrations (Fuller et al., 1997). A structure in which
external source of energy is used to control structural
vibrations is called a ‘smart structure’ and the technique
is called ‘active vibration control (AVC)’. A smart struc-
ture essentially consists of sensors to capture the dynam-
ics of the structure, a processor to manipulate the sensor
signal, actuators to obey the order of processor, and a
source of energy to actuate the actuators (Figure 1).

This field has recently gained lot of interest due to
three main reasons: (i) increased interest of man in
space exploration, nano-positioning, micro-sensing, etc.
(Loewy, 1997, Moheimani and Fleming, 20006), (ii)
advent of fast processors, real-time operating systems,
etc. (Piersol and Paez, 2010), and (iii) development of
stable and high performance sensors and actuators
(Barlas and van Kuik, 2010; Rao and Sunar, 1994).
Piezoelectric sensors/actuators are being used extensively
for AVC because piezoelectric materials have excellent

electromechanical properties: fast response, easy fabrica-
tion, design flexibility, low weight, low cost, large oper-
ating bandwidth, low power consumption, generation of
no magnetic field while converting electrical energy into
mechanical energy, etc. Piezoelectric materials generate
strains when an electric signal is applied on them and vice
versa. So, they can be used as sensors and actuators for
structural vibrations (Fabunni, 1980). This effect occurs
naturally in quartz but can be induced in other materials
such as specially formulated ceramics consisting mainly
of lead, zirconium, and titanium (PZT). Piezoelectric
materials can be used as sensors and actuators in the
form of distributed layers (Bailey and Hubbard, 1985;
Hanagud et al., 1985; Tzou and Hollkamp, 1994), surface
bonded patches (Crawley and de Luis, 1987; Sharma
et al., 2007), embedded patches (Crawley and de Luis,
1987; Raja et al., 2002; Elsoufi et al., 2007), cylindrical
stacks (Li et al., 2008), screen printed piezoelectric layer
(Glynne-Jones et al.,, 2001), active fiber composite
patches (Raja et al., 2004), functionally graded piezoelec-
tric material patches (Yang and Xiang, 2007), etc.
Surface mounted or embedded piezoelectric patches
can control a structure better than a distributed one
because the influence of each patch on the structural
response can be individually controlled (Tzou and Fu,
1994).

Performance of AVC not only depends upon the con-
trol law but also on the placement of piezoelectric sen-
sors and actuators (Crawley and de Luis, 1987). When a
designer of a smart structure has to place a limited
number of sensor/actuator patches over the structure,
a lot of options are available. Unwise placement of
even collocated sensor—actuator pairs over a smart
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Figure 1. Schematic of a smart structure.
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structure controlled by negative velocity feedback can
make it unstable (Liu and Yang, 1993), and a wise place-
ment of even non-collocated sensor—actuator pairs over
a structure can make it stable (Yang and Lee, 1993a). It
is therefore important that the option for placement so
selected, should not make the structure unstable. Also, it
would be better if sensors and actuators are so
placed that it best suits the end application of the
smart structure. Keeping in mind the end application
of the smart structure, a criterion can be fixed for
sensor/actuator locations to maximize the performance
of AVC. Such a criterion is referred to as ‘optimization
criterion’. Once ‘optimization criterion’ is fixed, desired
sensor/actuator locations can be found using a suitable
search algorithm called ‘optimization technique’. Such
a placement of sensors and actuators which is done by
optimizing some fixed criterion is called ‘optimal place-
ment’. Optimization techniques like univariate search
method (Reklaitis et al., 1983), modified method of fea-
sible direction (Vanderplaasts, 1984), simulated anneal-
ing (Kirkpatrick et al., 1983; Cerny, 1985), tabu search
(Glover and Laguna, 1997), genetic algorithms
(Goldberg, 1989; Mitchell, 1996), sensitivity analysis
(Conte et al., 2003; Saltelli et al., 2004), gradient algo-
rithm (Haftka and Gurdal, 1993), invasive weed optimi-
zation (Mehrabian and Lucas, 2006), etc. are used in
AVC to find the optimal sensor/actuator locations.
Optimal placement of sensors and actuators over a
structure can be different for different criteria. An opti-
mization criterion can be based upon: maximization
of modal forces/moments applied by the actuator,
maximization of deflection of the host structure,
minimal change in host structural dynamics, desired
host structural dynamics, minimization of control
effort, minimization of host vibrations, maximization
of degree of controllability/observability of modes of
interest, etc.

Much of the work in AVC is concentrated on the
modeling and control of a smart structure (Crawley
and de Luis, 1987; Baz and Poh, 1988; Anderson
et al.,1992; Dosch et al., 1992; Tzou and Hollkamp,
1994; Varadan et al., 1996; Smittakorn and Heyliger,
2000; Sunar et al., 2001; Raja et al., 2002; Sharma
et al., 2007). These developments have been well docu-
mented in various topical reviews (Rao and Sunar, 1994;
Benjeddou, 2000; Tauchert et al., 2000; Fripp and
Atalla, 2001; Alkhatib and Golnaraghi, 2003; Garg
and Anderson, 2003; Bars et al., 2006; Kandagal and
Venkatraman, 2006; Song et al., 2006). Relatively,
only few works are focused on finding optimal locations
of sensors/actuators on a smart structure for AVC. In
these works, researchers have used many ‘optimization
criteria’ and ‘optimization techniques’ to find optimal
locations. Optimization techniques used to find optimal
piezoelectric sensor/actuator locations on a smart struc-
ture are well documented (Padula and Kincaid, 1999).

In a similar review, ‘optimization criteria’ used by
researchers for placement of piezoelectric, shape
memory alloys, and magnetostrictive actuators on a
smart structure have been mentioned (Frecker, 2003).
However to the best knowledge of authors, a review
article which presents: (i) ‘state-of-the-art’ of each ‘opti-
mization criterion’ used for placement of piezoelectric
sensors and actuators, and (ii) the optimal placements
so obtained, is absent in the literature. Presentation of
such ‘most used’ optimization criteria to find optimal
sensor/actuator locations in a unified way would be of
immense use to the practicing engineers and scientists
working in this field. So, the authors are motivated to
write a ‘technical review’ in this relatively new area
of research.

In this ‘technical review’, a well-knitted knowledge
bank of various criteria used by researchers for optimal
placement of piezoelectric sensors/actuators on a smart
structure is presented. ‘State-of-the-art’” of optimal
placement of sensors/actuators over a smart structure
based upon six optimizing criteria: (i) maximizing
modal forces/moments applied by piezoelectric actua-
tors, (i) maximizing deflection of the host structure,
(iii) minimizing control effort/maximizing energy dissi-
pated, (iv) maximizing degree of controllability, (v) max-
imizing degree of observability, and (vi) minimizing
spill-over effects, are discussed one by one. Optimal
placements so obtained are presented in a tabular form
for beam and plate smart structures.

OPTIMAL PLACEMENT OF PIEZOELECTRIC
SENSORS AND ACTUATORS

In following sections, ‘state-of-the-art’ of optimal
placement of piezoelectric sensors and actuators based
upon the above-mentioned six criteria are presented one
by one.

Maximizing Modal Forces/Moments Applied by
Piezoelectric Actuators

Piezoelectric actuators are desired to strain the host
structure in a direction opposite to the strains developing
in the host structure. So, it can be reasoned that piezo-
electric actuators should be placed in the regions of high
average strains and away from the areas of zero strain
(strain nodes). If an electric field is applied across piezo-
electric actuators in the same direction, as shown in
Figure 2(a), the host structure will be deformed in exten-
sion mode. If the field is applied across piezoelectric actu-
ators in the opposite directions as shown in Figure 2(b),
the host structure will be deformed in bending mode
(Crawley and de Luis, 1987). For control of first mode
of a cantilevered beam, collocated actuator pair should
be placed near the root. For second mode control, actu-
ators should not be placed at a distance 0.216 of beam
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Figure 2. A sketch of the surface bonded piezoelectric-substrate strain distribution during: (a) extension and (b) bending mode of the collo-

cated piezoelectric actuator pair.

length from the root as this is a location of zero strain
node. Segmented actuators at the opposite sides of zero
strain node and driven 180° out of phase would suit to
control such modes (Crawley and de Luis, 1987).

Actuators can be so placed such that modal force
available to modes of interest is maximized. To achieve
this goal, second-order differential equations of motion
are written in modal domain. When a plate is controlled
using independent modal space control, modal force
applied by an actuator to excite j-th mode depends
upon the location of the actuator and is given by (Bin
et al., 2000):

000 ==apby (") Lm0, )
where operator L = e3;{(9%/9x%) + (8*/3y*)} for isotro-
pic piezoelectric material. The vector, which gets multi-
plied by actuator control voltages, that is L[v;], is
maximized to achieve maximum modal force objective.
Optimal location thus obtained is where the sum of
modal strains in x- and y-direction is maximum.
Optimal placements of two actuators on a cantilevered
plate are adjacent to each other at mid-point of the can-
tilevered edge for first mode. For control of second
mode, both actuators are placed at extreme corners of
the cantilevered edge. For control of third mode, one
actuator is placed at a distance of 0.25 times length of
cantilevered edge on the cantilevered edge and second
actuator is placed at a distance of 0.75 times length of
cantilevered edge on the cantilevered edge (Bin et al.,
2000). Piezoelectric actuators apply moments and thus
strains on the structure (as shown in Figure 2). Moments
applied by piezoelectric actuator on the structure are
function of actuator placement and thickness and are
calculated as (Main et al., 1994):

(hs+hy)/2 d
E.ydy = —2b / oyydy,
0

2.2)

M = =2b,Y,d3 f
(hs=hy)/2

where ‘y’ is the distance from beam centerline in the
transverse direction. Thus, moments applied can be opti-
mized so as to get optimal thickness and placement of
actuator. Such optimal thickness and placement of actu-
ator would apply maximum moments on the structure
and thus result in maximum curvature of the host struc-
ture. Therefore, curvature of the host structure (2.3)
which is a function of modulus ratio of piezoelectric
and host structure can be optimized (Main et al., 1994):

2
d7y (1) - d31 E-(60401) 2.3)

dx2 = \d) py(1 = pus? = 203) + (6pap? +203)°

where py = %, Pu = /21—21, and p. = g—d Plots showing opti-

mal thickness versus modulus ratio for a given actuator
location and optimal actuator location versus modulus
ratio for given actuator thickness can be obtained for an
embedded piezoelectric actuator. Also, a plot showing
optimal thickness versus modulus ratio of a surface
bounded piezoelectric actuator can be obtained. So for
a given modulus ratio, optimal thickness as well as loca-
tion of actuator with respect to neutral plane of the host
structure can be obtained (Main et al., 1994).

Maximizing Deflection of the Host Structure

When an external voltage is applied on the surface
bonded piezoelectric actuator, it produces transverse
deflections in the host structure. Transverse deflection
of the host structure is a function of actuator placement.
So, transverse deflection of the host structure can be
used as criterion for optimal placement of actuators
(Bruch et al., 2000; Correia et al., 2000; Correia et al.,
2001; Sunar et al., 2001; Moita et al., 2006). Using
assumed mode shapes method, the dynamic transverse
deflection of the beam with surface bonded piezoelectric
patches is given by (Zhang et al., 2008):

w(x, 1) = Z Yi()n(2). (2.4)

i=1
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Also, output sensor voltage is given by (Zhang et al.,
2008):

Y2 3 w(x, t
Vsensor = e31bpd Kl %dx, (2.5)

where x; and x, are the sensor co-ordinates along x-axis.
Optimal position of actuator is where the system’s strain
value is highest. Highest strain value corresponds to the
position where beam’s curvature is highest. Optimal posi-
tion of sensor is where Vensor maximizes. Then, the opti-
mal position of collocated sensor—actuator pair is
ascertained by the following equation (Zhang et al., 2008):

Pw(x, 1)

s =0. 2.6)

Maximum deflection of host structure can be written
as a sum of average angular displacements of adjacent
edges of the actuator relative to opposite edges (Ip and
Tse, 2001):

1 a

Wmaxj = 5 2; ‘(Qlap +6,b )

.7)

where 6; and 6, are average angular displacements of
length and breadth vector about x- and y-axis, respec-
tively. This summation can be optimized to find optimal
position as well as orientation of the actuator. For
simply supported plates, optimal actuator position is
exactly at the anti-node of mode of interest. For canti-
levered plate optimal actuator positions are close to the
mid-span of cantilevered edge for the fundamental mode
and near the corner of the cantilevered edge for second
and third modes. For fourth and fifth modes, it is rec-
ommended to place actuators at anti-nodes (Ip and Tse,
2001). Similarly, in case of cantilevered beam, dynamic
deflection can be taken as criterion to decide optimal
position and length of the piezoelectric actuator
pair. Beam dynamic deflection (2.8) is a function of
partial derivative of beam mode shapes with respect
to the length coordinate of the beam (Barboni et al.,
2000):

> 9 SZsinZ»t—Z'sian
W= Z 77; 7]/ ' J )’ (2.8)
Zj(sz2 - 7)
where X =~ and Z; = ’ a . Effects of position and size

of the actudtor takes place in the term "’ . Therefore, this
derivative can be partially dlfferentlated and optimized
to find optimal position of the actuator when its length
is fixed. Optimal position thus obtained is located on the
beam where opposite edges of actuators correspond to
points of equal curvature of beam mode. Similarly,

optimal length of the actuator (when position is fixed)
corresponds to beam positions where opposite edges of
the actuator have opposite curvatures. Optimal position
as well as length of the actuator is achieved when it is
placed between two consecutive points where the curva-
tures become zero. This location is anti-node of the
mode and is strained the highest (Barboni et al., 2000).
Maximum plate deflection at a particular mode (j,k) can
be expressed as a function of product of two sine func-
tions of actuator position coordinates (Yang and Zhang,
20006):

maxl Z Z | /ki sin (]7'[0[0) sin (kﬂﬂo) (29)

Jj=1 k=

where function 4 depends upon plate and piezoelectric
actuator material properties, ag = 94 and gy = 252,
The product function (2.10) is named as ‘position mode
function’” (PMF) and can be partially differentiated to
find optimal actuator location (Yang and Zhang, 2006):

Xjk = sin’( jmar) sin® (k7 fy). (2.10)

Optimal locations thus obtained are at the anti-nodes
of respective vibration modes (Yang and Zhang, 2006).
Optimal actuator locations to excite several modes
simultaneously are obtained by taking combined posi-
tion mode function (CPMF), which is summation of
position mode functions of participating modes (Yang
and Zhang, 2006). Modal displacement of a structure is
a function of actuator placement and therefore, an influ-
ence matrix of actuators can be constructed. To excite
only some modes, rows of influence matrix correspond-
ing to modes of interest can be maximized and remain-
ing rows minimized. The sensor—actuator pair must be
located near the centerline along the fixed edge of can-
tilevered plate to damp the first mode. To damp the
second mode, optimal location is when one edge of the
sensor—actuator pair is on the free edge of the plate and
the other edge is on the cantilevered edge of the plate. To
control the first two modes simultaneously, one sen-
sor—actuator pair is placed at the centerline along the
cantilevered edge and other is placed adjacent to it along
the cantilevered edge (Quek et al., 2003).

Minimizing Control Effort/Maximizing Energy
Dissipated

In active vibration control, external source of energy
is utilized to cause deflection of the structure. The
dynamic equations of motion of smart structure in
modal domain are written as (Zhang et al., 2008):

U(f) + D}:}(l) + A’?(l) = B, Vac- (211)
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Modal amplitude ‘n’ can be controlled by external
voltage V. In state-space form, system (2.11) can be
written as (Yang and Lee, 1993a):

X(1) = AX(1) + BV (1)

Y(1) = CX(1), 12

where B = [ 0 i| and C=[0 B,]. The active damping

B{l
control law to increase energy dissipation through neg-
ative velocity feedback control law is (Yang and Lee,
1993a):

Vi = —KY = —KB, 1. (2.13)

Electrical energy spent in structural vibration suppres-
sion is a function of actuator placement and is given by
(Kim and Kim, 2005; Yang et al., 2005):

J, = / VT RV, dt, (2.14)
0

act

where R is the weighing matrix and is real symmetric
positive definite. It is desired that minimum energy is
spent in structural vibration suppression. Therefore,
minimization of J, can be used as a criterion for optimal
placement with constraint of minimum vibration sup-
pression level. Using Equation (2.14), optimal value of
J. 1s (Yang et al., 2005):

J. = —xT(0)Px(0), (2.15)
where matrix P is the solution of Lyapunov equation
and ‘x(0)’ is the initial condition. Using the above crite-
rion, minimum energy is used to control the transverse
vibrations of a cantilevered beam when the actuator is
placed near the root (Baz and Poh, 1988). Optimal dis-
tribution of piezoelectric layer over cantilevered plate
coincides with areas of high strain for first and third
modes. Second and fourth modes which are anti-sym-
metric, have asymmetric distribution of piezoelectric
layer. There is a critical coverage ratio over which addi-
tional treatment of active layer is not profitable. For
single (second and fourth) as well as for multiple
modes, split distribution of piezoelectric layer is the opti-
mal distribution (Kim and Kim, 2005). Equation (2.13),
when substituted in (2.11) reduces the dynamic equation
of motion of smart structure to:

ii(1) + (D + B,KB,)i(t) + An(r) = 0. (2.16)

The closed-loop system is stable if the location of col-
located sensor—actuator is selected so that generalized
damping matrix (D + B,KB,) is positive definite.
However, in case of non-collocated sensor—actuator

pair this condition may not be necessarily achieved
(Yang and Lee, 1993a). In such situation, asymmetric
generalized damping matrix (D + B,KB,) can be decom-
posed as a summation of a symmetric (C,) and a skew-
symmetric matrix (C,) such that (Yang and Lee, 1993a):

—_

Cs=D+D; D, =3[B,KB,+(B,KB)"]. (2.17)

2
1
ngz

[B.KB, — (B,KB,)"]. (2.18)

The closed-loop system would remain asymptotically
stable with infinite gain margin provided that the sym-
metric part ‘C,” of the generalized damping matrix is
positive definite. Skew-symmetric matrix ‘C,’ does not
influence the system stability at all. Hence to find the
optimal sensor/actuator locations for structural vibra-
tion control, one should only ensure the positive defi-
niteness of symmetric matrix ‘C; (Yang and Lee,
1993a). It is further desired that smart structure dissi-
pates energy as fast as possible. Energy dissipated by
active vibration control of a smart structure is (Yang
and Lee, 1993a.b; Yang et al., 2005):

Jo=— / xTOxdt, (2.19)
0

where Q = |:O 0 ] Energy dissipated as given by

0 D,
Equation (2.19), depends upon piezoelectric placement
as well as on feedback gain. So, piezoelectric placements
as well as control gains need to be optimized simulta-
neously so that energy dissipated by the system is max-
imized. With velocity feedback, ‘D.” should always be
positive definite and with state feedback, the real eigen-
values of closed-loop system matrix should be negative
(Yang and Lee, 1993a). Using Equation (2.19), optimal
value of J,; can be obtained (Yang and Lee, 1993b; Yang
et al., 2005) as:

Js = —x1(0)Px(0), (2.20)

where matrix P is the solution of Lyapunov equation.
For control of the first four modes using Equation
(2.20), optimal location of collocated sensor—actuator
pair comes out near the beam root for velocity feed-
back control and at the root for state feedback control
(Yang and Lee, 1993b). Optimal placement of one col-
located sensor—actuator pair is at 0.153 times beam
length from beam root for velocity feedback control.
One collocated sensor—actuator pair is at 0.15 times
beam length and the second one at 0.71 times beam
length from beam root for velocity feedback control
when two collocated sensor—actuator pairs are used.
If three collocated sensor—actuator pairs are used,
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then optimal placements are: (i) first pair at 0.158,
(i1) second pair at 0.359, and (iii) third pair at 0.828
times beam length from beam root for velocity
feedback control (Yang et al., 2005). A criterion for
the simultaneous minimization of energy spent by
the actuators and maximization of energy dissipated
by the structure can be obtained by using perfor-
mance index of LQR optimal control as (Yang and
Lee, 1993a,b; Bruant et al.,, 2001; Gaudiller and
Hagopian, 1996):

o0
Jod = / (x"Ox + VI, RV,e)dt. (2.21)
0

Equation (2.21) can be minimized to find the opti-
mal location of the actuator patch. Using (2.21), opti-
mal value of J,;, can be written as (Yang and Lee,
1993a,b):

Jeq = x1(0)Px(0), (2.22)
where matrix P is the solution of algebraic Riccati equa-
tion (ARE). Using criterion (2.22) to control the first
four modes of a cantilevered beam simultaneously, actu-
ator is placed at 0.059 times beam length and sensor at
0.067 times beam length from beam root for velocity
feedback control. For state feedback control, actuator
is placed at 0.042 times beam length and sensor at 0.223
times beam length. Optimal placement of collocated sen-
sor—actuator pair is at 0.125 times beam length for
velocity feedback control (Yang and Lee, 1993a). The
optimal solutions given by Equations (2.15), (2.20), and
(2.22) depend upon actuator locations and the initial
states. These initial states may not be known.
Therefore a procedure that minimizes the trace of
matrix P instead of solving Equations (2.15), (2.20),
and (2.22), can be used. The optimization criterion
thus becomes (Livine and Athans, 1970):

Minimize J = tr[P], (2.23)
where tr[.] denotes the trace of matrix. The trace is also
the sum of eigenvalues of the matrix. Placement of sen-
sor—actuator which minimizes the trace of matrix [P],
would be optimal from a possible set of locations for
controlling the structural vibrations (Nam and
Weisshaar, 1996; Fahroo and Wang, 1997; Demetriou,
2000; Li et al., 2002; Gao et al., 2003; Si et al., 2003; Kim
and Kim, 2005; Yang et al., 2005, Kumar and
Narayanan, 2007). When LQR performance index is
optimized using this method, the optimal locations of
10 sensor—actuator pairs over a cantilevered plate to
control first six natural modes are at regions of high
modal strain energies. Five sensor—actuator pairs are
placed at maximum modal strain energies of first two
modes, two at maximum modal strain energies of fourth

mode, and three around the center of the plate (Kumar
and Narayanan, 2007). Optimal locations of four collo-
cated piezoelectric actuator pairs on a plate shaped wing
are: two at the leading and the trailing edge of the root,
one at the edge of the tip, and one at the mid cord of the
out board region. Actuators placed at the tip, leading
edge, and at the trailing edge of the root are also thicker
than the remaining two (Nam et al., 1996). For control
of first mode of a cantilevered beam, optimal actuator
patch location is at root. One sensor is placed at a dis-
tance of 0.37 times beam length and second at 0.66 times
beam length from the root (Demetriou, 2000). Minimum
control energy can also be ensured by minimizing
(Lammering et al., 1994):

Z=u[FTF™"], (2.24)

where F = m~'y” and m is modal mass matrix.
Maximizing Degree of Controllability

Regardless of the control algorithm being applied,
necessary condition for effective active vibration control
is that the smart structure should be controllable. A
closed-loop system (2.12), is completely controllable if
every state variable can be affected in such a way so as to
cause it to reach a particular value within a finite
amount of time by some unconstrained control. If
one state variable cannot be affected in this way, the
system is said to be uncontrollable (Inman, 2006).
Controllability is a function of both the system dynam-
ics and location and number of actuators. Control influ-
ence matrix ‘B’ is determined by actuator locations on
the smart structure. A standard check for the controlla-
bility of a system is a ‘rank test’ of a matrix ‘R’ such that
(Inman, 2006):

R=[B 4B A’B A’B ...... A7 B|

Closed-loop system (2.12) is completely state con-
trollable if and only if 2n x 2n matrix R is full rank
(Inman, 2006). Rank of a matrix is the number of
independent rows (or columns) of the matrix when
the rows (columns) are treated like vectors. Matrix
R is called the ‘controllability matrix’ for the matrix
pair [4 B]. Controllability of a system only tells us
whether the system is controllable or not. Degree of
controllability of a system can be increased with
proper placement of actuators using various tech-
niques. In a smart structure, optimal actuator loca-
tions are where electrical energy consumed is
smallest and modal forces generated are the largest.
Criterion (2.14) ensures actuator locations where
energy required to control structural vibrations is
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minimum. Using this criterion, the optimal control
energy is obtained as (Hac and Liu, 1993):

Jo = [e"1x0} = {x }]' G 0" xo} — {x, 1], (2.26)

where the aim is to bring the modal system to a desired
state {x,, } from initial state {xo} after some time ‘7,” and,
‘G.’ is the controllability Gramian matrix defined as
(Hac and Liu, 1993):

1
G(1) = f e BB A" dt. (2.27)

0

Controllability Grammian matrix (2.27) is a measure

of the degree of controllability of a system. Effects of
actuator are contained in G, by way of matrix ‘B’.
Minimization of control energy (2.26) means minimiza-
tion of G.!'. In other words, minimum control energy
would be used in structural vibration control if determi-
nant of controllability Gramian matrix is maximized.
Eigenvalues of controllability Grammian matrix are
also a measure of the degree of controllability. Higher
the eigenvalues of controllability Grammian matrix,
higher is the controllability. If any eigenvalue of control-
lability Grammian is very less, then the corresponding
mode is difficult to control and would require a huge
amount of control energy for attenuation. Therefore,
configuration of actuators, which maximizes the perfor-
mance index (Peng et al., 2005):

2n
Jo= (Z )\,)
J=1

would require minimal control effort to suppress struc-
tural vibrations. Here, n is the number of first modes to
be controlled and A; is eigenvalue of controllability
Grammian. Criterion (2.28) is equivalent to maximizing
the performance index (Bruant and Proslier, 2005):

2n

(2.28)

J, = tr[G.] % (det G.)/*". (2.29)

Based on criterion (2.28), optimal location of four
actuators to control five modes of cantilevered plate is:
two actuators at extreme corners of cantilevered edge
and other two actuators placed adjacent to each other
near center of the plate (Peng et al., 2005). Criterion
(2.28) ensures global controllability of the system for
the first n eigenmodes. To control each mode individu-
ally by applying minimal control effort, each diagonal
term of G, can be maximized, that is, performance index
should be (Bruant and Proslier, 2005):

Je = maX{(GC)l 1> (GC)229 RS} (Gc)nn}’ (230)

where (G,); are the diagonal elements of G.. Number of
uncontrollable modes is equal to the number of very
small singular values of controllability Grammian
matrix (Grace et al., 1990). So, minimal singular value
of controllability Grammian can also be maximized to
search for optimal location of actuators (Sadri et al.,
1999; Kermani et al., 2004). Optimal actuator locations
for i-th mode can also be found using a measure of
‘modal controllability” defined as (Hamden and
Nayfeh, 1989; Sadri et al., 1998; Sadri et al., 1999;
Aldraihem et al., 2000; Zhang et al., 2009):

, 2.31)

8=/

,

'B . . .

where £ = 7= and ‘g; is the normalized eigenvector of
N

the i-th mode. Simultaneous maximization of minimal
singular value of controllability Grammian and ‘modal
controllability’ of the i-th mode, gives optimal actuator
locations between nodal lines for simply supported plate
(Sadri et al., 1999).

A square matrix can always be decomposed in the
form of U; WU,, where U, and U, are unitary matrices
and W is a diagonal matrix with singular values as the
diagonal elements (Gopal, 2008). This is called singular
value decomposition (SVD). Singular values of control
influence matrix ‘B’, determines the magnitude of con-
trol forces. These singular values are found by perform-
ing SVD of ‘B’. So, to achieve maximum control forces,
product of singular values can be taken as controllability
index (Wang and Wang, 2001):

(2.32)

n
=[]
i=1

where ‘k;” are the singular values of matrix ‘B’. Higher
the controllability index ‘I, smaller will be the required
actuator voltages for vibration suppression. Therefore,
maximization of controllability index gives optimal loca-
tion of the actuator (Wang and Wang, 2000; Dhuri and
Sheshu, 2006; Dhuri and Sheshu, 2009). For control of
first mode of simply supported beam, optimal location is
at the mid-span (anti-node) of the beam. For simulta-
neous control of first two modes, there are two optimal
locations at distance of approximately 0.3 times ‘beam
length’ from both ends. Similarly, there are three opti-
mal locations when the first three modes are controlled
simultaneously at distance of approximately 0.27, 0.50,
0.73 times ‘beam length’ from the left end. Similarly for
cantilevered beam, optimal location is at the root for
first mode. For simultaneous control of first two
modes, optimal location is at 0.56 times ‘beam length’
from the root. For simultaneous control of first three
modes, optimal location is at distance of 0.70 times
‘beam length’ from the root. If the free end of the
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cantilevered beam is propped then the optimal location
for control of first mode is at 0.3 times ‘beam length’
from the root. For simultaneous control of first two
modes, optimal location is at 0.73 times ‘beam length’
from the root. For simultaneous control of three modes,
optimal location is at 0.53 times ‘beam length’ from the
root (Wang and Wang, 2000).

Transfer function (G) between actuator voltage and
plate deflection gives the response characteristics of the
system. Degree of controllability can be quantitatively
measured using H, norm of the transfer function. H,
norm of the transfer function is defined as the expected
root-mean-square value of the output when the input is
a unit variance white noise. Square of H, norm of the
transfer function in modal form is (Moheimani and
Ryall, 1999):

—+00
IGilI5= 2i / tr{ G(r)G * (r) }dw, (2.33)
T —00
where ||G;||, is H> norm of the transfer function for i-th
mode, r; is the location of piezoelectric actuator, and
superscript (¥) denotes the complex conjugate. Modal con-
trollability is a measure of controller authority over i-th
mode and can be defined as (Moheimani and Ryall, 1999):

Mi(r) = <¥ x 100) %, (2.34)

where fi(r1) = ||Gi]l, and o; = max fi(r;). Square of H;
norm of the transfer function in spatial form is
(Moheimani and Ryall, 1999):

1 —+00
((G))%:E / /R tr{G(r)G * (r)}drdw,  (2.35)

where ((G))% is H, norm of the transfer function in spa-
tial form and ‘R’ is the spatial domain of the smart struc-
ture. Spatial controllability is a measure of controller
authority over the entire structural modes in an average
sense and is defined as (Moheimani and Ryall, 1999):

S(r1) = (113 /iﬁ(m)) x 100 %, (2.36)
i=1

where B =max ) ., fi(r1) and n is the number of low
frequency modes considered. Spatial H, norm is differ-
ent than modal A, norm in the sense that it introduces
an additional average operation over the spatial domain
R. Spatial H, norm is related to modal H, norm as
(Moheimani and Ryall, 1999):

J
(G)3= Y _lIGil3. (2.37)
i=1

Optimal piezoelectric actuator locations can be found
by either maximizing modal controllability (2.34) or spa-
tial controllability (2.36) (Moheimani and Fu, 1998;
Moheimani and Ryall, 1999; Halim and Moheimani,
2003; Liu et al., 2006; Dhuri and Sheshu 2007; Qui
et al., 2007; Guney and Eskinat, 2008). Using criterion
(2.34), first and second modes are completely controlla-
ble if actuator is placed at the root of the beam, third
mode is completely controllable if actuator is placed at
0.735 times beam length from the root of the beam and
fourth mode is completely controllable if actuator is
placed at 0.829 times beam length from the root of the
beam (Moheimani and Ryall, 1999). For control of first
mode of a simply supported plate, optimal placement of
actuator is in the middle of the plate (Halim and
Moheimani, 2003). Optimal piezo actuator location
can also be obtained where the spatial controllability is
maximized and modal controllability is guaranteed for
each mode of interest (Demetriou and Armaou, 2005).

Maximizing Degree of Observability

Every state variable in the system has some effect on the
output of the system. A closed-loop system (2.12) is said to
be completely observable if, examination of the system
output determines information about each of the state var-
iables. If one state variable cannot be observed in this way,
the system is said to be unobservable (Inman, 2006).
Observability is a function of both system dynamics and
location and number of sensors. The output influence
matrix ‘C’ is determined by the position of sensors on the
smart structure. The standard check for the observability of
a system is a rank test of a matrix ‘O’ where (Inman, 2006):

T
I1x2n"

(2.38)

O=[C c4 c4*> c4 ... CcA> 1]

The system is completely state controllable if, and
only if, 2n x 2n ‘matrix O’ is full rank. Matrix O is
called the ‘observability matrix’ for the matrix pair
[4 C]. Observability of a system only tells us weather
the system is observable or not. Degree of observability
depends upon the location of sensors and can be
increased with proper placement of sensors using vari-
ous methods. Optimal location of sensors is determined
using the same methodology as is used for actuators
(Bruant and Proslier, 2005). In a smart structure, opti-
mal sensor locations are where vibration amplitudes or
the changes in vibration mode shapes of host structure is
relatively large (Li et al., 2004), that is, system output
index (2.39) is as large as possible (Hac and Liu, 1993):

J, = / OO{Y}T{Y}dt. (2.39)
0
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Measure of observability is the observability Gramian
matrix ‘G,’ defined as (Hac and Liu, 1993):

00
G,(t) = / eACCcTe dt. (2.40)
0

Effects of sensor are contained in G, by way of matrix
‘C’. Information about observability is hidden in eigen-
values of the observability Grammian matrix. If the i-th
eigenvalue of G, is small, it means that the i-th mode will
not be well observed. Therefore, sensor location is so
selected that eigenvalues of observability Grammian
matrix corresponding to desired modes are maximized
(Bruant and Proslier, 2005). To maximize these eigen-
values, maximization of following measure can be done
(Hac and Liu, 1993; Baruh, 1992):

1/2n

Jo = tr[Go] * |(Go)| ", (2.41)

where 7 is the number of first modes to be observed.
Criterion (2.41) ensures global observability of the
system for the first n eigenmodes. To observe each
mode individually, diagonal terms of G, can be maxi-
mized, that is, performance index should be (Bruant and
Proslier, 2005):

J() = maX{(Ga)ll, (00)22, ......... N (G())nn}s (242)

where, (G,); are the diagonal elements of G,. Optimal
sensor locations can also be found using a measure of
‘modal observability’ of the i-th mode (Kim and
Junking, 1991) which is defined as (Hamden and
Nayfeh, 1989):

5= 14

: (2.43)

rc . . .
where /T = = and ‘¢ is the normalized eigenvector of
T all

the i-th mode. For a collocated sensor—actuator system
(1) measure of modal observability is equivalent to the
measure of modal controllability (Kim and Junking,
1991; Aldraihem et al., 1997), (ii) optimal sensor loca-
tions are same as optimal actuator locations when we
maximize the degree of controllability/observability
using H, norm (Qui et al., 2007), and (iii) measures of
modal and spatial observability using H, norm are
equivalent to the measure of modal and spatial control-
lability using H, norm (Halim and Moheimani, 2003).

To implement state feedback control law on a smart
structure, modal displacements, and modal velocities of
the modes to be controlled are estimated from output of
the sensor. The error vector between estimated and

actual modal displacement is given by (Sun and
Tong, 2001):

e} = (B 1B}, (2.44)
where B, & B, are the measurement influence vectors
corresponding to first n observed modes and r residue
modes, respectively, and n,(7) are residue modal vectors.
Square of the norm of error vector (2.44) is given by
(Sun and Tong, 2001):

le)|*= {e)} {e)} = {0} B0} (2.45)

[B,] = [B,.]T([B,,]*l)T[Bn]’l[B,,] is a symmetric positive
definite matrix. Then, degree of observability can be
increased by finding optimal sensor locations using the
criterion (Sun and Tong, 2001):

e < Amax(BD {0} {00}, (2.46)

where Anax([B.]) is the maximum eigenvalue of [B,].
Minimizing Spillover Effects

Many times, a smart flexible structure is discretized
into finite number of elements for vibration analysis and
control. It is sufficient to account for low frequency
dynamical behavior in most practical situations. While
implementing the control law, the model is reduced to
include only first few low frequency modes of interest.
Only first few low frequency modes are considered in
state observer. However, state feedback control law
based on a reduced model may excite the residual
modes. These residual modes appear in sensor output
but are not included in the control design as shown in
Figure 3. This closed-loop interaction with low damping
of the residual modes, results into spillover instability
(Preumont, 2002; Han et al., 1997). If subscript ‘¢’
refers to controlled modes, and subscript ‘7" refers to
residual modes then the open-loop system is described
as (Preumont, 2002):

Xc‘ = A X+ BVt

Xr = AI‘XV + Br Vact~
Y=CX.+CX,

(2.47)

Assuming a perfect knowledge of the controlled
modes, full state observer is (Preumont, 2002):

X/c = A(,’X/c + B Ve + LL<Y_ CCA,}(J)’ (248)
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Figure 3. Schematic illustration of spill-over effects.

where /\A’c is the estimated value of X, and L. is the
observer gain matrix. The state feedback control law is
(Preumont, 2002):

Vet = —K.X.. (2.49)

If X, and X, are the state variables and ¢, = X, — AA’C
then the interaction between control system and the
residual modes is given by (Preumont, 2002):

X. A.—B.K.  B.K. 0 X,

e, | = 0 A.—L.C. —L.C, €c

Xr - BrKC BI‘KC Ar Xr
(2.50)

B,K. and L.C, terms are the result of sensor output
being contaminated by residual modes via the term C, X,
(observation spillover), and the feedback control exciting
the residual modes via the term B, V¢ (control spillover).
As a result, the eigenvalues of the system shift away from
their decoupled locations as assumed in control law. If the
stability margin of the residual modes is small, even a small
shift in eigenvalues would make them unstable. This is
known as spillover instability. These spillover effects can
reduce the performance and stability of the controller
(Joshi, 1989). However, spillover effects can be reduced
if sensors and actuators are placed over a smart structure

in such a way that effects of residual modes are minimal.
Actuators so placed would control desired modes with
minimal control spillover and sensors so placed would
sense desired modes with minimal observation spillover.
To minimize the spillover effects, performance index (2.28)
can be modified as (Hac and Liu, 1993):

2n 2n 2(ne+ny) ) 2(ne+ny)
J= (ZM) [104) - V( > %‘) ARINZ)
j=1

=1 =2n0+1

where n, and n, are the number of the controlled modes
and residual modes, respectively, and vy is the weighting
constant, which can be selected by the designer.
Maximization of this performance index would maxi-
mize eigenvalues corresponding to the modes to be con-
trolled and minimize eigenvalues corresponding to the
modes to be ignored. This results in reduction of spill-
over effects (Han and Lee, 1999). When this criterion is
used to control first three modes of a composite canti-
levered plate instrumented with two piezoelectric sensors
and two piezoelectric actuators, optimal locations
are: (1) one sensor at one end of the cantilevered edge,
(i1) both actuators exactly below first sensor and placed
adjacent to each other, and (iii) second sensor at second
end of the cantilevered edge (Han and Lee, 1999).

2.51)
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Table 1. Optimal locations of surface bonded piezoelectric sensor and actuator patches on a smart beam structure.

Boundary Modes to be
Criterion condition controlled Sensor and actuator locations Source
Maximizing modal Cantilevered First Actuators must be placed near root (Crawley and de
forces/moments Luis, 1987)
Second One actuator at distance less than 0.216 times beam
length driven 180° out of phase with second actuator
at distance greater than 0.216 times beam length
bonded to opposite side
Maximizing deflec- Cantilevered First Optimal length of collocated actuator pair is equal to the  (Barboni et al.,
tion of the host length of the beam 2000)
structure
Second or Collocated actuator pair is where opposite edges of
higher actuator correspond to points of equal curvature of
beam mode
Minimizing the con-  Cantilevered First Actuators must be placed near root (Baz and Poh,
trol efforts 1988)
Optimal value of Cantilevered First Actuator is placed at root, one sensor is placed at a dis- (Demetriou,
LQR perfor- tance of 0.37 times beam length and second at 0.66 2000)
mance index times beam length from the root
Maximizing energy Cantilevered First four Actuator at 0.059 times beam length and sensor at 0.067  (Yang and Lee,
dissipated times beam length for velocity feedback control 1993a)
Actuator at 0.042 times beam length and sensor at 0.223
times beam length for state feedback control
Collocated sensor—actuator pair at 0.125 times beam
length for velocity feedback control
Cantilevered First four Collocated sensor—actuator pair near beam root for (Yang and Lee,
velocity feedback control 1993b)
Collocated sensor—actuator pair at beam root for state
feedback control
Cantilevered First four Collocated sensor—actuator pair at 0.153 times beam (Yang et al.,
length from beam root for velocity feedback control 2005)
(when one pair is used)
First collocated sensor—actuator pair at 0.15 times beam
length and second at 0.71 times beam length from
beam root for velocity feedback control (when two
pairs are used)
First collocated sensor—actuator pair at 0.158, second at
0.359, and third at 0.828 times beam length from beam
root for velocity feedback control (when three pairs are
used)
Maximizing degree Cantilevered First Collocated actuator pair at root (Wang and
of controllability Wang, 2000)
First two Collocated actuator pair at 0.56 times beam length from
root
First three Collocated actuator pair at 0.7 times beam length from
root
Cantilevered at First Collocated actuator pair at 0.3 times beam length from
one end and root
propped at
another
First two Collocated actuator pair at 0.73 times beam length from
root
First three Collocated actuator pair at 0.53 times beam length from
root
Simply First Collocated actuator pair at mid-span
Supported
First two Collocated actuator pair at 0.3 times beam length from
any end
First three Collocated actuator pair at 0.27 or 0.5 or 0.73 times beam
length from left end
Maximizing degree Cantilevered First Actuator at root (Moheimani and
of modal Ryall, 1999)
controllability
Second Actuator at root
Third Actuator at 0.735 times beam length from beam root
Fourth Actuator at 0.829 times beam length from beam root
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Table 2. Optimal locations of surface bonded piezoelectric sensor and actuator patches on a smart plate structure.

Criterion Boundary condition Modes to be controlled Sensor and actuator locations  Source

Maximizing modal forces/
moments applied by
actuator

Maximizing deflection of
the host structure

Minimizing the control
efforts

Optimal value of LQR
performance index

Expected value of LQR
performance index

Maximizing degree of
controllability

Maximizing degree of
observability and mini-
mizing spillover effects

Cantilevered

Cantilevered

Cantilevered

Simply
Supported

Cantilevered

Cantilevered

Cantilevered
(Plate shaped
wing)

Cantilevered

Simply Supported

Cantilevered

First

Second

Third

First

Second and Third

Fourth and Fifth
First

Second

First and Second

First five

First and Third

Second and Fourth

First six

First torsion mode

First five

First

First four
First three

Two actuators adjacent to each
other at mid-point of the canti-
levered edge

Two actuators at extreme corners
of the cantilevered edge

One actuator at 0.25 times length
of cantilevered edge on the
cantilevered edge and second
actuator at 0.75 times length of
cantilevered edge on the can-
tilevered edge

Actuator close to the middle of
cantilevered edge

Actuators near the corner of the
cantilevered edge

Actuators at anti-nodes

Collocated sensor—actuator pair
must be located near the cen-
terline along the cantilevered
edge

One edge of the collocated sen-
sor—actuator pair is on the free
edge of the plate and the other
edge is on the cantilevered
edge of the plate

One collocated sensor—actuator
pair is placed at the centerline
along the cantilevered edge
and other is placed adjacent to
it along the cantilevered edge

Actuators at anti-nodes of modes
of interest

Actuators should cover areas of
high strain

Optimal distribution of piezoelec-
tric actuator layer is
asymmetric

Five collocated sensor—actuator
pairs at maximum modal strain
energies of first two modes,
two at maximum modal strain
energies of fourth mode, and
three around the center of the
plate

Two actuators at leading and
trailing edge of the root, one at
the edge of the tip, and one at
the mid cord of the out board
region

Two actuators at extreme corners
of cantilevered edge and two
adjacent to each other near
center of the plate

Actuator at middle of the plate

Actuators between nodal lines

One sensor at one end of canti-
levered edge, two actuators
exactly below this sensor
placed adjacent to each other,
and another sensor at other
cantilevered end

(Bin et al., 2000)

(Ip and Tse, 2001)

(Quek et al., 2003)

(Ip and Tse, 2001;
Yang and Zhang,
2006)

(Kim and Kim, 2005)

(Kumar and Narayanan,

2007)

(Nam et al., 1996)

(Peng et al., 2005)

(Halim and Moheimani,

2003)
(Sadri et al., 1999)
(Han and Lee, 1999)
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To ensure maximum utilization of control energy with
minimum spillover effects, criterion (2.24) can be mod-
ified as (Lammering et al., 1994):

z=u[(FF) (FF) (2.52)

In this way, significant vibration control can be
achieved with only little spillover effect. When criterion
(2.46) is used to maximize the degree of observability,
spillover effects can be greatly minimized if we minimize
the maximum eigenvalue of [B,] (Sun and Tong, 2001).
Spillover effects can also be addressed by imposing a
constraint in criterion (2.36). High frequency residual
modes can be considered for which spatial controllabil-
ity can be defined as (Halim and Moheimani, 2003):

j
> S | x 100 %

i=J+1

Si(r1) = ﬁi

(2.53)
where J corresponds to the highest frequency mode that
is considered for the spillover reduction, and
B, = max Z,J: s+1/i(r1). Therefore, spillover effects can
be reduced by imposing the constraint (Halim and
Moheimani, 2003; Demetriou and Armaou, 2005):

Si(r) = ¢, (2.54)
along with the criterion (2.36) where, ‘¢’ is the upper allow-
able level for spatial controllability for spillover reduction.
Criteria (2.30) and (2.42) increase the degree of ‘modal
controllability’ and ‘modal observability’, respectively,
but without considering residual modes. These criteria
can be modified to include residual modes. New criterion
thus obtained for good controllability with minimal spill-
over effects is (Bruant and Proslier, 2005):

J =max{(G)1. (G- ... (Go),,, } and
min{ (G1),,. (G- -+ (G2),,, |

and for good observability with minimal spill-over
effects is (Bruant and Proslier, 2005):

(2.55)

J == maX{(GO)1 1s (G0)22, ey (G())n‘”[} and
min{ (7). (G)s - (G),, |

where (G7). and (G').. are the eigenvalues correspond-
. ‘ 11 113
ing to residual modes.

In all sections of ‘Optimal Placement of Piezoelectric
Sensors and Actuators’, ‘state-of-the-art’ of optimal
placement of piezoelectric sensors and actuators based
upon six optimization criteria are discussed one by one.
Optimal placements so obtained for surface bonded

(2.56)

piezoelectric sensors and actuators are presented crite-
rion wise for smart beam structures in Table 1, and for
smart plate structures in Table 2. According to all crite-
ria, as can be observed from the results presented in the
Table 1: (i) to control the first mode of a cantilevered
beam, optimal placement of actuators is near the root
of the beam, and (ii) to control the higher modes of a
cantilevered beam, optimal placement of actuators is
away from the root of the beam. According to all criteria,
results presented in Table 2 reflect that in case of a can-
tilevered plate: (i) optimal placement of actuator is close
to the mid-point of cantilevered edge for control of the
first mode, (ii) optimal placement of actuators is at the
corners of cantilevered edge for control of second mode,
and (iii) optimal placement of actuators is in between the
mid-point and corners of the cantilevered edge for con-
trol of higher modes. According to all criteria in case of
simply supported plates, the optimal actuator placements
are either: (i) at locations where average strains in x- and
y-directions are maximum, or (ii) at anti-nodes.
Actuators should not be placed at nodes. It is also
observed from Tables 1 and 2 that: (i) optimal placements
of piezoelectric sensors and actuators on a smart struc-
ture depend upon the optimization criterion and bound-
ary conditions, and (ii) optimal locations obtained for
each criterion cannot be predicted using intuitive
method. Placement of sensors and actuators based
upon intuitive method can result in poor performance
or even failure of AVC scheme (Yang and Lee, 1993a).
It is therefore recommended that the placement of sen-
sors and actuators on a smart structure should be accord-
ing to a suitable criterion. Out of six criteria discussed in
the sections of ‘Optimal Placement of Piezoelectric
Sensors and Actuators’, the first four give the optimal
placement of piezoelectric actuators. Criterion 2.5 gives
the optimal placement of piezoelectric sensor. Optimal
placement of piezoelectric sensors as well as actuators
can be ascertained by applying criterion 2.6.

CONCLUSIONS

In this ‘technical review’, the authors have presented
the ‘most used’ optimization criteria by researchers for
placement of piezoelectric sensors and actuators on a
smart structure. Attempt is made to discuss ‘state-of-
the-art’ for each criterion. Optimal locations so
obtained, are presented for beam and plate structures
in a tabular form. A practicing engineer or a researcher
can pick the most suitable placement for his application
using information provided in the table and avoid intu-
itive methods. The following conclusions are drawn
from this ‘technical review’:

1. Optimal placements of piezoelectric sensors and actu-
ators on a smart structure depend upon the optimi-
zation criterion.
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2. If actuators are placed in the region where average
modal strains are highest, then such placement of
actuators would apply maximum modal forces/
moments on the smart structure.

3. If actuators are placed at the antinodes of modes of
interest, then such placement of given actuators would
result in maximum deflection of the host structure.

4. Most of the researchers have used ‘minimizing con-
trol effort/maximizing energy dissipation’ as criterion
for optimal placement of actuators.

5. Degree of controllability can be maximized to place
actuators at locations where the modes of interest of
smart structure are best controlled. Similarly, degree
of observability can be maximized to place sensors at
locations where the modes of interest are best
observed. However, criterion 2.6 can be used for opti-
mal placements of both piezoelectric sensors and
actuators on a smart structure and to ensure mini-
mum spillover effects as well.

6. Actuators used in smart structures are more massive
than sensors. Therefore, optimal placement of actua-
tors has greater significance than that of sensors. Out
of the six criteria discussed above, four (2.1-2.4) are
exclusively dedicated for optimal placement of actu-
ators, and one criteria (2.6) is dedicated for optimal
placement of both sensors and actuators. Criterion
2.5 is the only criterion exclusively dedicated for opti-
mal placement of sensors.

7. Optimal placement of piezoelectric sensors and actu-
ators depends upon boundary conditions. While
searching for optimal locations the boundary condi-
tions must be properly understood.

8. Optimal locations of piezoelectric sensors and actua-
tors can be found by either selecting a single criterion
or a combination of more than one criterion depend-
ing upon the end application.

9. Most of the work is targeted on simple beam
and plate structures. Studies on optimal piezoelectric
sensor and actuator placement on real-life com-
plex structures is absent in the literature.
Therefore, future research should be targeted on
optimal placement of piezoelectric patches on real-
life structures.
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