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Abstract. We present ActMiner, which addresses four major challenges
to data stream classification, namely, infinite length, concept-drift, concept-
evolution, and limited labeled data. Most of the existing data stream
classification techniques address only the infinite length and concept-
drift problems. Our previous work, MineClass, addresses the concept-
evolution problem in addition to addressing the infinite length and concept-
drift problems. Concept-evolution occurs in the stream when novel classes
arrive. However, most of the existing data stream classification tech-
niques, including MineClass, require that all the instances in a data
stream be labeled by human experts and become available for training.
This assumption is impractical, since data labeling is both time consum-
ing and costly. Therefore, it is impossible to label a majority of the data
points in a high-speed data stream. This scarcity of labeled data nat-
urally leads to poorly trained classifiers. ActMiner actively selects only
those data points for labeling for which the expected classification er-
ror is high. Therefore, ActMiner extends MineClass, and addresses the
limited labeled data problem in addition to addressing the other three
problems. It outperforms the state-of-the-art data stream classification
techniques that use ten times or more labeled data than ActMiner.

1 Introduction

Data stream classification is more challenging than classifying static data because
of several unique properties of data streams. First, data streams are assumed to
have infinite length, which makes it impractical to store and use all the historical
data for training. Therefore, traditional multi-pass learning algorithms are not
directly applicable to data streams. Second, data streams observe concept-drift,
which occurs when the underlying concept of the data changes over time. In or-
der to address concept-drift, a classification model must continuously adapt itself
to the most recent concept. Third, data streams also observe concept-evolution,
which occurs when a novel class appears in the stream. In order to cope with
concept-evolution, a classification model must be able to automatically detect
novel classes when they appear, before being trained with the labeled instances
of the novel class. Finally, high speed data streams suffer from insufficient labeled



data. This is because, manual labeling is both costly and time consuming. There-
fore, the speed at which the data points are labeled lags far behind the speed
at which data points arrive in the stream, leaving most of the data points in
the stream as unlabeled. So, supervised classification techniques suffer from the
scarcity of labeled data for learning, resulting in a poorly built classifier. Most
existing data stream classification techniques address only the infinite length,
and concept-drift problems [1–3]. Our previous work MineClass [4] addresses
the concept-evolution problem in addition to the infinite length and concept-
drift problems. However, it did not address the limited labeled data problem.
Our current work, ActMiner, extends MineClass by addressing all the four prob-
lems and providing a more realistic data stream classification framework than
the state-of-the-art.

A solution to the infinite length problem is incremental learning, which re-
quires a single pass over the training data. In order to cope with concept-drift,
a classifier must be continuously updated to be consistent with the most recent
concept. ActMiner applies a hybrid batch-incremental process [2, 5] to solve the
infinite length and concept-drift problems. It divides the data stream into equal
sized chunks and trains a classification model from each chunk. An ensemble of
M such models is used to classify the unlabeled data. When a new data chunk
becomes available for training, a new model is trained, and an old model from
the ensemble is replaced with the new model. The victim for the replacement
is chosen by evaluating the accuracy of each model on the latest labeled chunk.
In this way, the ensemble is kept up-to-date. ActMiner also solves the concept-
evolution problem by automatically detecting novel classes in the data stream.
In order to detect novel class, it first identifies the test instances that are well-
separated from the training data, and tag them as Raw outlier. Then raw outliers
that possibly appear as a result of concept-drift or noise are filtered out. If a
sufficient number of such strongly cohesive filtered outliers (called F -outliers)
are observed, a novel class is assumed to have appeared, and the F -outliers are
classified as novel class instances. Finally, ActMiner solves the limited labeled
data problem by requiring only a few selected instances to be labeled. It iden-
tifies the instances for which the classification model has the highest expected
error. This selection is done without knowing the true labels of those instances.
By selecting only a few instances for labeling, it saves 90% or more labeling time
and cost, than traditional approaches that require all instances to be labeled.

We have several contributions. First, we propose a framework that addresses
four major challenges in data stream classification. To the best of our knowl-
edge, no other existing data stream classification technique addresses all these
four problems in a single framework. Second, we show how to select only a few
instances in the stream for labeling, and justify this selection process both the-
oretically and empirically. Finally, our technique outperforms state-of-the-art
data stream classification techniques using ten times or even less amount of la-
beled data for training. The rest of the paper is organized as follows. Section 2
discusses the related works in data stream classification. Section 3 describes the
proposed approach. Section 4 then presents the experiments and analyzes the
results. Section 5 concludes with directions to future work.



2 Related Work

Related works in data stream classification can be divided into three groups:
i) approaches that address the infinite length and concept-drift problems, ii)
approaches that address the infinite length, concept-drift, and limited labeled
data problems, and iii) approaches that address the infinite length, concept-drift,
and concept-evolution problems. Groups i) and ii) again can be subdivided into
two subgroups: single model and ensemble classification approach.

Most of the existing techniques fall into group i). The single-model ap-
proaches in group i) apply incremental learning and adapt themselves to the
most recent concept by continuously updating the current model to accommo-
date concept drift [1, 3, 6]. Ensemble techniques [2, 5] maintain an ensemble of
models, and use ensemble voting to classify unlabeled instances. These tech-
niques address the infinite length problem by keeping a fixed-size ensemble, and
address the concept-drift problem by updating the ensemble with newer mod-
els. ActMiner also applies an ensemble classification technique. Techniques in
group ii) goes one step ahead of group i) by addressing the limited labeled data
problem. Some of them apply active learning [7, 8] to select the instances to be
labeled, and some [9] apply random sampling along with semi-supervised clus-
tering. ActMiner also applies active learning, but its data selection process is
different from the others. Unlike other active mining techniques such as [7] that
requires extra computational overhead to select the data, ActMiner does the
selection on the fly during classification. Moreover, none of these approaches
address the concept-evolution problem, but ActMiner does.

Techniques in group iii) are the most rare. An unsupervised novel concept
detection technique for data streams is proposed in [10], but it is not applicable to
multi-class classification. Our previous work MineClass [4] addresses the concept-
evolution problem on a multi-class classification framework. It can detect the
arrival of a novel class automatically, without being trained with any labeled
instances of that class. However, it does not address the limited labeled data
problem, and requires that all instances in the stream be labeled and available for
training. ActMiner extends MineClass by requiring only a few chosen instances
to be labeled, thereby reducing the labeling cost by 90% or more.

3 ActMiner: active classification and novel class detection

In this section we discuss ActMiner in details. Before describing ActMiner, we
briefly introduce MineClass, and present some definitions.

3.1 Background: novel class detection with MineClass

ActMiner is based on our previous work MineClass [4], which also does data
stream classification and novel class detection. MineClass is an ensemble classi-
fication approach, which keeps an ensemble of M classification models. First, we
define the concept of novel class and existing class.

Definition 1 (Existing class and Novel class) Let L be the current ensem-
ble of classification models. A class c is an existing class if at least one of the
models Li ∈ L has been trained with class c. Otherwise, c is a novel class.



MineClass detects novel classes in three steps: i) creating decision boundary
for a classifier during its training, ii) detecting and filtering outliers, and iii)
computing cohesion among the outliers, and separation of the outliers from the
training data.

The decision boundaries are created by clustering the training data, and sav-
ing the cluster centroids and radii as pseudopoints. Each pseudopoint represents
a hypersphere in the feature space. Union of all the hyperspheres in a model
constitutes the decision boundary. Any test instance falling outside the decision
boundary is an outlier. All outliers are filtered to reduce noise, and any outlier
that passes the filter is called an F -outlier.
Definition 2 (F−outlier) A test instance is an F−outlier (i.e., filtered outlier)
if it is outside the decision boundary of all classifiers Li ∈ L.

Finally, the cohesion and separation is computed using the following equation:
q-NSC(x) = bmin(x)−a(x)

max(bmin(x),a(x)) , where x is an F -outlier, bmin(x) is the mean
distance from x to its nearest existing class neighbors and a(x) is the mean
distance from x to other F -outlier neighbors. If q-NSC(x) is positive for at least
q F -outlier instances, then a novel class is assumed to have arrived. This is the
basic working principle of the DetectNovelClass() function in algorithm 1.

3.2 ActMiner algorithm
ActMiner, which stands for Active Classifier for Data Streams with novel class
Miner, performs classification and novel class detection in data streams while
requiring very small amount of labeled data for training. The top level algorithm
is sketched in algorithm 1.

The algorithm starts with building the initial ensemble L = {L1, ..., LM}
with the first few data chunks of the stream (line 1), and initializing the training
buffer. Then a while loop (line 2) runs indefinitely until the stream is finished.
Within the while loop, the latest data chunk Dn is examined. Each instance xk
in Dn is first passed to the Classify() function, which uses the existing ensemble
to get its predicted class ŷk and its F -outlier status (line 7). If it is identified as
an F -outlier, then it is temporarily saved in a buffer buf for further inspection
(line 8), otherwise, we output its predicted class (line 9). Then we call the De-
tectNovelClass() function to inspect buf to detect whether any novel class has
arrived (line 11). If a novel class has arrived then the novel class instances are
classified as “novel class” (line 13). Then the class predictions of all instances in
buf are sent to the output (line 15). We then select the instances that need to
be labeled (lines 17-22). Only the instances identified as Weakly Classified In-
stance (WCI) are required to be labeled by human experts, and they are saved
in the training buffer with their true class labels (line 19). We will explain WCI
shortly. All other instances remain as unlabeled, and they are saved in the train-
ing buffer with their predicted class labels (line 20). A new model L′ is trained
with the training buffer (line 24), and this model is used to update the existing
ensemble L (line 25). Updating is done by first evaluating each model Li ∈ L on
L, and replacing the worst (based on accuracy) of them with L′. ActMiner can
be applied to any base learning algorithm in general. The only operation that
needs to be specific to a learning algorithm is train and save decision boundary.



Algorithm 1 ActMiner
1: L ← Build-initial-ensemble(), L ← empty //training data
2: while true do
3: Dn ← the latest data chunk in the stream
4: //Classification, outlier detection, novel class detection
5: buf ← empty //temporary buffer
6: for each xk ∈ Dn do
7: < fout, ŷk > ← Classify(xk,L) //ŷk is the predicted class label of xk

8: if fout = true then buf ⇐ xk //enqueue into buffer
9: else output prediction < xk, ŷk > end if

10: end for
11: found ← DetectNovelClass(L,buf) //(see section 3.1)
12: if found=true then
13: for each novel class instance xk ∈ buf do ŷk ← “novel class” end for
14: end if
15: for each instance xk ∈ buf output prediction < xk, ŷk > end for
16: //Label the chunk
17: for each xk ∈ Dn do
18: if xk is an weakly classified instance (WCI)
19: then L ⇐ < xk, yk > //label it and save (yk is the true class label of xk)
20: else L ⇐ < xk, ŷk > //save in training buffer with the predicted class label
21: end if
22: end for
23: //Training
24: L′ ← Train-and-save-decision-boundary (L) //(see section 3.1)
25: L ← Update(L,L′,L)
26: L ← empty
27: end while

3.3 Data selection for labeling

Unlike MineClass, ActMiner does not need all the instances in the training data
to have true labels. ActMiner selectively presents some data points to the user
for labeling. We call these data points as WCIs. In order to perform ensemble
voting on an instance xj , first we initialize a vector V = {v[1], ..., v[C]} to zeros,
where C is the total number of classes, and each v[k] represents a real value. Let
classifier Li predicts the class label of xj to be c, where c ∈ {1, ..., C}. Then we
increment v[c] by 1. Let v[max] represent the maximum among all v[i]. Then
the predicted class of xj is max. An instance xj is a WCI if either
i) The instance has been identified as an F -outlier (see definition 2), or ii) The
ratio of its majority vote to its total vote is less than the Minimum Majority
Threshold (MMT), a user-defined parameter.

For condition i), consider that F -outliers are outside the decision boundary
of all the models in the ensemble. So the ensemble has the highest uncertainty in
classifying them. Therefore, F -outliers are considered as WCIs and need to be
labeled. For condition ii), let us denote the ratio with Majority to Sum (M2S)
ratio. Let v[max] be maximum in the vector V , and let s =

∑C
i=1 v[i]. There-



fore, the M2S ratio of xj is given by: M2S(xj) = v[max]
s . The data point xj is

considered to be a WCI if M2S(xj) < MMT. A lower value of M2S(xj) indicates
higher uncertainty in classifying that instance, and vice versa.

Next we justify the reason for labeling the WCIs of the second type, i.e.,
instances that have M2S(xj) < MMT. We show that the ensemble classification
error is higher for the instances having lower M2S.

Lemma 1. Let A and B be two sets of disjoint datapoints such that for any
xa ∈ A, and xb ∈ B, M2S(xa) < M2S(xb). Then the ensemble error on A is
higher than the ensemble error on B.

Proof. Given an instance x, the posterior probability distribution of class c is
p(c|x). Let C be the total number of classes, and c ∈ {1, ..., C}. According to
Tumer and Ghosh [11], a classifier is trained to learn a function fc(.) that
approximates this posterior probability (i.e., probability of classifying x into
class c): fc(x) = p(c|x) + ηc(x) where ηc(x) is the error of fc(x) relative to
p(c|x). This is the error in addition to Bayes error and usually referred to as the
added error. This error occurs either due to the bias of the learning algorithm,
and/or the variance of the learned model. According to [11], the expected added

error can be obtained from the following formula: Error =
σ2
ηc(x)

s where σ2
ηc(x)

is the variance of ηc(x), and s is the difference between the derivatives of p(c|x)
and p(¬c|x), which is independent of the learned classifier.

Let L = {L1, ..., LM} be an ensemble of M classifiers, where each classifier
Li is trained from a data chunk. If we average the outputs of the classifiers in
a M -classifier ensemble, then according to [11], the probability of the ensemble
in classifying x into class c is: favgc (x) = 1

M

∑M
m=1 f

m
c (x) = p(c|x) + ηavgc (x),

where favgc (x) is the output of the ensemble L, fmc (x) is the output of the m-th
classifier Lm, and ηavgc (x) is the added error of the ensemble, given by:
ηavgc (x) = 1

M

∑M
m=1 η

m
c (x), where ηmc (x) is the added error of the m-th classifier

in the ensemble. Assuming the error variances are independent, the variance of
ηavgc (x), i.e., the error variance of the ensemble, σ2

ηavgc (x)
, is given by:

σ2
ηavgc (x) =

1
M2

M∑
m=1

σ2
ηmc (x) (1)

where σ2
ηmc (x) is the variance of ηmc (x).

Also, let σ2
ηavgc (xa)

(A), and σ2
ηavgc (xb)

(B) be the variances of the ensemble error
on A, and B, respectively. Let zc(x) be 1 if the true class label of x is c, and
zc(x) be 0, otherwise. Also, let fmc (x) be either 0 or 1. The error variance of
classifier Lm on A is given by [7]:

σ2
ηmc (xa)(A) =

1
|A|

∑
xa∈A

(zc(xa)− fmc (xa))2 (2)

where (zc(xa) − fmc (xa))2 is the squared error of classifier Lm on instance xa.
Since we assume that fmc (xa) is either 0 or 1, it follows that (zc(xa)−fmc (xa))2 =
0 if the prediction of Lm is correct, and = 1, otherwise. Let xa be an arbitrary
instance in A, and let r(xa) be the majority vote count of xa. Also, let us divide



the classifiers into two groups. Let group 1 be {Lmj}
r(xa)
j=1 , i.e., the classifiers that

contributed to the majority vote, and group 2 be {Lmj}Mj=r(xa)+1, i.e., all other
classifiers. Since we consider that the errors of the classifiers are independent,
it is highly unlikely that majority of the classifiers will make the same mistake.
Therefore, we may consider the votes in favor of the majority class to be cor-
rect. So, all classifiers in group 1 has correct prediction, and all other classifiers
have incorrect predictions. The combined squared error (CSE) of the individual
classifiers in classifying xa into class c is:
M∑
m=1

(zc(xa)− fmc (xa))2 =
r(xa)∑
j=1

(zc(xa)− fmjc (xa))2 +
M∑

j=r(xa)+1

(zc(xa)− fmjc (xa))2

= 0 +
M∑

j=r(xa)+1

(zc(xa)− fmjc (xa))2 (3)

Note that CSE is the sum of the squared errors of individual classifiers in the
ensemble, not the error of the ensemble itself. Also, note that each component
of group 2 in the CSE, i,e,. each (zc(xa)− fmjc (xa))2, j > r(xa) contributes 1 to
the sum (since the prediction is wrong). Now we may proceed as follows:
M2S(xa) < M2S(xb)⇒ r(xa) < r(xb) (since the total vote = M) (4)
This implies that the size of group 2 for xa is larger than that for xb.
Therefore, the CSE in classifying xa is greater than that of xb, since
each component of group 2 in CSE contributes 1 to the sum. Continuing from eqn (4),

⇒
M∑

j=r(xa)+1

(zc(xa)− fmjc (xa))2 >

M∑
j=r(xb)+1

(zc(xb)− fmjc (xb))2

⇒
M∑
m=1

(zc(xa)− fmc (xa))2 >

M∑
m=1

(zc(xb)− fmc (xb))2 (using eqn 3) (5)

Now, according to the Lemma statement, for any pair (xa ∈ A, xb ∈ B),
M2S(xa) < M2S(xb) holds, and hence, inequality (5) holds. Therefore, the mean
CSE of set A must be less than the mean CSE of set B, i.e.,

⇒ 1
|A|

∑
xa∈A

M∑
m=1

(zc(xa)− fmc (xa))2 >
1
|B|

∑
xb∈B

M∑
m=1

(zc(xb)− fmc (xb))2

⇒
M∑
m=1

(
1
|A|

∑
xa∈A

(zc(xa)− fmc (xa))2) >
M∑
m=1

(
1
|B|

∑
xb∈B

(zc(xb)− fmc (xb))2)

⇒
M∑
m=1

σ2
ηmc (xa)(A) >

M∑
m=1

σ2
ηmc (xb)

(B) (using eqn 2)

⇒ σ2
ηavgc (xa)(A) > σ2

ηavgc (xb)
(B) (using eqn 1)

That is, the ensemble error variance, and hence, the ensemble error (since
error variance is proportional to error) on A is higher than that of B. �



4 Experiments

In this section we describe the datasets, experimental environment, and discuss
and analyze the results.
4.1 Data sets and experimental setup

We use two synthetic and two real datasets for evaluation. These are: Syn-
thetic data with only concept-drift (SynC), Synthetic data with concept-drift
and novel-class (SynCN), Real data - KDDCup 99 network intrusion detection
(KDD), and Real data - Forest cover dataset from UCI repository (Forest).
Due to space limitation, we omit the details of the datasets. Details can be found
in [4]. We use the following parameter settings, unless mentioned otherwise: i)
K (number of pseudopoints per classifier) = 50, ii) q (minimum number of in-
stances required to declare novel class) = 50, iii) L (ensemble size) = 6, iv) S
(chunk size) = 2,000. v) MMT (minimum majority threshold) = 0.5.

4.2 Baseline approach

We use the same baseline techniques that were used to compare with MineClass
[4], namely, WCE-OLINDDA Parallel and WCE-OLINDDA Single, with some
minor changes. First, we use a more recent version of OLINDDA [10] than was
used in [4]. Second, in order to see the effects of limited labeled data on WCE-
OLINDDA models, we run two different settings for WCE-OLINDDA Parallel
and WCE-OLINDDA Single. First, we run WCE-OLINDDA Parallel ( WCE-
OLINDDA Single) with all instances in each chunk labeled. We denote this set-
ting as WCE-OLINDDA Parallel-Full (WCE-OLINDDA Single-Full). Second,
we run WCE-OLINDDA Parallel (WCE-OLINDDA Single) with exactly the
same instances labeled as were labeled by ActMiner, plus any instance identified
as novel class by WCE-OLINDDA Parallel (WCE-OLINDDA Single). We de-
note this setting as WCE-OLINDDA Parallel-Partial (WCE-OLINDDA Single-
Partial). We will henceforth use the acronyms AM for ActMiner, WOPf for
WCE-OLINDDA Parallel-Full, WOSf for
WCE-OLINDDA Single-Full, WOPp for WCE-OLINDDA Parallel-Partial,
and WOSp for WCE-OLINDDA Single-Partial.

4.3 Evaluation

Evaluation approach: Let Fn = total novel class instances misclassified as ex-
isting class, Fp = total existing class instances misclassified as novel class, Fe
= total existing class instances misclassified (other than Fp), Nc = total novel
class instances in the stream, N = total instances the stream. We use the fol-
lowing performance metrics to evaluate our technique: Mnew = % of novel class
instances Misclassified as existing class = Fn∗100

Nc
, Fnew = % of existing class

instances Falsely identified as novel class = Fp∗100
N−Nc , ERR = Total misclassifica-

tion error (%)(including Mnew and Fnew) = (Fp+Fn+Fe)∗100
N . From the definition

of the error metrics, it is clear that ERR is not necessarily equal to the sum of
Mnew and Fnew. Also, let Lp be the percentage of instances in the data stream
required to have labels for training.



Evaluation is done as follows: we build the initial models in each method
with the first init number chunks. In our experiments, we set init number = 3.
From the 4th chunk onward, we evaluate the performances of each method on
each data point. We update the models with a new chunk whenever all data
points in that chunk is labeled.
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Fig. 1: Overall error (ERR), percentage of data required to be labeled (Lp), total
novel instances missed, and encountered by each method

Results: Figures 1(a1),1(b1) show the ERR of each baseline technique and fig-
ures 1(a2),1(b2) show the percentage of data labeled (Lp) corresponding to each
technique on a real (Forest) and a synthetic (SynCN) dataset with decision
tree. Corresponding charts for other datasets and k-NN classifier are similar,
and omitted due to the space limitation. Figure 1(a1) shows the ERR of each
technique at different stream positions for Forest dataset. The X axis in this
chart corresponds to a particular stream position, and the corresponding value
at the Y axis represents the ERR upto that position. For example, at X=200,
corresponding Y values represent the ERR of a technique on the first 200K in-
stances in the stream. At this position, corresponding Y values (i.e., ERR) of
AM, WOPf , WOPP , WOSf and WOSp are 7.5%, 10.8%, 56.2%, 12.3%, and
63.2%, respectively. The percentage of data required to be labeled (LP ) by each
of these techniques for the same dataset (Forest) is shown in figure 1(a2). For ex-
ample, at the same X position (X=200), the LP values for AM, WOPf , WOPP ,
WOSf and WOSp are 8.9%, 100%, 12.7%, 100%, and 9%, respectively. Therefore,
from the first 200K instances in the stream, AM required only 8.9% instances to
have labels, whereas, its nearest competitor (WOPf ) required 100% instances to
have labels. So, AM, using 11 times less labeled data, achieves lower ERR rates
than WOPf . Note that ERR rates of other methods such as WOPp, which uses
less than 100% labeled data, are much worse.



Table 1: Performance comparison
Classifier Dataset

ERR Mnew

AM WOPf WOPp WOSf WOSp AM WOPf WOPp WOSf WOSp

Decision tree
SynC 13.4 14.1 42.5 12.8 42.3 - - - - -
SynCN 0.3 8.9 38.4 13.9 55.7 0.0 26.5 31.0 96.2 96.3
KDD 1.2 5.8 64.0 6.7 74.8 1.4 13.2 22.4 96.9 96.1
Forest 6.3 7.9 74.5 8.5 77.4 4.6 30.7 69.3 70.1 83.1

k-NN
SynC 0.0 2.4 2.4 1.1 1.1 - - - - -
SynCN 0.0 8.9 17.2 13.9 36.0 0.0 26.5 26.3 96.2 98.9
KDD 1.1 4.9 15.3 5.2 63.2 6.2 12.9 76.1 96.5 99.1
Forest 7.1 4.1 16.9 4.6 37.8 15.4 32.0 28.6 70.1 82.2

Classifier Dataset
Fnew Lp

AM WOPf WOPp WOSf WOSp AM WOPf WOPp WOSf WOSp

Decision tree
SynC 0.0 2.4 2.4 1.1 1.0 1.04 100 3.41 100 2.05
SynCN 0.0 1.6 1.5 0.1 0.1 9.31 100 12.10 100 9.31
KDD 1.1 4.3 4.5 0.03 0.03 3.33 100 8.82 100 3.34
Forest 3.0 1.1 1.1 0.2 0.2 6.51 100 8.08 100 6.56

k-NN
SynC 0.0 2.4 2.4 1.1 1.1 0.0 100 2.46 100 1.09
SynCN 0.0 1.6 1.7 0.1 0.1 8.35 100 12.73 100 8.35
KDD 0.9 4.4 4.8 0.03 0.03 1.73 100 7.94 100 1.73
Forest 1.9 1.1 1.0 0.2 0.2 5.05 100 6.82 100 5.20

Figures 1(c1),1(d1) show the number of novel instances missed (i.e., misclas-
sified as existing class) by each baseline technique, and figures 1(c2),1(d2) report
the total number of novel instances encountered by each technique on the same
real (Forest) and synthetic (SynCN) datasets with decision tree classifier. For
example, in figure 1(c1), for X=200, the Y values represent the total number of
novel class instances missed by each technique within the first 200K instances
in the stream. The corresponding Y values for AM, WOPf , WOPP , WOSf and
WOSp are 366, 5,317, 13,269, 12,156 and 14,407, respectively. figure 1(c2) shows
the total number of novel instances encountered by each method at different
stream positions for the same dataset. Different approaches encounter different
amount of novel class instances because the ensemble of classifiers in each ap-
proach evolve in different ways. Therefore, a class may be novel for one approach,
and may be existing for another approach.

Table 1 shows the summary of the evaluation. The table is split into two
parts: the upper part shows the ERR and Mnew values, and the lower part
shows the Fnew and Lp values. For example, consider the upper part of the table
corresponding to the row KDD under Decision tree. This row shows the ERR
and Mnew rates for each of the baseline techniques on KDD dataset for decision
tree classifier. Here AM has the lowest ERR rate, which is 1.2%, compared to
5.8%, 64.0%, 6.7%, and 74.8% ERR rates of WOPf , WOPp, WOSf and WOSp,
respectively. Also, the Mnew rate of AM is much lower (1.4%) compared to any
other baselines. Although WOSf and WOPf have lower ERR rates in SynC
(decision tree), and Forest (k-NN), respectively, they use at least 20 times more
labeled data than AM in those datasets, which is reported in the lower right
part of the table (under Lp), and their Mnew rates are much higher than AM.

Figure 2(left) shows the effect of increasing the minimum majority threshold
(MMT) on ERR rate, and figure 2(right) shows the percentage instances labeled
for different values of MMT on SynC. For AM, the ERR rate starts decreasing
after MMT=0.5. This is because there is no instance for which the M2S (majority
to sum) ratio is less than 0.5. So, Lp remains the same (1%) for MMT=0.1 to 0.5
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Fig. 2: Effects of increasing the minimum majority threshold (MMT)

(see figure 2(b)), since the only instances needed to be labeled for these values
of MMT are the F -outlier instances. However, when MMT=0.6, more instances
needed to be labeled (Lp=3.2%) as the M2S ratio for these (3.2-1.0=) 2.2%
instances are within the range [0.5,0.6). The overall ERR also reduces since more
labeled instances are used for training. Sensitivity of AM to other parameters
are similar to MineClass [4], and omitted here due to space limitations.

Table 2: Running time comparison in all datasets
Dataset

Time(sec)/1K Time(sec)/1K
(including labeling time)

AM WOPf WOSf AM WOPf WOSf
SynC 0.32 0.41 0.2
SynCN 1.6 14.3 3.1
KDD 1.1 24.0 0.6 34.4 1,024.0 1,000.6
Forest 0.87 8.5 0.5 66.0 1,008.5 1,000.5

Table 2 reports the running times of AM and other baseline techniques on
different datasets with decision tree. Running times with k-NN also have similar
characteristics. Since WOPf and WOPp have the same running times, we report
only WOPf . The same is true for WOSf and WOSp. The columns headed by
“Time (sec)/1K ” show the average running times (train and test) in seconds
per 1000 points excluding data labeling time, and the columns headed by “Time
(sec)/1K (including labeling time)” show the same including data labeling time.
For example, excluding the data labeling time, AM takes 1.1 seconds to process
1K instances on the KDD dataset, whereas WOPf , WOPp takes 24.0, and 0.5
seconds, respectively. In general, WOPf is much slower than AM, requiring about
C times more runtime than AM. This is because WOP maintains C parallel
OLINDDA models to detect novel classes. Besides, OLINDDA creates clusters
using an internal buffer every time it encounters an instance that is identified as
unknown, which consumes much of its running time. On the other hand, WOSf
runs slightly faster than AM in three datasets. But this advantage of WOSf
is undermined by its much poorer performance in classification accuracy than
AM. If we consider the data labeling time, we get a more compelling picture. We
consider the labeling times only for real datasets. Suppose the labeling time for
each data point for the real datasets is 1 sec, although in real life, data labeling



may require much longer time [12]. Out of each 1000 instances, AM requires
only 33, and 65 instances to have labels for the KDD, and Forest datasets,
respectively (see table 1 under Lp). Whereas WOPf and WOSf require all the
1000 instances to have labels. Therefore, the total running time of AM per 1000
instances including data labeling time is only 3.4% and 6.5% of that of WOPf
and WOSf for KDD and Forest datasets, respectively. Thus, AM outperforms
the baseline techniques both in classification accuracies and running times.

5 Conclusion
Our approach, ActMiner, provides a more complete framework for data stream
classification than existing techniques. ActMiner integrates the solutions to four
major data stream classification problems: infinite length, concept-drift, concept-
evolution, and limited labeled data. Most of the existing techniques address only
two or three of these four problems. ActMiner reduces data labeling time and cost
by requiring only a few selected instances to be labeled. Even with this limited
amount of labeled data, it outperforms state-of-the-art data stream classification
techniques that use ten times or more labeled data. In future, we would like to
address the dynamic feature set problem and multi-label classification problems
in data stream classification.
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