
OpenRDK: a modular framework for robotics software development

Daniele Calisi, Andrea Censi, Luca Iocchi, Daniele Nardi

Abstract— In this paper we conduct an analysis of existing
frameworks for robot software development and we present
OpenRDK, a modular framework focused on rapid devel-
opment of distributed robotic systems. It has been designed
following users’ advice and has been in use within our group for
several years. By now OpenRDK has been successfully applied
in diverse applications with heterogeneous robots and as we
believe it is fruitfully usable by others we are releasing itas
open source.

I. I NTRODUCTION

More than sixty years after the creation of the first pro-
grammable computers, programming is still an art [8] rather
than a science. The advancements of hardware capabilities,
and the networking revolution of the last decade, exacerbate
the problem because new applications of unprecedented
complexity are possible and desirable.

The discipline of software engineering aims at provid-
ing paradigms, methods, and tools for designing and re-
alizing complex software systems. The problem with such
paradigms, methods, and tools is that they tend to come and
go in a few years, a time scale that is incomparable with
other engineering fields. Object oriented languages (C++,
Java), UML, distributed services (Web 2.0), agile languages
(Python, Ruby, etc.) are just a few examples of a very
fast evolution of methodologies and techniques in less than
twenty years.

The situation is even worse when we look at software
for robotic applications. In this paper, we refer to “robotic
applications” as complex systems based on mobile robotics
technology and we consider robotic software to be in the
middle ground of two fields: it is as complex as other
standard ICT software, and it has the same hard real-world
requirements as industrial automation. On the one hand,
developing a full control stack for a team of heterogeneous
robots is as hard as any other large distributed software
system; however, standard tools of ICT software might not
be applicable because of the real-world issues like network
unreliability or real-time constraints. On the other hand,for-
mal methods used in automation for developing distributed
control systems, like the IEC 61499 standard [12], are not
really applicable to robotics, because they were designed
only for relatively simple systems.

The scientific community is undertaking an intense effort
to find a common structure in robotic applications, both from

D. Calisi, L. Iocchi, D. Nardi are with the Dipartimento di Informatica e
Sistemistica “A. Ruberti”, “Sapienza” Università di Roma, via Ariosto 25,
I-00185 Rome, Italy.{calisi,iocchi,nardi}@dis.uniroma1.it

A. Censi is with the Control & Dynamical Systems department,California
Institute of Technology, 1200 E. California Blvd., 91125, Pasadena, CA.
andrea@cds.caltech.edu

a conceptual and from an implementation point of view,
in order to achieve a wide deployment of standard design
techniques, architecture styles, and reusable components.
This resulted to be very difficult because of the wide range
of domains where robots can be exploited, the variety of
forms and functions that a robot can have, and, moreover,
because of the diversity of people involved in robotics [2].It
is then natural that people working with robots felt the need
to develop their own solutions.

Although the primary development of mobile robots will
eventually be the industry, nowadays the coolest-acting
robots (e.g., those seen in DARPA Grand Challenge, or the
Mars rovers) still come from academia or other research
environments. Consequently, much of the related work on
robotic frameworks makes sense only for the needs of a
relatively small academic research group.

Our work on OpenRDK is focused on the needs of a
research group, whose aim is to create innovative algorithms
for complex mobile robotic systems, without spending more
time than necessary on the software infrastructure. The
research group we are considering here is formed by many
people (e.g., 10 undergraduate students) working for a short
time (e.g., 6 months) on a complex project (e.g., multi-robot
heterogeneous exploration in a disaster scenario), usually
with no or only a few experience on robotic applications and
on software engineering. Hence our main goals are modu-
larity and code re-usability, but we need to take into account
also other real-world related problems, like efficiency, noisy
perception, unreliable networks, etc.

The contributions of this paper are twofold. On the one
hand, we conducted a deep analysis of the issues that a
robotic software framework should address, and how existing
frameworks take their choices. On the other hand, we present
our own framework, designed to meet the goals described
above through its unique combination of design choices.

The software can be downloaded from
http://OpenRDK.sourceforge.net and can be used
under the terms of the GPL (GNU General Public License).

II. RELATED WORK

One tenet of engineering is reducing the complexity of
a problem by dividing it into smaller problems (divide et
impera!). In software, this leads to dividing an application in
smaller “modules”: mutually decoupled software units with
precise interfaces. In the following we will use the term
“module” to refer to this kind of entity, regardless of the
use of other words in other frameworks (e.g., component,
service, client, driver, etc.).



With a modular architecture, there are two main choices to
be made: how to arbitrate the modules access to the computa-
tional resources, and how to make the modules communicate.
These are the two main dimensions in which we frame the
related work, a summary of which is shown in Table I. The
table also shows which tools the frameworks provide for
speeding up development: examples are simulators; loggers
for sensor data; remote inspection tools to observe/modify
the module state; and configuration utilities.

A. Concurrency model

We classified three possibilities, as follows.

• Modules areprocessesdistributed over one or more
machines. In this case, developers have the highest
freedom. The major drawback is the need of some com-
munication infrastructure that allows for inter-process
communication.

• Modules are threads inside a single process. With
multi-threading, sharing information is easily accom-
plished using shared memories, but this requires that the
framework provides some mechanism for data access
concurrency and thread synchronization.

• Modules are defined bycall-back functionsand there is
a single process (i.e., a scheduler) that repeatedly calls
them in response to some event or periodically. The
call-back functions are preferable for frameworks whose
focus is on low-level device interaction: in particular,
call-backs allow for a better scheduling control, that can
be used to enforce real-time constraints. On the other
hand, writing this kind of call-back functions is difficult,
because they need to return quickly to the scheduler and
thus distribute the computation over more than one call.

The distributed process model is a very common choice:
most existing frameworks use this architecture. Nevertheless,
these choices are not mutually exclusive, and some frame-
works use of a hybrid architecture.

B. Information sharing model

There are two metaphors that can be used to model the
exchange of information among modules:

• modules have input and output “ports” from which they
can receive or send messages to other modules that are
connected to these ports;

• there is a central object where modules “publish” their
data and where they can read other modules data, using
some sort of addressing scheme.

In practice, there are two main mechanisms that may
be used: modules within the same process may use shared
memory, while modules distributed among different pro-
cesses/hosts have to use some inter-process communication
service.

If modules are implemented as threads or as call-back
functions, shared memory is the most efficient communica-
tion method. In the case of threads, concurrency management
primitives are necessary. We remark that the shared memory
mechanism cannot allow for all semantics which is usually
needed. An example is if two modules act as a producer/-
consumer couple: in this case the framework must provide
a mechanism to implement some kind of data “queue” in
shared memory.

Some of the existing frameworks make use of third-party
middleware to accomplish inter-module communication. The
advantage of this choice is that they are broadly experi-
mented and stable, but there are also some drawbacks: often
their goals, like multi-platform/multi-language supportand
application independence, are not of primary importance in
robotics. Writing a proprietary middleware can be a difficult
and a long work, but it allows to fit the specific needs of the
robotic application, without unnecessary added complexity.

TABLE I

SUMMARY OF EXISTING SOFTWARE ROBOTIC FRAMEWORK

Framework Concurrency model Information sharing Tools Focus

OROCOS1 [3] call-backs, threads lock-free data ports (CORBA) remote inspection, logging low-level devices
Orca2 [9] processes ICE13 remote inspection, logging mobile robots
CARMEN3 processes IPC logging, visualization mapping and navigation
OpenRTM-aist4 [1] threads CORBA configuration GUI general robotics
Microsoft Robotics Studio5 processes HTTP/DSSP via DSS 3D simulator general robotics
Player6 [5] threads (server) client/server, proprietary over TCP 2D and 3D simulators low-level device drivers
MOOS7 processes centralized, proprietary over TCP logging, viewers mobile robots
CLARAty8 [10] threads, processes relies on ACE14 none real-world systems
MARIE9 [6] processes many (3rd party) configuration GUI connecting different frameworks
MOAST10 processes NML/RCS11 logging, visualization USARSim, mobile robots
MIRO11 [11] processes CORBA logging mobile robots
SPQR-RDK [7] call-backs, threads proprietary over TCP remote inspection mobile robots
OpenRDK threads shared memory, proprietary TCP/UDP remote inspection, logging mobile robots

ahttp://www.orocos.org
bhttp://orca-robotics.sourceforge.net
chttp://carmen.sf.net
dhttp://www.is.aist.go.jp/rt/OpenRTM-aist
ehttp://msdn2.microsoft.com/en-us/robotics/

fhttp://playerstage.sf.net
ghttp://www.robots.ox.ac.uk/∼pnewman/TheMOOS/
hhttp://claraty.jpl.nasa.gov/
ihttp://marie.sf.net
jhttp://moast.sf.net

khttp://www.isd.mel.nist.gov/projects/rcslib
lhttp://smart.informatik.uni-ulm.de/MIRO/
mhttp://zeroc.com/ice.html
nhttp://www.cs.wustl.edu/ schmidt/ACE.html



III. O PENRDK

OpenRDK is written in in C++ and it runs on Unix-like
operating systems (Linux, OS X).

The main entity is a software process calledagent. A
module is a single thread inside the agent process; modules
can be loaded and started dynamically once the agent process
is running.

An agentconfiguration is the list of which modules are
instantiated, together with the value of their parameters and
their interconnection layout. It is initially specified in a
configuration file.

Modules communicate using a blackboard-type object,
called repository (see Figure 1(a)), in which they publish
some of their internal variables (parameters, inputs and
outputs), calledproperties. A module defines its properties
during initialization; after that, it can access its own and
other modules’, within the same agent or remotely, through
a global URL-like addressing scheme. Access to remote
properties is transparent from the module perspective and
it reduces to (regulated) shared memory for local properties.
Specialqueueobjects also reside in the repository and they
share the same global URL-like addressing scheme of other
properties.

In Figure 1(a) we see an example. Two agent are executed
on two different machines and three modules run inside
them: hwInterface retrieves data from a laser range finder
and the odometry by a robotic base; given these two piece
of information, localizer uses a scan-matching algorithm in

(a) Logical module interconnection

(b) Properties and links realizing the interconnection

Fig. 1. Example configuration of two agents running on two different hosts

order to estimate the robot positions over time;mapper uses
the estimated robot positions, together with the laser scans,
to build a map of the environment. ThehwInterface module
pushes laser scan and odometry objects into queues, that are
remotely accessed by thelocalizer module, which, in turn,
pushes the estimated poses in another queue, for themapper
to access to them. The map property is then updated by the
mapper and being used by thenavigator.

A. Concurrency model

OpenRDK uses multiple processes with multiple threads.
We rejected the alternative of using one thread per process
and implement modules as call-back functions because we
saw, we saw, through the years, that our typical user does not
have the required discipline to implement them correctly. The
multi-threading solution is a good compromise, even though
it required an infrastructure for concurrent data access and
synchronization.

At run-time, each module (thread) is waiting for some
event to occur. Typical events are fixed interval timeouts,
new data on a queue or the change of a property value;
modules can wait on more than one event.

B. Repository, properties and URLs

The repository is the place where all modules publish the
data they want to share with others. Published properties are
inputs, outputs and parameters. A path-planner module, for
example, could publish the current and target robot poses as
inputs, and the resulting path as output.

Each property is assigned an URL with the syntax:
rdk://<agent-name>/<module>/<property>

Note that the agent name is different than the host name,
as there can be more than one OpenRDK agents on the
same host. Some examples of properties can be found in
Figure 1(b), that shows the properties of the example of the
agents in Figure 1(a). These globally unique URLs allow
every module to transparently access a property on any other
agent (on any other host).

C. Object serialization

Serialiazion is the process of transforming run-time objects
in a form suitable for storage or transmission. In OpenRDK,
each class implements a serialization API which has the
same interface for writing both in XML (typically for storage
purposes, for example to save configuration files that can
be easily read by a human) and in a more efficient binary
format (for transmission over the network). We chose not
to provide any automatic mechanism to generate this kind
of functions (for example, using an IDL-like language),
because platform independence is not among our goals and,
moreover, because in this way we have a great flexibility that
allows for the implementation of ad-hoc serializations (e.g.,
for lossy/lossless compression of maps and images).

D. Configuration and object persistence

A configuration is a list of modules to be loaded and
executed, their interconnections and the values of their



parameters. Agent configurations are saved as XML files
and contain a serialized representation of each module and
its properties. Since parameters are properties, they can
easily be saved using the mechanism seen in the previous
subsection. Moreover, since we save all module properties
in the configuration file, this technique can also be used to
save the state and load it afterwards. For example, we can
have the robot building a map of an environment, save it once
in the configuration file, and then use it for all subsequent
runs.

E. Property links

The device of “property links”, analogous to Unix sym-
bolic links, introduces a level of indirection in the repository
that allows to make the modules as decoupled as possible.

The main problem that links solve is that two modules
needing to share an information must agree on some well-
known place (in our case, a URL) where this information
is to be accessed, and this creates an unnecessary coupling
between them.

Links can point to remote properties as well, and this
allows to distribute the computation in a way which is
completely transparent to the module developer.

Links are specified in a configuration file; since the data
flow is not hard-coded, modules can be easily re-used for
different applications. In practice, this encourages the devel-
opers to create many small re-usable modules instead of big
monolithic ones.

For example, consider Figure 1(b): themapper module
needs a robot pose in order to build the map. Thanks to
the property links, the development of this module does
not have to be delayed until thelocalizer is finished. In
fact, the mapper/in/robotPose property can be linked to
hwInterface/out/odometry. When the localizer is ready,
there is no need to change any code, only the configuration.
Moreover, there are, for example, applications and scenarios
that do not need alocalizer module and the odometry is
sufficient.

F. Queues as object dispatchers

OpenRDK implements two models for sharing data be-
tween modules: publisher/reader and producer/consumer.
Regular properties realize the former, and special “queue”
properties implement the latter.

Queues are very smart FIFO containers:

• They support multiple readers; thread-safeness is en-
sured without object duplication;

• They own the objects that are pushed into them and take
care of garbage collection, by destroying the objects
when no reader is interested in them anymore;

• They allow subscribing modules to listen to particular
objects entering in the queue, and to be awoken on that
event.

• They are ‘passive’ objects: no additional thread is
required.

Although the OpenRDK queues implementation is rather
complex, it is kept “under the hood” and they actually make

1 // Module hwInterface, on agent1
2 RDK2::ROdometry∗ odom = new RDK2::ROdometry(/∗ ... ∗/);
3 session−>queuePush(”odometry”, odom);

1 // module localizer, on agent2: during initialization
2 session−>subscribeQueue(”odometry”);
3 // ”odometry” is linked to ”rdk://agent1/hwInterface/odometry”
4

5 // module localizer, on agent2: during execution
6 while (session−>wait(), !exiting) {
7 vector<const RDK2::ROdometry∗> v =
8 session−>queueFreezeAs<ROdometry>(ODOMETRY URL);
9

10 for (size t i = 0; i < v.size(); i++) {
11 const ROdometry∗ odom = v[i];
12 // process odometry data in the queue
13 }
14 }

Fig. 2. Example of using a queue object in OpenRDK (see also Figure 1(a))

module writing much easier. See for example Figure 2, in
which we show the communication between two modules,
hwInterface and localizer: the first module takes the odom-
etry reading from the sensor device and pushes in a queue
called “odometry”, on another agent, the modulelocalizer
subscribes to that queue during initialization and then is able
to retrieve the values in a very simple way.

G. Inter-agent information sharing

As we described above, information sharing among mod-
ules that are executed inside the same agent (process) is
accomplished using the repository. Inter-agent (i.e., inter-
process) communication is accomplished by two methods:
throughproperty sharingandmessage sending.

In the first case, one agent refers to properties of another
agent by specifying the name of the remote agent in the
URL of the property (this is usually done when specifying
a property link in the configuration). The repository is in
charge of requesting the remote property value and publish
it in a local copy (proxy) for the requesting module to read.

Property sharing can be tuned by using a set of parameters,
that can be specified in the configuration files and are
explained in the following.

• The subscriber can request a property update every time
it changes on the published repository (ON CHANGE) and
optionally set a minimum interval between two subse-
quent updates. As an alternative, it may request that the
update have to be sent at fixed intervals (PERIODIC in
OpenRDK terms).

• The subscriber can request to use one of two transport
protocols: UDP or TCP.

OpenRDK also partially implements a data reconstruction
layer, i.e., some object can be split in multiple packets and
reconstructed in the destination repository. Moreover, for
some objects can be requested aLOSSLESS (default) orLOSSY
compression. For example, if an image have to be sent to
an image processing module, chances are that it need the
image as it was on the source side. On the other hand, if



the property is requested solely for visualization purpose, a
lossy compression is more effective.

In addition to the property sharing mechanism, we also
implemented a standard message-sending (mailbox) method,
for when this feature is a more straightforward mapping with
the semantic of the application. When a module wants to
send a message to another module, being it on the same agent
or on a remote one, it writes the address of the recipient on
the message object and push it into a special queue called
“outbox”. Receiving a message requires to subscribe to the
“inbox” queue and to be able to discern interesting messages.

H. Tools contained in the OpenRDK

RConsole: RConsole is a graphical tool for remote
inspection and management of modules. We use it as both
the main control interface of the robot and for debugging
while we develop the software. RConsole was very easy to
implement thanks to the property sharing mechanism: it is
just an agent that happens to have some module that displays
a GUI. Through the reflection used in the repository, graphi-
cal widgets visualize the internal module state and allow the
user to change their parameters while running. Advanced
viewers allows to interact with images and maps, moving
robot poses, seeing visual debug information provided by
modules, etc.

Modules for logging and replaying:OpenRDK provides
a configurable module that, reading from a sensors queue,
is able to write a log file containing the sensor data. This
file can be processed off-line using third-party tools or
used in conjunction with another module that provides the
“playback” feature.

Connection with simulators:As we explained in the
Section II, OpenRDK provides modules that allow to connect
to both USARSim and, through Player, to Stage and Gazebo.
The modules expose the same interface of the real ones,
thus resulting in a transparent behavior for the modules that
connects to them.

IV. SOME APPLICATIONS OFOPENRDK

The OpenRDK framework has been successfully used
in a wide range of robotic applications. Our group has
a long record in RoboCup competitions. OpenRDK has
been extensively used in all competitions in which we have
been involved: RoboCupRescue Real Robots, RoboCupRes-
cue Virtual Robots, RoboCup@Home, and also RoboCup
soccer Standard Platform League (with two-legged humanoid
robots). In particular, the latter league makes use of Alde-
baran’s Nao humanoid robots. OpenRDK currently runs on
the Nao’s internal computation unit and our team has devel-
oped modules for a humanoid robotic soccer application.

A. Single rescue robotic system

Our group is involved in rescue robotics, whose goal is to
develop robots to assist human rescuers during emergency
operations. The main capabilities needed by such a robot
are:

• to build a map on an unknown environment;

• to be able to move autonomously in a cluttered scenario;
• to report to the human rescuers the interesting features

found during the exploration (for example, possible
human victims that are entombed or trapped, or possible
treats).

The system has been developed as an OpenRDK agent.
The real robot was equipped by two personal computers
and two agents run on each of them: in this way, we
were able to divide the computation weight among two
machines. In particular, the first was responsible for the robot
mapping and navigation subsystems, as well as the mission
manager module; the second machine contained the modules
for vision processing. In this application, one example of
property sharing is that the vision module published a queue
of “possible human sightings” that was read remotely by the
mission manager module on the other PC. See Figure 3(a)
for details.

By simply substituting the real sensor and robot modules
by modules that connected to a simulator, we have been able
to test exactly the same software system in both real and
simulated scenarios. The simulated rescue scenario allowed
us to conduct experiments with a large number of robots in
a large environments.

B. Assistive robots

The RoboCare Project1 aims at building a system for
assistance of the elderly and the impaired person. Such
non-invasive technology is a distributed and heterogeneous
system and should be easily integrated in the environment
and able to interact with the person and to monitor his
behavior. Some of the main components is a multi-camera
system that can follow the human in the environment and
track his position, a wheeled robot that can move in the
environment and interact with the human through a human-
robot interface, and a PDA that the assisted person can use
to interact.

In this project, two OpenRDK agents are involved and in-
terconnected to a pre-existent system. One of them is respon-
sible of managing the mobile robot. It includes modules for
localization in a known environment as well as path-planning
and dynamic obstacle avoidance. Another OpenRDK agent
is running connected with the camera tracking system and
is responsible for sending the image data to the PDA and to
send the tracked human position to the robot agent.

C. Context-based online configuration

In a recent work of ours [4], we studied the possibilities of
a system that is able to control the behavior of other modules
by using “contextual” information. Using the OpenRDK
framework, we were able to test this idea in a straightforward
way. The only thing we needed was to implement the con-
textual controller and connect its outputs to theparameters
of the other modules. In this way, the contextual controller
was able, for example, to reduce the maximum speed of the
path planner, when the situation required slower movement,

1http://robocare.istc.cnr.it



(a) a single rescue robotic system application with two agents (b) a context-based online configuration architecture

Fig. 3. Two examples of configuration: gray properties are queues

or to switch between two mapper modules. In Figure 3(b)
we can see a simplified diagram of this system.

V. CONCLUSIONS AND ON-GOING WORK

In this paper, after a deatiled analysis of the many existing
robotic frameworks and how they address the most important
issues, we presented our own OpenRDK framework. Our
design choices reflect the need for fast development of
complex robotics applications in a research environment.

With respect to the other full-featured frameworks, Open-
RDK’s most unique features are the multi-threaded multi-
processes structure and the blackboard-type inter-module
communication and data sharing. These allow to seamlessly
distribute the computation among several hosts in a trans-
parent way and encourage the users to develop many small
decoupled modules with well-defined capabilities.

The most immediate future work is to extend the Qual-
ity of Service (QoS) settings provided by the OpenRDK,
regarding network property sharing, to include additional
features defined by the DDS specification. For example,
at the moment OpenRDK communication happens either
over TCP or UDP; in the case of noisy wireless networks
neither behave well, as UDP messages are simply lost, and
TCP keeps resending old data (thus aggravating the network
overload). It would be useful to have a mechanism similar
to DDS’s “latency budget”, which keeps resending data only
for a fixed period of time. Another useful DDS notion is
the set of rules for detecting whether a peer is not reachable
anymore and acting consequently.

The QoS approach can be extended to other forms of
computation on robotic platforms. There are many algo-
rithms, whose output has a quality that can be tuned: for
example, with particle filters one can have more precise
estimates by using more particles, in RRT path-planning one
can find shorter paths by expanding more nodes. Integrating
the“computation QoS” in the framework, by providing some
means for the modules to declare a QoS, seems particularly
interesting because it addresses a need which is very partic-
ular to robotics.

Finally, we are working at tools for the analysis of config-
uration files, that will be very useful for detecting critical

situations (such as possible deadlocks on resources) and
verify properties of the applications (for example, constraints
on the schedule and on the activation of modules).

In conclusion, we are not worried by the apparent prolifer-
ation of robotic frameworks. The fact that there are currently
lots of frameworks projects available is not necessarily a bad
thing, it just means that the field is alive and well and that
there are many directions being explored.

REFERENCES

[1] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Woo-KeunYoon.
RT-middleware: distributed component middleware for RT (robot
technology). InProc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS 2005), pages 3933–3938, August 2005.

[2] Davide Brugali. Software Engineering for Experimental Robotics
(Springer Tracts in Advanced Robotics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2007.

[3] Herman Bruyninckx. Open robot control software: the OROCOS
project. In Proceedings of Int. Conf. of Robotics and Automation
(ICRA’01), pages 2523–2528. IEEE, 2001.

[4] Daniele Calisi, Alessandro Farinelli, Giorgio Grisetti, Luca Iocchi,
Daniele Nardi, S. Pellegrini, D. Tipaldi, and Vittorio A. Ziparo.
Contextualization in mobile robots. ICRA’07 Workshop on Semantic
Information in Robotics, 2007.

[5] T.H.J. Collet, B.A. MacDonald, and B.P. Gerkey. Player 2.0: Toward a
practical robot programming framework. InProc. of the Australasian
Conf. on Robotics and Automation (ACRA 2005), December 2005.

[6] Carle Cotè, Yannick Brosseau, Dominic Letourneau, Cl´ement
Raı̈evsky, and Francois Michaud. Robotic software integration using
marie. International Journal of Advanced Robotic Systems, 3(1):55–
60, March 2006.

[7] A. Farinelli, G. Grisetti, and L. Iocchi. SPQR-RDK: a modular
framework for programming mobile robots. In D. Nardi et al.,editors,
Proc. of Int. RoboCup Symposium 2004, pages 653–660, Heidelberg,
2005. Springer Verlag. ISBN: 3-540-25046-8.

[8] Donald E. Knuth.The Art of Computer Programming. Four volumes.
Addison-Wesley, 1973–.

[9] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Components for
robotics. InInt. Conf. on Intelligent Robots and Systems (IROS’06),
Workshop on Robotic Standardization, December 2006.

[10] I.A. Nesnas. Claraty: A collaborative software for advancing robotic
technologies. InProc. of NASA Science and Technology Conference,
June 2007.

[11] S. Sablatnog, S. Enderle, and G. Kraetzschmar. Miro - middleware
for mobile robot applications. IEEE Transaction on Robotics and
Automation, 18:493–497, August 2002.

[12] IEC TC65/WG6. IEC 61499-1: Function Blocks Part 1: Architec-
ture. International Electrotechnical Commission, Geneva, Switzerland,
2005.


