OpenRDK: a modular framework for robotics software development

Daniele Calisi, Andrea Censi, Luca locchi, Daniele Nardi

Abstract— In this paper we conduct an analysis of existing a conceptual and from an implementation point of view,
frameworks for robot software development and we present in order to achieve a wide deployment of standard design
OpenRDK, a modular framework focused on rapid devel- —iacpniques, architecture styles, and reusable components

opment of distributed robotic systems. It has been designed . oo .
following users’ advice and has been in use within our groupdr This resulted to be very difficult because of the wide range

several years. By now OpenRDK has been successfully applied ©f domains where robots can be exploited, the variety of

in diverse applications with heterogeneous robots and as we forms and functions that a robot can have, and, moreover,

believe it is fruitfully usable by others we are releasing itas pecause of the diversity of people involved in robotics [2].

open source. is then natural that people working with robots felt the need
|. INTRODUCTION to develop their own solutions.

More than sixty years after the creation of the first pro- Although the primary development of mobile robots will

bl i ing is still £ 181 rath eventually be the industry, nowadays the coolest-acting
grammable computers, programming is still an art [8] raNEhbots (e.g., those seen in DARPA Grand Challenge, or the
ffars rovers) still come from academia or other research

and the networking revolution of the last decade, exacerbaéoat\)/ironments Consequently, much of the related work on

the problem because new applications of unprecedent? otic frameworks makes sense only for the needs of a

complex!ty are possible and deswgble._ . . relatively small academic research group.
The discipline of software engineering aims at provid-

ing paradigms, methods, and tools for designing and re- Our work on OpenRDK is focused on the needs of a
alizing complex software systems. The problem with suckesearch group, whose aim is to create innovative algosithm
paradigms, methods, and tools is that they tend to come afat complex mobile robotic systems, without spending more
go in a few years, a time scale that is incomparable wittime than necessary on the software infrastructure. The
other engineering fields. Object oriented languages (C+tgsearch group we are considering here is formed by many
Java), UML, distributed services (Web 2.0), agile langsagepeople (e.g., 10 undergraduate students) working for a shor
(Python, Ruby, etc.) are just a few examples of a vertime (e.g., 6 months) on a complex project (e.g., multi-tobo
fast evolution of methodologies and techniques in less thdreterogeneous exploration in a disaster scenario), ysuall
twenty years. with no or only a few experience on robotic applications and
The situation is even worse when we look at softwaren software engineering. Hence our main goals are modu-
for robotic applications. In this paper, we refer to “roleoti larity and code re-usability, but we need to take into actoun
applications” as complex systems based on mobile robotiatso other real-world related problems, like efficiencyisgo
technology and we consider robotic software to be in thperception, unreliable networks, etc.
middle ground of two fields: it is as complex as other The contributions of this paper are twofold. On the one
standard ICT software, and it has the same hard real-wortthnd, we conducted a deep analysis of the issues that a
requirements as industrial automation. On the one hanghbotic software framework should address, and how exjstin
developing a full control stack for a team of heterogeneousameworks take their choices. On the other hand, we present
robots is as hard as any other large distributed softwatgir own framework, designed to meet the goals described
system; however, standard tools of ICT software might natbove through its unique combination of design choices.
be applicable because of the real-world issues like network The software can be downloaded from
unreliability or real-time constraints. On the other hafes; ht t p: / / OpenRDK. sour cef orge. net and can be used
mal methods used in automation for developing distributednder the terms of the GPL (GNU General Public License).
control systems, like the IEC 61499 standard [12], are not
really applicable to robotics, because they were designed Il. RELATED WORK

only for relatively simple systems. One tenet of engineering is reducing the complexity of

The scientific community is undertaking an intense effor(tjl problem by dividing it into smaller problems (divide et

to find a common structure in robotic applications, both fronﬂmperal). In software, this leads to dividing an applicatio

D. Calisi, L. locchi, D. Nardi are with the Dipartimento diftrmatica e Smal_ler _mOdUIeS : mUtua"y deC(_)upIed SOf_tware units with
Sistemistica “A. Ruberti”, “Sapienza” Universita di Romaa Ariosto 25, precise interfaces. In the following we will use the term
1-00185 Rome, ltaly{cal i si,iocchi, nardi }@is.uniromal.it “module” to refer to this kind of entity, regardless of the

A. Censi is with the Control & Dynamical Systems departm@atifornia f oth ds i her f K t
Institute of Technology, 1200 E. California Blvd., 91125sBdena, CA. use of other words In other frameworks (e-g-' component,

andr ea@ds. cal t ech. edu service, client, driver, etc.).

With a modular architecture, there are two main choices B. Information sharing model

be made: how to arbitrate the modules access to the computaThere are two metaphors that can be used to model the
tional resources, and how to make the modules communicagchange of information among modules:

These are the two main dimensions in which we frame the
related work, a summary of which is shown in Table I. The
table also shows which tools the frameworks provide for
speeding up development: examples are simulators; loggers
for sensor data; remote inspection tools to observe/modify
the module state; and configuration utilities.

A.

« modules have input and output “ports” from which they

can receive or send messages to other modules that are

connected to these ports;

« there is a central object where modules “publish” their
data and where they can read other modules data, using
some sort of addressing scheme.

In practice, there are two main mechanisms that may

Concurrency model s
y be used: modules within the same process may use shared

We classified three possibilities, as follows. memory, while modules distributed among different pro-

« Modules areprocesseddistributed over one or more cesses/hosts have to use some inter-process communication

machines. In this case, developers have the highesrvice.

freedom. The major drawback is the need of some com- If modules are implemented as threads or as call-back
munication infrastructure that allows for inter-procesgunctions, shared memory is the most efficient communica-

communication. tion method. In the case of threads, concurrency management
. Modules arethreads inside a single process. With Primitives are necessary. We remark that the shared memory
multi-threading, sharing information is easily accomimechanism cannot allow for all semantics which is usually

plished using shared memories, but this requires that tfieded. An example is if two modules act as a producer/-

framework provides some mechanism for data acce§9nsumer couple: in this case the framework must provide

concurrency and thread synchronization_ a mechanism to implement some kind of data “queue" in
« Modules are defined byall-back functionsind there is shared memory.

a single process (i.e., a scheduler) that repeatedly callsSome of the existing frameworks make use of third-party

them in response to some event or periodically. Theliddleware to accomplish inter-module communication. The

call-back functions are preferable for frameworks whos@dvantage of this choice is that they are broadly experi-
focus is on low-level device interaction: in particu|ar’ment8d and Stable, but there are also some drawbacks: often
call-backs allow for a better scheduling control, that catheir goals, like multi-platform/multi-language suppantd

be used to enforce real-time constraints. On the oth@pplication independence, are not of primary importance in
hand, writing this kind of call-back functions is difficult, robotics. Writing a proprietary middleware can be a difficul
because they need to return qu|ck|y to the scheduler amd a IOng Work, but it allows to fit the SpeCifiC needs of the
thus distribute the computation over more than one calfobotic application, without unnecessary added compjexit

The distributed process model is a very common choice:

most existing frameworks use this architecture. Neveets|
these choices are not mutually exclusive, and some frame-
works use of a hybrid architecture.

TABLE |
SUMMARY OF EXISTING SOFTWARE ROBOTIC FRAMEWORK

[Framework [Concurrency model [Information sharing [Tools [Focus
OROCOS [3] call-backs, threads lock-free data ports (CORBA) remote inspection, logging low-level devices
Orce [9] processes ICER® remote inspection, loggind mobile robots
CARMEN?® processes IPC logging, visualization mapping and navigation
OpenRTM-aist [1] threads CORBA configuration GUI general robotics
Microsoft Robotics Studid processes HTTP/DSSP via DSS 3D simulator general robotics
PlayeF [5] threads (server) client/server, proprietary over TCP 2D and 3D simulators low-level device drivers
MOOS processes centralized, proprietary over TCP logging, viewers mobile robots
CLARAty® [10] threads, processes relies on ACE* none real-world systems
MARIE? [6] processes many (3rd party) configuration GUI connecting different frameworkg
MOAST™ processes NML/RCS™ logging, visualization USARSim, mobile robots
MIRO™M [11] processes CORBA logging mobile robots
SPQR-RDK [7] call-backs, threads proprietary over TCP remote inspection mobile robots
OpenRDK threads shared memory, proprietary TCP/UDP remote inspection, loggind mobile robots
a| . f .
bEttp://www.orocqs.org http.(/playerstage.sf.net Khttp://www.isd.mel.nist.gov/projects/rcslib
ttp://orca-robotics.sourceforge.net Shttp://www.robots.ox.ac.uk/pnewman/TheMOOS/ Ihtto:// : . :
Chttp://carmen.sf.net Phttp://claraty.jpl.nasa.gov/ p://smart.informatik.uni-ulm.de/MIRO/
p p y.p 9

Mhttp://zeroc.com/ice.html

dhttp://www.is.aist.go.jp/rt/OpenRTM-aist 'http:/marie.sf.net http:/www.cs.wustl.edu/ schmidt/ACE. html

ehttp://msdn2.microsoft.com/en-us/robotics/ http://moast.sf.net

[1l. OPENRDK order to estimate the robot positions over timepper uses
OpenRDK is written in in C++ and it runs on Unix-like the estimated robot positions, together with the lasersscan
operating systems (Linux, OS X). to build a map of the environment. Ty nterface module
The main entity is a software process callagent A ~ Pushes laser scan and odometry objects into queues, that are

module is a single thread inside the agent process; modulé@motely accessed by thecalizer module, which, in turn,

can be loaded and started dynamically once the agent procB&§hes the estimated poses in another queue, fanahger

is running. to access to them. The map property is then updated by the
An agentconfiguration is the list of which modules are Mapper and being used by theavigator.

instantiated, together with the value of their parametacs a

. . L e A. Concurrency model
their interconnection layout. It is initially specified in a)) .
configuration file. OpenRDK uses multiple processes with multiple threads.

Modules communicate using a blackboard-type objec\’,Ve r_ejected the alternative of using one th_read per process
called repository (see Figure 1(a)), in which they publish and implement modules as call-back funct!ons because we
some of their internal variables (parameters, inputs argfW. We saw, through the years, that our typical user does not
outputs), callecproperties. A module defines its properties Nave the required discipline to implement them correcthe T
during initialization; after that, it can access its own andnulti-threading solution is a good compromise, even though
other modules’, within the same agent or remotely, through reqwreq an infrastructure for concurrent data accesbk an
a global URL-like addressing scheme. Access to remofYNchronization.
properties is transparent from the module perspective andAt run-time, each module (thread) is waiting for some
it reduces to (regulated) shared memory for local propertie€Vent to occur. Typical events are fixed interval timeouts,
Specialqueue objects also reside in the repository and they’®W data on a queue or the change of a property value;
share the same global URL-like addressing scheme of oth&odules can wait on more than one event.

properties. B. Repository, properties and URLS

In Figure 1(a) we see an example. Two agent are executedrhe repository is the place where all modules publish the
on two different machines and three modules run insidgata they want to share with others. Published properties ar
them: hwinterface retrieves da_ta from a laser range find_ermputs’ outputs and parameters. A path-planner module, for
and the odometry by a robotic base; given these two pieggample, could publish the current and target robot poses as
of information, localizer uses a scan-matching algorithm ininputs, and the resulting path as output.

Each property is assigned an URL with the syntax:
agentl agent2 rdk: / / <agent - name>/ <nodul e>/ <pr operty>
Note that the agent name is different than the host name,
as there can be more than one OpenRDK agents on the
I faerscan '[estimatedpose | ' same host. Some examples of properties can be found in

| hwinterface | localizer mapper navigator

map speed

Figure 1(b), that shows the properties of the example of the
l agents in Figure 1(a). These globally unique URLs allow
| repository :‘ N repository | every module to transparently access a property on any other
agent (on any other host).

laserScan, robotPose, robotPose,
speed

odorlnetry laserScan meP
.

(a) Logical module interconnection] o
C. Obiject serialization

agonfl},wmte,face Serialiazion is the process of transforming run-time otsjec
rdk://agent1/hwinterface/out/odometry(queue) <—— in a form suitable for storage or transmission. In OpenRDK,
’;‘tf//age"g/zw:":efiace/?“t/'aszfsca"(q“e“e) each class implements a serialization APl which has the
agent2: +//agentl/mwinterface/in/spee same interface for writing both in XML (typically for storag
o localizer purposes, for example to save configuration files that can
rdk://agent2/localizer/in/odometry o be easily read by a human) and in a more efficient binary
rdk://agent2/localizer/in/laserScan o format (for transmission over the network). We chose not

dk: t2/1 li t/estimatedP
rdi//agent2/localizer/out estimatedPose(queuc) to provide any automatic mechanism to generate this kind

® mapper . .)
rdk://agent2/mapper in/robotPose(queuc) of functions (for example, using an IDL-like language),
rdk://agent2/mapper/in/laser(queue) o because platform independence is not among our goals and,
rdk://agent2/mapper/out/map «—— moreover, because in this way we have a great flexibility that
e navigator allows for the implementation of ad-hoc serializationg (e.

rdk://agent2/navigator/in/robotPose @
rdk://agent2/navigator/in/map e————
rdk://agent2/navigator /out/speed ————————|

for lossy/lossless compression of maps and images).

D. Configuration and object persistence

A configuration is a list of modules to be loaded and
Fig. 1. Example configuration of two agents running on twdedént hosts executed, their interconnections and the values of their

(b) Properties and links realizing the interconnection

parameters. Agent configurations are saved as XML fileSModule hwinterface, on agentl
and contain a serialized representation of each module zaRBKX2::ROdometry« odom = new RDK2::ROdometry(/x ... #/);
. . . . 3_session—>queuePush("odometry”, odom);
its properties. Since parameters are properties, they “‘can
easily b_e saved using the mechanism seen in the prevf(_)/’dﬁodule localizer, on agent2: during initialization
subsection. Moreover, since we save all module properiggssion—>subscribeQueue("odometry”);
in the configuration file, this technique can also be used tb"odometry” is linked to "rdk://agentl/hwinterface/otetry”
. 4
save the state aqd_load it afterwards. For example, We CAModule localizer, on agent2: during execution
have the robot building a map of an environment, save it onaghile (session—>wait(), lexiting) {

in the configuration file, and then use it for all subsequent Vector<const RDK2::ROdometry> v =
[UNS 8 session—>queueFreezeAs<ROdometry>(ODOMETRY _URL);

9
. 10 for(sizeti=0;i< v.size(); i++) {
E. Property links 1 const ROdometrys odom = V[i];

The device of “property links”, analogous to Unix syri- . // process odometry data in the queue
bolic links, introduces a level of indirection in the reggosy ﬁ } }
that allows to make the modules as decoupled as possible.
The main problem that links solve is that two modulegig 2. Example of using a queue object in OpenRDK (see algor&il(a))
needing to share an information must agree on some well-
known place (in our case, a URL) where this information
is to be accessed, and this creates an unnecessary coupfii§hiule writing much easier. See for example Figure 2, in
between them. which we show the communication between two modules,
Links can point to remote properties as well, and thigw nt er f ace andlocalizer: the first module takes the odom-
allows to distribute the computation in a way which isetry reading from the sensor device and pushes in a queue
completely transparent to the module developer. called “odometry”, on another agent, the modidealizer

Links are specified in a configuration file; since the datgubscribes to that queue during initialization and therbls a
flow is not hard-coded, modules can be easily re-used fg$ retrieve the values in a very simple way.

different applications. In practice, this encourages teeet
opers to create many small re-usable modules instead of l@y Inter-agent information sharing

monolithic ones. As we described above, information sharing among mod-
For example, consider Figure 1(b): tmeapper module T 9 9 .
les that are executed inside the same agent (process) is

needs a robot pose in order to build the map. Thanks lished using th it Int ‘G it
the property links, the development of this module doegccompished using the repository. Inter-agen (i.e.erin

not have to be delayed until thiecalizer is finished. In process) communica_tion is accomplished _by two methods:
fact, the mapper/in/robot Pose property can be linked to throughpr_operty sharingandmessage sending .

hwi nt er f ace/ out / odonetry. When thelocalizer is ready In the first case, one agent refers to properties of a.nOther
there is no need to change any code, only the conﬁguratio"f"rgent by specifying thg hame of the remote agent n the
Moreover, there are, for example, applications and sceﬂariURL of the property (this is usually done when specifying

that do not need docalizr’ module and the odometry is a property link in_the configuration). The repository is ir.]
sufficient. charge of requesting the remote property value and publish

it in a local copy (proxy) for the requesting module to read.
F. Queues as object dispatchers Property sharing can be tuned by using a set of parameters,
OpenRDK implements two models for sharing data bethat can be specified in the configuration files and are
tween modules: publisher/reader and producer/consume@xplained in the following.
Regular properties realize the former, and special “queue” « The subscriber can request a property update every time

properties implement the latter. it changes on the published repositoouHANGE) and
Queues are very smart FIFO containers: optionally set a minimum interval between two subse-
« They support multiple readers; thread-safeness is en- quent updates. As an alternative, it may request that the
sured without object duplication; update have to be sent at fixed intervasr{ oDI C in

« They own the objects that are pushed into them and take OpenRDK terms).
care of garbage collection, by destroying the objects « The subscriber can request to use one of two transport
when no reader is interested in them anymore; protocols: UDP or TCP.

« They allow subscribing modules to listen to particular OpenRDK also partially implements a data reconstruction
objects entering in the queue, and to be awoken on thgjyer, i.e., some object can be split in multiple packets and

event. . _ - _reconstructed in the destination repository. Moreover, fo
« They are ‘passive’ objects: no additional thread igome objects can be requestecbasLEss (default) orLossy
required. compression. For example, if an image have to be sent to

Although the OpenRDK queues implementation is rathesin image processing module, chances are that it need the
complex, it is kept “under the hood” and they actually makémage as it was on the source side. On the other hand, if

the property is requested solely for visualization purp@se « to be able to move autonomously in a cluttered scenario;
lossy compression is more effective. « to report to the human rescuers the interesting features

In addition to the property sharing mechanism, we also found during the exploration (for example, possible
implemented a standard message-sending (mailbox) method, human victims that are entombed or trapped, or possible
for when this feature is a more straightforward mapping with treats).

the semantic of the application. When a module wants to The system has been developed as an OpenRDK agent.
send a message to another module, being it on the same aggmé real robot was equipped by two personal computers
or on a remote one, it writes the address of the recipient gfhd two agents run on each of them: in this way, we
the message object and push it into a special queue caligdre able to divide the computation weight among two
“‘outbox”. Receiving a message requires to subscribe to thgachines. In particular, the first was responsible for tieto
“inbox” queue and to be able to discern interesting messagegapping and navigation subsystems, as well as the mission
manager module; the second machine contained the modules
_) for vision processing. In this application, one example of

~ RConsole: RConsole is a graphical tool for remote yroperty sharing is that the vision module published a queue
inspection and management of modules. We use it as bafh«possible human sightings” that was read remotely by the
the main control interface of the robot and for debuggingyission manager module on the other PC. See Figure 3(a)
while we develop the software. RConsole was very easy g details.

implement thanks to the property sharing mechanism: it is By simply substituting the real sensor and robot modules
just an agent that happens to have some module that displgysmodules that connected to a simulator, we have been able
a GUI. Through the reflection used in the repository, graphig, test exactly the same software system in both real and
cal widgets visualize the internal module state and allov thsjmy|ated scenarios. The simulated rescue scenario allowe

user to change their parameters while running. Advanceg 1 conduct experiments with a large number of robots in
viewers allows to interact with images and maps, moving large environments.

robot poses, seeing visual debug information provided by
modules, etc. B. Assistive robots

Modules for logging and replayingOpenRDK provides The RoboCare Projettaims at building a system for
a configurable module that, reading from a sensors queUgsistance of the elderly and the impaired person. Such
is able to write a log file containing the sensor data. Thigon-invasive technology is a distributed and heterogesieou
file can be processed off-line using third-party tools Ogystem and should be easily integrated in the environment
used in conjunction with another module that provides thgnq aple to interact with the person and to monitor his
‘playback” feature. _ _ behavior. Some of the main components is a multi-camera
Connection with simulatorsAs we explained in the gystem that can follow the human in the environment and
Section I, Oper_1RDK provides modules that allow to connegGfack his position, a wheeled robot that can move in the
to both USARSIm and, through Player, to Stage and Gazehghyironment and interact with the human through a human-
The modules expose the same interface of the real onggpot interface, and a PDA that the assisted person can use
thus resulting in a transparent behavior for the modules thg, interact.
connects to them. In this project, two OpenRDK agents are involved and in-
terconnected to a pre-existent system. One of them is respon
sible of managing the mobile robot. It includes modules for
~ The OpenRDK framework has been successfully usgfcaization in a known environment as well as path-plagnin
in a wide range of robotic applications. Our group hasnq gynamic obstacle avoidance. Another OpenRDK agent
a long record in RoboCup competitions. OpenRDK hag 1 nning connected with the camera tracking system and

been _extensively used in all competitions in which we havg responsible for sending the image data to the PDA and to
been involved: RoboCupRescue Real Robots, RoboCupRg%-nd the tracked human position to the robot agent.

cue Virtual Robots, RoboCup@Home, and also RoboCup
soccer Standard Platform League (with two-legged humano@ Context-based online configuration

robots,). In particular, the latter league makes use of Alde- |, 5 recent work of ours [4], we studied the possibilities of
baran’s Nao humanoid robots. OpenRDK currently runs og gystem that is able to control the behavior of other modules
the Nao’s internal computation unit and our team has deve,5-y using “contextual’ information. Using the OpenRDK
oped modules for a humanoid robotic soccer application. gramework, we were able to test this idea in a straightfodwar
A. Single rescue robotic system way. The only thing we needed was to implement the con-

o is involved i bot h li ttextual controller and connect its outputs to fherameters
ur group IS INVoved In rescue Tobotics, Wnose goals B¢ ye other modules. In this way, the contextual controller

develop robots to assist human rescuers during emergen ¥s able, for example, to reduce the maximum speed of the

Zf)sratlons. The main capabilities needed by such a rOb;%th planner, when the situation required slower movement,

« to build a map on an unknown environment; Lhttp:/irobocare.istc.cnr.it

H. Tools contained in the OpenRDK

IV. SOME APPLICATIONS OFOPENRDK

hwinterface

«t-{ odometry (out) | [TaserScans (out) | [“odometryPose (in) | [ctriCommands (in)]
H H H A

+ [scanMatcher 3 navigator !

hwinterface agentl agent2

t-{ odometry (out) | [TaserScans (out) | [ctriCommands (in) Ja--=+--

: v v H
*{»[odometry (in) | [TlaserScans (in) | [[robotPose (in)] [ctriCommands (out) |

[correctedPoseWithLaser (out) | [map(in)] [targetPose(in) |

scanMatcher H H maxSpeed (param)
H navigator coarseMapper |__:
. ->| odometry (in) laserScans (in) v
--1-»[robotPose (in)] [ctriCommands (out) | poseWithLaser (in) H
[estimatedPose (out) | SRR preciseMapper
[_map(n)] [targetPose(in) | cameralnterface H
[correctedtaserwithpose (out) | T H
..................... missionManager : »_maplout) }-{-
mapper H : [frontierfinder targetPose (out) VictimDetector : [ContextualController 1] enabled
v H H ;
TaserWithPose (in) | [+-{»[_map(n) | | :-{»[__frontierstin | [image (in) | .t - mapperiEnabled mapper2Enabled }-{--+
[map (out) }-{--+ | [[frontiers (out) }-{--* | [[possibleVictims (in)] I Tout) | uw_}
(a) a single rescue robotic system application with two tgen (b) a context-based online configuration architecture

Fig. 3. Two examples of configuration: gray properties areugs

or to switch between two mapper modules. In Figure 3(bituations (such as possible deadlocks on resources) and
we can see a simplified diagram of this system. verify properties of the applications (for example, coaistis

on the schedule and on the activation of modules).
V. CONCLUSIONS AND ON-GOING WORK

robotic frameworks and how they address the most importa fon of robotic framevyorks. Th? fact _that there are c_utyent
issues, we presented our own OpenRDK framework. OU ts of frameworks projects available is not necessarihaa b

design choices reflect the need for fast development ing, it just means th_at the f_ield is alive and well and that
complex robotics applications in a research environment. there are many directions being explored.

With respect t.o the other full-featured fra_meworks, Opeq— REFERENCES
RDK’s most unique features are the mqu—threa_lded mult|—l[1] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and Woo-Ke¥oon.
processes structure and the blackboard-type inter-module’ Rr.middleware: distributed component middleware for RBbat
communication and data sharing. These allow to seamlessly technology). InProc. of IEEE/RSJ Int. Conf. on Intelligent Robots
distribute the computation among several hosts in a tranl- and Systems (IROS 2003jages 3933-3938, August 2005.

ﬁ Davide Brugali. Software Engineering for Experimental Robotics
parent way and encourage the users to develop many small (Springer Tracts in Advanced Robotics$pringer-Verlag New York,

decoupled modules with well-defined capabilities. Inc., Secaucus, NJ, USA, 2007.

The most immediate future work is to extend the Qual-[3] Herman Bruyninckx. Open robot control software: the GIROS
project. In Proceedings of Int. Conf. of Robotics and Automation

ity of Service (QoS) settings provided by the OpenRDK, (1cRA'01) pages 2523-2528. IEEE, 2001.
regarding network property sharing, to include additionall4] Daniele Calisi, Alessandro Farinelli, Giorgio Grisgttuca locchi,

. et Daniele Nardi, S. Pellegrini, D. Tipaldi, and Vittorio A. faro.
features defined by the DDS speC|f|cat|on. For example, Contextualization in mobile robots. ICRA07 Workshop om&mtic

at the moment OpenRDK communication happens either |nformation in Robotics, 2007.
over TCP or UDP; in the case of noisy wireless networks[5] T.H.J. Collet, B.A. MacDonald, and B.P. Gerkey. Played:Zoward a

; ; practical robot programming framework. Rroc. of the Australasian
neither behave well, as UDP messages are S|mply lost, and Conf. on Robotics and Automation (ACRA 2Q@B¢cember 2005.

TCP keeps resending old data (thus aggravating the networl] carle Cote, Yannick Brosseau, Dominic Letourneau,en@ht
overload). It would be useful to have a mechanism similar Raievsky, and Francois Michaud. Robotic software intégrausing

to DDS's “Iatency budget", which keeps resending data onIy gwoari'\e/zlélrr;:]erznoa(t)gnal Journal of Advanced Robotic Syste®@):55—

for a fixed period of time. Another useful DDS notion is 71 A Farinelli, G. Grisetti, and L. locchi. SPQR-RDK: a madr
the set of rules for detecting whether a peer is not reachable framework for programming mobile robots. In D. Nardi et abjtors,

; Proc. of Int. RoboCup Symposium 20@&ges 653-660, Heidelberg,
anymore and acting Consequently' 2005. Springer Verlag. ISBN: 3-540-25046-8.
The QoS approach can be extended to other forms o) ponald E. Knuth.The Art of Computer ProgrammingFour volumes.

computation on robotic platforms. There are many algo- Addison-Wesley, 1973-.

; ; . 9] A. Makarenko, A. Brooks, and T. Kaupp. Orca: Componerds f
rithms, whose output has a qua“ty that can be tuned: fOIL robotics. Inint. Conf. on Intelligent Robots and Systems (IROS’06),

example, with particle filters one can have more precise workshop on Robotic Standardizatjdecember 2006.
estimates by using more par“cles, in RRT path-planmng on&d] I.A. Nesnas. Claraty: A collaborative software for adeing robotic

can find shorter paths by expanding more nodes. Integrating tJeucnhe“g'(‘J’g;es' IrProc. of NASA Science and Technology Conference

the“computation QoS” in the framework, by providing Somg11] s. sablatnog, S. Enderle, and G. Kraetzschmar. Miro ddieivare
means for the modules to declare a QoS, seems particularly for mobile robot applications. IEEE Transaction on Robotics and

i i i inh i ; Automation 18:493-497, August 2002.
interesting because it addresses a need which is Very-pan[lﬁ] IEC TC65/WG6. IEC 6149991: Function Blocks Part 1: Architec-

ular to robotics. ture. International Electrotechnical Commission, Geneva t&uwfiand,
Finally, we are working at tools for the analysis of config- 2005.

uration files, that will be very useful for detecting critica

In this paper, after a deatiled analysis of the many existinﬁ In conclusion, we are not worried by the apparent prolifer-

