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Research Article 

Abstract  

The RNA-dependent RNA polymerase of influenza A virus is important for catalyzing the replication and 

transcription of viral RNA. The polymerase of Influenza A Virus plays a significant role in the infectious 

virus life cycle. The objective of the present study was to identify the residue conservation in polymerase 

complex (PA, PB1 and PB2 proteins) of Influenza A Virus. The study was based on 11,966 amino acid 

sequences for the PA protein; 10,605 amino acid sequences for the PB1 protein and 11,331 sequences for the 

PB2 protein. The PA, PB1 and PB2 proteins exhibited similar level of sequence conservation. On the whole, 

this study exposed residues which are universally conserved among different influenza A virus subtypes. 

These universally conserved residues might be involved in either structure stabilizing or protein-protein 

interactions. Clusters of highly variable residues detected on the surface of the PA, PB1 and PB2 proteins 

might be linked to adaptation to various hosts or evolutionary pressure to evade the host immune system. The 

conserved residues identified in the present study could form a platform for designing universal 

anti-influenza drugs which are resistant to mutations arising in the future. 

American Journal of Current Microbiology 
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Introduction 

Influenza virus belongs to orthomyxoviridae family, which is enveloped with negative sense RNA 

genome. A, B and C are major serotypes of influenza virus [1]. Influenza A Virus (IAV) with its global 

dominance is a significant pathogen among the three serotypes [1]. IAV is responsible for 250,000 to 

500,000 human deaths worldwide [2] and also results in considerable losses among domesticated birds [3]. 

IAV is responsible for five devastating pandemics in the years 1918/1919, 1957, 1968, 1977 and 2009 

[4-8]. Apart from these pandemics, IAV also causes seasonal epidemics with moderate severity. When a 

pathogenic IAV of animal or avian origin attains the potential of efficient human-human transmission, 

then influenza pandemics seems to arise [9, 10]. This potential can be accomplished either by an event of 

mutation or by reassortment of viral RNA segments between animal/avian and human viruses [9, 10]. In 

the recent past, pathogenic avian influenza viruses namely, H5N1, H6N1, H7N7, H9N2 and H10N7 have 

acquired the ability to infect humans [11]. Therefore, in the future it is highly likely that a novel avian 

IAV will acquire the potential to transmit efficiently among humans and results in a devastating pandemic. 

Vaccines and antivirals are available against annual epidemics caused by IAV. But these are rendered 

ineffective against antiviral resistant strains of IAV emerging in the future, which is a cause of concern 

[12]. While attempts are underway to develop antivirals and vaccines which are universally applicable 

and which does not lead to resistance. 

Viral neucleocapside of IAV consists of eight separate segments and Segment 1 to segment 3 encode 

three proteins namely, polymerase basic 2 (PB2), polymerase basic 1 (PB1) and polymerase acidic (PA) 

respectively [1]. Collectively PA, PB1 and PB2 form RNA- dependent RNA polymerase (RdRp) with a 

molecular weight of 250 KDa [13]. RdRp of IAV is involved in (i) transcription and replication of viral 

RNA [14] (ii) polyadenylation of mRNA in vitro [15] and (iii) viral RNA cleavage and proofreading 

activity [16]. Among the three subunits, PB1 is accountable the entire process of RNA synthesis, while 

PB2 and PA play an important in RNA replication and transcription respectively [17].     

The PA protein is 716 residues long and contains two domains namely, N-terminal domain (NTD; 

residues 1-256) and C-terminal domain (CTD; residues 257-716) [18-20]. Residues 239-716 of PA are 

implicated in binding to PB1 [19]. Regions between 124-139 and 186-247 were found to be important for 

nuclear localization of PA [21]. The NTD of PA was found to contain endonuclease activity with residues 

P107, D108 and E119 found to be critical for this activity [22, 23]. Residues 493-512 and 557-574 are 

implicated in binding of human CLE/C14orf166 protein (hCLE) and micro chromosomal maintenance 

complex [24, 25]. PA was also shown to contain protease activity with Ser624 as active site [26]. 

Residues 100-180 are implicated in vRNA and cRNA promoter binding [26-28]. 

The PB1 protein is 757 residues long and consists of three domains namely, NTD (residues 1-15), 

RdRp catalytic domain (residues 286-483) and CTD (residues 678-757) [29]. Apart from the three 

domains, PB1 also contain six polymerase motifs: pre-A/F (residues 229-257), motif A (residues 296-314), 

motif B (residues 401-422), motif C (residues 436-449), motif D (residues 474-486) and motif E (residues 

487-497) [30]. Residues 1-139 and 267-493 are implicated in complimentary RNA (cRNA) promoter 

binding [29]. Residues 1-83, 249-256 and 494-757 are implicated in viral RNA (vRNA) promoter binding 

[29]. Residues 179-297 and 458-519 are implicated in nucleotide binding [29]. PB1 also contain two 

nuclear localization signals (NLS) namely, NLS-1 (residues 187-195) and NLS-2 (residues 203-216) [31, 

32].  Khurana et al have recently identified antigenic epitope (residues 586-599) on the PB1 protein [33]. 
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Residues 1-37 are implicated in PA binding and residues 678-757 AA are implicated in PB2 binding [34, 

35].  

The PB2 protein is 759 residues long and consists of four domains namely, NTD (residues 1-247), 

cap-binding domain (CBD; residues 318-483), RNA binding domain (RBD; residues 535-684) and CTD 

(residues 686-759) [36-39]. Residues 1-37 are implicated in binding of C-terminal of PB1 [36]. Residues 

363 and 404 were found to be critical for cap binding [37, 40]. Residues 701 to 753 are critical in 

PB2-importin-α interaction [39]. PB2 protein contains two NLS namely, NLS-1 (residues 449-495) and 

NLS-2 (residues 678-759) [37, 40]. Recently, Carr et al have identified mitochondrial-targeting signal 

(residues 1-120) on the PB2 protein with residues 7-10 were found to be critical [41]. 

Vaccines and antivirals are available against annual epidemics caused by IAV. But these are rendered 

ineffective against antiviral resistant strains of IAV emerging in the future, which is a cause of concern 

[12]. While attempts are underway to develop antivirals and vaccines which are universally applicable 

and which does not lead to resistance. To achieve this, we have to understand sequence conservation 

among all the IAV subtypes from different hosts. The aims of the present study are to identify the degree 

of conservation of RdRp subunits among all the IAV subtypes from all hosts to facilitate the identification 

of universally conserved sites. The mapping of the conservation scores onto the structures of the RdRp 

subunits proposes potential antiviral binding sites which are resistant to mutations. 

Methods 

Sequence analysis and protein structure 

The protein sequences of the IAV PA, PB1 and PB2 were obtained from influenza virus resource of 

National Centre for Biotechnology Information (NCBI) [42]. Full-length sequences from all hosts and all 

IAV subtypes were chosen. The redundancy of the obtained sequences was removed by categorizing the 

clusters of sequences at 99% identity and replacing each cluster with representative sequence using the 

CD-HIT suite [43]. For alignment of the collected proteins sequences, MUSCLE version 3.8 [44] was 

used with default parameters. Multiple refinements of the obtained alignment were carried out resulting in 

22-26 iterations, until no further improvement was attained. The experimental structure of the RdRp 

subunits were obtained from Protein Data Bank (PDB) [45] with the PDB-ID 4WSB [27]. 

Conservation analysis 

By providing multiple sequence alignment (MSA) and experimental protein structure files as an input, 

conserved regions were identified using ConSurf server (http://consurf.tau.ac.il/) [46-49]. By taking 

evolutionary relationships between protein sequences into account, ConSurf algorithm generates resultant 

conservation scores. ConSurf algorithm emphasizes more on those protein sequences, which are 

evolutionarily distant, thus calculating conservation scores which are significant [46-49]. The resultant 

conservation scores are criterion scores (0, 1). The residues with score lesser than 0 indicate higher 

conservation, while those with score greater than 0 are variable residues [46-49]. The Bayesian algorithm 

is utilized to appraise the confidence intervals of calculated conservation scores [46-49]. The conservation 

scores given by ConSurf server are separated into scale of nine grades, which are given with the intention 

for visualization [46-49]. Most variable positions are placed in grade one (turquoise), intermediately 

conserved positions are placed in grade five (white), and most conserved positions are placed in grade 

http://consurf.tau.ac.il/
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nine (maroon) [46-49].  

Results  

Multiple alignment of polymerase protein sequences 

For the PA protein 11,966 sequences were obtained from the NCBI database, which were mainly from 

avian (52.6%), human (27.7%) and swine (15.2%) viruses. Following sequence clustering at 99% identity 

threshold, 1518 sequences remained which exhibited at least 1% sequence variance. For the PB1 protein 

10,605 sequences were obtained from the NCBI database, which were mainly from avian (49.1%), human 

(30.1%) and swine (15.8%) viruses. Following sequence clustering at 99% identity threshold, 1148 

sequences remained which exhibited at least 1% sequence variance. For the PB2 protein 11,331 

sequences were obtained from the NCBI database, which were mainly from avian (52.7%), human 

(29.7%) and swine (15%) viruses. Following sequence clustering at 99% identity threshold, 1532 

sequences remained which exhibited at least 1% sequence variance.  

Conserved and variable residues   

The variable and conserved residues in the IAV RdRp subunits were identified using ConSurf server 

[46-49] and the conservation scores were projected onto the spacefill model of the experimental structures 

which are illustrated in figure 1. The sequence conservation of PA, PB1 and PB2 proteins are shown in 

figure 2, figure 3 and figure 4 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Spacefill 

representation of PA, 

PB1 and PB2 protein 

structures colour 

coded according to the 

conservation scores 

obtained from ConSurf 

server [46-49]. 
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Figure 2 The amino 

acid sequence of the 

PA protein, colour 

coded according to the 

conservation scores 

obtained from ConSurf 

server [46-49].  

Figure 3 The amino 

acid sequence of the 

PB1 protein, colour 

coded according to the 

conservation scores 

obtained from ConSurf 

server [46-49].  
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Figure 4 The amino acid sequence of the PB2 protein, colour coded according to the conservation scores obtained 

from ConSurf server [46-49].  

 

Conservation scores for the PA protein were obtained between the values -0.814 (maximum 

conservation) and 3.746 (maximum variability) by the ConSurf server [46-49]. The sequence 

conservation of PA protein is shown in figure 3. In general the PA protein is intermediary conserved with 

48.4% of the residues belong to grades 8-9 (conserved), while 20.1% of the residues belong to grades 1-2 

(variable). Altogether, hundred and sixty seven residue positions (23.3% of total residues) were found to 

be highly conserved (grade 9). Residue positions 11, 21, 23, 47, 48, 84, 117, 130, 152, 191, 310, 313, 368, 

392, 462, 500, 525, 530, 537, 593, 622, 635, 637, 654, 656, 657, 661, 671, 676, 679, 685 and 691 showed 

no amino acid variation at all among 11,966 sequences analyzed. In total, hundred and twenty seven 

residues (17.7% of total residues) were found to be highly variable (grade 1). The residue positions 57, 61, 

66, 99, 142, 226, 269, 272, 321, 388, 394, 400 and 716 showed highest variations among all the 

sequences analyzed.     

Conservation scores for the PB1 protein were obtained between the values -0.730 (maximum 

conservation) and 3.977 (maximum variability) by the ConSurf server [46-49]. The sequence 

conservation of PB1 protein is shown in figure 4. In general the PB1 protein is intermediately conserved 
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with 51% of the residues belong to grades 8-9 (conserved), while 19.2% of the residues belong to grades 

1-2 (variable). Altogether, two hundred and five residue positions (27% of total residues) were found to 

be highly conserved (grade 9). Residues positions 1, 22-24, 33, 71, 72, 81, 82, 122, 128, 137, 138, 147, 

153, 224, 239, 242, 250, 263, 285, 290, 311, 312, 326, 332, 341, 347, 380, 403, 405, 406, 410, 415, 420, 

437, 441, 443, 450, 472, 482, 489, 501, 519, 526, 540, 541, 545, 551, 557, 585, 594, 597, 620, 625, 629, 

649, 651, 659, 692, 697, 708 and 710 showed no amino acid variation at all among 10,605 sequences 

analyzed. In total, hundred and thirty residues (17.2% of total residues) were found to be highly variable 

(grade 1). The residue positions 52, 54, 113, 154, 179, 200, 211, 212, 317, 375, 386, 430 and 667 showed 

highest variations among all the sequences analyzed.      

Conservation scores for the PB2 protein were obtained between the values -0.795 (maximum 

conservation) and 3.840 (maximum variability) by the ConSurf server [46-49]. The sequence 

conservation of PB2 protein is shown in figure 1. In general the PB2 protein is intermediately conserved 

with 48.2% of the residues belong to grades 8-9 (conserved), while 19.4% of the residues belong to 

grades 1-2 (variable). Altogether, one hundred and eighty six residue positions (24.5% of total residues) 

were found to be highly conserved (grade 9). Residues positions 1, 37, 40, 78, 83, 85, 98, 124, 132, 135, 

140, 218, 219, 264, 276, 333, 337, 361, 388, 417, 538, 571, 581, 602, 604, 605, 608, 625, 642, 644 and 

693 showed no amino acid variation at all among 11,331 sequences analyzed. In total, one hundred and 

twenty three residues (16.6% of total residues) were found to be highly variable (grade 1). The residue 

positions 184, 195, 249, 292, 338, 340, 355, 389, 451, 453, 508, 559, 588, 661 and 676 showed highest 

variations among all the sequences analyzed.      

Discussion  

The objective of the present study was to determine the degree of conservation of the PA, PB1 and PB2 

proteins among all the isolates of influenza A viruses. The PA, PB1 and PB2 proteins from all hosts were 

analyzed together to facilitate the identification of universally conserved residues of potential pandemic 

viruses that might arise in future due to either a event of mutation or reassortment. The conserved residues 

detected on the PA, PB1 and PB2 proteins may have either structural importance or functional importance 

[50]. On the contrary, variable sites arise as a result of either adaptation or evolutionary pressure to evade 

the host immune system.  

In the established functionally important regions of the PA protein high conservation was found, for 

example in the PA-PB1 binding region (residues 239-716), several highly conserved residues were found, 

of which residues C310, T313, W368, Q392, G462, L500, F525, P530, W537, E593, G622, K635, C637, 

Q654, E656, G657, E661, A671, L676, G679, G685 and E691 showed highest conservation. In the 

regions identified as important for nuclear localization of PA (residues 124-139 and 186-247), residues 

R124, R125, Y130, E133, K134, K139, F191, S194, E195, T200, E202, E203, S218, Y232, D234, I242, 

K245 and L246 were found to be highly conserved (grade 9). The amino acid residues critical for the 

endonuclease activity of PA protein (residues P107, D108 and E119), were found to be conserved. 

Residues P107 and D108 were found to be highly conserved (grade 9) while the residue E119 was found 

to be conserved (grade 8). In the regions which are implicated in PA-hCLE and PA-micro chromosomal 

maintenance complex binding (residues 493-512 and 557-574), residues T498-L500, G502, K506, 

S509-L511, L563, T567 and S571, were found to be highly conserved (grade 9) while residues 
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E493-R496, R508, R512, R559, Y564, R566, N568, G569, K572 and K574 were found to be conserved 

(grade 8). The active site of PA protein protease activity (residue Ser624) was found to be highly 

conserved (grade 9). In the region which is implicated in vRNA and cRNA promoter binding (residues 

100-180), residues K102, P103, P107, D108, D111, F117, V122-R125, Y130, E133, K134, K139, 

I145-I147, S149, G152, S167, R168, R170 and T173 were found to be highly conserved (grade 9). 

In the established functionally important regions of the PB1 protein, high conservation was found, for 

example in the cRNA promoter binding regions (residues 1-139 and 267-493) several highly conserved 

(grade 9) residues were identified, out of which residues , M1, F22-Y24, G33, G71, P72, G81, Y82, L122, 

T128, Q137, P138, V285, M290, E311, N312, T326, W332, P341, K347, Y380, L403, P405, G406, G410, 

L415, G420, W437, L441, S443, I450, L472, S482 and T489 showed highest conservation. In the region 

implicated in the vRNA promoter binding (residues 1-83, 249-256 and 494-757), there are several highly 

conserved residues (grade 9), of which residues M1, F22-Y24, G33, G71, P72, G81, Y82, G250, F501, 

E519, G526, G540, P541, Q545, F551, Y557, S585, G594, N597, Y620, C625, N629, H649, P651, A659, 

C692, E697, P708 and G710 were found with highest conservation. Residues K188 (grade 8), R189 

(grade 7) and D193 (grade 7) were found to be conserved in the NLS1 (187-195 AA), while a lone residue 

G206 (grade 7) was found to be conserved in NLS-2 (residues 203-216) of PB1 protein. Residues S585, 

L589, L590, D593, G594, P596 and N597 were found to be conserved in the antigenic epitope (586-599 

AA) on the PB1 protein [33]. In the PB1-PA binding region (residues 1-37) M1, A17, T21-T25, P28, H32, 

H33 and G35-G37 were found to be highly conserved residues (grade 9). In the PB1-PB2 binding region 

(residues 678-757), residues G681, C692, E697, S702, S703, P708, G710, R727 and I750 were found to 

be highly conserved residues (grade 9).  

In the established functionally important regions of the PB2 protein, high conservation was found, for 

example in the region implicated in PB2-PB1 binding (residues 1-37), residues M1, M11, I19, T24, V25, 

H27, T35 and G37 were found to be highly conserved. Of the two residues (363 and 404) which were 

found to be critical for cap binding, only residue F363 was found to be highly conserved, while F404 was 

found to be intermediately conserved (grade 6). In the region which was found to be critical for 

PB2-importin-α interaction (residues 701-753), residues S709, L716, G719, V724, G729, V732, S742, 

L744, D746, S747 and T749 were found to be highly conserved (grade 9). In the NLS-1 (residues 

449-495) of PB2 protein, residues E452, M458, S474, S481, D486 and Y488 were found to be highly 

conserved (grade 9), while G450, I454, G459, M460, D466, R476, R479, G484 and E487 were found to 

be conserved residues (grade 8). In the NLS-2 (residues 678-759), residues E687, G693, E700, S709, 

L716, G719, V724, G729, V732, S742, L744, D746, S747 and T749 were found to be highly conserved 

(grade 9), while A689, V690, R692, F694, I696, P706, L708, I710, E712, E720, N723, Q728, D730, L733, 

M735, K736, R737, K738, R739, I743, T745, A750, T751 and K752 were found to be conserved residues 

(grade 8). The critical residues in the region identified as mitochondrial-targeting signal (residues 7-10) 

showed varied degree of conservation. Residues L7 and R8 were found to be conserved (grade 7); residue 

L10 was found to be conserved at grade 8, while residue D9 was found to be highly variable (grade 1). 

Conclusion  

In culmination, this study has identified that influenza polymerase complex revealed a pattern of 

conserved and variable residues among all IAV hosts and subtypes. By identifying drug binding sites in 
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close proximity to the conserved residues in the PA, PB1 and PB2 proteins will help in designing 

anti-influenza drugs which are improbable to get inefficient in case of a mutation in IAV leading to drug 

resistant form. Moreover these anti-influenza drugs will be universally efficient against all strains of IAV 

from various hosts. The functions of the previously unknown highly conserved residues identified in this 

study should be experimentally characterized. 

Abbreviations  

IAV, Influenza A Virus; RdRp, RNA- dependent RNA polymerase; PA, Polymerase acidic; PB1, 

Polymerase basic 1; PB2, Polymerase basic 2; NCBI, National Centre for Biotechnology Information; 

PDB, Protein Data Bank 
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