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I. Introduction
Detailed modeling of complex reaction systems is

becoming increasingly important in the development,
analysis, design, and control of chemical reaction
processes. For industrial processes, complete incor-
poration of the chemistry into process models facili-
tates the minimization of byproduct and pollutant
formation, increased efficiency, and improved product
quality. Processes that involve complex reaction
networks include a variety of noncatalytic and ho-
mogeneous or heterogeneous catalytic processes (such
as fluid catalytic cracking, combustion, chemical
vapor deposition, and alkylation). For some systems,
large sets of relevant reactions have been identified
for use in simulations.1-3 For others, the availability
of advanced computing environments has enabled the
automated generation of reaction networks and their
models, based on computational descriptions of the
reaction types occurring in the system.4-6

The use of such complex models is hindered by two
obstacles. First, because of their sheer size and the
presence of multiple time scales, these models are
difficult to solve. Second, the models contain large
numbers of uncertain (and sometimes unknown)
kinetic parameters; regression to determine the
parameters of complex nonlinear models is both
difficult and unreliable, and the sensitivity of simula-
tions to parameter uncertainties cannot be easily
ascertained. Furthermore, for the purpose of gaining
insights into the reaction system’s behavior, it is
usually preferable to obtain simpler models that
bring out the key features and components of the
system. For these reasons, model simplification and
order reduction are becoming central problems in the
study of complex reaction systems.
The simulation, monitoring, and control of a com-

plex chemical process benefit from the derivation of
accurate and reliable reduced models tailored to
particular process modeling tasks. Model simplifica-
tion is directly linked to identification of key reactions
and sets of species that give valuable insights into
the behavior of the network and how it may be
influenced. Advanced control schemes such as model
predictive control7 or multiple model adaptive con-
trol8 must be based on selecting appropriate reduced
models and tracking key sets of species.
Ideally, a model order reduction algorithm should

have broad applicability, enable analysis at several
levels of detail, and provide an assessment of the
modeling error.

II. Problem Formulation
The scope of this review will be confined to models

of the dynamic behavior of reaction systems in which
there are no explicit spatial variables. This includes
well-mixed homogeneous processes, as well as those
models of heterogeneous processes in which the
spatial dependence has been neglected or already
lumped. In general, a dynamic model of a reaction
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network can be expressed as a set of ordinary
differential equations9

where c is the species concentration vector (dimen-
sion n), k is the vector of reaction rate constants, and
f is the vector of operators expressing the kinetics.
Recent work has shown the possibility of describing
chemical reaction systems through other kinds of
equations, such as delay differential equations;10
these nontraditional modeling schemes can only be

applied to limited types of systems and will not be
reviewed here.
In the context of chemical reaction systems,model

order reduction refers to the identification of relation-
ships among the reactants, so that fewer species need
to be independently tracked (simulated or measured).
The goal of model order reduction is to transform the
system of differential equations (1) to one of lower
order and still retain the key dynamic information.
The reduced system is

where ĉ is the species vector in the reduced model
(dimension n̂ < n), k̂ is the vector of rate constants
in the reduced system, and f̂ is the resulting kinetics
vector. Note that ĉ may refer to a subset of the
original species, to groups of original species, or to
linear combinations and other mathematical con-
structs (in effect defining new variables rather than
just a selected subset of the original variables). The
neglected individual concentrations may be combined
with other species, replaced by algebraic relations,
or ignored completely. The reduced system (eq 2)
should be more tractable mathematically and com-
putationally, give greater insight into the key rela-
tionships among species, and contain fewer unknown
parameters than the full model (eq 1).
Three general strategies have been pursued for

model order reduction: lumping, sensitivity analysis,
and time-scale analysis. Lumping transforms the
original variables to a lower dimensional vector
(Figure 1a):

The transformation may be based on some set of
physical properties or on the reactivity of the com-
pounds. Lumping is useful when only limited mea-
surements and information are available about spe-
cific reaction kinetics and detailed chemical com-
position. In a lumped model, information about
specific reactions and species is often concealed.
Sensitivity analysis seeks to determine and eliminate
insignificant reactions and species on the basis of
their impact on designated important species; only
a subset of the original species remain in the reduced
model (Figure 1b). As the number of important
species increases, sensitivity analysis is less likely
to provide substantial model order reduction. For
this reason, sensitivity analysis is often used in
conjunction with the quasi-steady-state approxima-
tion. Time-scale analysis identifies the different
scales over which species react, and the fast-time-
scale reactions and species are assumed to be at
steady state. The slow variables, ĉ, remain in the
reduced model, yet their motion is constrained to a
lower dimensional space on the basis of their rela-
tionship to the fast variables, cf (Figure 1c):

Thus, order reduction is possible as the differential
equations for the fast species are replaced by alge-
braic relations. This is the basis for the quasi-steady-
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dc
dt

) f(c;k), c(to) ) co (1)

dĉ
dt

) f̂(ĉ;k̂), ĉ(to) ) ĉo (2)

ĉ ) h(c) (3)

cf ) g(ĉ) (4)
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state approximation, which has been mathematically
formalized by singular perturbation theory. Time-
scale analysis requires manual manipulation of the
model and significant a priori knowledge of the
behavior of various species; in practice, this means
that it is feasible to simplify only compact models.

III. Lumping

Lumping is a widely used method for simplifying
reaction kinetics. The reactant vector is transformed
to a lower dimensional vector of pseudospecies so that
the kinetic equations are easier to solve, and fewer
parameters need to be experimentally determined.
The most accessible lumping schemes are linear, as
suitable nonlinear transformations are difficult to
determine. Mathematically, linear lumping falls into
two categories, proper and improper. In proper
lumping (Figure 1d), each reactant appears in only
one lump, so that each lump follows the principle of
invariant response:11 the rate of reaction of the lump
should depend only on the sum of the species and
not on the individual species it contains. Empirically
determined lumps are nearly always proper. In
improper lumping, on the other hand, components
may contribute to more than one lump. Proper
lumping schemes are more insightful and useful, but
for realistic reaction networks many mathematical
lumping methods are able to derive only improper
lumps.
The use of lumped models was reported as early

as 1953,12 with the reduced scheme being empirically

determined. Mathematically rigorous lumping tech-
niques create lumps that are an integral of a set
defined by a continuous index variable (continuum
view13), or functions of the individual chemical spe-
cies (discrete view11). Continuum lumping is linear
and proper, while both linear and nonlinear tech-
niques have been presented for the determination of
discrete lumps. The applicability of each method
depends on the structure of the system as well as the
extent of available information on kinetics and
composition.

A. Lumping a Continuum
The treatment of a complex mixture as a con-

tinuum was first proposed by DeDonder.14 As the
number of species in a mixture approaches infinity,
it is no longer possible to identify specific individual
species, but only a distribution of species. Such a
view is convenient when the exact composition and
reactions are unknown, since the continuous view
does not provide a direct way to incorporate known
detailed kinetic information. If all the reactants are
combined into a single, proper lump, only the disap-
pearance of that lump is tracked in the reduced
model.13,15-17

A continuous mixture can be described in terms of
the rate constants, k, or physical properties such as
boiling point, molecular weight, or molecular struc-
ture.18 However, it is advantageous to define the
mixture in terms of a nondimensional indexing
variable.19,20 The index variable, x, is taken to be in
the interval [0,∞). The initial concentration of mate-
rial specified over the interval (x,x+dx) is given as

where co is the total initial concentration, and h(x) is
a distribution function. The distribution function h(x)
must be normalized so that

and the mathematical treatment is simplified with-
out loss of generality by scaling the index variable
so that

For a first-order irreversible reaction, the model takes
the form

The index variable is defined so that the rate
constants are ordered. Then, k(x) is a monotonically
increasing function on [0,∞), with k(0) ) 0 and k(x)
f ∞ as x f ∞. The solution of eq 8 gives the
concentration over an interval to be

Integrating over the index variable then yields an
expression for the entire lump, C

Figure 1. Schematic representations of model reduction
techniques. (a) Lumping transforms the species vector to
one of lower dimension, ĉ ) h(c). (b) Sensitivity analysis
neglects species whose impact is small. (c) In time-scale
analysis, fast species are derived from algebraic con-
straints, cf ) g(ĉ). (d) Linear proper lumping is a special
case of (a) where species form independent pools. Math-
ematically, the transformation is ĉ ) Mc, where Mij is
equal to 1 when cj contributes to ĉi and 0 otherwise.

c(x,0) dx ) coh(x) dx (5)

∫0∞xh(x) dx ) 1 (6)

∫0∞xh(x) dx ) 1 (7)

d
dt
c(x,t) ) -k(x) c(x,t) (8)

c(x,t) ) coh(x) e
-k(x)t (9)
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and its time derivative

One possible function for h(x) is the Γ distribution,15

where R > 0 is a characteristic parameter of the
system. Through the use of the Laplace transform
on h(x), the functional dependence of the decay of the
lump is found to be

where k̂ is an average rate constant

and n is the apparent reaction order, related to the
parameter R by

The kinetic behavior of the lump is then given by the
solution of eq 11

where the apparent reaction order is n g 1.
This approach provides a solid theoretical basis for

continuous lumping of mixtures whose individual
components decay by first-order, irreversible, parallel
reactions. In applications, experimental data must
exist to fit the apparent reaction order n (eq 16) and
in most cases k̂, because for a complex mixture it is
unlikely that the function k(x) (eq 14) will be known.
Many processes of interest, especially in catalysis,

are known to have nonlinear intrinsic kinetics. The
above approach does not extend directly to higher
order systems,21 as this results in a physically invalid
model which violates the single-component identity
(SCI). The SCI states that if all components have
the same value for their kinetic parameters, a valid
lumped model must reduce to the kinetics of a single
component.
Researchers have taken two approaches to retain

the physical validity of lumped models for systems
with nonlinear kinetics. Astarita and Ocone initiated
a solution through the use of cooperative kinetics,20
while Chou and Ho used a coordinate transforma-
tion22 to obtain a solution.
The cooperative kinetics approach seeks to linear-

ize the system through the use of the warped time
concept.16,23 The key assumption is that the nonlin-
ear kinetics differ from the linear case by a factor
that has the same value for each component in the
mixture. With the addition of an interaction func-
tion, K(x,z), the model is written similarly to eq 8 as

The functionK(x,z) represents the effect of the z-index
component on the kinetics of the x-index component.
Thus, the total effect of all other components on the
x-index component is the integral of K(x,z) weighted
by the concentration c(z,t). The key assumption of
cooperative kinetics requires K(x,z) to be a function
of z only:

Thus, the system is linearized, and a solution for
c(x,t) is found which is similar to eq 9:

The additional function, w(t), is known as the warped
time, and can be found by solving a separate ordinary
differential equation:

Equation 19 may then be used in the development
of a continuous lumping scheme as described previ-
ously. The assumptions of cooperative kinetics are
restrictive, but they are applicable to many types of
chemical systems: catalytic reactions governed by
Langmuir isotherm adsorption,16,20 and more gener-
ally under the assumption of uniform catalytic sur-
face coverage,15 Michaelis Menten kinetics for enzy-
matic reactions,24 and biomolecular reactions under
the assumption of intrinsic reactivity.16 This ap-
proach has also been shown to be applicable in
adiabatic systems, where the nonlinearity is intro-
duced by temperature variations.16
Another approach for continuous lumping of reac-

tions with intrinsic nonlinear kinetics is through a
coordinate transformation.22 This method approxi-
mates the finite sum of reactants with respect to a
discrete indexing variable, i, as an integral over the
reactivity k. The Jacobian of this i-to-k transforma-
tion, D(ki), can be used to define the reactant con-
centration over an interval ∆i to be

The total reactant lump can then be approximated
by a weighted integral:

In systems so complex as to warrant a continuous
description, the function D is likely to be undeter-
mined. Thus, these models are practical for studying
only the long time behavior of a lump by extending
an asymptotic analysis25 to these transformed sys-
tems. For irreversible reactions with nonlinear
kinetics, the concentration of reactant k can be
described as

Then substituting eq 23 in eq 22, for n g 1, the
concentration lump can be described as

C(t) ) ∫0∞[c(x,t) dx]/co ) ∫0∞h(x) e-k(x)t dx (10)

Ċ(t) ) -∫0∞k(x) h(x) e-k(x)t dx ) -F(C) C(0) ) 1
(11)

h(x) ) [RRxR-1/Γ(R)]e-Rx (12)

F ) k̂Cn (13)

k̂ ) ∫0∞k(x) h(x) dx (14)

n ) 1 + 1/R (15)

C ) {1 + (n - 1)k̂t}-1/(n-1) (16)

d
dt
c(x,t) ) -k(x) c(x,t) F[∫0∞K(x,z) c(z,t) dz] (17)

d
dt
c(x,t) ) -k(x) c(x,t) F[∫0∞K(z) c(z,t) dz] (18)

c(x,t) ) c(x,0) e-k(x)w(t) (19)

dw
dt

) F[∫0∞K(z) c(z,0) exp(-k(z) w(t)) dz]
w(0) ) 0 (20)

ci(t) ) c(ki,t) D(ki) ∆ki (21)

C(t) ) ∫0∞c(k,t) D(k) dk (22)

c(k,t) ) c(k,0)[1 + (n - 1)c(k,0)n-1kt]1/(1-n) (23)
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At long times, the integrand is significant in a thin
region near k ) 0 so eq 24 can be simplified to

and solved analytically for 1e n <2

For n g 2, a numerical solution is possible if the
forms of D(k) and c(k,0) are known.
The continuum lumping methods described in this

section cannot be used for mixtures that are too
complex to characterize by only one indexing vari-
able. To account for and track the complexity of a
mixture, Prasad et al. proposed using two indices to
create continuous lumps.26 Each indexing function
can then track a separate physical parameter. For
example, in the analysis of coal liquefaction, both
carbon number and oxygen atoms need to be tracked
to produce a useful lumped model.
A drawback of continuum lumping is that the

method does not provide a convenient way to incor-
porate known information about the specific reac-
tants or reactions; it relies instead on empirically
fitted parameters. Despite the limitations of the
continuum description, it is finding use because of
the agreement with coarse experimental observa-
tions, the tractability of the mathematical treatment,
the compactness of the solution, and the applicability
to poorly defined systems. The total concentration
of a complex reactant mixture where each individual
component reacts by a first-order reaction, as is the
case in petroleum cracking, is observed to decay by
a higher order of reaction,15,27 as predicted by Kram-
beck.25 Continuum lumps have been exploited in the
modeling of petroleum cracking,17,24,27 incorporated
into reactor models,28 and used for diffusion-reaction
systems.29

B. Discrete Lumping
Discrete lumping11,30-32 treats the components in

a complex mixture individually, and transforms them
on the basis of their reactivity. Linear lumping
methods may result in either proper or improper
lumping schemes, depending on the reaction kinetics.
In theory, nonlinear methods are more widely ap-
plicable, but the requisite transformations can gener-
ally be found only for reaction systems where the
relative time scales of the species are known. The
discrete approach requires a comprehensive descrip-
tion of the kinetic scheme. This information may be
the actual species and reactions, but it is also possible
to use discrete lumping to further simplify a system
of empirical lumps.
Discrete linear lumping transforms the species

vector to one of lower dimension through matrix
operations. For a system of unimolecular reactions,

eq 1 becomes

where c is a vector of dimension n and K is a square
matrix of the rate constants. The diagonal elements
of K, kii, represent the sum of rate constants corre-
sponding to the total consumption of species i, while
the off-diagonal elements, kij, represent the rate
constants of the conversion of species j to species i.
To reduce the order of the system, lumps are con-
structed as

where ĉ is of dimension n̂ < n andM is the lumping
matrix of dimension n̂ × n. This system is exactly
lumpable if there exists a matrix K̂ such that the
kinetic behavior of the lumped system can be de-
scribed by

By recognizing that eq 29 may be obtained by either
substituting the lumps into the kinetic scheme or
lumping the kinetic scheme, Wei and Kuo11 deter-
mined a necessary and sufficient condition for exact
lumping of linear systems to be

Equation 30 will always be satisfied if the left n̂
eigenvectors of the reactivity matrix, K, are chosen
to compose M, and K̂ is a diagonal matrix with the
corresponding eigenvalues of K. Order reduction is
evident when the matrix of eigenvectors, X, is con-
sidered as

The nonsingular matrix of lumped eigenvectors is X̂
(n̂ × n̂), while (Î|0) is a matrix whose left submatrix
Î is an n̂ × n̂ identity matrix and right submatrix 0
is an n̂ × (n - n̂) null matrix. Thus, the lumping
matrix M reduces the dimensionality of the system
and eliminates (n - n̂) of the eigenvectors of the
reactivity matrix.
For linear systems, there are an infinite number

of exact lumping schemes, although not all will be
proper. As proper lumps are more insightful and
useful, many systems may be approximately reduced
into proper lumps.33 The error matrix

reflects the accuracy of a given approximate proper
lumping scheme.
The above analysis provides a theoretical basis for

discrete lumping methods. For a system of unimo-
lecular reactions, it provides the necessary and
sufficient conditions for exact lumping and guidelines
for the applicability of approximate lumping.
Other developments in lumping address more

practical issues and diverse reaction systems. Cox-
son and Bischoff examined the construction of proper

C(t) ) ∫0∞c(k,0) D(k) [1 +

(n - 1)c(k,0)n-1kt]1/(1-n) dk (24)

C(t) ) c(0,0) D(0) ∫0∞[1 +

(n - 1)c(0,0)n-1kt]1/(1-n) dk (25)

C(t) ) 1
t{c(0,0)

2-n D(0)
2 - n } (26)

dc
dt

) -Kc (27)

ĉ ) Mc (28)

dĉ
dt

) -K̂ĉ (29)

MK ) K̂M (30)

MX ) X̂(Î|0) (31)

E ≡MK - K̂M (32)
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lumps from response data.30 The data from a uni-
molecular reaction system are analyzed at discrete
times, and the response vectors are examined to
determine which may be combined on the basis of
the principle of invariant response. For small sys-
tems, this can be done by inspection, while for other
systems the statistical method of clustering analysis
is utilized. However, for very large systems, the
results from clustering analysis are difficult to in-
terpret. Coxson and Bischoff suggest starting the
method from the minimum number of empirical
lumps that still preserve the desired accuracy, and
then applying clustering analysis to further reduce
the number of these lumps. In this manner, a
petroleum cracking model was reduced from ten
lumps34 to a unimolecular system of six lumps.
Two key elements are required to achieve wide

applicability for discrete lumping: extensions to non-
linear reaction systems, and methods for identifying
lumping schemes a priori (before obtaining experi-
mental concentration profiles). An initial extension
of the work of Wei and Kuo to bimolecular systems
was performed by Li;35 subsequently Li and Rabitz
generalized the analysis of discrete lumping to sys-
tems with arbitrary nonlinearities through the use
of invariant subspaces of the reaction system.36 The
exactly lumped system of equations would be

where Mh is a generalized inverse of M satisfying

The necessary and sufficient condition for exact
lumping of a nonlinear system is that the transpose
of the Jacobian matrix, JT(c), of f(c) has nontrivial
fixed invariant subspacesM. The basis vectors ofM
construct the lumping matrix M. An appropriate
lumping matrix is found by minimizing the error,
Z(c), of such a lumping scheme

where

and tr is the trace of a matrix (the sum of the
eigenvalues, also equal to the sum of the diagonal
elements).
The nonlinear system is analyzed through its

instantaneous linearized versions. The Jacobian is
decomposed as follows

The ak(c) coefficients are functions of c, and the Ak
matrixes are constant and form a basis of JT(c). A
subspace that is simultaneously invariant for all the
Ak matrixes is also a fixed invariant subspace of
JT(c). Note that, although the kinetics are nonlinear,
the species transformation (eq 28) is linear. The

decomposition (eq 37) of the Jacobian also involves a
linear expression, but with potential nonlinear func-
tions of the concentration ak(c). The optimization
problem to find M then becomes

For unconstrained lumping, the initial guess is based
on an M which defines a subspace that has a high
degree of coincidence with the invariant subspaces
of the Ak matrixes.37
This method lends itself to constrained lumping

techniques,37 where components of interest can be left
unlumped. The lumping matrix, M, becomes

where MG is given by the modeler and MD is
determined from a search of the invariant subspaces
of the system. The matrix MG is useful to separate
species which must be tracked during the reaction.
This added constraint also facilitates the search for
appropriate lumping schemes,31 but may increase the
error for a desired model order.
A major accomplishment was the determination of

a lumping scheme a priori for exactly lumpable
systems,36 and possible approximate lumping schemes
for isothermal nonlinear systems.31,37 The method has
also provided the foundation for lumping nonisother-
mal first-order reaction systems.38
An illustration of approximate linear lumping has

been shown with the following example system:31

This reaction system is exactly lumpable when k51 )
1.36 In this example, k51 is set to 0.1 so that the
lumping schemes will be approximate. Also, the
concentrations of c1, c2, c3, and c4 were separated into
a constrained lump, ĉ1. Thus, the composition of ĉ1
will remain the same for each lumping scheme. The
results of the reduced models are shown in Figure 2.
For this system, only the 2-dimensional lump shows
significant deviation from the full model.
The use of invariant subspaces for determining an

approximate lumping scheme first seeks out the
lowest order reduced model; then, to increase ac-
curacy, lower order schemes are used as starting
points in seeking higher order lumping schemes. This
method of searching for lumping matrixes is disad-
vantageous for strongly coupled systems with mul-
tiple time scales, and suitable fixed invariant sub-
spaces of the transpose of the Jacobian may not exist
for many nonlinear systems.

dĉ
dt

) Mf(Mh ĉ) (33)

MMh ) In̂ (34)

Z(c) ) tr[ET(c) E(c)] (35)

E(c) ) (In - MTM)JT(c)MT (36)

JT(c) ) Ao + ∑
k)1

m

ak(c)Ak (37)

min Z(c) ) tr∑
k)1

m

MAk
T(In - MTM)AkM

T

subject to MMT ) In̂ (38)

M ) (MG

MD
) (39)

396 Chemical Reviews, 1998, Vol. 98, No. 2 Okino and Mavrovouniotis



Progress in developing lumped models may lie in
inherently nonlinear lumping techniques39 and the
direct incorporation of time-scale separation tech-
niques in lumping.40,41 These methods are closely
related as both seek to find an expression for the
invariant manifold that exists in state space for a
given transformation. In nonlinear lumping, the
concentrations are transformed by

where h is the lumping transformation operator. The
reaction system (eq 1) then becomes

where hc(c) is the Jacobian matrix of h(c) and hh is
the generalized inverse of h satisfying

The difficulty in nonlinear lumping is the absence
of a general reliable method to determine the trans-
formation h and its inverse hh . However, nonlinear
lumping schemes can be determined when a reaction
system (eq 1) can be separated along time scales into
the form42

where y and z are vectors of concentrations reacting
along the slow and fast time scales, respectively, f
and g are operator vectors, ε is a small parameter
from the ratio of time scales, and τ is the fast time
variable

The determination of approximate nonlinear lumping
schemes is possible because the differential operator

for the original reaction system (eq 1)

can be expressed as a series containing the small
perturbation parameter. An algebraic method for
transformingto a canonical form has been pre-

sented.43 The transformation defines a new basis
consisting of the invariants and eigenfunctions of A0,
leading to a differential equation system which
contains only the slow variables. The slow variables
are invariants of A0 and can be decoupled from the
fast variables, which are then lumped in the eigen-
functions so that the new starting basis takes the
form

The operator expressing the lumped model, M, is
found by defining a transformation operator, S, such
that

Then S is expressed as a series

so that M is of the same canonical form as A0. Such
a transformation effectively decouples the slow vari-
ables from the fast variables, so that a reduced order
system can be written in terms of only the slow
variables

Figure 2. Comparison of the lumped model to the full simulation. Reprinted with permission from ref 31. Copyright 1991
Elsevier Science Ltd.

ĉ ) h(c) (40)

dĉ
dt

) hc[hh (ĉ)] f[(hh (ĉ)] (41)

h(hh ) ) In̂ (42)

dy
dτ

) f1(y,z;k) + εf2(y,z;k) (43)

dz
dτ

) g1(y,z;k) + εg2(y,z;k) (44)

τ ) t/ε (45)

A ) ∑
i)1

n

fi(c)
∂

∂ci
(46)

dci
dt

) fi(c) ) Aci i ) 1, ..., n (47)

A ) A0 + εA1 + ε
2A2 + ... (48)

{φ1(y,z),φ2(y,z),...,φm(y,z),y1,y2,...,yn̂} (49)

M ) e-SAeS (50)

S ) εS1 + ε
2S2 + ... (51)

dŷ
dt

) f̂(ŷ;k,ε) (52)

Mathematical Models of Chemical Reaction Systems Chemical Reviews, 1998, Vol. 98, No. 2 397



where

The solution of the original variables can be found
from the inverse transformation

and if some of the slow variables need to remain
unchanged, a constraint may be placed on the trans-
formation operator44

The system of fast variables

where φı̂ is defined in the same manner as ŷi (eq 53),
can then be evaluated separately. This form is useful
in solving for the evolution of the fast variables in
the boundary layer by setting ŷ ) ŷ(0) or for getting
values for the fast variables as functions of time.
This nonlinear method requires that the relative

scales in a reaction system be known a priori, as it
depends on the proper introduction of ε. The zero-
order approximation of constrained nonlinear lump-
ing for the reduced system is equivalent to the well-
known quasi-steady-state approximation (to be dis-
cussed later in this review), while the higher order
terms result in increased accuracy over a larger
region. This method was used to generate reduced
models for an enzyme-catalyzed reaction42 and a
compact subset of hydrogen combustion.44 The method
works well for compact systems, yet the higher order
terms of M become increasingly difficult to compute
as the systems become larger.
A common feature of lumping techniques is the loss

of information about specific components and indi-
vidual reactions. In some cases, this is an advantage
since unknown kinetic constants and species are
lumped together so that fewer parameters need to
be determined. This assumes that the sets of species
that are mathematically convenient to lump also
happen to be the ones that do not need to be resolved
for the process modeling objective at hand.
An approach for including known reaction types

into a proper empirical scheme is to assume a
representative distribution of components within the
lumps. Reduced models for catalytic cracking have
been constructed by assigning a single representative
structure per carbon number per compound class
lump.32,45 A similar approach has also been applied
to oxidation systems46,47 where a specific radical
species was chosen to represent a class of intermedi-
ates. This approach enables the incorporation of
known kinetic data, although specific components are
not tracked. Clearly, the success of such an approach
depends on how similarly the compounds behave and
how well the representatives are chosen.
Lumping is a widely used model simplification

technique and has shown success with several reac-
tion systems. However, the inherent loss of informa-

tion about individual species and reactions and
resulting lower accuracy are significant obstacles in
its application. Furthermore, the difficulty in finding
appropriate lumping schemes increases dramatically
for large nonlinear reaction networks.

IV. Sensitivity Analysis
Sensitivity analysis has been used to analyze

chemical48,49 and biological50 systems, primarily to
examine their behavior with respect to disturbances
or to determine the robustness of parameter estima-
tion. The extension to model reduction lies in the
fact that a particular process modeling objective
rarely depends on every single component in a
complex reaction system. Therefore, a satisfactory
description of the system need only include the
important species, which are relevant for the task at
hand, and the necessary species, which have a sig-
nificant effect on the important species. Thus, by
removing the species that have only a weak influence
on important and necessary species, the order of the
system is reduced.51-54

Turanyi et al. discussed how sensitivity analysis
may be used to reduce the complexity of a kinetic
model systematically.51 The procedure entails (1)
identifying the important species, (2) determining the
necessary species through investigation of the Jaco-
bian, and (3) eliminating insignificant species and
redundant reactions.
A species in a system may be neglected if changes

in its concentration have only a negligible effect on
the concentrations of the important species. For a
reaction system described by eq 1, the relative
importance of species i on the N important species
can be determined by taking the sum of the squares
of the normalized Jacobian elements of the system
(evaluated locally):

The species ci can be neglected when it is found that
Bi < B, where B is a small parameter reflecting the
desired accuracy of the model. Note that this is an
iterative procedure, as both important and necessary
species must be insensitive to the species to be
neglected; in effect, the summation in eq 57 is
extended to include all species subsequently classified
as necessary. Further simplification is possible by
eliminating the redundant reactions, through prin-
cipal component analysis of the rate sensitivity
matrix,55 F, which has elements

where νij is the stoichiometric coefficient of species i
in reaction j, Rj is the rate of reaction j, kj is the rate
constant for reaction j, and fi is the rate of production
of species i. The reactions whose contributions, on
the basis of the eigenvalues of FTF, are below a
desired precision threshold may be eliminated in that
region.

ŷi ) eSyi (53)

yi ) e-Sŷi (54)

Syi ) 0 (55)

dφ̂
dt

) ĝ(ŷ,φ̂;k,ε) (56)

Bi ) ∑
n)1

N (∂ ln fn∂ ln ci)
2

(57)

Fij )
∂ ln fi
6 ln kj

)
νijRj

fi
(58)
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To ensure the accuracy of the reduced model, either
the full model must be solved, or extensive data must
be available to evaluate the sensitivity matrixes. In
principle, only the important species need to be
tracked in every region; however, to have continuity,
any species necessary in one region must be tracked
in every region. If more information is desired and
more important species are designated, the number
of necessary species also increases, and the extent
of reduction achieved by sensitivity analysis de-
creases. Thus, in many cases, the sensitivity analysis
approach is used in conjunction with the well-known
quasi-steady-state approximation. In this manner,
reduction by sensitivity analysis has been applied to
combustion53,54,56-59 and pyrolysis systems.51,52,60 Sen-
sitivity analysis also provides the basis for other
reported reduction techniques such as regional analy-
sis,61 ridge regression analysis,62 and genetic algo-
rithms.63
A propane pyrolysis system, consisting of 422

reactions and 48 species,1 was reduced using sensi-
tivity analysis.52 Eight important species are desig-
nated, leading to eleven necessary species. Exami-
nation of the reactions results in a 122-reaction
mechanism and a 50-step mechanism. The 122-step
mechanism is indistinguishable from the full system,
while for the low-yield products the 50 step mecha-
nism shows significant deviation (Figures 3 and 4).
Further order reduction is possible by applying the

quasi-steady-state approximation to 12 of the species
in the reduced system. The resulting differential-
algebraic equation system produces results identical
to those shown in Figures 3 and 4. In practice, even
for the simpler 50-step mechanism, the resulting
algebraic equations become so complicated that no
computational benefit is gained by removing some of
the differential equations.

V. Time-Scale Analysis
The dynamic behavior of reaction systems often

contains multiple time scales; after an initial tran-

sient period, some fast reactions can be considered
nearly instantaneous relative to the remaining slow
ones. This is the basis of the quasi-steady-state
approximation,64 which has been successfully used
for many reaction systems, such as enzyme cataly-
sis65 and combustion.66
For a given quasi-steady-state (fast) species, cs, the

differential eq 1 changes from

into

It should be noted that eq 60 does not imply that dcs/
dt ) 0, but rather that dcs/dt is dependent on the
changes of the other concentrations with time,67 as
seen by the total time derivative of fs ) 0:

The concentrations of the fast species change with
time, but these species can be described by algebraic
relations instead of differential equations.
The generalized implementation of the technique

is difficult because the identification of fast and slow
reactions (difficult in itself) does not clearly indicate
which are the true fast and slow species; thus, the
reduced model may not be a valid approximation of
the reaction kinetics.68-72 There is a need for a
systematic method that takes advantage of the dif-
ferent time scales, as the quasi-steady-state method
is a proven reduction technique and the detail
provided by such models gives insights into physical
phenomena lost by other lumped models.73,74

A. Algebraic Approximation of the Inertial
Manifold
When the quasi-steady-state approximation is ana-

lyzed from a geometrical view in phase space, it can

Figure 3. Weight percent of high-yield pyrolysis products
as a function of reactor position for a full mechanism (solid
line), 122-step mechanism (coincides with the solid line),
and 50-step mechanism (dashed line). Both the 122- and
50-step mechanisms provide accurate results. Reprinted
with permission from ref 52. Copyright 1995 American
Chemical Society.

Figure 4. Weight percent of high-yield pyrolysis products
as a function of reactor position for a full mechanism (solid
line), 122-step mechanism (coincides with the solid line),
and 50-step mechanism (dashed line). The 50-step mech-
anism shows significant deviation from the full model.
Reprinted with permission from ref 52. Copyright 1995
American Chemical Society.

dcs
dt

) fs(c1,c2,...,cn;k) (59)

fs(c1,c2,...,cn;k) ) 0 (60)

Dfs
Dt

)
∂fs
∂c1

dc1
dt

+
∂fs
∂c2

dc2
dt

+ ... +
∂fs
∂cn

dcn
dt

) 0 (61)
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be seen that, after an initial transient, the dynamics
of the system are restricted to a lower dimensional
manifold, thereby reducing the order.67,75 Figure 5
shows the evolution of a two-species system to the
equilibrium point Q. For this system, it is seen that
the f ) 0 curve is a good approximation to the true
dynamic behavior of the system. For higher dimen-
sional systems, the relaxation of a system of chemical
reactions can be viewed as a nested hierarchy of
inertial manifolds.76,77 It is possible to model the
dynamics through a sequence of inertial manifolds,
each of decreasing dimension. As with the quasi-
steady-state approximation, the user of the model is
often interested only in the slowest dynamics of a
system, given by the lowest dimensional manifold.
The inertial manifold can be approximated itera-

tively starting from equilibrium or steady-state ap-
proximations.67,75,76,78,79 To estimate the slow mani-
fold, it is necessary to describe the evolution of the
system in phase space. Trajectory equations for
intermediate species, which eliminate the time de-
pendence, express those species in terms of a pro-
gression species, cp, which is not an intermediate or
a catalyst in the system.

Expressions for the intermediate species may then
be found in terms of the trajectory equations

From eq 63, the manifold can be estimated through
an iterative procedure, where the derivative and
other species are evaluated from an initial guess to
the solution

The subscripts j and j + 1 indicate the iteration. In
higher dimensional systems (>2), convergence to-
ward the slow manifold is improved by linearizing
the expressions about a fixed point ĉ*. The resulting
expressions for the species are

which result in a matrix equation for the error in iter-
ation j + 1 as a function of the error in iteration j

The matrix M is square with diagonal elements

and off-diagonal elements

Iterations are then performed on the error terms.
Appropriate initial guesses are based on equilibrium
and steady-state approximations. In higher (>2)
dimensional systems, these approximations are the
intersections of the nullclines, which are the surfaces
described by

Initial guesses are then based on the nullcline eq 69
being solved for a species other than the progression
species:

It is possible to also extract a transient surface of
dimension n - 1 using similar techniques. This
requires that the fastest species, c1, be written in
terms of the other independent species as

and differentiated with respect to time

This equation is rearranged in a manner similar to
that of eq 63 to obtain an equation that can be used
to iteratively solve for the surface.

An appropriate initial guess is the nullcline surface
created by the change of the next fastest variable
being set to 0 (eq 70). This surface describing the
transient flow can be found when the Jacobian has
real eigenvalues; complex eigenvalues indicate oscil-

Figure 5. Schematic of the quasi-steady-state approxima-
tion for a system of two species. The x × y plane represents
phase space. The system is dx/dt ) f and dy/dt ) g.
Constrained motion (QSSA) with f ) 0 is shown by heavy
arrows. Equilibrium, f ) g ) 0, is point Q. Reprinted with
permission from ref 67. Copyright 1988 American Institute
of Physics.

ci′ )
dci/dt
dcp/dt

)
dci
dcp

)
fi(c;k)
fp(c;k)

i ) 1, ..., n i * p

(62)

ci ) gi(ci′,c1,...,ci-1,ci+1,...,cn;k) i ) 1, ..., n

i * p (63)

(ci)j+1 ) [gi(ci′,c1,...,ci-1,ci+1,...,cn;k)]j (64)

(ci)j ) ci* + (εi)j (65)

εj+1 ) Mεj (66)

Mii )
∂gi
∂(ci*)′

d
dcp

(67)

Mij )
∂gi
∂cj*

(68)

fj(c;k) ) 0 j ) 1, ..., n (69)

ci ) Nj(c1,...,ci-1,ci+1,...,cn;k) i * p (70)

c1 ) C(c2,...,cn) (71)

dc1

dt
) ∑

k)2

n ∂C

∂ck

dck

dt
(72)

[C(c2,...,cn)]j+1 ) g(c2,...,cn,∂Cj

∂c2
,...,
∂Cj

∂cn) (73)
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latory relaxation, and the direction of this flow is
undefined.
This method was used to analyze the Lindemann

mechanism67 and enzyme kinetics.75,76,78-80 Equa-
tions for systems of 3 dimensions reduced to 2 and 1
dimension(s) were developed, and novel dynamic
phenomena were revealed.79 The approach may be
used to predict the evolution of the system or assign
experimental results to the appropriate time scale,
enabling determination of the rate constants.76,79
A more localized approach has shown applicability

toward more general reaction systems.81 By evaluat-
ing the Jacobian of f (eq 1), points may be found
where components in the directions of the eigenvec-
tors corresponding to the nf fastest time scales
vanish. Then, reduction to a system of dimension n̂
) n - nf is possible.
Let V be the matrix of eigenvectors of the Jacobian,

ordered by decreasing values of the real parts of the
corresponding eigenvalues

and let its inverse, V-1, be represented as

Then, the slow manifold is defined by

where W is formed by the last nf rows of V-1. For
cases of poorly conditioned matrixes, it may be better
to work in terms of the Schur vectors, defined by Q

where N is the diagonal vector of the eigenvalues,
ordered by descending real parts. In this case, QT

would have the same role as V-1, and the last nf rows
would define the slow manifold. To obtain numerical
values of points of the manifold, the nf equations of
eq 76 must be solved, along with n - nf additional
equations. The system that must be solved takes the
form

where P(c,s) are the additional n - nf parameter
equations and s are additional variables. The equa-
tions P and variables s specifically consist of the fol-
lowing: ne (the number of conserved quantities in the
system) conservation relations, g, and corresponding
parameters, se; and n̂ concentration equations, h, for
species chosen to describe the progress of the reac-
tion, and the corresponding parameters, sp. Thus,
the system of parameter equations takes the form

The solution may be found by starting from fixed
values for the parameters, s, and solving eq 78 by
Newton’s method.
This method gives purely numerical results for the

slow manifold. Such an approach is useful in solving
complicated fluid dynamics equations by Monte Carlo
methods.82,83 The solution to one full simulation is
required, but the reduced models then give solutions
applicable to a wide range of initial conditions. Also,
it should be noted that this approach has a larger
range of applicability than intuitively developed
QSSA models.
When this method was applied to a CO/H2/air

combustion system of 13 species and 67 reactions,2
both 1- and 2-dimensional manifolds were obtained.81
The 1-dimensional manifold compared to an intu-
itively developed quasi-steady-state model is shown
in Figure 6. On the basis of the trajectories of the
full solution from different initial conditions, the
reduced manifold is shown to estimate the dynamic
behavior over a wider range of composition space
than a QSSA model.
A more general approach to the approximation of

the inertial manifold is the method of algebraic sets.77
This method applies for reaction systems which are
partitioned into

where y and z are the vectors of slow (dimension ns)
and fast (dimension nf) species, respectively, ε is a
diagonal matrix containing small positive numbers
εi, and A is a positive diagonal matrix. A restriction

V ) (v1 v2 ... vn) (74)

V-1 ) (ṽ1ṽ2l
ṽn

) (75)

Wf ) 0 (76)

QTfcQ ) N (77)

G(c,s) ) (W(c) f(c)
P(c,s) )) 0 (78)

P(c,s) ) (g(c,se)h(c,sp) )) 0 (79)

Figure 6. H2O concentration plotted as a function of CO2
concentration in the CO/H2/air combustion system. The
low-dimensional manifold better approximates the full
simulations (shown by arrows) than a QSSA model. Re-
printed with permission from ref 81. Copyright 1992
Elsevier Science Inc.

dy
dt

) f(y,z;k) (80)

ε
dz
dt

) -Az - g(y,z;k) (81)
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on the applicability is that there must be a dissipa-
tion term which is linear in z, although nonlinear
terms in z may also be present. The goal of the
method is to obtain an algebraic expression for z that
approximates the real dynamic behavior of the fast
variables.
The formal solution of the equation for the fast

variables (eq 81) is

where the notation 1/ε is used to represent the
inverse of the diagonal matrix. By taking t f -∞
and assuming z(t) is bounded, eq 82 simplifies to

To obtain the solution, the vectors y, z, and g must
be expressible as a convergent power series in time.
This is possible if the solution is analytic in time. On
the real time axis, this is indeed the case, since
chemical systems are inherently bounded; in the
complex t-plane, it can be shown that the solution is
analytic within a finite strip of width λ.84 Thus,
series expressions of y, z, and g are possible for t ∈
[-λ,0].
For each fast variable, the integral (eq 83) is broken

down to separate the initial transient behavior from
the inertial manifold:

The first integral corresponds to the transient be-
havior, and it is always bounded by an exponentially
small term, leaving

Equation 85 can be solved for each fast variable,
using a series expansion for g

so that an algebraic approximation for a fast variable
zi can be found

where

The points z(0) and y(0) may be replaced by a general
point on the manifold, z and y, since the inertial
manifold is an invariant set under the dynamics. The
only requirement for λ is that λ > 0; then, after

integration of eq 88 the associated exponential terms
vanish as ε f 0:

Thus, algebraic expressions can be found approxi-
mating each fast variable zi so that

and the dimension of the system is reduced from (nf
+ ns) to ns.
Estimations of invariant manifolds have primarily

been used to analyze and generate reduced models
of enzyme kinetics.75-80 Novel dynamic phenomena
have been revealed,79 and the reduced kinetics have
been incorporated into models of reaction-diffusion
systems.77 Enzyme kinetics have the advantage that
the equation for the fast intermediate species can be
written in the form of eq 81; furthermore, it is known
from the outset which are the true fast and slow
species. The use of algebraic sets is not currently
possible for systems where the true fast and slow
species have not been identified. For more general
reaction systems, a localized approach is possible to
evaluate the manifold numerically; this method has
been used to generate numerical descriptions for a
combustion system.81

B. Computational Singular Perturbation
Computational singular perturbation59,85-87 pro-

duces simplified nonstiff models through the analysis
of the time scales. The method partitions the system
so that, at a given time, only certain dynamic modes
are active. Active modes are those which are slow
and yield dynamic information about the system. The
other modes are either exhausted or dormant. Ex-
hausted modes are those which have decayed due to
competing fast consumption and generation reactions
so that their contribution is negligible during the
time period of interest. Dormant modes are those
which are much slower than the active modes, so that
for the time period of interest they have negligible
effect on the active modes. Computational singular
perturbation solves a system of equations along a
specific trajectory by generating reduced models
applicable for given regions. The quantities obtained
from computational singular perturbation may be
used to investigate further order reduction possibili-
ties.88,89
The kinetics of a reaction system (eq 1) can be

expressed as

where R is the number of reactions, sr is the stoichio-
metric vector, and Fr is the reaction rate of the rth
reaction. This physical representation is not suitable
for analyzing dynamic modes, as each term r does
not correspond to a different time scale. However,
the n-dimensional vector f can be equivalently ex-
pressed in terms of n linearly independent column
basis vectors aj (j ) 1, 2, ..., n) corresponding to

z(0) ) eAt/ε z(t) - 1
ε
∫t0eAτ/ε g[y(τ),z(τ)] dτ (82)

z(0) ) - 1
ε
∫-∞

0
eAτ/ε g[y(τ),z(τ)] dτ (83)

zi(0) ) - 1
εi
∫-∞

-λ
eAiτ/εi gi[y(τ),z(τ)] dτ -

1
εi
∫-λ

0
eAiτ/εi gi[y(τ),z(τ)] dτ (84)

zi(0) ) - 1
εi
∫-λ

0
eAiτ/εi gi[y(τ), z(τ)] dτ (85)

gi(t) ) ∑
n)0

∞

gi
(n)(y(0),z(0))

tn

n!
(86)

zi(0) ) c0
i gi

(0)(y(0),z(0)) + c1
i gi

(1)(y(0),z(0)) + ...
(87)

cn
i ) - 1

εi
∫-λ

0
eAiτ/εi τn

n!
dτ (88)

limεf0 e
-λa/ε ) 0 (89)

zi ) Fi(y) (90)

f(c,k) ) ∑
r)1

R

srF
r(c,k) (91)

402 Chemical Reviews, 1998, Vol. 98, No. 2 Okino and Mavrovouniotis



distinct dynamic modes:

The amplitude of the ith mode, f i, is given by where

The row vectors bi form a matrix which is the inverse
of the matrix formed by the aj column vectors. This
can be expressed as

where σj
i is the Kronecker delta (δj

i ) 1 if i ) j, and
δj
i ) 0 otherwise). Thus, once the aj vectors are
chosen, bi can be computed. For each region, the
basis vectors aj are computed from an initial guess,
which may originate from the physical representation
or a previously determined mode. Iterations around
a two-step refinement process are then required to
generate satisfactory basis vectors.90
When the aj vectors have the desired effect, the

modes represent different time scales and can be
ranked accordingly. Thus, at a given time point, only
one mode, j, is active and the system of differential
equations (eq 92) becomes

where the i < j modes are exhausted, and the i > j
modes are dormant. Equation 96 involves fewer
reaction terms, and it is not stiff. Model order
reduction occurs if one or more of the concentrations
are unaffected by the active mode. For these species,
the concentrations can be derived from the exhausted
modes, on the basis of the equations

Further simplification and order reduction are
possible on the basis of the analysis of the terms in
the active and exhausted modes, in a manner similar
that of to sensitivity analysis. This is referred to as
finding the minimum set,88 which may be used for
further investigations along the same trajectory. The
insignificant reactions may be neglected for a region,
and if some species are found not to participate in
any region, these may be removed from the model
completely. An advantage of computational singular
perturbation is that data from a simplified system
may be used to determine the importance of reac-
tions, in contrast to sensitivity analysis which re-
quires data from the full system. Computational
singular perturbation works best in the asymptotic
limit of sharply divided regions, where fj . fi (i ) 1,
... n; i * j). For these cases, the coupling between
modes is negligible. For the boundary layers, a

correction may be applied to improve the accuracy
of the model.88
Computational singular perturbation (CSP) was

applied to a methanol combustion system86 consisting
of 30 species and 173 reactions.91 The CSP results
of the important species are shown in Figure 7. The
extent of order reduction is indicated by the number
of exhausted modes (Figure 8). The interval between
markers in Figures 7-9 represents 24 time steps
used by the CSP algorithm to ensure accuracy within
each region. The minimum set of this system, for
the time interval of interest, contains 16 of the 30
original species. This reduced system produces re-
sults nearly identical to those of the full model
(Figure 9).
Computational singular perturbation has been

primarily used in the reduction of flame kinet-

f(c,k) ) ∑
j)1

n

aj f
j(c,k) (92)

f i(k,c) ) bif ) ∑
r)1

R

Br
iFr(c,k) i ) 1, 2, ..., n (93)

Br
i ) bisr i ) 1, 2, ..., n r ) 1, 2, ..., R (94)

biaj ) δj
i i, j ) 1, 2, ..., n (95)

dc
dt

) aj f
j(k,c) (96)

f i(k,c) ) 0 i ) 1, 2, ..., j - 1 (97)

Figure 7. CSP results of the mass fractions of methanol
and CO2 as a function of time. Reprinted with permission
from ref 86. Copyright 1992 The Combustion Institute.

Figure 8. Number of reduced modes as a function of time.
The reduced modes correspond to the extent of order
reduction. Reprinted with permission from ref 86. Copy-
right 1992 The Combustion Institute.
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ics.59,86,87 The method takes advantage of modern
computational power to find the basis vectors itera-
tively and makes the necessary corrections to solve
for the solution of a complex model along a specific
trajectory. It does not require prior expert knowledge
of the system of interest. Care must be taken in
choosing intervals over which to apply the method
because the size of the regions cannot be determined
a priori.

C. Linear Transformation into Standard
Two-Time-Scale Form
Another approach to exploiting time scales is the

development of algorithms for systematic conversion
of the model into one that satisfies the assumptions
of the quasi-steady-state approximation. The key to
systematic order reduction lies in the transformation
of a model to the standard two-time-scale form of
singular perturbation theory.92 The quasi-steady-
state approximation for reaction systems was first
recognized as a singular perturbation problem by
Bowen.93 In the standard two-time-scale form, eq 1
is separated into fast and slow species. The model
of the reaction system is expressed as

where y is the concentration vector of slow species,
z is the concentration vector of fast species, and ε is
the small perturbation parameter representing the
rate ratio of the slow to fast species. Model reduction
is possible when ε approaches zero. Equation 99 then
becomes an algebraic expression

where the circumflex above variables represents

those in the reduced system. There exists t1 g to such
that the approximation (eq 100) is valid over an
interval [t1, T] if the following conditions are true:92
(1) In the limit ε f 0, the associated algebraic eq 100
must have isolated explicit roots with respect to ẑ.
(2) Defining z* ) z - ẑ as the boundary layer
correction, the equilibrium of this boundary layer
system expressed in the fast time scale (τ ) t/ε)

must have an equilibrium state (z* ) 0) which is
asymptotically stable uniformly in yo and to, and zo
- ẑ(to) must belong to its domain of attraction. (3)
The eigenvalues of ∂g/∂z evaluated at the phase point
ŷ and ẑ for ε ) 0 have strictly negative real parts.
These conditions are closely related to the estima-

tion of the slow manifold of a system. The first
ensures that an estimation for the associated
nullclines exist (eq 70), and conditions 2 and 3 force
the stability of the fast system. The trajectories of
the fast subsystem must contract onto the slow
manifold in a uniform manner.
In their initial definition, the models of reaction

systems are not easily partitioned to obtain equations
of the form of eqs 98 and 99 satisfying the above
conditions. Certain types of reaction systems can be
expressed in the standard form through a linear
transformation. A method specific for biochemical
pathways was presented by Schauer and Heinrich;94
and for more generalized types of reaction systems,
van Breusegem and Bastin presented a method that
is described below.95
A linear stoichiometric matrix is extracted from eq

1 by writing it in the form

where C is the linear stoichiometric matrix, K is a
diagonal matrix of rate constants, and Φ is the
matrix of rate expressions (based on mass action
kinetics, for example). Once fast and slow reactions
are identified, C is partitioned into submatrixes
representing fast species in fast reactions (Cff), fast
species in slow reactions (Cfs), and slow species in
slow reactions (Css); by definition, slow species are
independent of the fast reactions. The set of dif-
ferential equations for the reaction system then
becomes

where cf and cs represent concentration vectors of the
potentially fast and slow species. The perturbation
parameter is defined as the ratio of the average slow
rate constant khs to the average fast rate constant khf:

This yields an apparent two-time-scale system

Figure 9. Mass fractions of CO and H as a function of
time for the model consisting of the minimum set of species
and for the full model. The lines essentially coincide,
indicating agreement of the two models. Reprinted with
permission from ref 86. Copyright 1992 The Combustion
Institute.

dy
dt

) f(y,z,ε,k), y(to) ) yo (98)

ε
dz
dt

) g(y,z,ε,k), z(to) ) zo (99)

0 ) g(ŷ(t),ẑ(t),0,k) (100)

dz*
dτ

) g(yo,z*+ẑ(to),0,k) (101)

dc
dt

) CKΦ(c) (102)

dcf
dt

) CffKfΦf(cf) + CsfKsΦs(c) (103)

dcs
dt

) CssKsΦs(c) (104)

ε ) khs/khf (105)
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where R is a diagonal matrix of the scaled fast
reaction rate constants

In most cases, condition 1 is not satisfied for eq 106
as ε f 0, meaning that not all the potential fast
species are truly fast. In some cases, the true fast
variables may be found through a linear transforma-
tion of the reactants

where T is defined so that

The key is to create a matrix for the fast reactions
such that its first F nonzero rows are linearly
independent (and thus form a matrix of rank F); this
increases the likelihood that a system will satisfy
condition 1. The transformed system becomes

where A and B are the stoichiometric matrixes in the
transformed system. The order of the system can be
reduced by setting ε equal to 0. If condition 1 is
satisfied, then there are several possible reduced
models, and valid models must satisfy conditions 2
and 3.
The transformation technique works best for linear

systems and weakly coupled nonlinear systems.
Since only the stoichiometric matrixes are considered,
coupled nonlinear reactions will cause degeneracies
and erroneously identify fast species in solving for
the steady-state solution. In these cases, condition
1 is not satisfied, even after the described transfor-
mation of variables. However, the conditions of the
standard two-time-scale form ensure the applicability
of the reduced models after long times, and invalid
models are easily identified without the use of the
full model. The reduced models are nonstiff, thereby
reducing computation time and enabling solution by
more accessible computers. The reduced models are
at least as accurate as intuitively developed quasi-
steady-state models and may even provide better
approximations in some cases.96 Figure 10 shows the
comparison of reduced models for the simple enzyme-
catalyzed reaction

If the thickness of the boundary layer or the extent
of model reduction is not satisfactory, improved
models may be generated from a refined perturbation
method which incorporates the Shanks transforma-
tion of a power series.97 Once a system of reactions
has been transformed to the standard two-time-scale
form, the fast variables, z, may be expressed as a
power series:

The direct reduction method described above, similar
to the quasi-steady-state approximation, only retains
the zi

(0) term, yet improved models may be generated
by retaining the zi

(1) term. Retaining higher (g2)
order terms is not desirable as the accuracy does not
improve significantly enough to justify the higher
computational cost. The Shanks transformation98

where Sn is the nth partial sum of a series, is then
used to accelerate the convergence of the resulting
series for zi (eq 113), as it may be only asymptotically
convergent or even divergent. When applied to a
hydrogen combustion system, this refinement re-
duced the thickness of the boundary layer, and
increased the extent of model order reduction over
ordinary quasi-steady-state models.97

VI. Summary
Model order reduction is important in analyzing

complex chemical reaction networks. The differential
equations are easier to solve if the number of
independent species is reduced and, in some cases,
if the time scales are decoupled. Reduction methods
give valuable insights into the key reactions, species,
and relationships in a complex system.
The choice of model order reduction method de-

pends on the accuracy required for the modeling task,
the structure of the reaction system, and the extent
of available kinetic information. For linear reaction
systems, all of the described methodsslumping,
sensitivity analysis, and time-scale analysissperform
adequately if enough kinetic information is available
about the system. However, these methods have not
yet been fully developed for nonlinear systems.
Continuum lumping applies only to a narrow class

of systems where the reacting mixture can be ap-
proximated as a continuous distribution and the
species decay by the same reaction order. All the
reactants are combined into a single lump, and the
disappearance of that lump is tracked. Tracking only
this single lump simplifies the dynamic model, and
the lumped kinetics enable its use in simple reactor
and transport models. The strength of the treatment
is that only a small set of experimental data is
required to fit the parameters of the reduced model,
as specific reactions and component concentrations
do not need to be known. However, this is a limita-
tion for applications that require information about
specific concentrations or reaction types, as such

ε
dcf
dt

) CffRfΦf(cf) + εCsfKsΦs(c) (106)

dcs
dt

) CssKsΦs(c) (107)

Rii ) εkf,i (108)

ê ) Tc (109)

TCff ) (A11 A12
0 A13
0 0 ) (110)

ε
dêf
dt

) ÃafΦf(ê) + εB̃KsΦs(ê) (111)

dês
dt

) BhKsΦs(ê) (112)

X1 + X2 h X3 f X4 + X2

zi ) zi
(0) + εzi

(1) + ε
2zi

(2) + ... i ) 1, ..., nf (113)

T{Sn} )
SnSn-2 - Sn-1

2

Sn + Sn-2 - 2Sn-1
(114)
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information is not easily extracted from or incorpo-
rated into continuum lumps.
When a kinetic scheme is known, discrete lumping

is possible. Lumped models can be determined from
the equations describing the reaction kinetics for
systems of moderate nonlinearity. The number of
independent species is reduced, and the error intro-
duced can be estimated. However, the generated
reaction schemes may still contain multiple time
scales, and information about a specific component
(which may be necessary for process monitoring or
control) can be extracted only for certain reaction
structures.
Model order reduction through sensitivity analysis

is feasible when the complete reaction scheme and
its full solution (or extensive data) are known. In
sensitivity analysis, one may specify which species
need to be retained in the reduced model, as well as
the desired accuracy. For given regions of the
concentration space, the key species and reactions are
identified, although the size of these regions cannot
be determined a priori. Small time steps and com-
parisons to the full model are necessary to ensure
the accurate modeling of the important species. The
extent of order reduction decreases when more
information must be retained.
Computational singular perturbation (CSP) builds

on sensitivity analysis. By identifying the important
modes that embody the different time scales of the
reaction system, the method is able to perform model
simplification in a manner similar to that of sensitiv-
ity analysis without the need for solutions to the full
kinetic model. The stiffness in a region is reduced,
and species at steady state are identified. CSP
simplifies the system of differential equations by
eliminating terms and ignoring species found to be
insignificant for all regions of interest. As with
sensitivity analysis, the size of these regions cannot
be determined a priori, and the accuracy of the

solutions in the boundaries cannot be ensured.
The standard two-time-scale form retains expres-

sions, algebraic or differential equations, for all
species in a reaction mechanism. A reduced model
is developed that is guaranteed to be valid (in the
limit of a particular system parameter ε f 0) after a
pseudo-steady-state has been reached. This model
will be nonstiff and of lower order. However, the
transformation of a reaction system to the standard
form can be applied systematically only to systems
of low nonlinearity.
The method of invariant manifolds is also based

on separating the time scales of a reaction system.
When the relative scales are known, it is possible to
determine the lowest dimensional manifold algebra-
ically, and obtain the reduced equations for the slow
behavior of a reaction system. In phase space, the
method is also a valuable analysis tool, although for
many complex systems the true fast and slow species
are not known a priori.
As performance requirements and sensing tech-

nologies push the limits of both available data and
required model precision for complex systems, model
order reduction and simplification will play an im-
portant role in the study of complex reaction net-
works. The directions of further advances in model
order reduction lie in developing improved techniques
for general nonlinear systems, incorporating detailed
kinetic mechanisms in lumping algorithms, combin-
ing several reduction methods, and transforming the
equations representing reaction systems to standard
forms for the identification of key species and the
generation of reduced models.
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(39) Li, G.; Rabitz, H.; Tóth, J. A General Analysis of Exact Nonlinear
Lumping in Chemical Kinetics. Chem. Eng. Sci. 1994, 49, 343-
361.

(40) Martinez, E. C. Lumping of Components and Reactions in
Complex Reaction Networks. Chem. Eng. Commun. 1990, 43,
1-24.

(41) Li, G.; Tomlin, A. S.; Rabitz, H.; Tóth, J. Determination of
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Approximate Nonlinear Lumping in Chemical Kinetics. II.
Constrained Lumping. J. Chem. Phys. 1994, 101, 1188-1201.

(45) Liguras, D. K.; Allen, D. T. Comparison of Lumped and Molec-
ular Modeling of Hydropyrolysis. Ind. Eng. Chem. 1992, 31, 45-
53.

(46) Ranzi, E.; Faravelli, T.; Gaffuri, P.; Sogaro, A. Low-Temperature
Combustion: Automatic Generation of Primary Oxidation Reac-
tions and Lumping Procedures.Combust. Flame 1995, 102, 179-
192.

(47) Bounaceur, R.; Warth, V.; Glaude, P. A.; Battinleclerc, F.;
Scacchi, G.; Come, G. M.; Faravelli, T.; Ranzi, E. Chemical
Lumping of Mechanisms Generated by Computer- Application
to the Modeling of Normal-Butane Oxidation. J. Chim. Phys.
Phys.-Chim. Biol. 1996, 93, 1472-1491.

(48) Rabitz, H.; Kramer, M.; Dacol, D. Sensitivity Analysis of
Chemical Kinetics. Annu. Rev. Phys. Chem. 1983, 34, 419-461.
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