
PEMU: A PIN Highly Compatible Out-of-VM Dynamic Binary
Instrumentation Framework

Junyuan Zeng
Department of Computer Science
The University of Texas at Dallas

jzeng@utdallas.edu

Yangchun Fu
Department of Computer Science
The University of Texas at Dallas

yangchun.fu@utdallas.edu

Zhiqiang Lin
Department of Computer Science
The University of Texas at Dallas

zhiqiang.lin@utdallas.edu

Abstract
Over the past 20 years, we have witnessed a widespread adop-
tion of dynamic binary instrumentation (DBI) for numerous
program analyses and security applications including pro-
gram debugging, profiling, reverse engineering, and malware
analysis. To date, there are many DBI platforms, and the most
popular one is PIN, which provides various instrumentation
APIs for process instrumentation. However, PIN does not
support the instrumentation of OS kernels. In addition, the ex-
ecution of the instrumentation and analysis routine is always
inside the virtual machine (VM). Consequently, it cannot sup-
port any out-of-VM introspection that requires strong isola-
tion. Therefore, this paper presents PEMU, a new open source
DBI framework that is compatible with PIN-APIs, but sup-
ports out-of-VM introspection for both user level processes
and OS kernels. Unlike in-VM instrumentation in which there
is no semantic gap, for out-of-VM introspection we have to
bridge the semantic gap and provide abstractions (i.e., APIs)
for programmers. One important feature of PEMU is its API
compatibility with PIN. As such, many PIN plugins are able
to execute atop PEMU without any source code modification.
We have implemented PEMU, and our experimental results
with the SPEC 2006 benchmarks show that PEMU introduces
reasonable overhead.

Categories and Subject Descriptors D.3.4 [Software]:
Processors—Code generation; Translator writing systems and
compiler generators; D.4.6 [Operating Systems]: Security
and Protection

General Terms Design, Security

Keywords Dynamic binary instrumentation; Introspection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’15, March 14–15, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-3450-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2731186.2731201

1. Introduction
Dynamic binary instrumentation (DBI) is an extremely pow-
erful technique for program analysis. At a high level, it dy-
namically inserts extra analysis code into the running binary
program to observe how it behaves. It works similarly to a
debugger but the analysis routine is programmed. Therefore,
it can be used to automatically inspect the program state at
instruction level and build many program analyses, such as
performance profiling (e.g., [42, 46]), architecture simula-
tion (e.g., [29]), program debugging (e.g., [25]), program
shepherding (e.g., [23]), program optimization (e.g., [2]), dy-
namic data flow analysis (e.g., taint analysis [32, 36]), reverse
engineering (e.g., [24]), and malware analysis (e.g., [12, 49]).

Today, there are many DBI platforms such as PIN [26],
VALGRIND [31], DYNAMORIO [2], QEMU [4], and BOCHS [1].
Each platform is built atop its own virtual machine (VM), and
has its own pros and cons. For example, process-level DBI
such as PIN and VALGRIND provides rich APIs to analyze
user level binary code execution, but the analysis code is exe-
cuted inside the VM (i.e., in-VM) with the same privilege as
the instrumented process. Moreover, it does not support any
kernel-level code instrumentation. Some platforms only sup-
port a limited type of operating system (OS), e.g., VALGRIND

only supports Linux binaries but provides no support for
Microsoft Windows binaries. Some platforms are designed as
a full system emulator (e.g., QEMU), but do not provide any
general DBI APIs. As such, can we build a cross-OS, API-
rich, out-of-VM dynamic binary instrumentation framework
that supports both user level and kernel level code?

While there have been attempts to address this prob-
lem, they only partially achieved these goals. Specifically,
PINOS [8] attempted to create a kernel instrumentation tool
atop the XEN [3] hypervisor. However, it only supports in-
specting the very low level instruction semantics (such as the
executing instruction address), and does not support any high
level instrumentation and introspection (e.g., get the running
process ID inside the VM). Meanwhile, because of its imple-
mentation of stealing memory from the guest OS, it does not
offer strong isolation and the analysis routine can be accessed
by the instrumented process or kernel. Another attempt is

147



TEMU [48], which extends QEMU with its own APIs to al-
low end-users to develop TEMU-plugins for whole system
instrumentation. Though it has greatly reduced developers’
efforts in understanding the internals of QEMU in order to
develop any useful plugins, it has only limited APIs compared
to those provided by PIN. A recent effort, DRK [34], is able to
perform kernel instrumentation. However, it is still an in-VM
solution and does not isolate the analysis code (the analysis
routine is executed as Linux Kernel modules), resulting in
security issues when the kernel has malware.

To address these weaknesses, this paper presents PEMU

(inherited from both PIN and QEMU), a new PIN-API compat-
ible DBI framework that provides a whole system instrumen-
tation but from out-of-VM introspection perspective. There
are a number of goals PEMU aims to achieve. Specifically, it
aims for PIN API-compatibility because of the large amount
of users and rich-APIs PIN has. For instance, it has over 450
comprehensive, well-documented, easy to use instrumenta-
tion APIs. With the PIN compatible APIs, PIN plugins can
be easily ported to PEMU with no or minimal modifications.
Meanwhile, it aims for out-of-VM instrumentation because
of the isolation requirement from security applications such
as introspection. In addition, it aims for supporting a large
number of different guest OSes without modification, con-
sidering that there are so many OSes with many different
versions today.

The key idea to realize PEMU is to add an additional
software layer atop an existing VM, and make our APIs self-
contained. Such a design makes our system easily portable
if the underlying VM has been upgraded. In addition to the
engineering challenges (in support of the large number of
PIN APIs), we also face a number of research challenges.
One is how to bridge the semantic gap [9] while providing
the out-of-VM instrumentation abstractions (e.g., APIs) for
both process and kernel introspection, and also what those
abstractions should be. The second is how to design our
instrumentation engine such that it works seamlessly with the
translation engine provided by the underlying VM but does
not introduce large overhead. The third one is how to support
the existing PIN APIs by using our framework.

We have addressed these challenges and implemented
PEMU atop QEMU, and our experimental results with SPEC
2006 benchmarks show that PEMU has reasonable perfor-
mance overhead compared to original QEMU and it will be
useful for quickly developing PIN-style plugins atop PEMU

or directly recompiling the existing PIN-plugins, for both in-
struction inspection and higher level semantic introspection.

Contributions. In summary, this paper makes the following
contributions. We devise an additional software layer atop
an existing binary code translation based VM with a set
of standard APIs for both user level and kernel level DBI.
This additional layer hides the low level VM details and
contains a number of instrumentation related abstractions.

Guest
Ring 3

Guest
Ring 0

Host
Ring 3

Host
Ring 0

test  %eax,%eax
je 0x8052913

print(pc)
mov 0x0(%ebp),%ebx
mov %ebx,0x28(%ebp)
mov $0x18,%esi
mov %esi,0x34(%ebp)
test   %ebx,%ebx

print(pc)in
al

je    0x8052913
…

print(pc)
test  %eax,%eax

print(pc)

print(pc)

je     0xae1a8c06
jmp 0xae1a8bf5
movl $0x80528ca,0x20(%ebp)
mov $0xa9bbcc8c,%eax
jmp 0xb5f3cc15
jmp 0xae1a8c0b

sy
sc
al
lO
rig

Pi
n

sy
sc
al
l

je    0x8052913
…

jmp 0xae1a8c0b
movl $0x8052913,0x20(%ebp)
mov $0xa9bbcc8d,%eax
jmp 0xb5f3cc15

…

In‐VM Instrumentation
Out‐of‐VM InstrumentationOut‐of‐VM Instrumentation

Figure 1. Differences Between in-VM and Out-of-VM In-
strumentation.

With the additional layer and the abstractions, we present
PEMU, a new DBI framework that enables end-users to
develop instrumentation tools using many of the existing PIN
APIs. We have implemented PEMU and tested with SPEC
2006 benchmark. Our experimental results show that PEMU
introduces reasonable performance overhead.

2. Background and Overview
In this section, we first discuss the background related to our
system in §2.1, and then motivate our research in §2.2. Next,
we discuss how to develop a plugin using PEMU in §2.3, and
finally we give an overview of PEMU in §2.4.

2.1 In-VM vs. Out-of-VM Instrumentation
The key technique behind any DBI is the just-in-time compi-
lation (JIT) [4, 37]. Basically, all the executing instructions
are translated by a JIT compiler, which provides an opportu-
nity to interpose and instrument the binary code for analysis
purposes. The entire DBI infrastructure can be considered as
a VM, which could be a process level VM (e.g., PIN, VAL-
GRIND), or a system level VM (e.g., QEMU). At a high level,
a VM mediates program execution by dynamically translating
blocks of native code and executing them from a code cache.

Given an analysis routine (e.g., printing the executed in-
struction addresses), there are two different ways of instru-
menting the analysis routine with the original program code,
as illustrated in Fig. 1.

• In-VM instrumentation. This is the easiest way. The
analysis routine is directly translated together with the
original code into the same code cache. The analysis
routine and the original program code share the same
address space, and they are executed inside the VM either
at guest “ring 3” (application layer) or “ring 0” (OS kernel
layer). Therefore, the analysis routine can feel free to call
any guest OS abstractions, and access any code or data
of the instrumented process or kernel. Most DBI systems
(e.g., PIN and VALGRIND) are designed in this way.

148



1 static UINT64 icount;
2 FILE *pFile;
3 VOID docount(UINT32 c) { icount += c; }
4 VOID Trace(TRACE trace, VOID *v) {
5 for (BBL bbl = TRACE_BblHead(trace);
6 BBL_Valid(bbl); bbl = BBL_Next(bbl)) {
7 BBL_InsertCall(bbl, IPOINT_BEFORE,
8 (AFUNPTR)docount, IARG_UINT32, BBL_NumIns(bbl),
9 IARG_END);
10 }
11 }
12 VOID Fini(INT32 code, VOID *v) {
13 fprintf(pFile, "Count %lld\n", icount);
14 fclose(pFile);
15 }
16 INT32 Usage(VOID) {
17 return 0;
18 }
19 int main(int argc, char * argv[]) {
20 if(PIN_Init(argc, argv)) return Usage();
21 pFile = fopen("pemu_count", "w");
22 TRACE_AddInstrumentFunction(Trace, 0);
23 PIN_AddFiniFunction(Fini, 0);
24 PIN_StartProgram();
25 return 0;
26 }

Figure 2. A PEMU plugin to count the number of executed
instructions.

• Out-of-VM instrumentation. Unlike in-VM instrumen-
tation, the analysis routine is executed outside of the orig-
inal program code (mostly at the virtual machine monitor
layer, e.g., at “ring 3” of a host OS), though the original
code and the analysis routine can be translated into the
same cache. Therefore, the analysis routine and the origi-
nal code does not share the same address space any more.
There is a world switch for analysis routine from host
“ring 3” to access the state of the monitored process or
kernel at “ring 3” or “ring 0” of guest OS. Only a handful
of systems (e.g., PINOS and TEMU) support out-of-VM
instrumentation. However, their introspection supports are
guest OS specific. Also, the isolation provided by PINOS
is not as strong as TEMU. More specifically, while the in-
strumented code and instrumentation engine do not share
any code in PINOS, the analysis routine and the origi-
nal program code actually share the same address apace,
because the analysis routine steals [8] the address space
from the guest OS, which makes it possible to tamper with
the analysis routine when used to analyze malware.

We can notice that in-VM instrumentation and out-of-
VM instrumentation share the opposite pros and cons. In-
VM instrumentation occurs inside the VM, and has rich
abstractions. But it executes at the same privilege level as
the monitored process. Out-of-VM instrumentation occurs
outside of the VM, and has less abstractions. But the analysis
routine is isolated with the original program code. To develop
the analysis routine, we can still use host OS abstractions, but
to inspect any guest OS state, there is a need for techniques
to bridge the semantic gap.

2.2 Objectives
While there have been significant efforts in the past 20 years
to build various DBI platforms, few works focus on out-of-
VM instrumentation where the analysis routine and original
program code are strongly isolated. In this paper, we would
like to develop a new out-of-VM DBI with an emphasis on
supporting security applications that satisfy the following
constraints:

(1) Rich APIs. Similar to PIN tool, we would like to offer
rich and well-defined APIs. Since PIN is one of the
most popular DBI tools, we would like to make our API
compatible with PIN. This will make an open source
alternative to PIN, which will be useful when there is a
need to customize the PIN engine.

(2) Cross-OS. Unlike VALGRIND, which only analyzes
Linux binaries, we would also like to offer support to
instrument both Windows and Linux binaries using the
same platform. More importantly, since there are a large
number of different OSes, we would like to make our
system OS agnostic for the introspection.

(3) Strong Isolation. Unlike existing in-VM approaches,
we would like to make our analysis code execute at the
hypervisor layer (can be considered “ring -1”) instead of
at the guest OS “ring 3” for process introspection or “ring
0” for kernel introspection.

(4) VM Introspection. Unlike PINOS, which does not sup-
port higher level guest object introspection [16], we would
like to provide APIs to retrieve the high level semantic
state from the guest OS for the monitored process or guest
kernel. Considering that there are too many guest OSes,
we would like to design a general way to query the guest
OS state.

2.3 An Example
Before describing the details of how we achieve these goals,
we would like to first illustrate how to develop a PEMU plugin
by using the provided APIs. As presented in Fig. 2, this
is a very simple plugin with the functionality of counting
the number of executed instructions. Similar to many other
DBIs, to develop a PEMU plugin, users need to provide two
sets of procedures: Instrumentation Routine, which specifies
where the instrumentation should occur; and Analysis Routine,
which defines analysis activities.

One important feature of PEMU is the API compatibility
with the PIN tool. As illustrated in this example, the API
we used is exactly identical to those used by a PIN tool.
Therefore, many legacy PIN plugins can be recompiled and
executed inside PEMU, but the distinctive feature is that
both the analysis routine and instrumentation routine will
be executed in the host OS, instead of inside the guest OS
as would be done using PIN. For instance, the fprintf
(line 13) and fopen (line 21) statements will be executed at

149



User Space

Guest OS Kernel

Instrumentation 
Engine

PEMU

Introspection
EngineEngine

PEMU Tools

Engine

Plugin 1 Plugin 2 Plugin 3 …

Figure 3. Architecture Overview of PEMU.

the VMM layer and call host OS fprintf and fopen, but
when we use PIN they will be executed inside the guest OS.

2.4 Architecture Overview
An overview of PEMU is presented in Fig. 3. There are two
key components inside PEMU: instrumentation engine (§3)
and introspection engine (§4). They both are located inside a
virtual machine monitor.

To use PEMU, end users use the PIN compatible APIs pro-
vided by our instrumentation engine to develop the plugins,
which will be compiled and linked at the VMM layer (namely,
the host OS layer). If the analysis routine requires retrieving
the state of the guest OS (e.g., pid of the instrumented pro-
cess), it uses APIs provided by our introspection engine. In
the following two sections, we describe how we design these
two engines in greater detail.

3. Instrumentation Engine
Since PEMU aims for API compatibility with PIN, we have
to first examine what those PIN APIs are. We take a recently
released version of PIN (version 2.13), and we find there are
in total 477 APIs. The distribution of these APIs are presented
in Fig. 4.

PIN defines two sets of instrumentation: (1) trace instru-
mentation that occurs immediately before a code sequence is
executed, and (2) ahead-of-time instrumentation that caches
the instrumentation before the execution. There are three
different types of trace instrumentation depending on the
granularity:

• Instruction Level. The finest granularity is the instruc-
tion (INS) level instrumentation that allows for instru-
menting a single instruction at a time by using the
INS_AddInstrument Function call back. There
are also many instruction insertion and inspection APIs
starting with the INS prefix (e.g.,INS_InsertIfCall,

9.63%

17.35%

35.71%

2.31%

8.83%

2.91%

1.71%

7.32%

3.11%

11.13%

SYM

THREAD

CONTROL

IMG/SEC/RTN

EXCEPTION

CODECACHE

SYSCALL

INS/BBL/TRACE

REG

Other

Figure 4. Distributions of PIN APIs.

INS_IsBranch, etc.). In total there are 142 INS related
APIs.

• Basic Block Level (BBL). A basic block (BB) is a single
entrance, single exit sequence of instructions. Instead of
one analysis call for every instruction, it is often more ef-
ficient to insert a single analysis call for a BB, thereby
reducing the number of analysis calls. PIN does not
offer a BBL_AddInstrumentationFunction, and
instead developers have to instrument the TRACES (de-
scribed next) and iterate through them to get the BB. There
are in total 14 APIs related to BBL.

• Trace Level. A TRACE in PIN is defined as a sequence of
instructions that begin at the target of a taken branch and
end with an unconditional branch (i.e., jmp/call/ret).
This is the set of instructions that are disassembled by a
linear sweep algorithm, when giving a starting address.
Therefore, a TRACE usually consists of a number of BBs.
PIN provides TRACE_AddInstrumentFunction
call back to instrument a TRACE. There are in total also
14 APIs related to TRACE. Note that PIN introduced the
concept of TRACE for a trace-linking optimization [26],
which attempts to branch directly from a trace exit to the
target trace without trapping to the VM. TRACE is at
a higher granularity than BB and INS, and sometimes
instrumenting analysis routine at TRACE granularity can
improve performance. For instance, TRACE-based BBL
instruction counting (as shown in Fig. 2) is much faster
than that of an INS based one.

Regarding the ahead-of-time instrumentation, PIN pro-
vides an image (IMG) instrumentation and routine (RTN)
instrumentation. More specifically:

• IMG instrumentation allows a PIN-tool to inspect and
instrument an entire image when it is loaded. A PIN-tool
can walk the sections (SEC) of an image, the RTN of a sec-

150



tion, and the INS of a routine. Image instrumentation relies
on symbol information to determine an RTN boundary.
An analysis routine can be inserted so that it is executed
before or after a routine is executed, or before or after an
instruction is executed. IMG instrumentation utilizes the
IMG_AddInstrumentFunction API. In total, there
are 27 APIs related to IMG, and 16 APIs related to SEC.

• RTN instrumentation allows a PIN-tool to inspect and in-
strument an entire routine when the image, it is contained
in, is first loaded. A PIN-tool can walk the instructions of
an RTN. An analysis routine can be inserted so that it is
executed before or after a routine is executed, or before
or after an instruction is executed. RTN instrumentation
utilizes the RTN_AddInstrumentFunction API. In
total, there are 39 APIs related to RTN.

Next, we discuss how to design PEMU in support of these
APIs. As we base PEMU atop QEMU, we have to examine
the difference between QEMU and PIN. In fact, there are
substantial differences, leading to a number of new challenges
while designing PEMU.

First, QEMU does not introduce any abstractions for
TRACE, SEC, RTN, and IMG, and it only allows instru-
mentation at the INS or BB level. Therefore, we have to
rebuild these missing abstractions. Second, QEMU’s disas-
sembling is based on BB, and the size of a BB has a limited
value. For example, we notice that in QEMU-1.53 a BB needs
to be split if the number of generated intermediate instruc-
tions is greater than 640. But there is no such constraint in
PIN.

To address these challenges, we add our own disassembler
rather than using the one in QEMU. Our own disassembler
aims to reconstruct the abstractions for TRACE and we thus
call this component TRACE Constructor (§3.1). To insert
the analysis routine into the original program code, we lever-
age QEMU’s dynamic binary translation (DBT) engine, on
top of which to design our Code Injector (§3.2). In the rest
of this section, we present the detailed design of these two
components.

3.1 TRACE Constructor
The fundamental reason to introduce our own disassembler is
to build the TRACE abstraction for PIN-APIs, from which to
further build many other APIs such as those related to RTN,
BB, and INS. Meanwhile, to uniformly support both trace
and ahead of time instrumentation, we use a cache (we call
hooking point hash table) to store all the call-back points
where an analysis routine is instrumented. Then whenever
these instruction points are executed, they will automatically
invoke the analysis routine defined by users.

Since we aim to build TRACE abstractions, which contain
BB and INS, we have to disassemble per TRACE. How-
ever, QEMU disassembles an instruction at a time (per BB).
Therefore, when a starting address of a TRACE is to be disas-
sembled by QEMU, we will disassemble all of the following

1: Global: TPC: a set storing the starting address of a TRACE;
HPHT : the global hooking point hash table indexed by PC and
storing function pointers of the user defined analysis routine.

2: Input: PC, the current trace starting instruction address;
3: Output: a TRACE, and updated TPC and HPHT .
4: Disassemble (PC) {
5: TRACE← GetTRACE();
6: BB← GetBB();
7: do {
8: INST ← DisasINST(PC);
9: InsertINST(BB, INST );

10: if (INST_Instrument 6= NULL) {
11: INST_Instrument(INST , HPHT );
12: }
13: if (INST .type ∈ {jcc,jmp,call,ret}) {
14: InsertBB(TRACE, BB);
15: if (BB_Instrument 6= NULL) {
16: BB_Instrument(BB, HPHT );
17: }
18: BB← GetBB();
19: TPC ← TPC∪ GetTargetPC(INST) ;
20: }
21: PC ← PC + INST .InstLen();
22: } while(INST .type /∈ {jmp, call, ret});
23: if (TRACE_Instrument 6= NULL) {
24: TRACE_Instrument(TRACE, HPHT );
25: }
26: }

Algorithm 1: TRACE Construction

instructions until we encounter an unconditional branch (e.g.,
jmp, ret, call), which is the end of a TRACE. As such,
we will hold an entire TRACE before QEMU disassembles
each instruction inside it.

However, there are also some practical challenges. One is
that the instructions that belong to a TRACE may not exist
in the guest OS memory (swapped or not loaded yet). The
other is the instructions being disassembled are not currently
being translated by QEMU-DBT, which is the underlying
component for our Code Injector. Consequently, we cannot
insert our analysis routines into the guest code while perform
our disassembling.

To solve the first challenge, we use a proactive page fault
injection approach that is triggered from the hypervisor layer
and let the guest OS map the missing pages. For the second
challenge, we use a global hooking point hash-table (HPHT)
to cache the instruction point that will have analysis routine
inserted. Later, when QEMU generates the translated code, our
Code Injector will query this hash table to insert the analysis
routine if there is any.

The Algorithm. To precisely describe how we build the
TRACE abstraction and facilitate the instrumentation process,
we use Algorithm 1 to show its details. For each PC that is a
trace starting address, we will start disassembling the whole
TRACE (line 4-26). This is the only point to invoke our own
disassembler. To decide whether a given PC is a trace starting
address, we query the TPC set that stores all the starting
addresses of the TRACES. Note that some of the starting

151



In
st
ru
m
en

ta
tio

n 
En

gi
ne

Code Injector

QEMU‐DBT

TRACE
Constructor

push %ebp;
mov %esp,%ebp
push %ebx

…

Meta
Data

Instrumentation 
API

push %rbp;
mov %rsp,%rbp
call Instr_func
push %rbx

…

Guest
Code

Host
Code

①

②

③

⑦

Type_i, Func_i, List_of_args …PCi

PCk

Hooking Point
Hash-table (HPHT)

PCj

Guest CPU

Host CPU

Type_k, Func_k, List_of_args …

TPC

④

⑤

⑥

Instances of TRACE, BBL and INS

Type_j, Func_j, List_of_args …

TRACE
TRACE_Address

TRACE_Size
TRACE_NumBbl

TRACE_BblHead*
…

NULL

BB
BBL_Address

BBL_Size
BBL_NumIns
BBL_Next*

BBL_InsHead*
…

INS
INS_Address

INS_Size
INS_NumIns
INS_Next*

…
NULL

BB
BBL_Address

BBL_Size
BBL_NumIns
BBL_Next*

BBL_InsHead*
…

INS
INS_Address

INS_Size
INS_NumIns
INS_Next*

…

INS
INS_Address

INS_Size
INS_NumIns
INS_Next*

…

PCi, PCj, PCk, … 

Figure 5. Detailed Design of Our Instrumentation Engine.

address is dynamically computed, especially for indirection
control flow transfers.

To disassemble a TRACE, we first create a TRACE (line
5) and a BB instance (line 6), respectively. Then we disas-
semble and iterate each instruction inside the basic block,
and add them into the corresponding BB (line 8-9). If
there is any instruction level instrumentation (e.g., when
INS_InsertCall is called in the PEMU plugin), we add
the hooking point of the disassembling instruction into the
HPHT (line 10-12). Next, if there is a control flow transfer
instruction (line 13-20), then the current BB ends and we
insert it into the current TRACE (line 14). Also, we insert a
BB hooking point if there is any (line 15-17). Meanwhile, we
allocate a new BB (line 18). To get a new TRACE starting
address, we invoke a helper function, GetTargetPC (line 19),
and we store the new starting address in our TPC. Next, we
continue to get the next instruction (line 21), which can be the
next instruction inside a BB or a starting address of a new BB.
Until we encounter an unconditional control flow transfer
instruction, we finish disassembling the current TRACE. If
there is any TRACE instrumentation, we add the TRACE
hooking points into HPHT (line 23-25).

Regarding the connection between TRACE, BB, and INS,
we illustrate their data structures in the right hand side of
Fig. 5. Each instance of these data structures is semanti-
cally compatible with the corresponding PIN counter-part.
With these data structures, PIN’s instrumentation and inspec-
tion APIs can be easily implemented. For example, when
BBL_Next is called in a plugin, we will correspondingly
traverse the BB instance list to return the next BB.

3.2 Code Injector
To inject the analysis routine that is specified in our HPHT,
we leverage the QEMU’s DBT for this goal. In particular, to
translate the guest binary code into host code, QEMU uses
a tiny code generator (TCG), which provides APIs to insert
additional code. Having collected which instruction needs
the instrumentation, our Code Injector will directly use the
TCG API (e.g., tcg_gen_helper) to insert the analysis
routine.

We can also notice that reconstructing TRACE abstrac-
tions as well as using the HPHT significantly alleviates the
complexity of the instrumentation. With these data structures,
we can uniformly achieve code injection anywhere regardless
of the granularity. For instance, we can inject an analysis rou-
tine at an entry address of a BB, starting address of a TRACE,
entry or exit address of an RTN, or just a particular instruction
address. That is why we do not attempt to construct abstrac-
tions for RTN, SEC, and IMG. For them, we just perform
ahead-of-time disassembling and extract the instruction ad-
dress of interest. For instance, to hook the malloc routine,
we just need to know the entry address of this function (which
can be acquired by signature scanning in the guest memory),
and then at runtime, we inject the analysis routine if there is
a need for the function argument interpretation of malloc.

3.3 Putting it all together
To put it all together, we illustrate the overall execution
steps of our instrumentation engine in Fig. 5. For each guest
instruction, our TRACE Constructor will take control (Step
À). It first checks whether the current instruction is a starting
address of a TRACE by querying the metadata (Step Á) that

152



stores all the observed tracing starting addresses. Note that
to disassemble a new TRACE, its starting address must have
been observed by QEMU, and therefore it has already been
included in our TPC set (we use a red-black tree to store this
set). If this is not a trace starting address, then we directly
continue the execution of Code Injector (Step Ä) to generate
the final host code (Step Æ). During the code generation, our
Injector may query the metadata, especially the HPHT data
structure, to decide whether the current instruction needs an
instrumentation (Step Å).

If the instruction is a TRACE starting address, then our dis-
assembler will be invoked to disassemble the entire TRACE.
During the disassembling, it will insert the corresponding
instrumentation routine into the entry of the HPHT (Step
Ã), if such a routine is specified by instrumentation API in
the user defined plugins (Step Â). When the disassembling
finishes, the execution continues to Code Injector (Step Ä)
to generate the final host code.

4. Introspection Engine
Since the plugin of PEMU is executed below the guest OS,
we have to design an introspection engine that supports the
identification of the monitoring process/threads, as well as
bridges the semantic gap when the plugins need to inspect
the state of the monitored process or OS kernels.

4.1 Identification of Monitored Process/Threads
The instrumentation APIs and the execution of the analysis
routine need to be executed when the monitored process is
executing. In PIN, all of them are executed in the same address
space as the monitored process. However, in PEMU, all of
them are executed below the guest OS. Therefore, we have to
precisely identify the target process or threads.

Given a running OS, there are a number of ways to
differentiate and retrieve the process or thread execution
context from a hypervisor layer. One intuitive approach is to
traverse kernel data structure to locate the process name, but
such an approach is OS-gnostic. Other approaches include
using the value of page global directory (PGD) to differentiate
each process (as shown in [21, 22]), or using PGD and the
masked value of the kernel stack pointer (as shown in [15]).

In PEMU, we adopted the PGD and kernel stack pointer
approach. However, we still need to extend it to capture
the beginning of the process/thread execution because our
instrumentation happens right before process execution. To
this end, we propose to capture the data life time of PGD to
identify the new process. This is based on the observation
that the guest OS must allocate a new (unused) PGD when
creating a new process. In x86, PGD is stored in control
register CR3. Therefore, if we keep tracking the use of CR3,
we can detect a new process.

More specifically, starting from the execution of the guest
OS, we maintain a list of the used CR3 values. When a
new value is used to update the CR3 (by monitoring mov

instructions with the destination register cr3), we detect that
a new process is created. However, we also need to capture
when the process exits, because a dead process’s CR3 value
can be reused for new process. Therefore, we also monitor
the execution of exit syscall, and the CR3 value used in
this syscall will be removed from the CR3 list such that we
can detect a new process when this value is used again.

Note that all threads share the same address space. There-
fore they will have the same CR3. To differentiate threads,
we use the masked value of kernel stack pointer, because each
thread will have a corresponding kernel stack that keeps the
return addresses and local variables of the functions executed
in a syscall trapped from the thread.

4.2 Addressing the Semantic Gap Challenge
Once we have detected the newly created process/thread,
our instrumentation will be performed on the monitored
process/thread if the instrumentation is for it. Nearly all of
our instrumentation APIs are self-contained, and many of
them use the abstractions provided by the host OS. Therefore,
for most of the instrumentation and analysis routines, there is
no semantic gap. For instance, the analysis routine can call
fprintf in the host OS to print the analysis result.

Unfortunately, for analysis routines that inspect the run-
ning process or kernel states, we have to reconstruct their ab-
stractions (namely bridging the semantic gap). For instance,
we cannot call the getpid syscall at the VMM layer, be-
cause the return value of this syscall will be the pid of the
VMM. Instead, we need to retrieve the pid of the monitored
process executed inside the VMM.

In the past decade, many approaches have been proposed
to address the semantic gap challenge. These approaches
include leveraging the kernel debugging information, as
shown in the pioneer work Livewire [16]; analyzing and
customizing kernel source code (e.g., [18, 35]); manually
creating the routines to traverse kernel objects based on kernel
data structure knowledge (e.g., [20, 33]); or using a dual-VM
based binary code reuse approaches [11, 14, 15, 47]. Some of
these approaches (e.g., [14, 18, 20]) have a strong semantic
gap [19], which does not trust any guest OS code; Some of
them (e.g., [47]) have a weak semantic gap, which trusts guest
kernel code, but not application code.

To make PEMU more practical, we adopt the approach pro-
posed in HyperShell [47]. Though it is a weak semantic gap
approach, it is guest OS agnostic. More specifically, by taking
this approach, we will forward the syscall execution into the
guest OS if the syscall needs to inspect or retrieve the guest
OS state. Regarding which syscall needs such forwarding, we
let the PEMU plugin developers decide but we provide the
corresponding APIs for them. For instance, if a plugin needs
to retrieve the instrumented process ID, the plugin developers
will invoke PEMU_getpid. If a plugin needs to open a file
in the guest OS, it will use PEMU_open, and this file will be
closed by PEMU_close. In other words, we provide a set
of wrapper functions with PEMU prefix for state inspection

153



…	
  
PEMU_open(..)	
  

…	
  
	
  

	
  
Open(…)	
  

…	
  
Syscall()	
  
{	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  set_up_syscall_arg()	
  

PEMU_syscall()	
  
…	
  

}	
  
…	
  
	
  

Plugin: 

PEMU_glibc: 

User 

Kernel 

❶

❷ 

❸ 
❹ 

❺ 

❻ 

Figure 6. Detailed Steps For An Execution Forwarded Guest
Syscall.

and file system related glibc-APIs. These APIs work as
usual except that we have to detour the control flow of the
entry point and exit point of these syscalls, such that the cor-
responding syscall execution can be forwarded to the guest
OS. In total, there are 28 state inspection syscalls (including
getpid,gettimeofday etc.), and 15 file system related
syscalls (including open,fstat,lseek,etc.), which are
forwarded to the guest OS if the plugin uses the PEMU prefix
syscalls.

Though PEMU offers a weak semantic gap, we would like
to note that for all other syscalls involved in the analysis
routine, we offer a strong semantic gap. This is because we
will not execute any guest code, will not traverse any guest
kernel data structures, and the execution of the syscall will be
directly executed on the host OS. If there is a strong security
need, only the results for syscalls prefixed with PEMU cannot
be trusted. In other words, a plugin developer is aware of this
and can hence quantify the trustworthiness of her analysis
routine.

Execution of a Forwarded Guest Syscall. To illustrate how
a forwarded syscall really works, we present its detailed
execution steps in Fig. 6. In general, there are three parts
of code involved in an introspection process: (1) original
program code, (2) the analysis routine, and (3) the modified
PEMU_glibc.

Suppose the control flow is transferred to an analysis
routine (Step ¶), which needs to open a file inside the guest
VMby calling PEMU_open. Then, PEMU_open goes to
the real open in PEMU_glibc (Step ·). Next, it invokes
the syscall function (Step ¸) where real sys_open
is triggered. PEMU intercepts syscall so that it will not
trap to host OS kernel. To forward the syscall execution to
guest OS, it first needs to save the register context and set
up the arguments (Step ¹). If the argument is a pointer, we

cannot directly pass that pointer to the guest VM because
the guest OS can only access memory in its address space.
To allow legal memory access inside the guest OS, we inject
a sys_mmap to allocate a piece of memory and copy the
argument content to the allocated memory (here it is the
file name in this case). Next, it waits until the instrumented
process executes in user space, and then it forces the execution
of the syscall entry (Step º). The control flow goes back to
the original program and a forwarded syscall gets executed.
Finally, right after the execution of the syscall exit, PEMU

copies the result and restores the register context (Step »).

5. Evaluation
We have implemented a proof-of-concept prototype of PEMU

atop qemu-1.5.3. We use XED library to build our own
disassembler. Meanwhile, we have implemented over one
hundred PIN compatible instrumentation APIs for INS, RTN,
BB, and TRACE, as well as 43 guest OS state inspection and
file system related APIs. To implement the rest of the APIs is
an engineering challenge, and we leave it for future work.

In this section, we present our evaluation result. We first
test the compatibility of PEMU with PIN in §5.1. Then in
§5.2 we evaluate the performance of PEMU using an in-
struction count plugin (shown in Fig. 2) with the SPEC
CPU2006 benchmark. Next, we evaluate the memory cost
of PEMU in §5.3. Finally, we perform case studies to demon-
strate the unique benefits of PEMU in §5.4. Our host en-
vironment runs Ubuntu 12.04 with 32-bit Linux kernel
3.0.0-31-generic-pae, on Intel Core i7 CPU with 8G
memory. Our guest OS is a 32-bit Ubuntu 11.04 (Linux
kernel 2.6.38-8-generic) with 512M memory.

5.1 Compatibility Testing With PIN Plugins
To test how compatible PEMU is with PIN, we download
the most recent released PIN tool, and use the plugins in
SimpleExamples directory for this test. In total, there are
23 plugins. We recompile these plugins with PEMU’s header
files and library files. As shown in Table 1, a pleasant surprise
is that 21 of them can be executed without any problem,
considering that so far we only implemented over one hundred
PIN APIs.

More specifically, we notice that most of these test plugins
are mainly used to test the tracing of instructions (including
opcode and operand), control flow transfers (branching, call,
ret, etc.), memory access, and library calls. Since these are
the basic functionalities for a DBI tool, the current implemen-
tation of PEMU fortunately supports all of them.

As shown in Table 1, we have two failures dcache.so
and opcodemix.so. The main reason is that our current
implementation does not support APIs for CODECACHE and
CONTROLLER. Note that CODECACHE allows developers
to inspect the PIN code cache and/or alter the code cache
replacement policy, and CONTROLLER is used to detect the

154



Plugin Description Supported
calltrace.so Call trace tracing X

extmix.so Instruction extension mix profile X
inscount2_vregs.so Counting executing instructions X

pinatrace.so Memory address tracing X
xed-cache.so Decode cache profile X

catmix.so Instruction category mix profile X
fence.so Runtime text modification guard X

jumpmix.so Jmp/branch/call profiling X
regmix.so Register usage mix profile X

xed-print.so XED usage testing X
coco.so Code coverage analyzer X

icount.so Counting executing instructions X
ldstmix.so Register/memory operand profiler X

topopcode.so Opcode mix profiler X
xed-use.so XED interface usage testing X
dcache.so Data cache simulation 7

ilenmix.so Instruction length mix profiler X
malloctrace.so Tracing calls to malloc X

toprtn.so Hostest routines profiling X
edgcnt.so Control flow edge profiler X

inscount2_mt.so Counting executing instructions X
opcodemix.so Opcode mix profiler 7

trace.so Compressed instruction tracer X

Table 1. Compatibility Testing with Existing PIN Plugins.

beginning or end of an interval of the execution of a program.
We leave the support of these APIs for future work.

5.2 Performance Evaluation

Next, we test the performance of PEMU. We perform two sets
of experiments: one is to measure how slow PEMU is when
compared to a vanilla-QEMU, and the other is how slow when
compared to PIN. We directly use the instruction counting
plugin described in Fig 2. This plugin increases the number
of instructions in a BB for an accumulated counter before
the execution of each BB. We test this plugin with the SPEC
2006 benchmark programs. Each of the benchmark programs
is executed 100 times, and we use the corresponding average
number in our report.

Performance Comparison with vanilla-QEMU. In this ex-
periment, we measure the overhead introduced by PEMU

instrumentation. We compare the execution when running
the benchmarks with PEMU, directly with QEMU without any
instrumentation.

We report the detailed experimental result in Table 2.
Specifically, we show the total number of instructions exe-
cuted in the 2nd column and also the execution time of QEMU

and PEMU is reported in the 3rd and 4th column (namely,
TQemu and T_Pemu). We notice that on average there are
17649.1 million instructions traced for these benchmarks,
and the average slowdown over QEMU is about 4.33X, which
we believe it is reasonable for practical use. This overhead
includes our TRACE Constructor, Code Injector, as well as
runtime overhead of the analysis routine.

Performance Comparison with PIN. In the second experi-
ment, we compare PEMU against PIN using the same plugin
with the same benchmark. The execution time of running
in PIN is presented in the 6th column, and the comparison
between PEMU and PIN is presented in the last column.

We notice that the average slowdown between PEMU
and PIN is over 83.61X. The main reason is that PIN is
running natively while PEMU (based on QEMU) needs extra
translation. The largest slowdown comes from 444.namd
which is above 310X. However, we note that when running
this program in vanilla-QEMU, it will have close to 100X
slowdown. We carefully examine the reason and find the
root cause due to the use of large amount of floating point
instructions which needs time-consuming emulation inside
QEMU.

It is also interesting to note that for 450.soplex, run-
ning in QEMU is faster than that of PIN. The main reason is
this program contains more control flow instructions that will
go to the middle of a TRACE, thereby breaking the TRACE.
In this case, QEMU (based on BBL disassembling) will just
redisassemble the basic block that has not been disassembled,
but PIN (based on TRACE disassembling) will redisassemble
the whole trace after a new trace is found. Meanwhile, the
running time of this program is relatively short. Thus, the
time is dominated by the disassembling time.

5.3 Memory Cost Evaluation
Since PEMU uses an ahead-of-time instrumentation that will
store the hooking point to facilitate the instrumentation, we
would like to measure how much memory space this hooking
point table consumes. Again, we evaluate this memory cost
with our instruction counting plugin against the SPEC2006
benchmark. The result is presented in Fig. 7. We notice that
the average memory cost is about 9M.

More specifically, as shown in Fig. 7, the maximum mem-
ory cost comes from 465.tonto (about 22M) because this
program contains the largest number of BB, resulting in the
largest hash table to store the hooking points. More interest-
ingly, 464.h264ref is one of the most time consuming
programs but requires a relative small size of hash table. The
reason is that this program contains lots of loops and thus
certain instructions get executed repeatedly.

5.4 Case Studies
We have demonstrated using PEMU to analyze Linux binaries.
In fact, our system is cross-OS, which is one of our design
goals. To test this, we apply PEMU to analyze Windows bina-
ries as we have evaluated with Linux binaries. In particular,
we use a number of anti-PIN binaries during this test.

First, we test how PEMU would analyze the software pro-
tected by tElock and safengine shielden, which
are two widely used tools to build anti-analysis software.
We apply these protectors to the hostname binaries in
a Win-XP SP3 machine, with anti-debugging and anti-
instrumentation enabled, and produce two anti-analysis

155



Program #Inst (M) TQemu (s) TPemu (s) TPemu / TQemu TPin (s) TQemu / TPin TPemu / TPin

401.bzip2 11500.27 24.55 81.15 3.31 11.17 2.20 7.26
403.gcc 4940.36 18.35 169.21 9.22 13.56 1.35 12.48
410.bwaves 29360.09 419.99 1336.57 3.18 7.44 56.45 179.65
416.gamess 2121.15 23.19 84.99 3.66 3.35 6.92 25.37
429.mcf 3562.67 23.91 70.58 2.95 3.55 6.74 19.88
433.milc 39509.49 779.07 2570.44 3.30 9.28 83.95 276.99
435.gromacs 4907.53 106.28 334.74 3.15 3.43 30.99 97.59
436.cactusADM 9730.11 304.89 1019.89 3.35 4.42 68.98 230.74
437.leslie3d 55857.54 900.01 3009.06 3.34 15.38 58.52 195.65
444.namd 74037.63 1523.78 5037.00 3.31 16.22 93.94 310.54
445.gobmk 314.88 2.43 4.17 1.72 1.71 1.42 2.44
450.soplex 63.67 1.49 2.22 1.49 1.80 0.83 1.23
453.povray 2987.41 36.16 193.17 5.34 3.52 10.27 54.88
454.calculix 187.33 2.53 6.61 2.61 2.46 1.03 2.69
456.hmmer 17862.2 46.43 260.56 5.61 6.95 6.68 37.49
458.sjeng 15514.49 48.40 432.79 8.94 14.38 3.37 30.10
462.libquantum 408.63 0.77 2.01 2.61 0.62 1.24 3.24
464.h264ref 98144.32 392.21 2751.31 7.01 34.01 11.53 80.90
465.tonto 3571.85 48.23 195.16 4.05 5.44 8.87 35.88
470.lbm 7744.81 161.22 692.51 4.30 2.92 55.21 237.16
471.omnetpp 2209.23 16.24 136.63 8.41 3.19 5.09 42.83
473.astar 26645.10 102.95 734.52 7.13 13.67 7.53 53.73
482.sphinx3 6198.21 77.95 322.26 4.13 4.94 15.78 65.23
999.specrand 6198.21 1.42 2.46 1.73 0.92 1.54 2.67
Avg. 17649.05 210.94 810.42 4.33 7.68 22.52 83.61

Table 2. Performance compared with vanilla-QEMU and PIN.

  0

  5

  10

  15

  20

  25

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

al
cu

li
x

4
5

6
h

m
m

er

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.l

b
m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

2
.s

p
h

in
x

3

9
9

9
.s

p
ec

ra
n

d

S
iz

e 
o

f 
H

as
h

T
ab

le
 (

M
)

Figure 7. Memory Cost Comparison with SPEC2006 Bench-
marks

hostname binaries. We then use PIN and PEMU to ana-
lyze the packed hostname.

More specifically, we developed a simple strace (as
shown in Fig. 8) plugin to trace the syscall executed by the
hostname binary. This plugin will print the syscall number
at syscall entry point, and the return value at syscall exit point.
We compiled it into a PIN plugin and PEMU plugin with the
same source code. PIN failed on these two tests. Both packed
programs detected the presence of PIN and exited at early
stages. In contrast, hostname ran successfully on PEMU

and displayed the host name.
In our other case study, we used eXait [13], a benchmark-

like tool to test anti-instrumentation techniques. eXait has
a plugin architecture, and each technique is implemented

1 FILE *trace;
2 VOID SysBefore(ADDRINT ip, ADDRINT num) {
3 fprintf(trace,"0x%lx: %ld\n",
4 (unsigned long)ip, (long)num);
5 }
6 VOID SyscallEntry(THREADID threadIndex,
7 CONTEXT *ctxt, SYSCALL_STANDARD std, VOID *v) {
8 SysBefore(PIN_GetContextReg(ctxt, REG_INST_PTR),
9 PIN_GetSyscallNumber(ctxt, std));
10 }
11 VOID Fini(INT32 code, VOID *v) {
12 printf("program exit()\n");
13 }
14 INT32 Usage(VOID){
15 return 0;
16 }
17 int main(int argc, char * argv[]){
18 if(PIN_Init(argc, argv)) return Usage();
19 trace = fopen("strace.out", "w");
20 PIN_AddSyscallEntryFunction(SyscallEntry, 0);
21 PIN_AddFiniFunction(Fini, 0);
22 PIN_StartProgram();
23 return 0;
24 }

Figure 8. A cross-OS PEMU plugin to trace the syscall.

as a separated DLL. There are 21 plugins in total. Again
we run PIN with strace plugin to instrument eXait and
the loaded DLLs. We found that 17 anti-instrumentation
techniques detect the presence of PIN. But none of them
detect the presence of PEMU.

Through these case studies, we show there is a need for out-
of-VM PIN alternatives. Also, even though future malware
will be able to detect the presence of PEMU, we should be able
to add countermeasures against them, given that the source
code of PEMU is open.

156



In addition, PEMU can be used to build many out-of-VM
introspection tools. In the past several years, we have been
using its base internally to build introspection tools such as
VMST [14], and EXTERIOR [15]. We believe there will be
more use cases of PEMU in this regard.

6. Limitations and Future Work
The current design and implementation of PEMU has a
number of limitations. The first one is the incomplete support
of the PIN-APIs. Due to the grand engineering challenge,
currently we are not able to support all of the PIN-APIs.
Besides continuing to finish those unsupported APIs, we
would also like to leverage the power from the open source
community and make PEMU open source. Being an open
source PIN alternative, we believe that there will be more
users of PEMU, especially when there is a need to modify the
instrumentation engine.

The second limitation is that we used a weak seman-
tic gap [19] when designing the introspection API. That
is, while we did not trust any instrumented application
code, we did trust the guest OS kernel because we will
forward the execution of state inspection related syscalls
(e.g., PEMU_getpid) to the guest OS. A stronger semantic
gap [19] will not trust the guest OS kernel at all. How to
retrieve meaningful and trustworthy information from the
hypervisor layer when guest OS is untrusted is still an open
challenge. One of our future works will investigate how to
address this problem.

The third limitation is that we have not attempted to
optimize the generated instrumentation and analysis routine
yet, though we have designed a number of optimized data
structures (e.g., hooking point hash table) to speed up the
instrumentation process. Currently, we directly leveraged
the optimization from the tiny code generator (TCG) to
optimize our instrumentation and analysis routine. We leave
the investigation of other optimization techniques such as
leveraging parallelism (e.g., [43]) for us to pursue in another
future work.

7. Related Work
Over the past 20 years, many dynamic binary instrumentation
(DBI) platforms have been developed. In this section, we
compare PEMU with these platforms. Note that static binary
code instrumentation or rewriting systems, including the first
influential link-time instrumentation system ATOM [40], are
not within our scope.

At a high level, these dynamic binary instrumentation plat-
forms can be classified into (1) machine simulator, emulator,
and virtualizer, (2) process level instrumentation framework,
and (3) system wide instrumentation framework. In the fol-
lowing, we discuss these related works and compare PEMU

with each of them. A summary of the comparison is presented
in Table 3.

Platforms Year Emula
tor

, S
im

ula
tor

, V
irt

ua
liz

er

Ker
ne

l L
ev

el
In

str
um

en
tat

ion

User
Lev

el
In

str
um

en
tat

ion

w/ A
PI for

ins
tru

men
tat

ion

Out
-of

-V
M

Gue
st

OS Agn
os

tic

PIN
API Com

pa
tib

le

Ope
n So

ur
ce

EMBRA [45] 1996 X X X 7 X 7 7 7
VMWARE [10] 1998 X X X 7 X 7 7 7

KERNINST [41] 1999 7 X X X 7 X 7 X
DYNINSTAPI [7] 2000 7 X X X 7 X 7 X

DYNAMO [2] 2000 7 X X 7 7 X 7 7
BOCHS [1] 2001 X X X 7 X 7 7 X

SIMICS [27] 2002 X X X 7 X 7 7 7
VALGRIND [30, 31] 2003 7 7 X X 7 X 7 X

STRATA [37] 2003 7 7 X X 7 X 7 X
DYNAMORIO [2, 6] 2004 7 7 X X 7 X 7 X

QEMU [4] 2005 X X X 7 X 7 7 X
PIN [26] 2005 7 7 X X 7 X X 7

NIRVANA [5] 2006 7 7 X X 7 X 7 7
HDTRANS [39] 2006 7 7 X X 7 X 7 X

VIRTUALBOX [44] 2007 X X X 7 X 7 7 X
PINOS [8] 2007 X X X X 7 7 X 7
TEMU [48] 2010 X X X X X X 7 X

DYNINST [28] 2010 7 X X X 7 X 7 X
DRK [34] 2013 7 X X X 7 X 7 X

DECAF [17] 2014 X X X X X 7 7 X
PEMU 2015 X X X X X X X X

Table 3. Comparison with other dynamic binary instrumen-
tation platforms.

Machine Simulator, Emulator, and Virtualizer. The very
early development of dynamic binary code instrumenta-
tion originated from machine simulation or emulation. EM-
BRA [45] is such a simulation system. It performs whole sys-
tem dynamic translation for MIPS architectures. BOCHS [1]
and SIMICS [27] are also simulators that allow the instru-
mentation and inspection of all the executed x86 instruc-
tions. Targeting x86 architecture, the very early versions
of VMWARE [10] also use dynamic binary translation to
build virtual machine monitors (VMM). Another widely used
VMM or emulator is QEMU [4], which supports a large num-
ber of architectures. When used as an emulator, QEMU uses
a tiny code generator to emulate a CPU through a binary
translation. QEMU can also be used as a virtualizer recently,
and it can cooperate with the Xen hypervisor or KVM kernel
module to achieve a near native performance through running
the guest code directly on host CPU. VIRTUALBOX [44] is a
faster VMM compared to QEMU, and it employs an in-situ
patching to achieve better performance.

For all these out-of-VM works, they certainly can instru-
ment both user level and kernel level code, but they do not
offer any APIs for users to build dynamic binary instrumenta-
tion applications. Also, when used to analyze guest kernels,
they all tend to be kernel specific.

157



Process Level Instrumentation Framework. Recognizing
the importance and wide applications of DBI, many process
level instrumentation frameworks (e.g., DYNINSTAPI [7],
STRATA [37], DYNAMORIO [2], VALGRIND [30], PIN [26],
NIRVANA [5], HDTRANS [39], DYNINST [28]) have been
proposed. These frameworks offer APIs for developers to
build plugins for various applications such as high perfor-
mance simulation [37], program shepherding [23], and mem-
ory error detection [38].

Among them, VALGRIND [30, 31] is a comprehensive
DBI framework that offers rich APIs for dynamic binary
instrumentation. It supports various architectures (e.g., x86,
ARM, MIPS) due to the use of an intermediate representation
(IR) that is processor-neutral and SSA-based. Similar to
VALGRIND, PIN [26] also works at user space, but it only
supports IA-32 and x86-64 architectures. Developers can
create PIN-tools using the APIs provided by PIN, and execute
them atop either Windows or Linux. It is featured with
’ease of use’ with rich APIs to abstract away the underlying
instruction-set idiosyncrasies. Making PIN-API compatible is
one of our design goals such that PIN users can easily switch
to our platform, especially when there is a need to customize
the underlying DBI engine. Unlike other DBI platforms,
DYNINST [28] can instrument at any time in the execution of
a program, from static instrumentation (i.e., binary rewriting)
to dynamic instrumentation (i.e., instrumenting actively while
executing the code). Also, it allows users to modify or remove
instrumentation at any time, with such modifications taking
immediate effect.

For process level instrumentation, they are efficient. They
are built atop OS, and thus are OS-agnostic. It is also easier
to develop the plugins. However, the analysis routine and
the original program code share the same address space.
Therefore, they are all in-VM approaches, and users have
to be cautious when applying them for security sensitive
applications.

System Wide Instrumentation Framework. In addition
to process level instrumentation, there is also a need for
OS kernel instrumentation. KERNINST [41], PINOS [8],
TEMU [48], DRK [34], and DECAF [17] are such systems.

Among them, KERNINST and DRK are built atop in kernel
dynamic binary code translation. They basically control
all kernel instruction execution, and enable comprehensive
instrumentation of the OS kernel code. PINOS [8] is a whole-
system instrumentation extension of PIN. It takes advantage
of Intel VT Technology to interpose between the subject
system and hardware. PINOS has been implemented based
on the Xen virtual machine monitor. Compared to PEMU,
the instrumentation and analysis code of KERNINST, PINOS
and DRK actually share the same address space. Even though
PINOS steals the memory from the guest OS, the monitored
process is still able to guess and access the memory used by

analysis routines. Therefore, they do not offer strong out-of-
VM isolation.

TEMU [48] is a whole-system instrumentation tool built
atop QEMU. A unique feature in TEMU is that it offers APIs
for dynamic taint analysis and in-depth program behavioral
analysis. It is an out-of-VM based instrumentation, but it
installed a helper kernel module inside the guest OS to report
the states to the outside analysis routine. The most recent
effort, DECAF, extends TEMU. It does not use any in-VM
kernel module anymore, but the way to bridge the semantic
gap still requires the knowledge of kernel data structures.
Therefore, DECAF is a more OS-specific solution. For TEMU,
it is less since it is an in-VM based approach.

8. Conclusion
We have presented the design, implementation, and evaluation
of PEMU, a new dynamic binary code instrumentation frame-
work that allows end-users to develop out-of-VM plugins for
various program analyses. One distinctive feature of PEMU is
its PIN-API compatibility. Therefore, many of the PIN-tools
can be recompiled and executed within our framework. Un-
like other similar systems, it is guest-OS agnostic, and can
execute many different guest OSes with different versions.
Our experimental results with SPEC 2006 benchmarks show
that PEMU introduces reasonable overhead.

Acknowledgement and Availability
We thank the anonymous reviewers for their insightful com-
ments. We are also grateful to Erick Bauman for his in-
valuable feedback on an early draft of this paper. This re-
search was supported in part by a AFOSR grant FA9550-
14-1-0119 and a DARPA grant 12011593. Any opinions,
findings, conclusions, or recommendations expressed are
those of the authors and not necessarily of the AFOSR and
DARPA. Finally, the source code of PEMU is available at
https://github.com/utds3lab/pemu.

References
[1] bochs: The open source ia-32 emulation project, 2001.

http://bochs.sourceforge.net/.

[2] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo:
A transparent dynamic optimization system. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (New York, NY, USA,
2000), PLDI ’00, ACM, pp. 1–12.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUERY, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Proceed-
ings of the nineteenth ACM symposium on Operating systems
principles (2003).

[4] BELLARD, F. Qemu, a fast and portable dynamic translator.
In Proceedings of the annual conference on USENIX Annual
Technical Conference (Berkeley, CA, USA, 2005), ATEC ’05,
USENIX Association.

158

https://github.com/utds3lab/pemu


[5] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A.,
MURRAY, R., DRINIĆ, M., MIHOČKA, D., AND CHAU, J.
Framework for instruction-level tracing and analysis of pro-
gram executions. In Proceedings of the 2Nd International
Conference on Virtual Execution Environments (New York,
NY, USA, 2006), VEE ’06, ACM, pp. 154–163.

[6] BRUENING, D., ZHAO, Q., AND AMARASINGHE, S. Transpar-
ent dynamic instrumentation. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environ-
ments (New York, NY, USA, 2012), VEE ’12, ACM, pp. 133–
144.

[7] BUCK, B., AND HOLLINGSWORTH, J. K. An api for runtime
code patching. Int. J. High Perform. Comput. Appl. 14, 4 (Nov.
2000), 317–329.

[8] BUNGALE, P. P., AND LUK, C.-K. Pinos: A programmable
framework for whole-system dynamic instrumentation. In
Proceedings of the 3rd international conference on Virtual
execution environments (2007), pp. 137–147.

[9] CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems (2001), pp. 133–138.

[10] DEVINE, S. W., BUGNION, E., AND ROSENBLUM, M. Vir-
tualization System Including a Virtual Machine Monitor for a
Computer with a Segmented Architecture. United States Patent
6,397,242 (1998).

[11] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J.,
AND LEE, W. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Proceedings of the 32nd

IEEE Symposium on Security and Privacy (Oakland, CA, USA,
2011), pp. 297–312.

[12] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG,
D. Dynamic spyware analysis. In 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX Annual
Technical Conference (Berkeley, CA, USA, 2007), ATC’07,
USENIX Association, pp. 18:1–18:14.

[13] FRANCISCO FALCÃŞN, N. R. Dynamic binary instrumenta-
tion frameworks: I know you’re there spying on me. In recon
(2012).

[14] FU, Y., AND LIN, Z. Space traveling across vm: Automatically
bridging the semantic-gap in virtual machine introspection via
online kernel data redirection. In Proceedings of the 2012
IEEE Symposium on Security and Privacy (San Francisco, CA,
May 2012).

[15] FU, Y., AND LIN, Z. Exterior: Using a dual-vm based external
shell for guest-os introspection, configuration, and recovery. In
Proceedings of the Ninth Annual International Conference on
Virtual Execution Environments (Houston, TX, March 2013).

[16] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine
introspection based architecture for intrusion detection. In Proc.
Network and Distributed Systems Security Sym. (NDSS’03)
(February 2003).

[17] HENDERSON, A., PRAKASH, A., YAN, L. K., HU, X., WANG,
X., ZHOU, R., AND YIN, H. Make it work, make it right, make
it fast: Building a platform-neutral whole-system dynamic bi-
nary analysis platform. In Proceedings of the 2014 Interna-

tional Symposium on Software Testing and Analysis (New York,
NY, USA, 2014), ISSTA 2014, ACM, pp. 248–258.

[18] HOFMANN, O. S., DUNN, A. M., KIM, S., ROY, I., AND

WITCHEL, E. Ensuring operating system kernel integrity with
osck. In Proceedings of the sixteenth international conference
on Architectural support for programming languages and
operating systems (Newport Beach, California, USA, 2011),
ASPLOS ’11, pp. 279–290.

[19] JAIN, B., BAIG, M. B., ZHANG, D., PORTER, D. E., AND

SION, R. Sok: Introspections on trust and the semantic gap.
In Proceedings of the 2014 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2014), SP ’14, IEEE
Computer Society, pp. 605–620.

[20] JIANG, X., WANG, X., AND XU, D. Stealthy malware de-
tection through vmm-based out-of-the-box semantic view re-
construction. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS’07) (Alexan-
dria, Virginia, USA, 2007), ACM, pp. 128–138.

[21] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Antfarm: tracking processes in a virtual
machine environment. In Proc. annual Conf. USENIX ’06
Annual Technical Conf. (Boston, MA, 2006), USENIX Associ-
ation.

[22] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Vmm-based hidden process detection
and identification using lycosid. In Proc. fourth ACM SIG-
PLAN/SIGOPS international Conf. Virtual execution environ-
ments (Seattle, WA, USA, 2008), VEE ’08, ACM, pp. 91–100.

[23] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P.
Secure execution via program shepherding. In Proceedings of
the 11th USENIX Security Symposium (Berkeley, CA, USA,
2002), USENIX Association, pp. 191–206.

[24] LIN, Z., ZHANG, X., AND XU, D. Automatic reverse engineer-
ing of data structures from binary execution. In Proceedings
of the 17th Annual Network and Distributed System Security
Symposium (NDSS’10) (San Diego, CA, February 2010).

[25] LU, S., TUCEK, J., QIN, F., AND ZHOU, Y. Avio: detecting
atomicity violations via access interleaving invariants. In Pro-
ceedings of the 12th international conference on Architectural
support for programming languages and operating systems
(New York, NY, USA, 2006), ASPLOS XII, ACM, pp. 37–48.

[26] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation (New York, NY, USA, 2005), PLDI ’05,
ACM, pp. 190–200.

[27] MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J.,
FORSGREN, D., HÅLLBERG, G., HÖGBERG, J., LARSSON,
F., MOESTEDT, A., AND WERNER, B. Simics: A full system
simulation platform. Computer 35, 2 (Feb. 2002), 50–58.

[28] MILLER, B. P., AND BERNAT, A. R. Anywhere, any time
binary instrumentation.

[29] NARAYANASAMY, S., PEREIRA, C., PATIL, H., COHN, R.,
AND CALDER, B. Automatic logging of operating system

159



effects to guide application-level architecture simulation. In
Proceedings of the joint international conference on Measure-
ment and modeling of computer systems (New York, NY, USA,
2006), SIGMETRICS ’06/Performance ’06, ACM, pp. 216–
227.

[30] NETHERCOTE, N., AND SEWARD, J. Valgrind: A program
supervision framework. In In Third Workshop on Runtime
Verification (RV’03) (2003).

[31] NETHERCOTE, N., AND SEWARD, J. Valgrind: A framework
for heavyweight dynamic binary instrumentation. In Proceed-
ings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA,
2007), PLDI ’07, ACM, pp. 89–100.

[32] NEWSOME, J., AND SONG, D. Dynamic taint analysis for
automatic detection, analysis, and signature generation of ex-
ploits on commodity software. In Proceedings of Network and
Distributed Systems Security Symposium (2005).

[33] PAYNE, B. D., CARBONE, M., AND LEE, W. Secure and
flexible monitoring of virtual machines. In Proceedings of
the 23rd Annual Computer Security Applications Conference
(ACSAC 2007) (December 2007).

[34] PETER FEINER, A. D. B., AND GOEL, A. Comprehensive
kernel instrumentation via dynamic binary translation. In Pro-
ceedings of the seventeenth international conference on Archi-
tectural Support for Programming Languages and Operating
Systems (2012).

[35] PETRONI, JR., N. L., AND HICKS, M. Automated detection
of persistent kernel control-flow attacks. In Proceedings of
the 14th ACM conference on Computer and communications
security (2007), CCS ’07, pp. 103–115.

[36] SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. All
you ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to
ask). In Proceedings of the 2010 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2010), SP ’10, IEEE
Computer Society, pp. 317–331.

[37] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B.,
DAVIDSON, J. W., AND SOFFA, M. L. Retargetable and
reconfigurable software dynamic translation. In Proceedings
of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization
(Washington, DC, USA, 2003), CGO ’03, IEEE Computer
Society, pp. 36–47.

[38] SEWARD, J., AND NETHERCOTE, N. Using valgrind to detect
undefined value errors with bit-precision. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference
(Berkeley, CA, USA, 2005), ATEC ’05, USENIX Association.

[39] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND BUNGALE,
P. P. Hdtrans: An open source, low-level dynamic instrumen-
tation system. In Proceedings of the 2Nd International Confer-

ence on Virtual Execution Environments (New York, NY, USA,
2006), VEE ’06, ACM, pp. 175–185.

[40] SRIVASTAVA, A., AND EUSTACE, A. Atom: A system for
building customized program analysis tools. In Proceedings
of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation (New York, NY, USA,
1994), PLDI ’94, ACM, pp. 196–205.

[41] TAMCHES, A., AND MILLER, B. P. Fine-grained dynamic
instrumentation of commodity operating system kernels. In
Proceedings of the Third Symposium on Operating Systems
Design and Implementation (Berkeley, CA, USA, 1999), OSDI
’99, USENIX Association, pp. 117–130.

[42] WALLACE, S., AND HAZELWOOD, K. Superpin: Parallelizing
dynamic instrumentation for real-time performance. In 5th
Annual International Symposium on Code Generation and
Optimization (San Jose, CA, March 2007), pp. 209–217.

[43] WANG, Z., LIU, R., CHEN, Y., WU, X., CHEN, H., ZHANG,
W., AND ZANG, B. Coremu: A scalable and portable parallel
full-system emulator. In Proceedings of the 16th ACM Sym-
posium on Principles and Practice of Parallel Programming
(New York, NY, USA, 2011), PPoPP ’11, ACM, pp. 213–222.

[44] WATSON, J. Virtualbox: Bits and bytes masquerading as
machines. Linux J. 2008, 166 (Feb. 2008).

[45] WITCHEL, E., AND ROSENBLUM, M. Embra: Fast and
flexible machine simulation. In Proceedings of the 1996 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (New York, NY, USA, 1996),
SIGMETRICS ’96, ACM, pp. 68–79.

[46] WU, Q., REDDI, V., WU, Y., LEE, J., CONNORS, D.,
BROOKS, D., MARTONOSI, M., AND CLARK, D. A dynamic
compilation framework for controlling microprocessor energy
and performance. In Microarchitecture, 2005. MICRO-38. Pro-
ceedings. 38th Annual IEEE/ACM International Symposium
on (2005).

[47] YANGCHUN FU, J. Z., AND LIN, Z. Hypershell: A prac-
tical hypervisor layer guest os shell for automated in-vm
management. In USENIX ATC’14 Proceedings of the 2014
USENIX conference on USENIX Annual Technical Conference
(USENIX Association Berkeley, CA, USA, 2014), USENIX
Association, pp. 85–96.

[48] YIN, H., AND SONG, D. Temu: Binary code analysis via
whole-system layered annotative execution. Technical Report
UCB/EECS-2010-3, EECS Department, University of Califor-
nia, Berkeley, Jan 2010.

[49] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for
malware detection and analysis. In Proceedings of the 14th
ACM conference on Computer and communications security
(New York, NY, USA, 2007), CCS ’07, ACM, pp. 116–127.

160


	1 Introduction
	2 Background and Overview
	2.1 In-VM vs. Out-of-VM Instrumentation
	2.2 Objectives
	2.3 An Example
	2.4 Architecture Overview

	3 Instrumentation Engine
	3.1 TRACE Constructor
	3.2 Code Injector
	3.3 Putting it all together

	4 Introspection Engine
	4.1 Identification of Monitored Process/Threads
	4.2 Addressing the Semantic Gap Challenge

	5 Evaluation
	5.1 Compatibility Testing With Pin Plugins
	5.2 Performance Evaluation
	5.3 Memory Cost Evaluation
	5.4 Case Studies

	6 Limitations and Future Work
	7 Related Work
	8 Conclusion



