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A novel technique for optimising the efficiency of route discovery is proposed. 

The optimisation aims to minimise the number of cached route replies (RREP), 

which is a significant source of overhead for the dynamic source routing (DSR) 

protocol. Performance results show that the overall route discovery overhead can 

be reduced by more than 30% under high node mobility. 

 

Introduction: Route discovery is the process by which a node searches the 

network for a route to its intended destination, typically by flooding the network 

with a route request (RREQ). In DSR [1], a number of optimisations exist to 

improve the efficiency of this flood-based process. These include promiscuous 

route learning, expanding ring search, and having a non-destination node reply to 

the RREQ if that node has a cached route to the destination. Each of these 

different optimisations has a common objective, which is to minimise the number 

of RREQ transmissions. 

These optimisations have by far been effective in reducing the routing packet 

overhead of DSR [2], mainly from a large saving on RREQs. But even so, DSR 

still generates a large number of RREPs, most of which are cached RREPs from 

non-destination nodes. RREPs form more than half the sum of route discovery 

packets generated by DSR, an observation also reported in [2].  



RREPs are more expensive to transmit than RREQs because they are unicast 

packets (whereas RREQs are broadcast packets), which use additional control 

packets for RTS/CTS exchanges in the 802.11 MAC. Besides, RREP packets will 

be larger in size as they must carry the complete source route acquired by the 

RREQ, back to the source. Therefore, a large number of RREPs can still take up 

a significant portion of the wireless bandwidth, in addition to the device power 

needed to process them. Both bandwidth and power are premium resources in 

mobile ad hoc networks. 

Besides for reasons of resource-efficiency, a large number of cached RREPs can 

also be more detrimental than beneficial to the routing performance, particularly 

under high node mobility, as routes acquired become obsolete more frequently, 

rendering their use less effective [2]. This letter proposes a novel yet simple 

technique to minimise number of cached RREPs (as opposed to RREQs), based 

on the observation of a rarely noticed but commonly occurring phenomenon, 

which we illustrate through examples in the following.  

 

Observation: Referring to Fig. 1a, suppose a source node A broadcast at time t0 

a RREQ, which is received by two non-destination nodes B and C. Assume B 

has a cached route to the RREQ destination, while C does not. Also assume B 

successfully contended for the channel and transmits ahead of C its cached 

RREP at time t1, which is overheard by node D. After transmission from B is over, 

C rebroadcast the RREQ at time t2, which is also received by D. Therefore, D 

notices the RREP for a RREQ it receives only later. 



This phenomenon also occurs in other scenarios. For example, Fig. 1b illustrates 

a case where the RREQ travels over a longer path (A-C-E) than the RREP (A-B) 

to reach D. In Fig. 1c, D is in direct range of A, but did not receive its RREQ due 

to a packet collision caused by a simultaneous broadcast from E at time t0 for a 

separate route discovery. Then as in Fig.1a, D hears the RREP at time t1 and 

receives the RREQ at time t2. Fig. 1d further considers the effects of mobility, 

where D moves into range of B, and later into range of C at times t1 and t2 

respectively, thereby observing the RREP before receiving the RREQ for the 

same route discovery. 

 

Optimisation: This phenomenon can be put to good use to minimise the number 

of cached RREP.  For example, the overheard RREP contains information about 

i) the hop length of the returned source route, and ii) the ID of the RREQ, for 

which this RREP is generated. Together with the source address of the RREQ, 

which is found from either the returned source route, or destination address of 

the RREP, these three pieces of information could be used to decide if a node 

should reply upon receiving a RREQ, even for the first time.  

Existing DSR algorithm dictates that a node will reply if it receives a RREQ for 

the first time, for which it has a route to the destination. It is almost certain that 

node D in Fig. 1 would send a cached RREP, since it knows at least a route to 

the destination, which is that it overhears from the RREP. However, the returned 

route may not be useful if it is longer than the one previously returned, since 

route selection at the source is typically based on the shortest path.  



We thus propose that if a node overhears a RREP for a RREQ it has not seen 

before (known by the RREQ ID and source address), the node shall record the 

three pieces of information from the RREP, namely the i) hop-length of returned 

source route, ii) RREQ ID, and iii) RREQ source address, as mentioned before. 

Subsequently, if the node receives this RREQ, it will compare the hop-length of 

its route (to be returned) with that seen previously. It will reply if it has a shorter 

route, and discard otherwise. 

DSR has a scheme with some similarity for preventing “Route Reply Storms” [1]. 

However, the scheme does not propose the use of other information received 

from the RREP as we mentioned above. Furthermore, the scheme listens for 

shorter routes only after RREQ is received. This inherently introduces a delay, 

which adds to the route acquisition latency. 

 

Simulation environment: 

We evaluate the performance of our proposed technique using an ns simulator 

[3] with Monarch wireless extensions [4]. A total of 100 nodes are simulated for 

500s over a network space of 1342m x 1342m. The network traffic is modelled as 

40 CBR sources with data sent in 64-byte packets at 2 packets/s. Five movement 

patterns are generated based on random waypoint model for each value of 

pause time: 0, 100, 200, 300, 400, 500s. A pause time of 0s corresponds to 

continuous motion (at speed of up to 20m/s) and a pause time of 500s (length of 

simulation) corresponds to no motion.  

 



Performance results: 

Fig. 2 shows the number of RREPs transmitted by both DSR, and a modified 

version of DSR with our optimisation. The DSR herein operates with all of its 

existing optimisations, thus providing a more challenging base for comparison 

than with a non-optimised, simple flooding-based DSR. The RREPs are further 

segregated into Cached RREPs and Target RREPs, the former being transmitted 

by non-destination nodes, the latter by destination nodes. Due to source routing 

and aggressive caching, DSR has an inherent high hit ratio for its route caches  

[2], which could explain why there are much more Cached RREPs than Target 

RREPs as shown in the figure. 

The results show that the proposed optimisation reduces the number of cached 

RREP significantly, in particular at higher node mobility (lower pause time). At 

pause time of 0s (highest mobility) where all nodes are in continuous motion, the 

number of Cached RREPs is fewer by slightly more than 50%. And expectedly, 

this margin of improvement decreases with mobility, since lower speed lead to 

fewer route discoveries to be performed. At pause time of 500s (lowest mobility) 

where all nodes are stationary, no significant difference in the number of Cached 

RREPs is observed. Also, since our optimisation is aimed at Cached RREPs, the 

number of Target RREPs remains relatively unchanged. The same can be said 

for the RREQs. Fig. 3 shows the overall route discovery overhead, comprising of 

both RREQs and RREPs. By taking RREQ into account (not shown in the figure 

for clarity but should be easily extracted), Modified DSR achieves an overall 

overhead reduction of 33.8% under highest mobility (zero pause time). 



Conclusion: We have presented a new optimisation for DSR to minimise the 

number of cached RREPs in a route discovery. The proposed optimisation is 

simple in concept and implementation, and is shown to be effective in decreasing 

the route discovery overhead, in particular under high node mobility. 
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Figure captions: 
 
Fig. 1 Different scenarios of route discovery 
 
Fig. 2 Cached RREP and Target RREP 
 
Fig. 3 Route discovery overhead 
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Figure 2 
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Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


