
Categori�cationJohn C. BaezDepartment of Mathematics, University of CaliforniaRiverside, California 92521USAJames DolanSanga Research Corporation2015 Rue Peel, Suite 1000Montreal, Quebec H3A 1T8Canadaemail: baez@math.ucr.edu, jdolan@sangacorp.comFebruary 2, 1998AbstractCategori�cation is the process of �nding category-theoretic analogsof set-theoretic concepts by replacing sets with categories, functionswith functors, and equations between functions by natural isomor-phisms between functors, which in turn should satisfy certain equa-tions of their own, called `coherence laws'. Iterating this process re-quires a theory of `n-categories', algebraic structures having objects,morphisms between objects, 2-morphisms between morphisms and soon up to n-morphisms. After a brief introduction to n-categories andtheir relation to homotopy theory, we discuss algebraic structures thatcan be seen as iterated categori�cations of the natural numbers andintegers. These include tangle n-categories, cobordism n-categories,and the homotopy n-types of the loop spaces 
kSk. We conclude bydescribing a de�nition of weak n-categories based on the theory ofoperads.1 IntroductionThe tongue-twisting term `categori�cation' was invented by Crane [19, 20].It refers to the process of �nding category-theoretic analogs of ideas phrased1



in the language of set theory, using the following analogy between set theoryand category theory: elements objectsequations isomorphismsbetween elements between objectssets categoriesfunctions functorsequations natural isomorphismsbetween functions between functors1. Analogy between set theory and category theoryJust as sets have elements, categories have objects. Just as there are functionsbetween sets, there are functors between categories. Interestingly, the properanalog of an equation between elements is not an equation between objects,but an isomorphism. More generally, the analog of an equation betweenfunctions is a natural isomorphism between functors.For example, the category FinSet, whose objects are �nite sets and whosemorphisms are functions, is a categori�cation of the set N of natural numbers.The disjoint union and Cartesian product of �nite sets correspond to the sumand product in N , respectively. Note that while addition and multiplicationin N satisfy various equational laws such as commutativity, associativity anddistributivity, disjoint union and Cartesian product satisfy such laws only upto natural isomorphism.If one studies categori�cation one soon discovers an amazing fact: manydeep-sounding results in mathematics are just categori�cations of facts welearned in high school! There is a good reason for this. All along, we havebeen unwittingly `decategorifying' mathematics by pretending that categoriesare just sets. We `decategorify' a category by forgetting about the morphismsand pretending that isomorphic objects are equal. We are left with a mereset: the set of isomorphism classes of objects.To understand this, the following parable may be useful. Long ago, whenshepherds wanted to see if two herds of sheep were isomorphic, they wouldlook for an explicit isomorphism. In other words, they would line up bothherds and try to match each sheep in one herd with a sheep in the other. Butone day, along came a shepherd who invented decategori�cation. She realized2



one could take each herd and `count' it, setting up an isomorphism betweenit and some set of `numbers', which were nonsense words like `one, two,three, . . . ' specially designed for this purpose. By comparing the resultingnumbers, she could show that two herds were isomorphic without explicitlyestablishing an isomorphism! In short, by decategorifying the category of�nite sets, the set of natural numbers was invented.According to this parable, decategori�cation started out as a stroke ofmathematical genius. Only later did it become a matter of dumb habit,which we are now struggling to overcome by means of categori�cation. Whilethe historical reality is far more complicated, categori�cation really has led totremendous progress in mathematics during the 20th century. For example,Noether revolutionized algebraic topology by emphasizing the importance ofhomology groups. Previous work had focused on Betti numbers, which arejust the dimensions of the rational homology groups. As with taking thecardinality of a set, taking the dimension of a vector space is a process ofdecategori�cation, since two vector spaces are isomorphic if and only if theyhave the same dimension. Noether noted that if we work with homologygroups rather than Betti numbers, we can solve more problems, because weobtain invariants not only of spaces, but also of maps. In modern parlance,the nth rational homology is a functor de�ned on the category of topologicalspaces, while the nth Betti number is a mere function de�ned on the setof isomorphism classes of topological spaces. Of course, this way of statingNoether's insight is anachronistic, since it came before category theory. In-deed, it was in Eilenberg and Mac Lane's subsequent work on homology thatcategory theory was born!Decategori�cation is a straightforward process which typically destroysinformation about the situation at hand. Categori�cation, being an attemptto recover this lost information, is inevitably fraught with di�culties. Onereason is that when categorifying, one does not merely replace equations byisomorphisms. One also demands that these isomorphisms satisfy some newequations of their own, called `coherence laws'. Finding the right coherencelaws for a given situation is perhaps the trickiest aspect of categori�cation.For example, a monoid is a set with a product satisfying the associativelaw and a unit element satisfying the left and right unit laws. The categori�edversion of a monoid is a `monoidal category'. This is a category C with aproduct 
:C � C ! C and and unit object 1 2 C. If we naively imposeassociativity and the left and right unit laws as equational laws, we obtain3



the de�nition of a `strict' monoidal category. However, the philosophy ofcategori�cation suggests instead that we impose them only up to naturalisomorphism. Thus, as part of the structure of a `weak' monoidal category,we specify a natural isomorphismax;y;z: (x
 y)
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 z)called the `associator', together with natural isomorphismslx: 1
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 1! x:Using the associator one can construct isomorphisms between any two paren-thesized versions of the tensor product of several objects. However, we reallywant a unique isomorphism. For example, there are 5 ways to parenthesizethe tensor product of 4 objects, which are related by the associator as follows:((x
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In the de�nition of a weak monoidal category we impose a coherence law,called the `pentagon identity', saying that this diagram commutes. Similarly,we impose a coherence law saying that the following diagram built using a; land r commutes:(1
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This de�nition raises an obvious question: how do we know we havefound all the right coherence laws? Indeed, what does `right' even mean inthis context? Mac Lane's coherence theorem [45] gives one answer to thisquestion: the above coherence laws imply that any two isomorphisms builtusing a; l and r and having the same source and target must be equal.Further work along these lines allow us to make more precise the sensein which N is a decategori�cation of FinSet. For example, just as N forms amonoid under either addition or multiplication, FinSet becomes a monoidalcategory under either disjoint union or Cartesian product if we choose theisomorphisms a; l, and r sensibly. In fact, just as N is a `rig', satisfying allthe ring axioms except those involving additive inverses, FinSet is what onemight call a `rig category'. In other words, it satis�es the rig axioms up tonatural isomorphisms satisfying the coherence laws discovered by Kelly [41]and Laplaza [44], who proved a coherence theorem in this context. Just as thedecategori�cation of a monoidal category is a monoid, the decategori�cationof any rig category is a rig. In particular, decategorifying the rig categoryFinSet gives the rig N . This idea is especially important in combinatorics,where the best proof of an identity involving natural numbers is often a`bijective proof': one that actually establishes an isomorphism between �nitesets [37, 54].While coherence laws can sometimes be justi�ed retrospectively by coher-ence theorems, certain puzzles point to the need for a deeper understandingof the origin of coherence laws. For example, suppose we want to categorifythe notion of `commutative monoid'. The strictest possible approach, wherewe take a strict monoidal category and impose an equational law of the formx 
 y = y 
 x, is almost completely uninteresting. It is much better tostart with a weak monoidal category equipped with a natural isomorphismBx;y: x 
 y ! y 
 x called the `braiding', and then impose coherence lawscalled `hexagon identities' saying that the following two diagrams commute:x
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yThis gives the de�nition of a weak `braided monoidal category'. If we imposean additional coherence law of the form B�1x;y = By;x, we obtain the de�nitionof a `symmetric monoidal category'. Both of these concepts are very impor-tant; which one is `right' depends on the context. However, neither impliesthat every pair of parallel morphisms built using the braiding are equal. Agood theory of coherence laws must naturally account for these facts.The deepest insights into such puzzles have traditionally come from topol-ogy. In homotopy theory it causes problems to work with spaces equippedwith algebraic structures satisfying equational laws, because one cannot trans-port such structures along homotopy equivalences. It is better to impose lawsonly up to homotopy, with these homotopies satisfying certain coherence laws,but again only up to homotopy, with these higher homotopies satisfying theirown higher coherence laws, and so on. Coherence laws thus arise naturally inin�nite sequences. For example, Stashe� [59] discovered the pentagon iden-tity and a sequence of higher coherence laws for associativity when studyingthe algebraic structure possessed by a space that is homotopy equivalent toa loop space. Similarly, the hexagon identities arise as part of a sequence ofcoherence laws for spaces homotopy equivalent to double loop spaces, whilethe extra coherence law for symmetric monoidal categories arises as part ofa sequence for spaces homotopy equivalent to triple loop spaces. The highercoherence laws in these sequences turn out to be crucial when we try toiterate the process of categori�cation.Starting in the late 1960's, Boardman, Vogt [13, 14] and others devel-oped the study of these higher coherence laws into a full-edged theory of`homotopy-invariant algebraic structures'. However, we have yet to attain ageneral and systematic theory of categori�cation, particularly when it comesto iterated categori�cation, which requires a good theory of `n-categories'.The main goal of this paper is to outline our current understanding of cate-gori�cation and to point out some directions for further study.6



The plan of the paper is as follows. In Section 2 we give a quick tour ofn-category theory. This theory is just beginning to be developed, and thereare various alternative approaches which have not yet been reconciled, buthere we leave out most of the technical details and sketch what we expectfrom any reasonable approach. In Section 3 we discuss in more detail thelessons homotopy theory has for n-category theory. We hope this section canbe followed even by those who are not already experts on homotopy theory.In Section 4 we describe some algebraic structures that amount to iteratedcategori�cations of the natural numbers and the integers. A large amountof interesting mathematics emerges from the study of these structures. InSection 5 we summarize our own approach to n-categories.In a previous paper [4] we sketched a program of using n-categories toclarify the relationships between topological quantum �eld theory and moretraditional approaches to algebraic topology. The present paper covers someaspects of this program in more detail, taking advantage of work that hasbeen done in the meantime. Various other aspects are treated in a series ofpapers entitled `Higher-Dimensional Algebra' [2, 5, 6, 8].2 n-CategoriesOne philosophical reason for categori�cation is that it re�nes our concept of`sameness' by allowing us to distinguish between isomorphism and equality.In a set, two elements are either the same or di�erent. In a category, twoobjects can be `the same in a way' while still being di�erent. In other words,they can be isomorphic but not equal. Even more importantly, two objectscan be the same in more than one way, since there can be di�erent isomor-phisms between them. This gives rise to the notion of the `symmetry group'of an object: its group of automorphisms.Consider, for example, the fundamental groupoid �1(X) of a topologicalspace X: the category with points of X as objects and homotopy classesof paths with �xed endpoints as morphisms. This category captures all thehomotopy-theoretic information about X in dimensions � 1 | or more pre-cisely, its homotopy 1-type [11]. The group of automorphisms of an objectx in this category is just the fundamental group �1(X; x). If we decategorifythe fundamental groupoid of X, we forget how points in X are connected bypaths, remembering only whether they are, and we obtain the set of compo-7



nents of X. This captures only the homotopy 0-type of X.This example shows how decategori�cation eliminates `higher-dimensionalinformation' about a situation. Categori�cation is an attempt to recover thisinformation. This example also suggests that we can keep track of the ho-motopy 2-type of X if we categorify further and distinguish between pathsthat are equal and paths that are merely isomorphic (i.e., homotopic). Forthis we should work with a `2-category' having points of X as objects, pathsas morphisms, and certain equivalence classes of homotopies between pathsas 2-morphisms.In a marvelous self-referential twist, the de�nition of `2-category' is simplythe categori�cation of the de�nition of `category' ! Like a category, a 2-category has a class of objects, but now for any pair x; y of objects there isno longer a set hom(x; y); instead, there is a category hom(x; y). Objectsof hom(x; y) are called morphisms of C, and morphisms between them arecalled 2-morphisms of C. Composition is no longer a function, but rather afunctor: �: hom(x; y)� hom(y; z)! hom(x; z):For any object x there is an identity 1x 2 hom(x; x). And now we have achoice. On the one hand, we can impose associativity and the left and rightunit laws strictly, as equational laws. If we do this, we obtain the de�nitionof `strict 2-category' [42]. On the other hand, we can impose them only up tonatural isomorphism, with these natural isomorphisms satisfying the coher-ence laws discussed in the previous section. This is clearly more compatiblewith the spirit of categori�cation. If we do this, we obtain the de�nitionof `weak 2-category' [12]. (We warn the reader that strict 2-categories aretraditionally known as `2-categories', while weak 2-categories are known as`bicategories'. The present style of terminology, introduced by Kapranov andVoevodsky [40], has the advantage of generalizing easily to n-categories forarbitrary n.)The classic example of a 2-category is Cat, which has categories as objects,functors as morphisms, and natural transformations as 2-morphisms. Thepresence of 2-morphisms gives Cat much of its distinctive avor, which wewould miss if we treated it as a mere category. Indeed, Mac Lane has saidthat categories were originally invented, not to study functors, but to studynatural transformations! A good example of two functors that are not equal,but only naturally isomorphic, are the identity functor and the `double dual'8



functor on the category of �nite-dimensional vector spaces.Given a topological space X, we can form a 2-category �2(X) calledthe `fundamental 2-groupoid' of X. The objects of this 2-category are thepoints of X. Given x; y 2 X, the morphisms from x to y are the pathsf : [0; 1] ! X starting at x and ending at y. Finally, given f; g 2 hom(x; y),the 2-morphisms from f to g are the homotopy classes of paths in hom(x; y)starting at f and ending at g. Since the associative law for compositionof paths holds only up to homotopy, this 2-category is a weak 2-category.One can prove that it captures the homotopy 2-type of X [18, 47]. If wedecategorify the fundamental 2-groupoid of X, we obtain its fundamentalgroupoid.From 2-categories it is a short step to dreaming of n-categories and even!-categories | but it is not so easy to make these dreams into smoothlyfunctioning mathematical tools. Roughly speaking, an n-category shouldbe some sort of algebraic structure having objects, 1-morphisms betweenobjects, 2-morphisms between 1-morphisms, and so on up to n-morphisms.There should be various ways of composing j-morphisms for 1 � j � n,and these should satisfy various laws. As with 2-categories, we can try toimpose these laws either strictly or weakly. Strict n-categories have beenunderstood for quite some time now [23, 28], but more interesting for us arethe weak ones. Various de�nitions of weak n-category are currently underactive study [5, 10, 36, 57, 58, 61, 62, 63], and we discuss our own in Section5. Here, however, we wish to sketch the main challenges any theory of weakn-categories must face, and some of the richness inherent in the notion ofweak n-category.Nota bene: Throughout the rest of this paper, `n-category' will mean `weakn-category' unless otherwise speci�ed, and similarly for `n-groupoid', etc..For the sake of de�niteness, we shall temporarily speak in terms of the `glob-ular' approach to n-categories developed by Batanin [10]. In this approach,for j � 1 any j-morphism a: f ! g has a source f and a target g, whichare (j � 1)-morphisms. When j � 2 we require that f and g are parallel, bywhich we mean that f; g: x! y for some (j� 2)-morphisms x and y. In thisapproach, we visualize a j-morphism as a j-dimensional disc. For example,for j = 2:
9
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yx aOther approaches to n-categories use j-morphisms with other shapes, suchas simplices, discussed in Section 3, or opetopes, discussed in Section 5. Webelieve that there is basically a single notion of weak n-category lurkingbehind these di�erent approaches. If this is true, they will eventually beshown to be equivalent, and choosing among them will be merely a matterof convenience. However, the precise meaning of `equivalence' here is itselfrather subtle and n-categorical in avor [3, 5].The �rst challenge to any theory of n-categories is to give an adequatetreatment of coherence laws. Composition in an n-category should satisfyequational laws only at the top level, between n-morphisms. Any law con-cerning j-morphisms for j < n should hold only `up to equivalence'. Herea n-morphism is de�ned to be an `equivalence' if it is invertible, while forj < n a j-morphism is recursively de�ned to be an equivalence if it is invert-ible up to equivalence. Equivalence is generally the correct substitute for thenotion of equality in n-categorical mathematics. When laws are formulatedas equivalences, these equivalences should in turn satisfy coherence laws oftheir own, but again only up to equivalence, and so on. This becomes evermore complicated and unmanageable with increasing n unless one takes asystematic approach to coherence laws.The second challenge to any theory of n-categories is to handle certain keyexamples. First, for any n, there should be an (n+1)-category nCat, whoseobjects are (small) n-categories, whose morphisms are suitably weakenedfunctors between these, whose 2-morphisms are suitably weakened naturaltransformations, and so on. Here by `suitably weakened' we refer to the factthat all laws should hold only up to equivalence. Second, for any topologicalspace X, there should be an n-category �n(X) whose objects are points ofX, whose morphisms are paths, whose 2-morphisms are paths of paths, andso on, where we take homotopy classes only at the top level. �n(X) shouldbe an `n-groupoid', meaning that all its j-morphisms are equivalences for 0 �j � n. We call �n(X) the `fundamental n-groupoid of X'. Conversely, anyn-groupoid should determine a topological space, its `geometric realization'.10



In fact, these constructions should render the study of n-groupoids equivalentto that of homotopy n-types (in a certain sense to be made precise in thenext section).A bit of the richness inherent in the concept of n-category becomes ap-parent when we make the following observation: an (n + 1)-category withonly one object can be regarded as special sort of n-category. Suppose thatC is an (n+1)-category with one object x. Then we can form the n-category~C by re-indexing: the objects of ~C are the morphisms of C, the morphismsof ~C are the 2-morphisms of C, and so on. The n-categories we obtain thisway have extra structure. In particular, since the objects of ~C are reallymorphisms in C from x to itself, we can `multiply' (that is, compose) them.The simplest example is this: if C is a category with a single object x, ~Cis the set of endomorphisms of x. This set is actually a monoid. Conversely,any monoid can be regarded as the monoid of endomorphisms of x for somecategory with one object x. We summarize this situation by saying that`a one-object category is a monoid'. Similarly, a one-object 2-category isa monoidal category. It is natural to expect this pattern to continue inall higher dimensions; in fact, it is probably easiest to cheat and de�ne amonoidal n-category to be an (n+ 1)-category with one object.Things get even more interesting when we iterate this process. Givenan (n + k)-category C with only one object, one morphism, and so on upto one (k � 1)-morphism, we can form an n-category whose j-morphismsare the (j + k)-morphisms of C. In doing so we obtain a particular sortof n-category with extra structure and properties, which we call a `k-tuplymonoidal' n-category. Table 2 shows what we expect these to be like for lowvalues of n and k. For example, the Eckmann-Hilton argument [4, 8, 27]shows that a 2-category with one object and one morphism is a commutativemonoid. Categorifying this argument, one can show that a 3-category withone object and one morphism is a braided monoidal category. Similarly, weexpect that a 4-category with one object, one morphism and one 2-morphismis a symmetric monoidal category, though this has not been worked out infull detail, because of our poor understanding of 4-categories. The fact thatboth braided and symmetric monoidal categories appear in this table seemsto explain why both are natural concepts.
11



n = 0 n = 1 n = 2k = 0 sets categories 2-categoriesk = 1 monoids monoidal monoidalcategories 2-categoriesk = 2 commutative braided braidedmonoids monoidal monoidalcategories 2-categoriesk = 3 `' symmetric weakly involutorymonoidal monoidalcategories 2-categoriesk = 4 `' `' strongly involutorymonoidal2-categoriesk = 5 `' `' `'2. k-tuply monoidal n-categoriesIn any reasonable approach to n-categories there should be an (n + 1)-category nCatk whose objects are k-tuply monoidal weak n-categories. Oneshould also be able to treat nCatk as a full sub-(n + k)-category of (n +k)Cat, though even for low n; k this is perhaps not as well known as itshould be. Consider for example n = 0; k = 1. The objects of 0Cat1 areone-object categories, or monoids. The morphisms of 0Cat1 are functorsbetween one-object categories, or monoid homomorphisms. But 0Cat1 alsohas 2-morphisms corresponding to natural transformations. We leave it asan exercise to work out what these are in concrete terms. More recently,Kapranov and Voevodsky [40] have considered the case n = k = 1.We gave a detailed discussion of Table 2 in an earlier paper [4], andsubsequent work by various authors has improved our understanding of someof the higher entries [8, 24, 26]. There are many interesting processes goingfrom each entry in this table to its neighbors. We list some of the main onesbelow. Most of these have only been thoroughly studied for low values of nand k, often in the framework of `semistrict' n-categories, which are a kindof halfway house between strict and weak ones. We expect that they allgeneralize to weak k-tuply monoidal n-categories for arbitrary n and k, butin many cases this has not yet been proved.12



� Decategori�cation: (n; k) ! (n � 1; k). Let C be a k-tuply monoidaln-category C. Then there should be a k-tuply monoidal (n � 1)-categoryDecatC whose j-morphisms are the same as those of C for j < n � 1, butwhose (n � 1)-morphisms are isomorphism classes of (n � 1)-morphisms ofC. � Discrete categori�cation: (n; k) ! (n + 1; k). There should be a `dis-crete' k-tuply monoidal (n + 1)-category DiscC having the j-morphisms ofC as its j-morphisms for j � n, and only identity (n + 1)-morphisms. Thedecategori�cation of DiscC should be C.� Delooping: (n; k) ! (n + 1; k � 1). There should be a (k � 1)-tuplymonoidal (n + 1)-category BC with one object obtained by reindexing, thej-morphisms of BC being the (j + 1)-morphisms of C. We use the notation`B' and call BC the `delooping' of C because of its relation to the classifyingspace construction in topology.� Looping: (n; k) ! (n � 1; k + 1). Given objects x; y in an n-category,there should be an (n � 1)-category hom(x; y). If x = y this should be amonoidal (n�1)-category, and we denote it as end(x). For k > 0, if 1 denotesthe unit object of the k-tuply monoidal n-category C, end(1) should be a(k + 1)-tuply monoidal (n� 1)-category. We call this process `looping', anddenote the result as 
C, because of its relation to loop space construction intopology. For k > 0, looping should extend to an (n+k)-functor 
:nCatk !(n � 1)Catk+1. The case k = 0 is a bit di�erent: we should be able toloop a `pointed' n-category, one having a distinguished object x, by letting
C = end(x). In either case, the j-morphisms of 
C correspond to certain(j � 1)-morphisms of C.� Forgetting monoidal structure: (n; k)! (n; k�1). By forgetting the kthlevel of monoidal structure, we should be able to think of C as a (k�1)-tuplymonoidal n-category FC. This should extend to an n-functor F :nCatk !nCatk�1.� Stabilization: (n; k) ! (n; k + 1). Though adjoint n-functors are stillpoorly understood, there should be a left adjoint to forgetting monoidalstructure, which we call `stabilization' and denote by S:nCatk ! nCatk+1.13



(In our previous work we called it `suspension', but this is probably a bitmisleading.) The `stabilization hypothesis' [4] states that for k � n + 2,stabilization is an equivalence from nCatk to nCatk+1. This is why the nthcolumn of Table 2 has only n + 2 distinct entries, and then settles down.While not yet proven or even formulated as a precise conjecture except inlow dimensions, there is a lot of good evidence for this hypothesis, someof which we mention in the next section. In what follows, we assume thishypothesis and call a k-tuply monoidal n-category with k = n + 2 a `stablen-category'.� Forming the generalized center: (n; k)! (n; k+1). Thinking of C as anobject of the (n+k)-category nCatk, there should be a (k+1)-tuply monoidaln-category ZC, the `generalized center' of C, given by 
k(end(C)). In otherwords, ZC is the largest sub-(n+ k+ 1)-category of (n+ k)Cat having C asits only object, 1C as its only morphism, 11C as its only 2-morphism, and soon up to dimension k. This construction gets its name from the case n = 0,k = 1, where ZC is the usual center of the monoid C. Categorifying leads tothe case n = 1, k = 1, which gives a very important construction of braidedmonoidal categories frommonoidal categories [38, 40, 48]. In particular, whenC is the monoidal category of representations of a Hopf algebra H, ZC is thebraided monoidal category of representations of the quantum double D(H).Categorifying still further, Baez and Neuchl [8] treated the case n = 2, k = 1.Subsequently Crans [24] corrected some errors in their work and dealt withthe cases n = 2, k > 1.3 Lessons from Homotopy TheoryIn Grothendieck's famous 600-page letter to Quillen [35], he proposed devel-oping n-category theory as a vast generalization of homotopy theory, witha special class of n-categories | the n-groupoids | corresponding to ho-motopy n-types. When this idea is �nally worked out, we will be able totranslate all of homotopy theory into the language of n-groupoids. Even-tually this should deepen our understanding of the conceptual foundationsof homotopy theory, and help us apply its techniques to other branches ofmathematics. But even now, with n-category theory still in its squalling in-fancy, this translation project is worthwhile. The reason is that homotopy14



theory is our best source of insight into n-categories. We need to be carefulhere, since homotopy theory avoids precisely what is most new and inter-esting about general n-categories, namely the presence of j-morphisms thatare not equivalences. However, this is a bit less of a drawback than it mightat �rst seem. After all, the most mysterious aspect of n-category theory isthe origin of coherence laws, and these, being implemented as equivalences,appear already in the context of n-groupoids.!-groupoids homotopy typesn-groupoids homotopy n-typesk-tuply groupal homotopy types!-groupoids of k-fold loop spacesk-tuply groupal homotopy n-typesn-groupoids of k-fold loop spacesk-tuply monoidal homotopy types!-groupoids of Ek spacesk-tuply monoidal homotopy n-typesn-groupoids of Ek spacesstable !-groupoids homotopy typesof in�nite loop spacesstable n-groupoids homotopy n-typesof in�nite loop spacesZ-groupoids homotopy typesof spectra3. Translating between n-groupoid theory and homotopy theoryWe can begin this translation project with the help of Table 3. In explain-ing this table, we shall use the simplicial approach to n-groupoids insteadof the globular approach. The reason is that simplicial methods are quitepopular among topologists, so all the necessary machinery has already beendeveloped [49]. For other approaches to n-groupoids, see the work of Brownand his collaborators [16], Tamsamani [63], and Batanin [10].In topology one usually speaks of `j-cells' rather than j-morphisms. A`simplicial set' has a set of j-cells for each j � 0, which we visualize asbeing shaped like j-simplices. For each j-cell f there are certain (j� 1)-cellsd0f; : : : ; dnf called `faces' and (j+1)-cells i0f; : : : ; in+1f called `degeneracies'.15



One also requires that the face and degeneracy maps satisfy certain well-known relations; we will not need the formulas here.A `j-dimensional horn' in a simplicial set is, roughly speaking, a con�gu-ration in which all but one of the faces of a j-simplex have been �lled in by(j � 1)-cells in a consistent way. A simplicial set for which any horn can beextended to a j-cell is called a `Kan complex'. A Kan complex is the sim-plicial version of an !-groupoid: a structure like an n-groupoid, but withoutany cuto� on the dimension of the j-morphisms.To see how this idea works, suppose we have a Kan complex containinga `composable' pair of 1-cells f and g, meaning that d1f = d0g. This givesa 2-dimensional horn with f and g as two of its faces, so we can extend thishorn to a 2-cell F , which has as its third face some 1-cell h:
s s������SSSSSS..................... ....................................................................................
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zf ghIn this situation, we call h `a composite' of f and g, and think of F as the`process of composition'. Note that there is not a unique preferred composite,so composition is not an operation in the traditional sense. However, anytwo composites can be seen to be equivalent, where two j-cells with all thesame faces are said to be `equivalent' if there is a (j +1)-cell having them astwo of its faces, the rest being degenerate. From an algebraic viewpoint, thereason is that we have de�ned composition by a universal property.Thanks to the magic of universal properties, Kan complexes are a won-derfully e�cient formalism for studying !-groupoids. In particular, there isno need to explicitly list coherence laws! They are all implicit in the fact thatevery horn can be extended to a cell, and they automatically become explicitif we arbitrarily choose processes of composition. For example, given a com-posable triple of 1-cells, one obtains the associator by considering a 3-simplexwith these as three of its edges and making clever use of the horn-�lling con-dition. Likewise, given a composable quadruple of 1-cells, one obtains thepentagon coherence law by considering a suitable 4-simplex. In fact, all the16



higher coherence laws for associativity, which Stashe� [59] organized intopolyhedra called `associahedra', have been obtained from higher-dimensionalsimplices by Street [61] in his simplicial approach to !-categories.If we take the liberty of calling Kan complexes `!-groupoids', we can setup a correspondence between !-groupoids and homotopy types as follows.Given a topological space X, we can form an !-groupoid �(X) whose j-cells are all the continuous maps from the standard j-simplex into X, withfaces and degeneracies de�ned in the obvious way. We think of this as the`fundamental !-groupoid of X'. Conversely, given an !-groupoid G, we canform a topological space by taking one geometrical j-simplex for each j-cellof G and gluing them all together using the face and degeneracy maps in theobvious way. This is called the `geometric realization of G' and denoted jGj.We thus obtain functors going both ways between the category !Gpd,having Kan complexes as objects and simplicial maps between these as mor-phisms, and the category Top, having nice spaces as objects and continuousmaps as morphisms. (We say a space is `nice' if it is compactly generatedand homotopy equivalent to a CW complex; we use this nonstandard de�ni-tion of Top to exclude various pathologies.) While these functors are adjointto one another, they do not set up an equivalence of categories. Nonethe-less, we expect that !Gpd and Top are `the same' in a subtler sense |namely, as !-categories. More precisely, these categories should extend to !-categories, where the 2-morphisms correspond to homotopies between maps,the 3-morphisms correspond to homotopies between homotopies, and so on.The functors �: Top! !Gpd;j � j:!Gpd! Topshould then extend to !-functors, giving an equivalence of !-categories.In the absence of a good theory of !-categories, topologists have tradi-tionally used other language to express the fact that !Gpd and Top are `thesame' for the purposes of homotopy theory. For example, � and j � j estab-lish an equivalence between the homotopy category of !-groupoids and thehomotopy category of nice spaces. Here the `homotopy category' is formedby adjoining formal inverses to all maps inducing isomorphisms of homotopygroups [32], where one de�nes the homotopy groups of a Kan complex to bethose of its geometric realization. An object in the homotopy category ofTop is called a `homotopy type' [11].17



Starting from the correspondence between !-groupoids and homotopytypes we can set up the other correspondences listed in Table 3. For example,we can de�ne an `n-groupoid' to be a Kan complex such that for j > n+1 anycon�guration in which all the faces of a j-simplex have been �lled in by (j�1)-cells in a consistent way can be uniquely extended to a j-cell. This ensuresthat all cells of dimension higher than n play the role of equations. Thegeometric realization of an n-groupoid is a space with vanishing homotopygroups above dimension n, and the homotopy category of such spaces is calledthe category of `homotopy n-types'. The homotopy category of n-groupoidsis equivalent to the category of homotopy n-types, and in fact one expectsan equivalence of (n + 1)-categories.We de�ne a `k-tuply groupal !-groupoid' to be a Kan complex with onlyone j-cell for j < k. Under the correspondence between !-groupoids andhomotopy types, these correspond to homotopy types with vanishing ho-motopy groups below dimension k. Similarly, we de�ne a `k-tuply groupaln-groupoid' to be an (n+ k)-groupoid with only one j-cell for j < k. Thesecorrespond to homotopy (n+k)-types with vanishing homotopy groups belowdimension k.Recall from the previous section that we can think of an n-category Cwith only one j-morphism for j < k as an n-category with extra structure andproperties. In the globular approach we do this by `reindexing', constructingan n-category whose j-morphisms are the (j+k)-morphisms of C. Similarly,it is often useful to think of a k-tuply groupal n-groupoid G as an n-groupoidwith extra structure and properties. However, in the simplicial approachwe cannot simply reindex the cells of G. Instead, we can use a standardconstruction [49] to form a Kan complex 
kG whose geometric realization ishomotopy equivalent to the kth loop space of the geometric realization of G.This is why in Table 3 we say that k-tuply groupal n-groupoids correspondto homotopy n-types of k-fold loop spaces. Similarly, k-tuply groupal !-groupoids correspond to homotopy types of k-fold loop spaces.Exactly what extra structure and properties does an !-groupoid have if itis k-tuply groupal? In other words, what extra structure and properties doesa space have if it is homotopy equivalent to a k-fold loop space? This questionhas inspired the development of many interesting mathematical tools. Herewe shall describe just one of these, the `little k-cubes operad', invented byBoardman and Vogt [13, 14] and cast into the language of operads by May[50]. 18



We begin with the de�nition of an `operad'. For each ` � 0, an operad Ohas a set O` of ``-ary operations'. We visualize such an operation as a treewith one vertex or `node', ` edges representing inputs coming in from above,and one edge representing the output coming out from below:tBBBB ��������@@@@
We can compose these trees by feeding the outputs of ` of them into one with` inputs: r r rrBB ����@@ aaa!!!JJ 


In other words, for any i1; : : : ; i` there is a functionO` �Oi1 � � � � �Oi` ! Oi1+���+i`:(f; g1; : : : ; g`) 7! f � (g1; : : : ; g`)We require that composition is `associative', meaning thatf � (g1 � (h11; : : : ; h1i1); : : : ; g` � (h`1; : : : ; h`i`)) =(f � (g1; : : : g`)) � (h11; : : : ; h1i1 ; : : : : : : ; h`1; : : : ; h`i`)whenever both sides are well-de�ned. This makes composites such as thefollowing one unambiguous:

19
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We also require the existence of an unit operation 1 2 O1 such that1 � (f) = f; f � (1; : : : ; 1) = ffor all f 2 O`.What we have so far is an planar operad. For a full-edged operad, wealso assume that there are right actions of the symmetric groups S` on thesets O` for which the following compatibility conditions hold. First, for anyf 2 O`, � 2 S`, and gj 2 Oij for 1 � j � `, we require(f�) � (g�(1); : : : ; g�(`)) = (f � (g1; : : : ; g`)) �(�);where �:S` ! Si1+���+i`is the obvious homomorphism. Second, for any f 2 O`, and gj 2 Oij , �j 2 Sijfor 1 � j � `, we requiref � (g1�1; : : : ; g`�`) = (f � (g1; : : : ; g`)) �0(�1; : : : ; �`);where �0:Si1 � � � � � Si` ! Si1+���+i`is the obvious homomorphism.Just as groups are interesting for their actions, operads are interesting fortheir `algebras'. Given an operad O, an `O-algebra' is a set A equipped withactions �:O` � A` ! A;or equivalently, maps �:O` ! hom(A`; A)20



representing the `-ary operations of O as actual operations on A. We requirethat � sends the identity operation 1 2 O1 to the identity function on A andsends composites to composites:�(f � (g1; : : : ; g`)) = �(f) � (�(g1)� � � � � �(g`)):We also require that �(f�) = �(f)�;where f 2 O`, and � 2 S` acts on hom(A`; A) on the right by permuting thefactors in A`. We omit this requirement if O is merely planar.More generally, one can de�ne operads and their algebras in any sym-metric monoidal category C, which amounts to replacing sets and functionsin the above de�nitions by objects and morphisms in C, and replacing theCartesian product by the tensor product in C. We shall mainly be inter-ested in operads in the category Top, which are called `topological operads'.Spaces with extra structure and properties can often be described as algebrasof topological operads.The most interesting example for us is the `little k-cubes operad', C(k).Here the space C(k)` of `-ary operations is the space of ` disjoint k-cubes lin-early embedded in the cube [0; 1]k with their edges parallel to the coordinateaxes: .
An algebra of the little k-cubes operad is called an `Ek space'. Given aspace X with a basepoint, there is an obvious way to make 
kX into anEk space using the fact that it consists of maps f : [0; 1]k ! X sending theboundary of the cube to the basepoint. Conversely, the set of components ofan Ek space automatically becomes a monoid, and if this monoid is a group21



then the Ek space is homotopy equivalent to a k-fold loop space. Homotopytypes of Ek spaces are thus a bit more general than homotopy types of k-foldloop spaces. While the latter correspond to k-tuply groupal !-groupoids,the former should correspond to `k-tuply monoidal !-groupoids', that is, !-categories with only one j-morphism for j < k, for which all j-morphismsare equivalences for j > k | but not necessarily for j = k. There shouldsimilarly be a correspondence between k-tuply monoidal n-groupoids andhomotopy n-types of Ek spaces.At the end of the previous section we listed various processes going be-tween neighboring entries of Table 2. When restricted to k-tuply groupaln-groupoids, most of these processes have well-known topological interpreta-tions, which we summarize below. We let nTypek stand for the category ofhomotopy n-types of k-fold loop spaces. It is easiest to de�ne this as the fullsubcategory of the homotopy category of nice spaces X with basepoint suchthat �j(X) = 0 unless k � j � n+k. However, by repeated looping, we shallthink of the objects of nTypek as k-fold loop spaces with vanishing homotopygroups above dimension n. A technical point worth noting is that for k = 0,these really correspond to n-groupoids equipped with a distinguished 0-cell.� Decategori�cation: (n; k) ! (n � 1; k). Let X be a k-fold loop spacewith �j(X) = 0 for j > n. Then we can kill o� its nth homotopy group byattaching cells, obtaining a k-fold loop space DecatX with �j(X) = 0 forj > n � 1. There is a map X ! DecatX inducing isomorphisms �j(X) �=�j(DecatX) for j � n � 1. This process gives a functor Decat:nTypek !(n� 1)Typek.� Discrete categori�cation: (n; k) ! (n + 1; k). The forgetful functorDisc:nTypek ! (n + 1)Typek is the left adjoint of Decat.� Delooping: (n; k)! (n+1; k�1). There is a (k�1)-fold loop space BX,called the `classifying space' or `delooping' of X, with �j(BX) �= �j�1(X).This process gives a functor B:nTypek ! (n+ 1)Typek�1.� Looping: (n; k)! (n� 1; k+ 1). For k > 0, there is a (k + 1)-fold loopspace 
X, consisting of all based loops in X, with �j(
X) �= �j�1(X). Thisprocess gives a functor 
:nTypek ! (n� 1)Typek+1 that is right adjoint toB. For k > 0, delooping followed by looping is naturally isomorphic to the22



identity functor.� Forgetting monoidal structure: (n; k)! (n; k � 1). There is a forgetfulfunctor F :nTypek ! nTypek�1.� Stabilization: (n; k) ! (n; k + 1). There is a left adjoint to F called`stabilization', which we denote by S:nTypek ! nTypek+1. If we de�ne the`suspension' functor �: (n� 1)Typek ! nTypek to be the left adjoint of thecomposite nTypek (n� 1)Typek+1 (n� 1)Typek-
 -Fthen stabilization is naturally isomorphic to suspension followed by looping.The Freudenthal suspension theorem says that stabilization is an equivalencefor k � n+ 2.� Forming the generalized center: (n; k)! (n; k+1). This process needsto be adapted to stay within the world of k-tuply groupal groupoids, or inother words, homotopy n-types of k-fold loop spaces. We let aut(X) bethe automorphism group of X as an object of nTypek, and de�ne ZX =
k(aut(X)).The fact that stabilization is an equivalence for k � n+2 leads us to de�nea `stable n-groupoid' to be an (n+ 2)-tuply groupal n-groupoid. We expect,in fact, that there is an (n+ 1)-category of stable n-groupoids, and that thedecategori�cation of this is the n-category of stable (n � 1)-groupoids. Ifwe could take the inverse limit in a suitable sense, we would hope to obtainan !-category of `stable !-groupoids'. These should correspond to whattopologists call `in�nite loop spaces', an in�nite loop space being a sequenceof spaces X0; X1; : : :, equipped with homeomorphisms fk:Xk ! 
Xk+1.In�nite loop spaces play an important role in stable homotopy theory[1, 29, 50]. A closely related concept is that of a `spectrum'. Just as anin�nite loop space should correspond to a stable !-groupoid, a spectrumshould correspond to a `Z-groupoid', some sort of gadget with j-morphismsfor all j 2 Z, all of which are equivalences. In fact, strict Z-categories areeasily de�ned in the globular approach, and strict Z-groupoids then workout to be the same as Z-graded chain complexes of abelian groups. Spectracan be viewed as a generalization of such chain complexes. Apart from what23



we know about spectra, however, the theory of `weak Z-categories' remainslargely terra incognita.4 Examples of Categori�cationIn what follows, we consider iterated categori�cations of the natural numbers,and some variations on this theme where we adjoin formal inverses or duals.We shall see that quite a bit of mathematics amounts to the study of theresulting objects, some of which are astoundingly complicated. The more `n-groupoidal' examples are familiar from homotopy theory, but the importanceof some of the more `n-categorical' ones has only become clear in recent workon topological quantum �eld theory.The natural numbers are the free monoid on one element, while the in-tegers are the free group on one element. Some categori�ed analogs of thesenotions are listed in Table 4. In the rest of this section, we work throughthese examples in detail.We begin with the simplest algebraic structure of all: sets. The free seton one element is just the one-element set, denoted by 1. Note that herewe are using the word `the' in a generalized sense. Since all sets with thesame cardinality are isomorphic, any singleton fxg can be regarded as `the'1-element set. In a set, when we speak of `the' element with some property,we imply that any other element having this property is equal to this one,but in a category, when we speak of `the' object with some property, wemean that any other object having this property is isomorphic to this one| typically by means of a uniquely speci�ed isomorphism. More generally,when we speak of `the' object of an n-category having some property, wemean that any other object with this property is equivalent | typically bymeans of an equivalence which is speci�ed uniquely up to an equivalencewhich is speci�ed uniquely up to : : : and so on. This recursive weakening ofthe notion of uniqueness, and therefore of the meaning of `the', is fundamentalto categori�cation.
24



sets 1monoids Ngroups Zk-tuply monoidal nBraidkn-categoriesk-tuply monoidal Braidk!-categoriesstable n-categories nBraidstable !-categories Braid1k-tuply monoidal nTangkn-categories with dualsstable n-categories nCobwith dualsk-tuply groupal �n(
kSk)n-groupoidsk-tuply groupal �(
kSk)!-groupoidsstable !-groupoids �(
1S1)Z-groupoids the sphere spectrum4. Algebraic structures and the free such structures on one generatorNext consider the free category on one object. This is just the categorywith one object x and one morphism 1x: x ! x. More generally, for eachn, consider the free n-category on one object. In the globular approachto n-categories we may take this to be the n-category with one object x,one morphism 1x: x ! x, one 2-morphism 11x : 1x ) 1x, and so on up toone n-morphism. This is an n-groupoid, namely the globular version ofthe fundamental n-groupoid of a point. By the remarks in the previousparagraph, the fundamental n-groupoid of any contractible space may alsobe considered `the free n-category on one object'.Things become more interesting when we generalize further and considerthe free k-tuply monoidal n-category on one object, which we denote bynBraidk, for reasons soon to be apparent. Let us see what this looks like inthe simplest cases, namely n = 0 and 1. The stabilization hypothesis saysthat we only need to consider k � n+ 2.� 0Braid0, the free set on one element. This is the one-element set, 1.25



� 0Braid1, the free monoid on one element. This is the natural numbers,N , with addition as its monoid structure.� 0Braid2, the free commutative monoid on one element. This is again N ,now regarded as a commutative monoid with addition as its monoid structure.� 1Braid0, the free category on one object. This is the category with oneobject and one morphism.� 1Braid1, the free monoidal category on one object x. The objects ofthis category are the tensor powers x
`, and the only morphisms are identitymorphisms. (Here we are using the Mac Lane coherence theorem to make1Braid1 into a strict monoidal category.) This is the discrete categori�cationof 0Braid1.� 1Braid2, the free braided monoidal category on one object x. This is thebraid groupoid. The objects of this groupoid are the tensor powers x
`, andthe only morphisms are automorphisms, with end(x
`) being the `-strandbraid group B`, which has generators �i (1 � i � `� 1) and relations�i�i+1�i = �i+1�i�i+1;�i�j = �j�i for ji� jj > 1:� 1Braid3, the free symmetric monoidal category on one object x. This isthe symmetric groupoid. The objects of this groupoid are the tensor powersx
`, and the only morphisms are automorphisms, with end(x
`) being thesymmetric group on ` letters, S`. This group can be given a presentation likethat of B`, but with the additional relations�2i = 1:The symmetric groupoid is equivalent to the category with �nite sets as ob-jects and bijections as morphisms. Note that, like the category FinSet having�nite sets as objects and arbitrary functions as morphisms, this category isa rig category with N as its decategori�cation.The following heuristic argument allows us to guess a general formula fornBraidk. In all the cases considered above, nBraidk is a k-tuply monoidal26



n-groupoid. This should hold in general, since for j > 0 the j-morphismsof nBraidk arise from coherence laws, and should thus be equivalences. Wealso expect that nBraidk is the `free k-tuply monoidal n-groupoid on oneobject'. By Table 3, nBraidk should thus be the fundamental n-groupoidof some Ek space Xn;k with vanishing homotopy groups above dimensionn. We also expect that Decat((n + 1)Braidk) ' nBraidk, so there shouldbe some sort of inverse limit, the `free k-tuply monoidal !-groupoid on oneobject', which we denote by Braidk. Corresponding to this there should be asequence of maps Xn+1;k ! Xn;k, with Xn;k obtained from Xn+1;k by killingits (n + 1)st homotopy group, and with the inverse limit being a space Xkwhose fundamental !-groupoid is Braidk. By the correspondence betweenk-tuply monoidal !-groupoids and Ek spaces, we expect that Xk is the `freeEk space on one point'.While this argument involves many forms of reasoning that have not yetbeen made rigorous, there is at least a precise meaning to the `free Ek spaceon one point'. Given any operad O in the category of pointed spaces and anypointed space X, there is a standard construction of the `free O-algebra onX', due to May [50]. To form the free O-algebra on one point, we should �rstform the free free pointed space on one point, namely S0, and then applythis standard construction. The result is the disjoint union1à=0O`=S`which becomes an O-algebra in a tautologous way.In the case at hand, since the the operad for Ek spaces is the little k-cubesoperad C(k), the free Ek space on one point isXk = 1à=0 C(k)`=S`:We expect, therefore, an equivalencenBraidk ' �n(Xk):To work with this equivalence, it is helpful to note that C(k)` is homotopyequivalent to the `con�guration space' [55] of ` distinct points in the k-cube:f(x1; : : : ; x`) 2 [0; 1]k : xi 6= xj if i 6= jg:27



Moreover, this homotopy equivalence is compatible with the obvious actionsof S`. It follows that Xk is homotopy equivalent to the pointed space of all�nite sets of distinct points in the k-cube, where the empty set plays the roleof basepoint.To see how this works in an example, consider the case n = 1, k = 2. Thespace X2 is equivalent to the space of �nite sets of points in the square. Apath inX2 amounts to a braid with an arbitrary number of strands. It followsthat the fundamental groupoid of X2 is equivalent to the braid groupoid, so1Braid2 ' �1(X2):More generally, in the globular approach to n-categories, the n-morphismsof nBraidk should correspond to certain n-dimensional surfaces in [0; 1]n+k,which we could call `n-braids in n+k dimensions'. We see here an instance ofa general theme, namely that in a k-tuply monoidal n-category the numbern often plays the role of `dimension', while k plays the role of `codimension'.Now let us turn to the `free k-tuply groupal n-groupoid on one object',which we temporarily denote by Gn;k. For n = 0, k = 1 this is just the freegroup on one element, namely the integers, Z. For higher values of n and kwe may thus regard Gn;k as a categori�ed, stabilized version of Z. In whatfollows we restrict attention to the case k > 0, since in this case a k-tuplygroupal n-groupoid automatically has a distinguished object, the unit.Again we can use a heuristic argument to guess a formula for Gn;k. Sincewe expect that Gn;k ' DecatGn+1;k, there should be some sort of inverselimit Gk, the `free k-tuply groupal !-groupoid on one object'. By Table 3 weexpect Gk to be the fundamental !-groupoid of some k-fold loop space, so theproblem is to determine this space. Just as the group Z is obtained from themonoid N by adjoining formal inverses, Gk should be obtained from Braidkby adjoining formal weak inverses for all objects. More generally, we shouldbe able to turn any k-tuply monoidal !-groupoid into a k-tuply groupal !-groupoid by adjoining formal weak inverses of objects. In the language ofhomotopy theory, this process should turn Ek spaces into k-fold loop spaces.In fact, this process is familiar in homotopy theory under the name of `groupcompletion' [9]. Since nBraidk is the fundamental !-groupoid of Xk, we thusexpect Gk to be the fundamental !-groupoid of the group completion of Xk.The group completion of Xk is homotopy equivalent to 
kSk, so we expectan equivalence Gn;k ' �n(
kSk):28



Group completion automatically gives a map from Xk to 
kSk which inducesa k-tuply monoidal n-functor�n(Xk)! �n(
kSk):If the above guesses are correct, n-braids and the homotopy types ofspheres play a fundamental role in n-category theory. Since the homo-topy groups of spheres are notoriously hard to compute, this means thatn-category theory has a certain built-in complexity. Perhaps we should am-plify on this a bit. Suppose that C is a globular (n + k)-category and x isany object of C. Let 11 = 1x and recursively de�ne 1i+1 to be 11i . Then weare claiming that any k-morphism f : 1k�1 ! 1k�1 determines, at least up toequivalence, a k-tuply monoidal n-functornBraidk ! end(1k�1)mapping the generator of nBraidk to f . Moreover, if f is an equivalence, weclaim this factors through a k-tuply groupal n-functor�n(
kSk)! end(1k�1)whose range consists entirely of equivalences.In our previous exploration of these ideas [4], we emphasized the im-portance of a notion lying halfway between n-groupoids and fully general n-categories, which we called `n-categories with duals'. The idea here is that du-als are an interesting generalization of inverses. In particular, the `tangle hy-pothesis' states that there is a `free k-tuply monoidal n-category with duals onone object', nTangk, having as n-morphisms certain n-dimensional surfacesin [0; 1]n+k called `framed n-tangles in n + k dimensions'. For n = 1; k = 2this was proved by Freyd and Yetter, Turaev, and Shum [30, 56, 65, 66]. Thisspecial case serves as the basis of recent work on 3-dimensional topologicalquantum �eld theory. Indeed, the fact that n-categories with duals are moregeneral than n-groupoids is the reason why topological quantum �eld theorycan give more re�ned information than homotopy theory. Recently progresshas been made on the case n = 2, k = 2, which has also illuminated thetheory of 2-braids in 4 dimensions [6, 7, 25, 43]. In general, we expect thatin the stable range nTangk is equivalent to the stable n-category of `framedcobordisms'. Also, the universal property of nTangk should give a k-tuplymonoidal n-functor T :nTangk ! �n(
kSk);29



generalizing the Thom-Pontryagin construction. For more details the readermust turn to the references. Our main point here is that if the tangle hypoth-esis holds, a great deal, not only of homotopy theory, but also of topologicalquantum �eld theory arises naturally from the study of categori�ed analogsof Z!To conclude, let us note that all the entries in Table 4 should be equippedwith `multiplication' as well as `addition' operations. For example, by virtueof being the free monoid on one element, N automatically becomes a rig inthe following way: given an element n 2 N , there is a unique monoid homo-morphism f :N ! N with f(1) = n, namely multiplication by n. Likewise,by virtue of being the free group on one element, Z automatically becomesa ring. Categorifying once and stabilizing various numbers of times, we seethat for k > 0, 1Braidk is a rig category and �1(
kSk) is a `ring category':a rig category for which objects have additive inverses. This pattern shouldcontinue throughout the rest of Table 4.For example, in stable homotopy theory it is well known that the spherespectrum is a `ring spectrum' [51]. We expect that the sphere spectrumcorresponds to the `free Z-groupoid on one object'. Indeed, Joyal has calledthe sphere spectrum `the true integers', since it is an in�nitely categori�ed,in�nitely stabilized analog of Z.5 n-Categories and the Algebra of OpetopesWe hope the previous sections have whetted the reader's appetite for a rig-orous theory of n-categories by sketching a bit of what we might do if wehad one. Now we turn to the issue of actually developing this theory. Itseems that any de�nition of n-category involves a choice of the basic shapesof j-morphisms | globes, simplices, or whatever. It also involves a choice ofways to compose j-morphisms by gluing these basic shapes together. Mostimportantly, it requires a careful treatment of coherence laws. In what fol-lows we present an approach in which all these issues are handled simultane-ously using the formalism of operads. In this approach, the basic shapes ofj-morphisms are the j-dimensional `opetopes'. The allowed ways of compos-ing j-morphisms correspond precisely to the (j + 1)-dimensional opetopes.Moreover, the sequence of higher coherence laws satis�ed by compositioncorrespond to opetopes of ever higher dimension.30



Before going into the details, let us sketch how this works. First considersome low-dimensional opetopes. The only 0-dimensional opetope is the point:The only way to glue together 0-dimensional opetopes is the trivial way: theidentity operation. The only 1-dimensional opetope is thus the interval, ormore precisely the arrow:The allowed ways of gluing together 1-dimensional opetopes are given by the2-dimensional opetopes. The �rst few 2-dimensional opetopes are as follows:
The allowed ways of gluing together 2-dimensional opetopes are given by the3-dimensional opetopes. There are many of these; a simple example is asfollows:
This may be a bit hard to visualize, but it depicts a 3-dimensional shapewhose front consists of two 3-sided `infaces', and whose back consists of asingle 4-sided `outface'. We have drawn double arrows on the infaces but noton the outface. Note that while this shape is topologically a ball, it cannotbe realized as a polyhedron with planar faces. This is typical of opetopes.In general, an (n+1)-dimensional opetope has any number of infaces andexactly one outface: the infaces are n-dimensional opetopes glued togetherin a tree-like pattern, while the outface is a single n-dimensional opetope.For example, the 3-dimensional opetope above corresponds to the followingtree: 31



The two triangular infaces of the opetope correspond to the two nodes inthis tree. This is a rather special tree; in general, we allow nonplanar treeswith any number of nodes and any number of edges coming into each node.Our approach to n-categories is a bit like the Kan complex approachto n-groupoids described in Section 3, but with simplicial sets replaced by`opetopic sets'. Basically, an opetopic set is a set of `cells' shaped likeopetopes, such that any face of a cell is again a cell. In an n-category,the j-dimensional cells play the role of j-morphisms. An opetopic set is ann-category if it satis�es the following two properties:1) \Any niche has a universal occupant." A `niche' is a con�gurationwhere all the infaces of an opetope have been �lled in by cells, but not theoutface or the opetope itself:
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An `occupant' of the niche is a way of extending this con�guration by �llingin the opetope (and thus its ouface) with a cell:
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The `universality' of an occupant means roughly that every other occupantfactors through the given one up to equivalence. To make this precise weneed to de�ne universality in a rather subtle recursive way. We may think ofa universal occupant of a niche as `a process of composing' the infaces, andits outface as `a composite' of the infaces.2) \Composites of universal cells are universal." Suppose that U; V; andW below are universal cells:
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WThen we can compose them, and we are guaranteed that their composite isagain universal, and thus that the outface l is a composite of the cells f; g; h; i.Note that a process of composing U; V;W is described by a universal occupantof a niche of one higher dimension.Note that in this approach to n-categories, composition of cells is not anoperation in the traditional sense: the composite is de�ned by a universalproperty, and is thus unique only up to equivalence. Only at the top level,for the n-cells of an n-category, is the composite truly unique. The mainadvantage of de�ning composition by a universal property is that we do notneed to list coherence laws: all the right coherence laws arise automatically!This is a very important point, because in some sense it answers the puzzleconcerning the origin of coherence laws.At �rst this answer may seem as puzzling as the puzzle it answers. Whydoes de�ning composition by a universal property automatically generate allthe right coherence laws? One reason is that coherence laws are `right' whenthey hold in interesting examples, and in these examples composition is usu-ally de�ned by a universal property. Consider for example the categori�edversion of N discussed in the Introduction: the category FinSet. Correspond-ing to addition in N , the category FinSet has �nite coproducts, i.e., disjointunions. Coproducts are de�ned by a universal property, and this universalproperty immediately implies number of things. First, coproducts are unique33



up to canonical isomorphism. Second, if we pick a coproduct x t y for everypair of objects x; y 2 FinSet, making disjoint union into an operation in thetraditional sense, we obtain natural isomorphismsax;y;z: (x t y) t z ! x t (y t z);lx: ; t x! x; rx: x t ; ! x:Third, these natural isomorphisms satisfy coherence laws making FinSet intoa monoidal category. In short, the standard de�nition of monoidal cate-gory, which lists coherence laws, is best regarded as a spino� of the factthat monoidal structures de�ned by universal properties automatically sat-isfy these laws.Studying this example also suggests another idea which is built into ourde�nition of n-categories. To prove the existence of the associator ax;y;z oneuses the universal property for the coproduct of three objects, and to provethe existence of lx and rx one uses the universal property for the coproduct ofone object. This suggests that in an n-category, arbitrary `-ary compositesshould be treated on an equal footing with binary composites. The formalismof operads is admirably suited for this task.In what follows we �rst review the theory of typed operads. Then we usethis to de�ne the opetopes, and more generally, `O-opetopes' for any typedoperad O. After a brief discussion of some notions concerning O-opetopicsets, we give the the de�nition of n-categories, and more generally, n-coherentO-algebras. We skim over some technical details which can be found in ourpaper [5].5.1 Typed OperadsTo describe `many-sorted' or `typed' algebraic structures using operads, weneed to generalize the concept of operad a bit. For any set S of `types', thereis a notion of `S-operad'. The basic idea is that for any x1; : : : ; x`; x0 2 S,an S-operad O has a set O(x1; : : : ; x`; x0) of k-ary operations with inputs oftype x1; : : : ; x` and output of type x0. As in an ordinary untyped operad, wecan visualize such an operation as a tree, but now we label the edges of thetree by types. For example, an operation f 2 O(x1; : : : ; x4; x0) is drawn asfollows: 34
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More precisely:De�nition 1. For any set S, an `S-operad' O consists of1. for any x1; : : : ; x`; x0 2 S, a set O(x1; : : : ; x`; x0)2. for any f 2 O(x1; : : : ; x`; x0) and any g1 2 O(x11; : : : ; x1i1 ; x1); : : : ; g` 2O(x`1; : : : ; x`i`; x`), an elementf � (g1; : : : ; g`) 2 O(x11; : : : ; x1i1 ; : : : : : : ; x`1; : : : ; x`i`; x0)3. for any x 2 S, an element 1x 2 O(x; x)4. for any permutation � 2 S`, a map�:O(x1; : : : ; x`; x0) ! O(x�(1); : : : ; x�(`); x0)f 7! f�such that:(a) whenever both sides make sense,f � (g1 � (h11; : : : ; h1i1); : : : ; g` � (h`1; : : : ; h`i`)) =(f � (g1; : : : g`)) � (h11; : : : ; h1i1 ; : : : : : : ; h`1; : : : ; h`i`)(b) for any f 2 O(x1; : : : ; x`; x0),f = 1x0 � f = f � (1x1 ; : : : ; 1x`)(c) for any f 2 O(x1; : : : ; x`; x0) and �; �0 2 S`,f(��0) = (f�)�035



(d) for any f 2 O(x1; : : : ; x`; x0), � 2 S`, and g1 2 O(x11; : : : ; x1i1 ; x1);: : : ; g` 2 O(x`1; : : : ; x`i`; x`),(f�) � (g�(1); : : : ; g�(`)) = (f � (g1; : : : ; g`)) �(�);where �:S` ! Si1+���+i` is the obvious homomorphism.(e) for any f 2 O(x1; : : : ; x`; x0), g1 2 O(x11; : : : ; x1i1 ; x1); : : : ;g` 2 O(xk1; : : : ; x`i`; x`), and �1 2 Si1; : : : ; �` 2 Si`,(f � (g1�1; : : : ; g`�`)) = (f � (g1; : : : ; g`)) �0(�1; : : : ; �`);where �0:Si1 � � � � � Si` ! Si1+���+i` is the obvious homomorphism.There is an obvious notion of a morphism from an S-operad O to an S-operad O0: a function mapping each set O(x1; : : : ; x`; x0) to the correspondingset O0(x1; : : : ; x`; x0), preserving composition, identities, and the symmetricgroup actions. An important example is an `algebra' of an S-operad:De�nition 2. For any S-operad O, an `O-algebra' A consists of:1. for any x 2 S, a set A(x).2. for any f 2 O(x1; : : : ; x`; x0), a function�(f):A(x1)� � � � � A(x`)! A(x0)such that:(a) whenever both sides make sense,�(f � (g1; : : : ; g`)) = �(f)(�(g1)� � � � � �(g`))(b) for any x 2 C, �(1x) acts as the identity on A(x)(c) for any f 2 O(x1; : : : ; x`; x0) and � 2 S`,�(f�) = �(f)�;where � 2 S` acts on the function �(f) on the right by permuting itsarguments. 36



In what follows, by `operad' we will mean an S-operad for some set Sof types. We can think of such an operad as a simple sort of theory, andits algebras as models of this theory. Thus we can study operads either`syntactically' or `semantically'. To describe an operad syntactically, we list:1. the set S of types,2. the sets O(x1; : : : ; x`; x0) of operations,3. the set of all reduction laws saying that some composite of operations(possibly with arguments permuted) equals some other operation.This is like a presentation in terms of generators and relations, with thereduction laws playing the role of relations. On the other hand, to describean operad semantically, we describe its algebras.For example, the simplest operad is the `initial untyped operad' I. Syn-tactically, this is the S-operad with:1. only one type: S = fxg,2. only one operation, the identity operation 1 2 O(x; x),3. all possible reduction laws.Semantically, I is the operad whose algebras are just sets.Another important operad is the `terminal untyped operad' T . This isthe S-operad with1. only one type: S = fxg,2. exactly one operation of each arity,3. all possible reduction laws.The algebras of T are commutative monoids, with the `-ary operation being`-fold multiplication, or the unit element when ` = 0, since nullary operationscorrespond to `constants'.
37



5.2 OpetopesThe following fact is the key to de�ning the opetopes. Let O be an S-operad,and let elt(O) be the set of all operations of O.Theorem 3. There is an elt(O)-operad O+ whose algebras are S-operadsover O, i.e., S-operads equipped with a homomorphism to O.We call O+ the `slice operad' of O. One can describe O+ syntactically asfollows:1. The types of O+ are the operations of O.2. The operations of O+ are the reduction laws of O.3. The reduction laws of O+ are the ways of combining reduction laws ofO to give other reduction laws.The `level-shifting' going on here as we pass from O to O+ is a way ofsystematizing the process of categori�cation.A nice example of the slice operad construction is the operad I+. Thealgebras of this operad turn out to be monoids. Another nice example is theoperad T+, whose algebras are untyped operads! It is also very interestingto iterate the slice operad construction. For example, the algebras of I++work out to be exactly untyped planar operads. More generally, let On+ bethe operad formed by applying the slice operad construction n times to theoperad O, or just O itself if n = 0.De�nition 4. An n-dimensional `O-opetope' is a type of On+, or equiva-lently, if n � 1, an operation of O(n�1)+.In particular, we de�ne an n-dimensional `opetope' to be an n-dimensionalO-opetope forO = I, the initial untyped operad. The 0-dimensional opetopesare thus the types of I, but there is only one type, so there is only one0-dimensional opetope, which we visualize as a point. The 1-dimensionalopetopes are the types of I+, or in other words, the operations of I. I hasonly one operation, the identity, so there is only one 1-dimensional opetope,which we visualize as an interval. The 2-dimensional opetopes are the typesof I++, or in other words, the operations of I+, which are the reduction38



laws of I. These reduction laws all state that the identity operation com-posed with itself ` times equals itself. This leads to 2-dimensional opetopeswith ` infaces and one outface. Actually there are `! di�erent 2-dimensionalopetopes with ` infaces, since the permutation group S` acts freely on theset of `-ary operations of I+. We could keep track of these by labelling theinfaces with some permutation of ` distinct symbols. A more systematicapproach is to use `metatree notation'. In this notation, any n-dimensionalO-opetope is represented as a list of n labelled trees.To see how this works, �rst consider the 2-dimensional O-opetopes, whichare the operations of O+. An operation of O+ can be speci�ed as in the �gurebelow.
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The �rst tree is an arbitrary `O-tree'. This is a combed tree (i.e., planarexcept for a permutation of inputs at the top) with nodes labelled by opera-tions of O. We require that a node labelled by a `-ary operation have ` edgescoming into it from above. Moreover, we require that it be possible to labelevery edge with an element of S in such a way that for any node labelled byan operation in O(x1; : : : ; x`; x0), the edges coming into that node from aboveare labelled by the types x1; : : : ; x` in that order, while the edge coming outof it from below is labelled by the type x0. We also label each node of this�rst tree with a distinct symbol A;B;C; etc.. The second tree is planar andhas only one node, with n edges coming into that node from above, labelled39



by the same symbols A;B;C; : : : in any order. These specify the order of theinput types of the operation of O+ we are describing.More generally, for any n > 1 one can specify any n-dimensional O-opetope by means of an `n-dimensional metatree'. Here is an example forn = 3:
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An n-dimensional metatree is a list of n labelled trees, the last of whichis a planar tree with only one node, while the rest are combed trees. The�rst tree is an arbitrary O-tree. For 1 � i < n, every node of the ith tree islabelled with a distinct symbol, and the same symbols also label all the edgesat the very top of the (i+ 1)st tree, each symbol labelling exactly one edge.In addition, each edge of the (i + 1)st tree must correspond to a subtree ofthe ith tree in such a way that:1. The edge at the very top of the (i+1)st tree labelled by a given symbolcorresponds to the subtree of the ith tree whose one and only node islabelled by the same symbol.2. The edge of the (i+1)st tree coming out of a given note from below cor-responds to the subtree that is the union of the subtrees correspondingto the edges coming into that node from above.3. The edge at the very bottom of the (i + 1)st tree corresponds to thewhole ith tree.Special care must be taken when the node of the last tree has no edgescoming into it from above. This can only occur when all the previous trees40



are empty. This sort of metatree describes a nullary operation of O(n�1)+whose output type is an identity operation 1x of O(n�2)+. To specify whichidentity operation, we need to label the edge coming out of the node of thelast tree from below with the operation 1x.6 n-Coherent operad algebrasAn `n-coherent O-algebra' is an n times categori�ed analog of an algebra ofthe operad O. In particular, when O = I, an n-coherent O-algebra is just ann-category, which is the n times categori�ed analog of a set. An n-coherentO-algebra is an `O-opetopic set' with certain properties. We omit the precisede�nition of O-opetopic sets here. For our purposes, it should su�ce toknow that an O-opetopic set is very much like a simplicial set, but with O-opetopes replacing simplices, and no `degeneracy maps', only `face maps'. AnO-opetopic set thus consists of (possibly empty) collections of `cells' shapedlike all the di�erent O-opetopes, such that any inface or outface of a cell isagain a cell.If j � 1, we may schematically represent a j-dimensional cell x in anO-opetopic set as follows:(a1; : : : ; a`) a0-xHere a1; : : : ; a` are the infaces of x and a0 is the outface of x; all these arecells of one lower dimension. A con�guration just like this, satisfying allthe incidence relations satis�ed by the boundary of a cell, but with x itselfmissing: (a1; : : : ; a`) a0-?is called a `frame'. A `niche' is like a frame with the outface missing:(a1; : : : ; a`) ?-?Similarly, a `punctured niche' is like a frame with the outface and one infacemissing: (a1; : : : ; ai�1; ?; ai+1; : : : ; a`) ?-?41



If one of these con�gurations (frame, niche, or punctured niche) can be ex-tended to an actual cell, the cell is called an `occupant' of the con�guration.Occupants of the same frame are called `frame-competitors', while occupantsof the same niche are called `niche-competitors'.Next we need the concept of a `universal occupant' of a niche. Sincethe de�nition of this concept looks rather formidable at �rst, we �rst givea heuristic explanation. As already noted, the main use of universality tode�ne composites:De�nition 5. Given a universal occupant u of a j-dimensional niche:(a1; : : : ; ak) b-uwe call b a `composite' of (a1; : : : ; ak).To understand universality more deeply, one must understand the roleplayed by cells of di�erent dimensions. In our framework an n-category usu-ally has cells of arbitrarily high dimension, just like a Kan complex. For j � nthe j-dimensional cells play the role of j-morphisms, while for j > n theyplay the role of `equations', `equations between equations', and so on. Thede�nition of universality depends on n in a way that has the following e�ects.For j � n there may be many universal occupants of a given j-dimensionalniche, which is why we speak of `a' composite rather than `the' composite.There is at most one occupant of any given (n+1)-dimensional niche, whichis automatically universal. Thus composites of n-cells are unique, and wemay think of the universal occupant of an (n + 1)-dimensional niche as anequation saying that the composite of the infaces equals the outface. Forj > n+1 there is exactly one occupant of each j-dimensional frame, indicat-ing that the composite of the equations corresponding to the infaces equalsthe equation corresponding to the outface.The de�nition of universality essentially says that a j-dimensional niche-occupant is universal if all of its niche-competitors factor through it uniquely,up to equivalence. For j � n+ 1 this amounts to saying that each niche hasa unique occupant, while for j = n it means that each niche has an occu-pant through which all of its niche-competitors factor uniquely. Technically,the de�nition of universality says that composition with a universal niche-occupant set up a `balanced punctured niche' of one higher dimension. One42



should think of a balanced punctured niche as de�ning an equivalence be-tween occupants of its outface and occupants of its missing outface.Now let us give the actual de�nition:De�nition 6. A j-dimensional niche-occupant:(c1; : : : ; ck) d-uis said to be `universal' if and only if j > n and u is the only occupant of itsniche, or j � n and for any frame-competitor d0 of d, the (j+1)-dimensionalpunctured niche ((c1; : : : ; ck) u�!d; d ?�!d0)
(c1; : : : ; ck) ?�!d0??and its mirror-image version(d ?�!d0; (c1; : : : ; ck) u�!d)
(c1; : : : ; ck) ?�!d0??are balanced.Of course, now we need the de�nition of `balanced'. The reader will notethat while the de�nitions of `universal' and `balanced' call upon each other,there is no bad circularity.De�nition 7. An m-dimensional punctured niche:(a1; : : : ; ai�1; ?; ai+1; : : : ; ak) ?-?is said to be `balanced' if and only if m > n+ 1 or:43



1. any extension(a1; : : : ; ai�1; ?; ai+1; : : : ; ak) b-?extends further to:(a1; : : : ; ai�1; ai; ai+1; : : : ; ak) b-uwith u universal in its niche, and2. for any occupant(a1; : : : ; ai�1; ai; ai+1; : : : ; ak) b-uuniversal in its niche, and frame-competitor a0i of ai, the (m + 1)-dimensional punctured niche(a0i ?�!ai; (a1; : : : ; ai�1; ai; ai+1; : : : ; ak) u�!b)
(a1; : : : ; ai�1; a0i; ai+1; : : : ; ak) ?�!b??and its mirror-image version((a1; : : : ; ai�1; ai; ai+1; : : : ; ak) u�!b; a0i ?�!ai)
(a1; : : : ; ai�1; a0i; ai+1; : : : ; ak) ?�!b??are balanced. 44



Note that the �rst numbered condition in the de�nition of `balanced' de�-nition generalizes the concept of an essentially surjective functor, while thesecond generalizes the concept of a fully faithful functor.Finally, we de�ne n-coherent O-algebras and various special cases:De�nition 8. An `n-coherent O-algebra' is an O-opetopic set such that 1)every niche has a universal occupant, and 2) composites of universal cells areuniversal.De�nition 9. An `n-category' is an n-coherent I-algebra.De�nition 10. A `monoidal n-category' is an n-coherent I+-algebra.De�nition 11. A `stable n-category' is an n-coherent T -algebra.One can show that any S-operad morphism f :O! O0 allows one to turnan n-coherent O0-algebra A into an n-coherent O-algebra f �A. Thus anystable n-category has an underlying monoidal n-category, and any monoidaln-category has an underlying n-category.Given an n-category with 0-cells x and y, there is an (n � 1)-categoryhom(x; y). One can also construct a stable (n + 1)-category of all (small)n-categories, though the details of this construction have not yet been pub-lished. Using these facts, one can give rigorous formulations of many pro-cesses going between neighboring entries in Table 2: decategori�cation, dis-crete categori�cation, delooping, looping, forgetting monoidal structure, sta-bilization, and the generalized center construction. However, it remains tomake precise and prove the stabilization hypothesis in this framework. Basi-cally, one wishes to show that for k � n+2, the (n+1)-category of all stablen-categories is equivalent to the full sub-(n + 1)-category of all n-categorieshaving only one 0-cell and only one j-cell in each frame for 0 < j < k.7 ConclusionsIn this paper we have discussed iterated categori�cations and stabilizationsof some of the very simplest algebraic structures: the natural numbers andthe integers. However, one can also categorify many other concepts: vectorspaces [40] and Hilbert spaces [2], group algebras [21], algebras of formal45



power series [5, 37] and other Hopf algebras [20, 22], sheaves [15, 17], and soon. Interesting results about these familiar structures typically have interest-ing categori�ed analogs. It is clear, therefore, that the set-based mathematicswe know and love is just the tip of an immense iceberg of n-categorical, andultimately !-categorical, mathematics.The prospect of exploring this huge body of new mathematics is bothexhilarating and daunting. The basic philosophy is simple: never mistakeequivalence for equality. The technical details, however, are not so simple| at least not yet. To proceed e�ciently it is crucial that we gain a clearerunderstanding of the foundations before rushing ahead with complicated con-structions.Many basic questions remain open. For example, how signi�cant is thefact that operads play a role both in the theory of Ek spaces and the de�nitionof n-categories described above? Operads are very versatile, so this might at�rst seem to be a coincidence. However, there are deep relationships betweenoperads, categori�cation, and the theory of algebraic structures satisfyinglaws `up to coherent homotopy' [60]. In particular, Trimble [64] has pointedout an interesting connection. For many purposes it is best to think of Ekspaces as algebras, not of the little k-cubes operad, but of a closely relatedoperad F (k) discovered by Getzler and Jones [33]. The space F (k)` is theFulton-MacPherson compacti�cation of the con�guration space of ` points inRk modulo translations and dilations [31]. In particular, F (1)` is just K`�S`,where K` is the (`� 2)-dimensional associahedron.Since homotopy n-types of E1 spaces correspond to monoidal n-groupoids,while n-coherent I+-algebras are monoidal n-categories, one might expect arelationship between F (1) and the I+-opetopes. The associahedron K` hasa cell decomposition having cells in one-to-one correspondence with planartrees with ` leaves for which all nodes have at least one edge coming in fromabove. It follows that the cells in the corresponding decomposition of F (1)correspond to a certain class of 2-dimensional I+-opetopes, or equivalently,3-dimensional opetopes. Is there a deeper relation between opetopes and theassociahedron? This might shed new light on the origin of coherence laws.AcknowledgmentsWe thank Michael Batanin, Dan Christensen, Mark Hovey, Andr�e Joyal,Carlos Simpson, Charles Rezk, Ross Street, and Todd Trimble for helpful46
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