Virtual Wire for Managing Virtual Dynamic
Backbone in Wireless Ad Hoc Networks

Bo Ryu* Jason Erickson'

Jim Smallcomb Son Dao®

*Teledesic, Bellevue, WA
f Raytheon Systems Company, El Segundo, CA
§ HRL Laboratories, Malibu, CA

Abstract

We present a novel distributed algorithm that employs the
concept of virtual wire for the purpose of achieving reliable
and scalable routing in wireless mobile ad hoc networks.
Virtual wire allows for a virtual backbone to be dynami-
cally maintained such that it is composed of reliable, rela-
tively stable, and high-bandwidth links even under an envi-
ronment with highly fluctuating wireless channels. The re-
sulting structure, called Virtual Dynamic Backbone (VDB)
which resembles a cellular-like infrastructure and is similar
to spine [3] (but different in its construction and function-
ality), serves as a common backbone for unicast and mul-
ticast routing. This cellular-like structure, combined with
virtual wire and efficient link quality estimation algorithm,
yields a number of attractive properties such as: (i) simpli-
fied unicast and multicast routing, (ii) fast recovery under
link quality degradation, (iii) bandwidth-efficient flooding,
and (iv) easier QoS management. Most importantly, we
achieve all these advantages with a small overhead, making
this algorithm highly applicable for bandwidth-scarce wire-
less environment.

1 Introduction

Highly dynamic wireless ad hoc networks refer to those in
which link quality frequently fluctuates due to continuous
node mobility and/or jamming. It is a challenging task to
develop routing protocols aimed at such networks that are
reliable and scalable with small overhead. Recently, inter-
est in developing such ad hoc routing protocols from the
networking research community has been growing consider-
ably, yielding various proposals [3, 4, 5, 6, 7, 8, 9, 10, 11]
both within and outside the Mobile Ad hoc NETworking
(MANET) working group of the Internet Engineering Task
Force (IETF). In general, each of these algorithms is de-
signed to address some, but not all, of the following require-
ments:

e unicast routing

e multicast routing

QoS routing

low overhead

e responsiveness (under frequent topology changes)

reliability (such as link quality-based routing)
e scalability

In this work, we explore a potential solution to achieve
all of the above requirements by introducing the concept
of wirtual wire, and incorporating it into Virtual Dynamic
Backbone (VDB). A VDB, which is equivalent to ”Spine”
[2, 3, 1] in terms of its structure (but different in its cre-
ation and maintenance), is a small set of connected mobile
nodes such that when formed, each node is either part of|
or one-hop away from the VDB. For example, in Fig. 1, the
set {3,4,7,8,11,12,13,17} comprises a VDB. The advantages

Figure 1: An example of virtual dynamic backbone (VDB).

provided by VDB include:

1. Bandwidth used for flooding (or global broadcast) is
minimized;

2. Multicast routing is simplified since the VDB serves as
a multicast backbone;

3. QoS routing can be simplified since a VDB is composed
of relatively stable nodes and links.

Virtual Wire is defined as a virtual link made up of a
stream of very small messages, namely Virtual Wire Mes-
sages (VWMs), generated and locally broadcast by each and
every node. At this point, these VWMs just look like bea-
con messages used in many ad hoc routing protocols. But
the key novelty is that VDB nodes further forward these
VWNMs, making them multi-hop broadcast messages. Du-
plicates are detected and dropped via sequence number and

[]
0
I 4
2 -3
% ', e
: Pt
@--=-—-[ag========[=],
'd v B
> @ o D
S o7 v
174 " of
:I y4
U

Figure 2: An illustration of Virtual Wire. Each and every
node generates virtual wire messages (VWMs) at the same
rate, say r. Two VDB nodes (nodes 4 and 5) forward re-
ceived VWDMs to their neighbors as local broadcast. This
makes VDB nodes transmit VWMSs at higher rate (than r)
which generally depends on the number of neighbors and
the maximum distance each VWM can travel over VDB. In
this example, nodes 4 and 5 transmit VWDMs at the rate
of 8r. Assuming the size of a VWM being 20 bytes and
r = 0.1 VWM/sec, the bandwidth overhead per each VDB
node (4 and 5 in this example) is only 128 bits/sec. Dupli-
cate VWMs are detected using sequence number checking
and dropped so that forwarding is done only once for each
VWM.

source address so that forwarding is done only once for each
VWM. Non-VDB nodes do not engage in forwarding. Fig-
ure 2 illustrates this novel concept. At first, virtual wire ap-
pears unacceptably wasteful for bandwidth-scarce environ-
ment such as wireless ad hoc networks since it is broadcast
intensive. However, note that VDB nodes aggregate VWMs
generated/forwarded by its neighbors, resulting in transmit-
ting VWMs at a much higher rate. This allows each node
to generate VWMs at a low rate (e.g., one VWM every 10
sec), substantially reducing the overhead caused by VWMs.
In addition, we limit the distance (hops) VWMs travel over
the VDB (say 3-5 hops) in its design. Consequently, the
resulting overhead is considerably lower than it first seems.
Virtual wire brings several key benefits:

1. it significantly simplifies routing since there is no need
to exchange routing tables

2. it provides a means to measure and maintain the most
up-to-date link quality not only between adjacent nodes
but also between those that are more than a single hop
away;

3. it is used to create and maintain a stable VDB, i.e.,
no other messages are needed for managing VDB;

4. it can be easily extended to support asymmetric rout-
ing as well; and

5. it makes the VDB look like a cellular network, making
node mobility much more manageable.

The last benefit follows from the fact that each node continu-
ously monitors VWMs transmitted by each of its neighbors,
which permits early detection of link quality degradation
and allows the node to take appropriate actions before the
link actually breaks down. In Fig. 2, suppose a non-VDB

node 6 moves away from its VDB attachment point (node
5) and towards another VDB node 4. As it gets closer to
node 4, it will hear VWMs transmitted by node 4 better
than those by node 5. This will allow node 6 to choose node
4 as the new VDB attachment point even if the link quality
between node 6 and node 5 remains marginal. We call this
virtual handoff, following the same notion of handoff in a
cellular network.

This paper is organized as follows. Section 2 defines some
notations used throughout this paper. Section 7?7 describes
three key components of the distributed algorithm that cre-
ates and manages a VDB using VWMs: backbone selection
process, backbone connection process, and backbone main-
tenance process. Section 4 describes an overview of sup-
porting unicast and multicast routing over VDB. Section 5
discusses various issues related to the algorithm such as over-
head, routing optimality and scalability, QoS support, and
support for asymmetric routing. Finally, Section 6 summa-
rizes the work.

2 Notations and Basic Rules

e At any time, each node is in one of the three colors:
black (B) when it becomes a part of VDB (VDB node),
green (G) when it has at least one black node as its
neighbor with acceptable link quality, and white (W)
when it has no black node as its neighbor. Only black
nodes forward packets.

e L@, represents the link quality from node a to node
b observed at b (i.e., outbound link quality from a to
b at a, or inbound link quality from a to b at b).

e §(v) denotes the number of neighbors of node v with
acceptable inbound-only or both inbound and outbound
link qualities, referred to as degree. When v is white,
only inbound link quality with its neighbors is taken
into account for calculating d(v). When green, depend-
ing on the color of its neighbors, either inbound-only
(for white and green neighbors) or both inbound and
outbound (for black neighbors) link qualities must be
acceptable to be counted for d(v). When black, both
link qualities are taken into account except for white
neighbors.

e Fach node generates Virtual Wire Messages (VWMs)
at independent and identically distributed random in-
tervals following truncated exponential distribution.
This permits unbiased sampling of link quality.

e A VWM contains the following fields:

— Source Node ID (S§): The address of the node
which originates this VWM.

— Forwarding Node ID (F): The address of the
VDB node by which this message is forwarded.

— VAP Node ID (V): The address of the black node
which the forwarding node requests to become or
remain as its VAP.

— Link Quality Node ID (N'): The address of the
node to which link quality feedback is provided
by the forwarding node.

— Link Quality Feedback (LQ): Link quality feed-
back for node N. If N/ = n and F = f, this field
is taken from L@, s of the node f’s NIT, inbound
link quality for neighbor n at f. Once this value

is received by node n, it becomes the outbound
link quality for its neighbor f.

— Hop Count (HC): The number of hops that this
message has been forwarded.

— Time-To-Live (I'TL): The maximum number of
hops that this message can be forwarded.

— Source Sequence Number: In combination with
the source node ID, this uniquely identifies a VWM
per source node.

— Transmitter Sequence Number: In combination
with the forwarding node ID, this uniquely iden-
tifies a VWM per forwarding node.

— Color (C): Color of the node transmitting this
message. (one of White, Green, or Black)

— Degree (§): Degree of the forwarding node

e Ni(v) denotes the one-hop neighbors of a node v.

e Let u € Ni(v). The node v maintains a table called
neighborhood information table (NIT) which contains
its one-hop neighbors (N1(v)), color of each neigh-
bor, d(u), inbound and outbound link qualities (LQ),
and the expected VWM (transmitter) sequence num-
ber from the corresponding neighbor.

For the purpose of illustration, Figure 3 shows an ex-
ample of node coloring and two-way link quality. The
node 3 will have the NIT as given in Table 1.

Figure 3: An example of node coloring and two-way link
quality notation.

| u (€ N1(3)) | Color | 0(u) | LQus | LQs. | Seq. Nr |

1 G 2 15 10 31
2 G 3 14 12 327
4 G 3 15 15 15
5 G 3 10 13 88

Table 1: Neighborhood information table (NIT) of node 3
corresponding to Fig. 3. A 16-level link quality ranging from
0 to 15 is assumed.

e FEach node (say u), black or green, has at least one
black neighbor v via which u is attached to VDB (ex-
cept the case where VDB consists of a single node).
We refer to this black node v as wvirtual attachment
point (VAP) of u, or v = V(u).! As will be discussed
in Section 4.1, VAPs play the role of next-hop routers
in an IP network; each node choose the VAP that gives
the ”"best” route to the destination where ”best” de-
pends on routing metrics used. As will be discussed in
Section 4.1, each node keeps a list of primary gateways
as its VAP list (VAP,;s).

1y is also called a dominator of u [3].

e Once a node receives a VWM, it computes its inbound
link quality for each of its neighbors [12]. Once a node
turns green or black, it maintains outbound link qual-
ity with each of its VAPs based on the LQ update
provided by its respective VAP.

e Each black node determines whether it needs to remain
as a VAP (black) serving its neighbors by maintain-
ing VAP timer Ty ap. Whenever a black node detects
its address in the VAP Node ID field of the received
VWM, it resets Ty ap to VAP_TIMEOUT. If no request
is received until Ty 4 p expires, the black node changes
its color to green (after choosing its own VAP from its
NIT).

3 Management of Virtual Dynamic Backbone

Because VDB nodes heavily engage in forwarding VWMs,
it is desirable to keep the size of VDB as small as possible
to conserve bandwidth. In the context of graph theory, this
is equivalent to finding a Minimum Connected Dominating
Set (MCDS) [2]. Below, we propose a distributed algorithm
that creates and maintains a VDB that does not require
global (or partially global) exchange of local topology infor-
mation. This algorithm consists of three components: Back-
bone Selection Process yielding a dominating set, Backbone
Connection Process connecting disjoint VDBs, and Back-
bone Maintenance Process dealing with node mobility and
link quality fluctuation. Simulation results, which will be
reported elsewhere, show that this algorithm yields a VDB
close to an MCDS in its size.

3.1 Backbone Selection Process (BSP)

In a nutshell, BSP chooses nodes with the maximum degree
in their neighborhood as VDB nodes. This process is re-
peatedly performed at each node until the colors of all the
neighbors in its NIT and itself are either green or black.
This process can be realized as follows.

When a node turns on its power, it starts building its
NIT based on the received VWMs from its neighbors. Each
time it receives a VWM, it updates its NIT and resets Tssp
if a change in NIT occurs (in terms of color and/or degree).
The timer Trsp is used to trigger BSP. As soon as its Tgsp
expires, it node decides whether it is eligible to be part of
VDB by comparing its degree with that of its one-hop neigh-
bors. If its degree is highest, it changes its color to black
and starts forwarding VWMs. Minimum ID is used to break
tie between neighbors with the highest § of equal value.

If a white node w detects a black neighbor b (either
a new neighbor or color change of an existing neighbor)
with (LQpw, LQws) > LQ_THRESHOLD before Tpsp expires,
w changes its color to green and starts sending its VWMs
with its VAP Node ID set to b, i.e., V = b since b = V(w).
Once it changes to green, w checks if there is at least one
white neighbor. If so, it resets Trsp since it may need to
support that white node by becoming black. After Tzsp
expires, if it still has at least one white neighbor and its
degree is highest among the remaining neighbors excluding
black neighbor(s), it changes to black. We illustrate the BSP
in Figure 4.

The BSP algorithm above yields the following crucial
property: for any black node, there exists another black node
to which the distance is at most three hops. In other words,
after BSP is complete, a black node can reach another black
node with at most three hops (i.e. two green nodes be-
tween them). Stated differently, a partially formed VDB can

Figure 4: Illustration of Backbone Selection Process. (a)
every node is white; (b) after neighborhood discovery and
backbone selection processes, nodes 4, 8, 13, and 17 be-
come black in the first round. Then, after the second round,
nodes 3 and 7 become black to support nodes 2 and 11,
respectively.

be connected to a nearby VDB if one or two green nodes
between them turn black. For example, in Fig. 4, a par-
tially formed VDB {3,4} can reach another partially formed
VDB {13} via node 12, and reach VDB {7,8,17} via nodes
11 and 12. This property can be readily proved by reject-
ing the conclusion (no black node exists within more than
three hops from a black node) and finding that an assump-
tion is violated (a node cannot be green without a black
neighbor). This property is essential for connecting disjoint
VDBs, which is described in the next section.

3.2 Backbone Connection Process (BCP)

The set of black nodes resulting from the BSP may not
be connected. For example, there may be disjoint groups
of backbone nodes where only nodes inside the group are
connected. The BCP is employed to connect these disjoint
VDBs. As mentioned before, it can be easily proven that the
BSP will guarantee that at most two green nodes will exist
between two nearby disjoint backbone nodes. This means
that each green node is responsible for detecting whether it
needs to become black to connect disjoint groups of back-
bone nodes.

The main idea behind the BCP is that if VDB were con-
nected, a green node g will hear two identical VWMs (in
terms of source ID and source sequence number) from each
of its neighbors: direct VWM, and forwarded VWM via its
black neighbors. This is from the property that VWMs are
forwarded by VDB nodes. Once a node becomes green, it
begins to closely monitor all the VWMs originating from all
of its one-hop neighbors. If g detects that more than a fixed
number of duplicate VWMs have not been received for a
neighbor n via one of its black neighbor b, g is eligible to
become black by connecting n and b.

Note that each VWM carries the source node sequence
number field. A green node maintains a sequence number ta-
ble (SNT) whose entry consists of two fields: neighbor node
ID, and the source sequence numbers of VWMs for which
no duplicates have been received (yet) from this neighbor.
When a green node receives a VWM, it first checks if the
source sequence number of this VWM exists in its corre-
sponding SNT entry. If so, indicating that it is a dupli-
cate, the green node discards from the SNT all the sequence
numbers that are equal to or smaller than the current one.
Otherwise, indicating that it is either a new one or it has
been previously discarded, the green node adds this sequence
number to the corresponding SNT entry. If it accumulates
more than the fixed number of sequence numbers (say 5), the

green node is eligible to be part of the VDB by connecting
this neighbor and the black neighbor it is monitoring.

Figure 5 illustrates BCP. First, node 12 detects that it
is not receiving VWMs generated by node 4 (13) via 13 (4),
and thus becomes black. In the same way, node 11 detects
that nodes 12 and 7 are disconnected.

Figure 5: Illustration of Backbone Connection Process.
Node 11 (or 12 whichever detects first) asks node 12 to be-
come black to connect nodes 7 and 12.

3.3 Backbone Maintenance Process (BMP)

As nodes freely move, join (power-on), or leave (power-off)
the network, it is very likely that the size of VDB becomes
sub-optimal (i.e., too many black nodes compared to the
entire network size, leading to high redundancy and unnec-
essary bandwidth consumption due to VWM forwarding).
For example, some black nodes may not be qualified to be
part of the VDB any more, or some green nodes are more
qualified to become black than their VAPs. Since it is crucial
to keep the size of VDB very small to reduce the overhead of
VWM forwarding, the BMP must enable unnecessary black
nodes to be detached from VDB, and qualified green nodes
to join VDB. This will be achieved by ensuring that VDB
consists of nodes with high degree. Another goal of BMP
is to prevent dramatic changes in the VDB structure. If a
color or degree change of a node triggers too many route or
color changes of nearby nodes, it will undermine benefits of
having VDB since packets in transit may get dropped or it
may lead to longer routes or packet drops.

We first consider conditions that keep the size of VDB
small:

e If a green node’s VAP is deleted from its NIT, it is also
removed from the VAP;;;. When VAP,;,; becomes
empty, the green node chooses a black neighbor (or
green if none) with the highest degree as its new VAP,
subject to LQ constraint.

e If no neighbors depend on a black node b as their VAP,
the VAP timer Tv ap will expire. Then, b turns green
after choosing one of its black (or green if none) neigh-
bors with highest degree and acceptable two-way LQ
as its VAP.

e If a green node g detects either a new green or black
neighbor who has higher degree than its current VAP(s),
g asks this neighbor to become its VAP subject to two-
way LQ constraint.

Second, in order to keep the structure of VDB stable un-
der high node mobility and link quality fluctuation, we intro-
duce the concept of “virtual handoff”. The virtual handoff
is considered between a green node and each of its VAPs
only.

When a green node n detects that the inbound link qual-
ity for its VAP drops below LQ_THRESHOLD, n deletes this
VAP from its VAP,;5;. If this was the last VAP and there
is another black neighbor with increasing LQ and above the
threshold, choose this black neighbor as its new VAP. If
there is no other black neighbor, choose a green neighbor
with the highest degree as its new VAP subject to inbound
link quality condition.

Finally, when two adjacent black nodes begin to lose its
link, the BCP will cure this soon-to-be broken link if green
nodes are available around them. In this way, a VDB al-
ways attempts to connect itself locally when disjoint VDBs
occur. Hence, the BCP algorithm is an important part of
maintaining a stable VDB.

4 Routing

4.1 Unicast Routing

Since VWMs carry source and forward node IDs, each node
can readily maintain a unicast routing table based on the
received VWMs forwarded by its black neighbors. Upon re-
ceiving a VWM, each node updates the corresponding rout-
ing entry: destination, primary gateway, secondary gateway,
routing metric, and stale timer (Ts;). The source of the re-
ceived VWM becomes the destination, the black node which
has forwarded this VWM with the (second) best routing
metric becomes the primary (secondary) gateway, and T
represents the remaining time after which this route becomes
stale. Note that routes for one-hop neighbors do not have
primary gateways since they can be reached directly. Cur-
rently, Hop Count is the only cost metric for routing subject
to link quality between gateway and sender. In the future,
other metrics such as delay or bandwidth will be taken into
account when determining routes with QoS support.

An example of a routing table at node 17 in Figure 6
is given in Table 2. It is assumed that the TTL value for

Figure 6: State Transition Diagram.

VWMs is 3 so that VWMSs travel no more than three hops.

Suppose node n has received a VWM with (S, F, HC)
= (s, f,h). The following basic rules are then applied for
routing table maintenance:

e If there is no route for destination s, a primary route
is created for s with f as the primary gateway and dis-
tance h. The corresponding secondary route is empty.

e If a primary route for s exists, but not the secondary
route, and f is different from the primary gateway, a
secondary route is created for s.

e If both primary and secondary routes for s exist, and
the received VWM contains a new gateway f with

Destination (D) Primary Secondary

GIHC|T4 |G HC [Ty
18 - 1 15 | 7 2 21
19 - 1 23 | - - -
20 - 1 25 | - - -
7 - 1 28 | 8 2 29
8 - 1 22 |7 2 27
11 7 2 9 8 3 15
12 7 3 18 | 8 4 10
9 8 2 13 | 7 3 22
10 8 2 22 | 7 3 25
6 8 2 26 | 7 3 22

Table 2: Example of a routing table at node 17 correspond-
ing to Fig. 6 for destinations with up to three hops away.

h better than the secondary but larger than primary
route, the secondary route is replaced with f and h.

e If both primary and secondary routes for s exist, and
the received VWM contains a new gateway f with h
better than the primary route, the primary route is
replaced with f and h, and the now-old primary route
replaces the secondary route, including the stale timer.

e If both primary and secondary routes for s exist, and
the received VWM does not contain a new gateway
but has better hop count, only the hop count of the
corresponding route is updated.

e For all route updates, corresponding stale timer T'sr
is set to ROUTE_STALE_TIMEOUT (except when the old
primary route becomes the secondary route).

e When a VAP is removed from the NIT, all the cor-
responding routes with this VAP as gateway (either
primary or secondary) are also removed. If the route
being removed is primary, then the corresponding sec-
ondary route becomes primary.

Since VWMs are TTL-limited, the above approach gives
routes to destinations which are likely to be located closely.
To address routing for the destinations whose VWMs are
not heard, each node maintains a small table called route
cache, separate from the routing table, which contains route
information (gateway and hop count) for destinations who
are not in the routing table (since destination is too far
away).

A Route Query Message (RQM) is used to find a route
to the destination when it is not in its routing table and no
route cache exists. This message is broadcast over VDB.
Any black node receiving an RQM keeps a record of (S,
F, D) for a fixed amount of time (D is the node ID of
the destination). If no corresponding Route Response Mes-
sage (RRM) is received during that time, this record is
thrown away. The first black node which has the destination
within its routing table returns then Route Response Mes-
sage (RRM). Another words, if an RQM is received with (S,
F) = (s, f), the corresponding RRM is generated with (D,
N) = (s, f). All the intermediate black nodes receiving an
RRM configures the route and stores in its Route Cache.

4.2 Multicast Routing

With VDB, multicast support is readily achieved since VDB
can be used as multicast backbone. Any multicast tree con-
structed is a subset of VDB. There are two components for

| Status [
V AP,, not set, and

V APjown configured
Only VAPj,un configured
Only V AP,, configured

Actions |
Forward if first MJM for G.
Otherwise, do not forward.
Do not forward
Forward if first MJM for G.
Otherwise, do not forward.
Do not forward.

Both VAP,, and
V APjoun configured

Table 3: MJM forwarding rules at CP.

multicast support over VDB: (i) group membership man-
agement, and (ii) routing.

In an IP network, local group management is done by In-
ternet Group Membership Protocol. We use a similar tech-
nique for our purpose. A multicast group is identified as a
unique multicast address. For each multicast group, a black
node maintains local group membership information based
on two special messages: group join (MJM) and leave mes-
sages (MLM).

We adopt the “broadcast-and-prune” approach of Dis-
tance Vector Multicast Routing Protocol (DVMRP) of In-
ternet to achieve multicast support over VDB. Each black
node maintains multicast routing table consisting of four
fields: group address, local members, upstream multicast
VAP (VAP,,), and downstream multicast VAP(V APoun)-
Note that the notion of “up” and “down” is with respect to
the node that generates the first MJM, regardless of whether
it is a source or receiver of the group. This implies that
there is only one VAP,, but may be multiple VAPj,uns for
a given group. However, our multicast routing algorithm is
designed such that any member can act as a source.

1. When a node wishes to join a group G, it generates
MJM with (group ID, connection point) = (G,CP)
where a connection point is chosen from VAP, 4;.

2. When a black node b receives an MJM for a group G
from its neighbor for which it serves as CP, b updates
its local membership table. Depending on the multi-
cast routing table status, b decides whether to forward
this message further as summarized in Table 3.

3. Any black node by receiving a forwarded MJM by a
neighbor black node b; updates its multicast routing
table described in Table 4.

| Status | Actions

VAP,, = b1 and forward
None of VAP,, and
V APjown configured Otherwise, VAPoun = b1 and

do not forward.

over VDB if no local members.

V APjpuwn = b1 and forward to
V AP,, if no local members.
Otherwise, VAPjoun = b1 and
do not forward.

Only V AP,, configured

Only V APjoun(s) present
Do not forward.

Add b; to VAP, list if new.

Both VAP,, and
V APjoun present

Add by to VAP, list
if new. Do not forward.

Table 4: MJM forwarding rules at other black nodes.

4. When a node n changes its VAP via which that it has
joined a group G, it must generate a new MJM to
the new VAP. The old VAP will remove this neighbor
when it is deleted from its NIT.

5. When a node n leaves a group G, it generates MLM to
its CP b via which it has joined G. Upon receiving this
message, b deletes n from its local membership table.
If n is the last local member for D and b is at the end
of the tree (i.e, only one multicast VAP is configured),
it prunes itself from the tree by forwarding the leave
message to that multicast VAP and delete it from the
multicast routing table. Otherwise (either there are
still local members or more than one multicast VAP
present), it does not forward the MLM.

6. If a black node b; receives a forwarded MLM from one
of its multicast VAPs, say bs, it removes by from its
multicast routing table. If b; has local members for G
or there are remaining multicast VAPs (either up or
down), the received MLM is not forwarded. Otherwise,
b1 forwards it to other remaining multicast VAPs.

7. With the information of local membership, upstream
gateway, and downstream gateway(s) maintained as
described above, a multicast routing is done by simply
forwarding multicast packets to appropriate multicast
VAPs.

We illustrate these rules in Figure 7. Suppose node 1
is the first member to join group G. The join message
MJM initiated by node 1 is broadcast over VDB, and all
the black nodes except node 3 configure their VAP,, ac-
cordingly [Fig. 7-(a)]. Now, node 6 joins G via node 7. Since
node 7 already has VAP,, = 5 configured for G, it sends
this join message only to node 5, which in turn forwards it
to its VAP,p, which is node 3 [Fig. 7-(b)]. Node 10 now
joins as the third member of the group. Node 9 forwards
this join message to its VAP,, = 7, which configures node 9
as its VAPjown. This time, node 7 does not need to forward
this join message further since it already did when its local
member (node 6) joined [Fig. 7-(c)]. Figure 7-(d) shows how
a multicast datagram is forwarded over VDB with node 1
as a source. Each intermediate node in the tree receiving
multicast packets from one direction forwards them to the
other direction. If there are multiple VAPjouns and mul-
ticast packets arrive via one of them, they are forwarded
to both VAP,, and all other VAP;,,ns. Nodes that have
only one multicast VAP configured (edges of the tree) do
not forward multicast datagrams.? When node 1 leaves G,
it sends the MLM to node 3 [Fig. 7-(d)]. Since node 1 is
the last local member and node 3 knows it is at the edge
of the tree, node 3 no longer needs to be part of the tree.
Hence, it forwards the leave message to its downstream VAP
(node 5) and deletes it from the table. Similar to node 3,
node 5 removes itself from the tree by forwarding the re-
ceived MLM to node 7 and delete 7 from the table. Node 7
unassigns node 5 as its upstream VAP, but does not forward
this leave message further since it has a local member. After
this step, the multicast tree for G consists of nodes 7 and
9 only. Finally, when nodes 6 and 10 leave the group, all
the multicast routing tables of nodes 7 and 9 become empty.
The multicast routing table for node 8 becomes empty after
timeout since it has not been part of the tree.

?Note that both nodes 6 and 7 can also transmit multicast data-
grams over the same tree.

N E lel el T]

(f)

Figure 7: An example of setting up and tearing down a
multicast tree over VDB (Gr: group address, Mbr: local
members, V,: upstream VAP, V;: downstream VAP).

5 lIssues

In this section, we sketch several key issues requiring further
study.

5.1 Overhead

The overhead resulting from the use of virtual wire can be
decomposed into two components: bandwidth consumption
and power consumption. We briefly analyze each overhead.

Suppose the size of VWM is 20 bytes (as implemented
in [12]) and each node generates VWMs at the rate of 1
per 10 sec. If a TTL value is chosen such that each black
node forwards VWNMs generated by about 100 to 300 nodes,
the bandwidth consumed by VWMs per each black node is
given by 1.6 ~ 4.8 kbps. This overhead appears acceptable
as long as this constitutes less than 5-10 % of the raw chan-
nel bandwidth, considering the benefits achieved by the use
of VWMs. The more important overhead concern is the case
in which mobility and link quality dynamics result in a clus-
ter of black nodes. If IV black nodes are adjacent to each
other, the bandwidth required for forwarding VWMs will be
proportional to V. In this case, there is a good chance that
VWNMs will take the most bandwidth available, leaving little
for actual data routing. We are looking at several techniques
that can prevent this from happening.

Another important issue concerning VWM overhead is
power consumption, especially for black nodes. Since each
black node needs to process and forward 10-30 VMWs per
second, power consumption is likely to be an important fac-
tor to be considered. But with the advance in low-power
DSP technology in recent years, this may be addressed via
power-efficient implementation of radios.

5.2 Routing Sub-Optimality, Redundancy, and Scalability

The algorithm presented in the earlier sections is fully dis-
tributed, i.e., no global, or even partially global information
is exchanged between nodes to construct and maintain a
VDB. We chose this approach over centralized (or partially
centralized) algorithms (such as link state routing) since the
exchange of global information requires some form of reli-
able delivery of topology/routing updates, which may not
be trivial in highly dynamic environment. By managing a
VDB based on local information and unreliable multi-hop
forwarding of VWMs, we avoid the use of reliable packet
delivery. The trade-off is that the size of VDB may be sub-
optimal, resulting in sub-optimal routing. We are currently
investigating the performance of the algorithm in terms of
the size of VDB constructed for a variety of topologies.

Secondly, algorithm also does not prevent having a loop
in the constructed VDB. Note, however, that this loop does
not pose a problem since each black node detects duplicate
VWDMs and drops them. In fact, a loop in the VDB gives
a certain degree of redundancy and better routes for some
nodes. For example, in Fig. 5 suppose nodes 5 and 6 are
adjacent and the BCP makes both of them black for con-
necting nodes 3 and 8, in addition to nodes 11 and 12. This
gives a good redundancy in case the link between nodes 7
and 11 break down. Furthermore, this redundant VDB link
gives a better route between nodes 3 and 8. Without the
VDB link between nodes 5 and 6, packets from node 3 to
node 8 must travel via nodes 4, 12, 11, and 7, resulting two
more hops than the path via nodes 5 and6.

Finally, the use of unreliable delivery adopted in our al-
gorithm better supports scalability in terms of the network

Spine

| VDB w/ Virtual Wire

Algorithm

An approximation to MCDS

An heuristic algorithm based on
local information only

LQ Granularity 2 (On/Off)

arbitrary (> 2)

Signaling

Requires reliable delivery of global
(or partially global) broadcast over spine | VWMs

Unreliable multi-hop broadcast of

Routing Optimality Yes

No

Routing

Routing over Spine for backup only

Always route over VDB
all the time (except direct neighbors)

Bandwidth Overhead || Low

Medium

Table 5: A comparison between VDB and Spine. (MCDS: Minimum Connected Dominating Set)

size. Since each node always has the most up-to-date infor-
mation on which nodes it can reach and the algorithm makes
a VDB recover locally, we expect this routing algorithm to
support a very large ad hoc network (on the order of 1000
nodes) even without using any hierarchy in routing. Sim-
ulation study will reveal this claim, which will be reported
elsewhere.

5.3 Asymmetric Routing

The algorithm presented here can be readily extended to
support asymmetric routing. The current algorithm as-
sumes a good bi-directional link between two nodes, which
may not be always the case. A simple extension of allowing
different VAPs for inbound and outbound links (direction-
sensitive VAPs) is expected to address link asymmetry. This
is under study, and the resulting algorithm will be reported
elsewhere.

5.4 QoS Support

Since a VDB consists of good links, QoS support is expected
to be manageable since all the routing is done over VDB.
Seamless QoS support when a change in VDB structure oc-
curs is currently under investigation

5.5 Comparison with " Spine”

Since our VDB is very close to ”Spine” [1] in its structure,
we make a comparison in Table 5 and delineate the major
differences.

6 Conclusion

In summary, the algorithm presented here combines virtual
wire into virtual dynamic backbone, yielding an ad hoc net-
work architecture which consists of mobile hosts and mobile
base stations connected via virtual links. We argue that this
architecture is suitable for highly dynamic wireless ad hoc
networks since it significantly simplifies routing and mobility
management even under frequently fluctuating link quality.
A fully distributed algorithm that creates and manages a
VDB is presented, and algorithms for unicast and multi-
cast routing over VDB are described. Finally, various is-
sues concerning the algorithm in terms of overhead, routing
sub-optimality, redundancy, scalability, QoS support, and
asymmetric routing have been raised.

We are currently undertaking extensive simulation for
evaluating its performance under various topology and node
mobility scenarios, the results of which will be reported else-
where.

Acknowledgement

We are grateful to Bharghavan Vaduvur for his comments
and helpful discussions on spine routing. This work was
conducted while the first author was with HRL Laboratories.

References

[1] V. Bharghavan, R. Sivakumar, and B. Das. Spine rout-
ing in ad hoc networks. submitted, 1998.

[2] B. Das and V. Bharghavan. Routing in ad-hoc networks
using minimum connected dominating sets. In Proc.
ICC’97, Montreal, Jun 1997.

[3] B. Das, R. Sivakumar, and V. Bharghavan. Rouing
in ad-hoc networks using a spine. In Proc. ICCCN’97,
1997.

[4] R. Dube, C. Rais, K.-Y. Wang, and S. Tripathi. Signal
stability-based adaptive routing (ssa) for ad hoc mobile
networks. IEEE Personal Comm. Mag., 4(1), Feb. 1997.

[6] Z. Haas and M. Pearlman. The zone routing protocol
(ZRP) for ad hoc networks. Internet Draft, Aug 1998.

[6] M. Jiang, J. Li, and Y.-C. Tay. Cluster based rout-
ing protocol (CBRP) functional specification. Internet
Draft, Aug 1998.

[7] D. Johnson, D. Maltz, and J. Broch. The dynamic
source routing protocol for mobile ad hoc networks. In-
ternet Draft, March 1998.

[8] Y.-B. Ko and N. Vaidya. Location-aided routing (LAR)
in mobile ad hoc networks. In Proc. MobiCom’98, Oct.
1998.

[9] G. Lauer. Packet-radio routing. In M. Streenstrup, edi-
tor, Routing in Communications, pages 351-396. Pren-
tice Hall, Englewood Cliffs, NJ, 1995.

[10] V. Park and M. Corson. Temporally-ordered routing
algorithm (TORA) version 1 functional specification.
Internet Draft, Aug 1998.

[11] C. Perkins and E. Royer. Ad hoc on demand routing
distance vector (AODV) routing. Internet Draft, Aug
1998.

[12] B. Ryu, J. Erickson, J. Smallcomb, and S. Dao. Self-
forming, self-maintaining virtual backbone-based radio
for wireless ad hoc networks. US Patent application
(pending), Jan 1999.

