
Bi-directional Analysis for Certi�cation of Safety-Critical SoftwareRobyn R. Lutz� and Robert M. WoodhouseyJet Propulsion LaboratoryCalifornia Institute of TechnologyPasadena, CA 91109-8099April 2, 1999AbstractFor safety-critical systems, it is insu�cient to certifythe developer and the development process. Certi�-cation of the software product itself is also needed.SFMEA (Software Failure Modes and E�ects Anal-ysis) and SFTA (Software Fault Tree Analysis) aretwo engineering techniques that have been used suc-cessfully for a number of years and in a variety ofsafety-critical applications to verify software designcompliance with robustness and fault-tolerance stan-dards. This paper proposes the use of Bi-directionalAnalysis (BDA), an integrated extension of SFMEAand SFTA, as a core assessment technique by whichsafety-critical software can be certi�ed. BDA can pro-vide limited but essential assurances that the softwaredesign has been systematically examined and com-plies with requirements for software safety.1 IntroductionEven as requirements for software certi�cation pro-liferate, the best approach to software certi�cationremains in dispute [42]. One suggested piece of thesolution is to certify the software developer or ana-lyst. Another approach to software certi�cation is tocertify the development process (e.g., to assure com-pliance with ISO 9000-3, CMM or SPICE standards).For safety-critical software, a third approach, certify-ing the software product itself, is an essential aspectof software certi�cation.All three of these certi�cation approaches (cer-tifying the developer, the process, and the prod-�Published in Proceedings, ISACC'99, International Soft-ware Assurance Certi�cation Conference, Chantilly, VA, Feb.28{Mar 2, 1999. First author's address is Dept. of Com-puter Science, Iowa State University, Ames, IA 50011-1041,rlutz@cs.iastate.edu.ySecond author is currently with XonTech Inc., Suite600, 6151 West Century Blvd., Los Angeles, CA 90045,robert woodhouse@xontech.com.

uct) share a drive towards standardization (of cre-dentials, of development processes, of software ver-i�cation methods). All three approaches involvethe necessary internationalization of certi�cation assoftware production increasingly ignores nationalboundaries. All three approaches also involve in-dependent evaluation of compliance of the devel-oper/process/product against some pre-existing stan-dard or guideline. However, since the goal is to certifythe quality of the software product itself, we should{to the extent possible{directly evaluate that product.It is certi�cation of the software product, speci�callyof the software product identi�ed as safety-critical,that this paper addresses.Certi�cation of the software product involves an as-sessment of the software against certain criteria. Asan example, a certi�cation criteron for non-criticalvendor software may be an assured interface for readyinteroperability with a customer's other applications(e.g., Novell provides such a certi�cation program).McDermid suggests that in the safety-critical arena,future COTS vendors may produce certi�cates fortheir software components that guarantee speci�cbehaviors or capabilities [44]. Component libraries(class libraries) will need to o�er similar guaranteesto users. The di�culty is that certi�cation criteria forsafety-critical software are usually signi�cantly morecomplicated and ill-de�ned than for other software[4]. The certi�cation often needs to verify either theabsence of unsafe behavior or that certain desirablebehaviors always occur.For safety-critical systems, it is insu�cient tocertify the developer and the development process.Certi�cation of the software product itself is alsoneeded. Many standards [5, 6, 37, 24, 46] and authors[12, 14, 16, 34, 41] discussing software safety, reliabil-ity and high integrity software products and devel-opment processes describe the use of forward (induc-tive) and backward (deductive) design and assurancemethods to help ensure that software defects are iden-1



ti�ed and removed from software design. SFMEA(Software Failure Modes and E�ects Analysis) andSFTA (Software Fault Tree Analysis) are two meth-ods that have been used successfully for a number ofyears and in a variety of safety-critical applicationsto verify software design compliance with robustnessand fault-tolerance standards.This paper proposes the use of Bi-directionalAnalysis (BDA) as a core assessment technique bywhich safety-critical software can be certi�ed. BDAbuilds on the accepted engineering methodologies ofSFMEA (inductive) [11, 19, 22] and SFTA (deduc-tive) [16] to provide critical information about the be-havior of the software design. This information playsan important role in developing and certifying safety-critical software, de�ned to be \software that can di-rectly or indirectly contribute to the occurrence of ahazardous system state" [16]. BDA can provide lim-ited but essential assurances that the software designhas been systematically examined and certify that itcomplies with software safety requirements.The purpose of Bi-directional Analysis (BDA) is toshow that the software design is free of certain crit-ical 
aws that can contribute to hazards. BDA isa systematic technique for identifying what can gowrong with each component of a system (its failuremodes), what e�ects each failure mode can have asit propagates through the system, and what featuresenable or contribute to the possibility of that failuremode in the �rst place. The examination of the sys-tem consequences of software failures is a key pieceof the software certi�cation of safety-critical systems.The rest of the paper is organized as follows. Sec-tion 2 gives an overview of BDA and provides back-ground information regarding BDA's origins in re-lated techniques. Section 3 describes the procedurefor performing a BDA and provides examples of itsusage. Section 4 discusses the bene�ts and limita-tions of BDA within a standard, certi�able develop-ment process. Section 5 links BDA to existing in-dustrial and governmental standards and certi�cationprocesses for safety-critical software, and o�ers someconcluding remarks.2 Overview of BDABDA �rst checks the design to determine whetherthe e�ects of abnormal (e.g., out-of-range) input val-ues and unexpected software events (e.g., unexpectedtermination) can contribute to unsafe system behav-ior. Following Leveson [16], software safety is de�nedto be freedom from undesired and unplanned eventsthat result in a speci�ed level of loss. Software safety

BDA Checks Compliance

Certification

Testing Checks Compliance

Design
Software 

Requirements for
Code

Software 

Hazard-Free Behavior
Requirements for

Hazard-Free BehaviorFigure 1: Role of Bi-directional Analysis (BDA) inCerti�cation of Safety-Critical Softwareanalysis techniques determine how software can con-tribute to conditions that result in loss or failure. Theforward direction of the BDA involves a forward anal-ysis from abnormal inputs or events to non-compliantconsequences, and has its roots in Failure Modes andE�ects Analysis. Next, the BDA checks whether thenon-compliant scenarios that have been identi�ed arecredible. This analysis either determines that thefailure modes cannot occur given the design of thissystem or, if they can occur, that they are handledsafely. This direction of the BDA involves a backwardanalysis from those abnormal scenarios with safetyconsequences to the collection of causes that mightpermit the identi�ed scenario to happen. The secondpart of the BDA has its roots in Fault Tree Analysis.For software there is no \seal of approval" thatguarantees that software will behave safely. Instead,meaningful certi�cation of safety-critical software iscurrently limited to a structured assessment, usingwell-documented techniques, that the software com-plies with certain speci�cations on its behavior [13].For example, the ESPRIT2 project SCOPE (SoftwareCerti�cation Programme in Europe) pursued prod-uct certi�cation by evaluating and assessing softwarecompliance against requirements in a documentedstandard [39].Fig. 1 shows the role of BDA (design certi�cation)and testing (code certi�cation) for safety-critical soft-ware. Code testing is the most important means ofsoftware certi�cation. However, since testing is al-ways partial and incomplete, assessment of designcompliance with required behavior is also needed. Inaddition, design compliance can be assessed prior totesting, allowing needed changes to be made earlierin development and contributing to test scenarios.



BDA

Credible, non-compliant scenarios/

Mitigation strategies

Forward

Credibility/Causes

Analysis

Backward
Analysis

Non-compliant

Design

scenarios

of non-complianceFigure 2: Bi-directional Analysis (BDA) ProcedureFigure 2 shows an overview of the two componentsof a Bi-directional Analysis, the forward analysis andthe backward analysis. The forward analysis in BDAhas its roots in SFMEA (Software Failure Modesand E�ects Analysis), while the backward analysisin BDA has its roots in SFTA (Software Fault TreeAnalysis).Software FMEA is an extension of hardware or sys-tem FMEA (Failure Modes and E�ects Analysis) andFMECA (FMEA with a criticality rating added tothe e�ects of each failure mode). FMEA and FMECAhave been widely used for certi�cation of militaryand industrial applications since the mid-sixties [24].Among the earliest standards for the FMEA method-ology were NASA's in 1971 and the U.S. Military's in1974. International standards organizations, Britishand German standards organizations, and the Soci-ety of Automotive Engineers have since also issuedFMEA standards. (See [20] for details.) There is nocomparable standard for performing Software FMEA,although its use has been well-documented since the1970's (see, e.g., [10, 33] , and, more recently, the

System Safety Society's 1993 System Safety AnalysisHandbook [43]).SFTA is likewise an extension of hardware or sys-tem FTA (Fault Tree Analysis), which has been usedextensively since the 1960's [16, 36]. Fault tree analy-sis methods use Boolean logic to break down an unde-sirable event or situation into the preconditions thatled to the root event. Software fault tree analysis[2, 16] adapted the FTA technique to software, us-ing events in the code or detailed design to verify thesoftware logic.Use of both FMEA and FTA (SFMEA and SFTA)continues to grow, both for system safety assessmentand for assurance of compliance. For example, thecourse that NASA o�ers on Software System Safetyrecommends both SFMEA and SFTA, spending one-and-a-half of the four days of the course on thesetechniques [27]. A U.S. Patent and Trademark Of-�ce Pilot Project in 1994 recommended that softwareFMECA become a routine procedure for the accep-tance of newly installed software systems [22].3 Description of BDA3.1 ProcessAs Figure 2 shows, Bi-directional Analysis for soft-ware certi�cation consists of a two-step process:� The �rst step of the BDA is a forward analy-sis to identify cause/e�ect relationships in whichanomalous data or software behavior can causeunacceptable e�ects. The forward analysis issimilar to a SFMEA (Software Failure Modesand E�ects Analysis). For example, in analy-sis of one system it was found that if expireddata is input to the software, an inappropri-ate control decision results [19]. The expireddata is the cause, and the consequences of theresulting control decision are the e�ect. Theexpired data could cause a wrong decision tobe made in the software, jeopardizing the sys-tem's required functionality. For safety certi�ca-tion, each cause/e�ect relationship is classi�edaccording to its potential impact on safety. Forthose cause/e�ect relationships that can poten-tially adversely a�ect the system's safety, a sec-ond step is performed.� The second step of the BDA is a backward anal-ysis to examine the feasibility of occurrence foreach anomaly that was found in the �rst stepto produce an unacceptable e�ect. In addition,if the postulated hazard is found to be feasible,



the backward analysis contributes to an under-standing of how to mitigate or remove the risk.The backward analysis is somewhat similar toa SFTA (Software Fault Tree Analysis). In theexample above, a backward analysis showed thatobsolete data could, in fact, be provided to thesoftware (when a particular hardware compo-nent failed). The backward analysis establishedthat this failure mode was possible and guidedchanges to the software to remove this vulnera-bility to expired data.The BDA's integration of the forward analysis (forhazardous or non-compliant e�ects) and the back-ward analysis (for contributing causes) provides astructured way to gauge the software's robustnessto anomalous circumstances. The integrated BDAcombines the strength of forward search (identifyinglatent failure modes) with the strength of backwardsearch (identifying coincident circumstances that al-low the hypothesized failure mode to occur). The restof this section describes the process of performing aBDA in more detail.3.2 Forward AnalysisThe �rst step in performing a BDA is a forward anal-ysis of the software component requiring certi�cation.A forward analysis begins with a description of thekinds of failures that are of concern. In a message-passing model of a distributed system, two kindsof failures are generally represented: communicationfailures and process failures [15]. In accordance withthis model, two kinds of failures are commonly ana-lyzed for each software component in a forward anal-ysis. These failures are documented in Data Tables(communication failures) and Events Tables (processfailures).A typical forward analysis uses table-based work-sheets to capture the relevant information. Data Ta-bles assist in the search for communication failures,including unexpected data dependencies and softwareinterface failures (Table 1). A Data Table evaluatesthe e�ect of the software component receiving bad orunexpected data, and the e�ect of the software com-ponent producing bad or unexpected output behavioron the other software that uses that data.The identi�cation of failure modes is the most dif-�cult part of the forward analysis. To assist in theidenti�cation, a classi�cation of failure modes hasbeen developed. This classi�cation is consistent withother current classi�cations of defects in software(e.g., [3, 40]). (See [19] for a more detailed descriptionof failure modes.)

For each input and each output of the softwarecomponent, each of the following four failure modesis considered:� Missing Data (e.g., lost message, data loss dueto hardware failure)� Incorrect Data (e.g., inaccurate data, spuriousdata)� Timing of Data (e.g., obsolete data, data arrivestoo soon for processing)� Extra Data (e.g., data redundancy, data over-
ow)The Data Table lists each possible failure mode, de-scribes its e�ect for the component under consider-ation, and classi�es the consequences of this failure.For example, in Table 1, the Failure Mode type is\Wrong timing of data" the Failure Description col-umn is, \Sensor input data received is outdated," theLocal E�ect column is, \Refrigerant pump is erro-neously commanded o�," and the System E�ect col-umn describes the consequence for the system (\Tem-perature limit is exceeded").The next column indicates the \Criticality" of thefailure mode's e�ects. In the example, this columnis \3" (of 5) indicating a threat to the subsystembut not the system. (A standard 5-part criticalitymeasure re
ects the severity of the failure's e�ects,ranging from \no e�ect" to \catastrophic e�ect.")The criticality column has safety implications in thathigh criticality ratings can be used to indicate theexistence of hazards. On the other hand, non-criticale�ects, even if indicative of design errors, may nothave safety implications. Depending on the standardagainst which compliance is being certi�ed, it may bethe case that only items with criticality ratings abovesome threshold will require further analysis.The �nal column in the forward analysis table,\Recommendations," proposes corrective actions toeliminate the non-compliant scenario that has beenidenti�ed. Often it makes sense to defer �lling inthis column until the second part of the BDA (thebackward analysis to identify contributing causes ofthe failure mode) has been performed. In all but thesimplest failure modes, it is often di�cult to proposea meaningful corrective action until a better under-standing of the circumstances surrounding the failuremode exist.The second kind of table used for the forward anal-ysis is an Events Table. An Events Table documentsthe e�ect of incorrect behavior or an incorrect eventon the component and the system. The Events Table



Failure Mode Failure Descrip Local E�ect Sys E�ect Crit RecommWrong timing Sensor input Pump commanded Temp limit 3 Add test ofof data data received o� exceeded timelinessis outdated of dataTable 1: Excerpt from BDA Forward Analysisassists in the search for process failures, including thee�ects of software that fails to function correctly.For each event (step in processing), each of thefollowing four failure modes is analysed:� Halt/Abnormal Termination (e.g., hung or dead-locked at this point)� Omitted Event (e.g., event does not take place,but execution continues)� Incorrect Logic (e.g., preconditions are inaccu-rate; event does not implement intent)� Timing/Order (e.g., event occurs in wrong order;event occurs too early/late)The Events Table documents the consequences ofthese failure modes for the events in the componentunder review and classi�es the criticality of the ef-fects. For example, the Failure Mode in one en-try was \Timing/Order", the Failure Description was\Instrument turned on too soon", the Local E�ectwas \Insu�cient power," the System E�ect was \Un-dervoltage occurs," and the Criticality was rated \2"(since in this system, there was software to handlerecovery from an undervoltage).3.3 Backward AnalysisThe second step in performing a BDA is the backwardanalysis. The backward analysis considers just thoseanomalies identi�ed in the forward analysis as highly-critical (e.g., those with a criticality rating of \4" or\5"). These anomalies or deviations then become theroot nodes of the backward analysis. The backwardanalysis examines the possibility of occurrence of eachanomaly that produced a non-compliant e�ect.It is important to note that although, in keepingwith familiar FMEA notation, the anomalies are of-ten called \failure modes," they may not be incor-rect data or behavior, but merely unexpected dataor behavior. Since it is the unexpected, as well asthe strictly incorrect, behavior that is of concern insafety-critical systems, the BDA often reviews all de-viations from anticipated behavior, as well as fromrequired behavior.

The backward analysis is somewhat similar to asoftware Fault Tree Analysis, with a few key di�er-ences. As discussed above, the root node is not nec-essarily a fault. In addition, a FTA takes an event asits root node, but a BDA's root node may not be anevent (e.g., it may 
ow from the Data Table ratherthan the Events Table). Another di�erence is that,as Leveson points out, a backward search technique isa chronological ordering of events over time, whereaseach level of a fault tree only shows the same eventin more detail [16]. The goals of the backward anal-ysis and SFTA are very similar, though. As Rushbyputs it, \The goal of SFTA is to show that a speci�csoftware design will not produce system safety fail-ures or, failing that, to determine the environmentalconditions that could lead it to cause such a failure[36]."The backward step of the BDA traces the causesof the root node (e.g., \Obsolete Input Data") back-ward in time to the contributing circumstances, witheach successive level of the fault tree expanding theprevious level's nodes. The process ends when fur-ther analysis of the bottom-level nodes of the tree isdeemed impossible (e.g., atomic events) or unproduc-tive.In many cases the anomaly described by the rootnode is found to be infeasible in the existing sys-tem. These anomalies are then closed issues, sincethey cannot contribute to a hazardous situation. Inother cases, the anomaly described by the root node isfound to be possible if a certain sequence or combina-tion of contributing circumstances and events occur.In that case, the possibility of a hazard needs to beaddressed.3.4 IntegrationWith the information from the backward analysis,the BDA can then be completed. An entry is madein the �nal column (\Recommendation") of the DataTable or Events Table for this anomaly. This columnidenti�es a change to the software that can mitigateor avoid the described risk. The column may rec-ommend a change to the design (e.g., in one case,an explicit test of the component's postconditions to



preclude inconsistent user displays) or it may evenpropose a change to the requirements (e.g. a clearerpolicy on required handling of double-point or coin-cident failures) [18].Recent work in combining forward and backwardanalyses of safety-critical systems supports the notionthat these techniques are complementary [18, 7, 21].Work has been done to extend the HAZOP approachto a systematic exploration of hypothetical failures,with lists of guidewords or historical failure modescontributing to the hazards analysis in the softwareunder review [23]. Automated tools to assist withportions of these analyses are currently being testedon requirements and design models. [25].BDA is product-oriented rather than process-oriented in that it can \exercise and stress" the designof the software product [45]. It �rst checks the e�ecton the system of corrupted input or abnormal eventexecution without consideration of the source of er-ror. Once a scenario is identi�ed that leads to non-compliant output or behavior, BDA then traces back-ward in time to document the contributing causes forpossible re-design or test.4 EvaluationBi-directional analysis (BDA) has several advantagesthat recommend its use as a design certi�cation tech-nique to developers of safety-critical software.� Availability. The techniques BDA is based on arewell-documented [11, 16, 19, 33, 38, 43], hencerelatively easy to teach and apply. These fea-tures make the technique readily available.� Structure. The structured step-by-step proce-dure of BDA guides implementation, and thetechniques involved are familiar to engineersworldwide.� Maintainability. The information developed dur-ing application of BDA analysis is broadly acces-sible since the format is readable, table-based,and can be web-accessible.� Safety Assessment. The role of BDA in the de-sign certi�cation process links clearly with re-quirements, since it assesses the adequacy of thesoftware design in terms of satisfying the systemsafety requirements. BDA also provides forwardlinks in the development process, since it pri-oritizes action items (i.e., recommendations formitigating actions), prioritizes the hazards it un-covers (via the criticality measure), and provides

a critical piece of the hazard analysis for the soft-ware design. BDA can also identify test cases inorder to exercise each failure mode and con�rmthat the system reacts safely [28].� Incremental/evolutionary development. BDAanalysis products �t into an incremental develop-ment process by being updatable for documenta-tion. Initial work also suggests that for productline systems, a BDA of the product family can bepartially reused in later instances of that family[18].� Independent certi�cation. BDA can be used fordesign level certi�cation against documented re-quirements speci�cations and has been widelyused as a means for independent veri�cation.� Systems focus. BDA is consistent with hardwarecerti�cation practices (e.g., FMEA and FTA),thus encouraging a systems approach to safety.� Tools. BDA may also be amenable to automa-tion. Automated tools exist for software forwardand backward analyses [1, 8, 9, 26, 30], but theircapabilities are limited. More powerful tools in-corporating forward and backward analyses arecurrently being developed, e.g., by Safeware En-gineering Corporation [32].BDA, like all analytical methods, has potential dis-advantages. Like other incremental failure analysistechniques, BDA is time-consuming and much of it istedious. BDA depends on the domain knowledge ofthe analyst and the accuracy of the documentation.In part due to these costs and constraints, BDA isusually performed only on the portions of the soft-ware identi�ed as safety-critical. The forward analy-sis part of BDA, based as it is on SFMEA, is subjectto the same criticism of only considering one fault ata time, rather than combinations of events. However,integration with the backward analysis in the BDAhas been shown to help isolate combinations of eventsand circumstances that can lead to hazards.The use of the forward analysis in conjunction withthe backward analysis alleviates BDA's limitationsin analyzing the e�ects of multiple or coincident fail-ures [19]. As with FMEA, SFMEA, FTA, and SFTA,BDA is an important technique for gauging and en-suring the fault tolerance of a system. BDA can sup-port hazards analysis, safety analysis, or reliabilityanalysis processes.



5 BDA for Certi�cationCerti�cation is a process whereby a certi�cation au-thority determines if an applicant provides su�cientevidence concerning the means of production of acandidate product and the characteristics of the can-didate product so that the requirements of the cer-tifying authority are ful�lled [37]. Certi�cation ofsoftware for airborne systems [37, 35] includes estab-lishing a basis for certi�cation between the certify-ing authority and the applicant (developers) whichdetails the applicable regulations (requirements), aswell as any special conditions, and outlines the meansby which the developers expect to demonstrate com-pliance.The means of compliance are typically speci�edin standards available from the certi�cation author-ity. The means of compliance usually involve docu-menting all aspects of the development process (e.g.,hazard analysis), providing the results of testing andother veri�cation techniques, and often using speci�canalysis techniques during development. BDA, be-cause of its role in elucidating failure modes and theircauses, is a hazard analysis technique that conformsto certi�cation standards that require system safetyassessments.The use of BDA for design certi�cation of safety-critical systems allows defects to be discovered andremoved early in the development life cycle. Some ofthe most hazardous and costly defects are those as-sociated with incorrect or missing requirements. Ex-amination of the design prior to coding allows forunforeseen hazards to be exposed, their causes to beinvestigated, and compliance of the design with safetyrequirements to be veri�ed. The results of the BDAand its list of recommended mitigations are then usedas input to the subsequent stages of the certi�cationprocess, such as testing [37, 35].BDA is an adaptation and integration of success-ful engineering methodologies (FMEA and FTA) tothe certi�cation of safety-critical software. BDA as-sesses the compliance of the software product's designwith required system safety features, and identi�esfeasible, non-compliant scenarios for future re-workor testing. With its emphasis on system response tosoftware anomalies, BDA supports the developmentand deployment of high-integrity systems.AcknowledgmentsThe work described in this paper was carried out atthe Jet Propulsion Laboratory, California Instituteof Technology, under a contract with the NationalAeronautics and Space Administration. Funding was

provided under NASA's Code Q Software ProgramCenter Initiative UPN #323-08. Reference herein toany speci�c commercial product, process, or serviceby tradename, trademark, manufacturer, or other-wise, does not constitute or imply its endorsementby the United States Government or the Jet Propul-sion Laboratory, California Institute of Technology.References[1] Bell, D., L. Cox, S. Jackson and P. Schaefer (1992),\Using Causal Reasoning for Automated FailureModes & E�ects Analysis (FMEA)", IEEE ProcAnnual Reliability and Maintainability Symposium,pp. 343{353.[2] Cha, S. S., N. G. Leveson, and T. J. Shimeall(1988), \Safety Veri�cation in Murphy Using FaultTree Analysis," in Proc 10th International Confer-ence on Software Engineering, Apr, Singapore, pp.377-386.[3] Chillarege, R., et al. (1992), \Orthogonal DefectClassi�cation{A Concept for In-Process Measure-ments," IEEE Transactions on Software Engineer-ing, 18, 11, 943-956.[4] Cruz-Neira, C. and R. Lutz (1998), \Using Immer-sive Virtual Environments for Certi�cation," sub-mitted.[5] Electronic Industries Association (1983), \SystemSafety Analysis Techniques," Safety EngineeringBulletin No. 3-A, Engineering Department, Wash-ington, D. C.[6] Electronic Industries Association (1990) \SystemSafety Engineering in Software Development,"Safety Engineering Bulletin No. 6-A, Washington,D. C.[7] Fenelon, P. and J. A. McDermid (1993), \An In-tegrated Toolset for Software Safety Assessment,"Journal of Systems and Software, 21: July, pp. 279-290.[8] FEAT (Failure Environment Analysis Tool), NASACosmic #MSC-21873.[9] FIRM (Failure Identi�cation and Risk ManagementTool), Lockheed Engineering and Sciences Co., Cos-mic.[10] Fragola, J. R. and J. F. Spahn (1973), \The Soft-ware Error E�ects Analyis; A Qualitative DesignTool," in Record, IEEE Symposium on ComputerSoftware Reliability, IEEE 73CH0741-9C, pp. 90-93.[11] Hall, F. M., R. A. Paul and W. E. Snow (1983),\Hardware/Software FMECA", Proc Annual Relia-bility and Maintainability Symposium, pp. 320- 327.[12] Herrman, D. S. (1995), \A methodology for evalu-ating, comparing, and selecting software safety and



reliability standards," Proc Tenth Annual Confer-ence on Computer Assurance, pp. 223{232.[13] IEEE Standard Glossary of Software EngineeringTerminology (1990), IEEE Std 610.12-1990. NewYork: IEEE.[14] Ippolito, L. M. and D. R. Wallace (1995), \AStudy on Hazard Analysis in High Integrity Soft-ware Standards and Guidelines," Gaithersburg,MD: U.S. Dept. of Commerce, National Insti-tute of Standards and Technology, NISTIR 5589,http://hissa.ncsl.nist.gov/index-pubs.html.[15] Lamport, L. and N. Lynch (1990), \DistributedComputing Models and Methods," Formal Mod-els and Semantics, Vol. B, Handbook of TheoreticalComputer Science, Elsevier.[16] Leveson, N. (1995), Safeware, System Safety andComputers, Addison-Wesley.[17] Leveson, N., S. S. Cha, and T. J. Shimeall (1991),\Safety Veri�cation of Ada Programs Using Soft-ware Fault Trees," IEEE Software, July, pp. 48{59.[18] Lutz, R., G. Helmer, M. Moseman, D. Statezni, andS. Tockey (1998), \Safety Analysis of Requirementsfor a Product Family,"Proc Third IEEE Interna-tional Conference on Requirements Engineering.[19] Lutz, R. and R. Woodhouse (1997), \RequirementsAnalysis Using Forward and Backward Search,"Annals of Software Engineering , 3, 459{475.[20] Lutz, R. and R. Woodhouse, "Failure Modes andE�ects Analysis," Encyclopedia of Electrical andElectronics Engineering, ed. J. Webster, John Wi-ley and Sons Publishers, to appear.[21] Maier, T. (1995), \FMEA and FTA To Sup-port Safe Design of Embedded Software in Safety-Critical Systems," in CSR 12th Annual Workshopon Safety and Reliability of Software Based Sys-tems, Bruges, Belgium.[22] Mazur, M. F. (1994), \Software FMECA," ProcFifth International Symposium on Software Relia-bility Engineering, Monterey, CA, Nov. 6-9.[23] McDermid, J. A., M. Nicholson, D. J. Pumfrey, andP. Fenelon (1995), \Experience with the applicationof HAZOP to computer-based systems," in Proc ofCOMPASS '95 , Gaithersburg, MD, pp. 37-48.[24] MIL-STD-882B (1984), \System safety program re-quirements," U.S. Department of Defense, Wash-ington, D. C.[25] Modugno, F., N. G. Leveson, J. D. Reese, K.Partridge, and S. D. Sandys (1997), \IntegratedSafety Analysis of Requirements Speci�cations,"Proc Third IEEE International Symposium on Re-quirements Engineering, pp. 148{159.[26] Montgomery, T. A., D. R. Pugh, S. T. Leed-ham, and S.R. Twitchett (1996), \FMEA Automa-tion for the Complete Design Process", IEEE ProcAnnual Reliability and Maintainability Symposium,Annapolis, MD, Jan 6-10, pp. 30{36.

[27] NASA Safety Training Center, \Software SystemSafety Course Notes."[28] P
eeger, S. L. (1998), Software Engineering, Theoryand Practice, Prentice-Hall.[29] Procedures for Performing a Failure Mode, E�ectsand Criticality Analysis (1980), MIL-STD-1629A.[30] Pugh, D. R. and N. Snooke (1996), \Dynamic Anal-ysis of Qualitative Circuits for Failure Mode and Ef-fects Analysis," Proc Annual Reliability and Main-tainability Symposium, pp. 37{42.[31] Raheja, J. (1991) Assurance Technologies: Princi-ples and Practices, McGraw-Hill.[32] Ratan, V., K. Partridge, J. Reese and N. Leve-son (1996), \Safety analysis tools for requirementsspeci�cations," Proc Eleventh Annual Conferenceon Computer Assurance, pp. 149{160.[33] Reifer, D. J. (1979), \Software Failure Modes andE�ects Analysis,"IEEE Transactions on Reliability,R-28, 3, 247-249.[34] Roland, H. E. and B. Moriarty, (1990), SystemSafety Engineering and Management . New York,New York: John Wiley and Sons.[35] RTCA/DO-178B (1992), Software Considerationsin Airborne Systems and Equipment Certi�cation,RTCA, Inc.[36] Rushby, J. (1993), Formal Methods and Digital Sys-tems Validation for Airborne Systems, SRI-CSL-93-07.[37] SAE (1996), Aerospace Recommended Practice:Certi�cation Considerations for Highly-Integratedor Complex Aircraft Systems, ARP4754.[38] SAE (1996), Aerospace Recommended Practice:Guidelines and Methods for Conducting the SafetyAssessment Process on Civil Airborne Systems andEquipment , ARP4761.[39] SCOPE Project (1993), ESPRIT2,http://www.cordis.lu/esprit/ src/index.htm[40] Selby, R. W. and V. R. Basili (1991), \AnalyzingError-Prone System Structure," IEEE Transactionson Software Engineering, 17, 2, 141-152.[41] Stephenson, J. (1991), System Safety 2000: A prac-tical guide for planning, managing and conductingsystem safety programs. New York, New York: VanNostrand Reinhold.[42] \Streamlining Software Aspects of Certi�cation,"http://shemesh.larc.nasa.gov/ssac/[43] System Safety Society (1993), System Safety Anal-ysis Handbook .[44] Talbert, N. (1998), \The Cost of COTS: An Inter-view with John McDermid," Computer, 31, 6, June,46{52.[45] Voas, J. (1998), \A Recipe forCertifying High Assurance Software," RST Corp.,http://www.rstcorp.com/paper-chrono.html.



[46] Wallace, D. R., L. M. Ippolito and D. R. Kuhn(1992), \High Integrity Software Standards andGuidelines," Gaithersburg, MD: U.S. Departmentof Commerce, National Institute of Standards andTechnology, NIST Special Publication 500-204,September.


