

Faculties of Mathematics

Computer Sciences and Econometrics

University of Zielona Góra

An iterative method for solving the linear feasibility problem

Renata Dudek,

University of Zielona Góra

2nd - 5th February 2006

Faculties of Mathematics Computer Sciences and Econometrics University of Zielona Góra

Abstract

Many optimization problems reduce to the solution of a system of linear inequalities (SLI). Some solution methods use relaxed, averaged projections. Others invoke surrogate constraints (typically stemming from aggregation). This paper proposed a blend of these two approaches. A novelty comes with introducing as surrogate constrained a halfspace defined by differences of algorithmic iterates. The first iteration is identical to surrogate constraints methods. In next iterations, for a given approximation \bar{x} , besides the violated constraints in \bar{x} , we also take into consideration the surrogate inequality, which we have obtained in the previous iteration.

The motivation for this research comes from the work of H. Scolnik et al. [1], who studied some projection methods for a system of linear equations.

Introduction

We consider the problem of finding a solution x^* of a consistent system of linear inequalities

$$G^{\top}x \le b,\tag{1}$$

where G is a matrix of size $n \times m$ with columns $g_i \in \mathbb{R}^n$, $i \in I =$ $\{1,...,m\}, x = (x_1, x_2, ..., x_n)^{\top} \in \mathbb{R}^n, b = (b_1, b_2, ..., b_m)^{\top} \in \mathbb{R}^m.$

The problem of finding a solution of a SLI is called also the *linear* feasibility problem.

Let \bar{x} be the current approximation of a solution of this problem and let x^+ be the next approximation, and let $I(\bar{x}) = \{i \in I : g_i^\top \bar{x} > b_i\}$ denotes the subset of violated constraints in the point \bar{x} ,

 $M = \{x \in \mathbb{R}^n : G^{\perp}x \leq b\} \neq \emptyset$ denotes the solution set of (1) $M(\bar{x}) = \{x \in \mathbb{R}^n : g_i^{\top} x \leq b_i, i \in I(\bar{x})\}$ denotes the solution set of a subsystem of violated constraints for a given approximation \bar{x} of a solution $x^* \in M$.

Let

$$s^i = P_i(\bar{x}) - \bar{x},\tag{2}$$

where P_i denotes the metric projection onto the halfspace $H_i = \{x \in A_i \mid x \in A_i\}$ $\mathbb{R}^n: g_i^{\top} x \le b_i \}.$

We assume, without loss of generality, that $||g_i|| = 1, i \in I$, where $||\cdot||$ denotes the Euclidean norm.

Let $w = (w_1, ..., w_m)^{\top} \in \Delta_m = \{u \in \mathbb{R}^m : u \geq 0, e^{\top}u = 1\}, \text{ where }$ $e=(1,...,1)^{\top}\in\mathbb{R}^m$, be a *vector of weights.* We consider only vectors of weights with zero weights for nonviolated constraints, i.e., $w_i=0$ for $i \in I \setminus I(\bar{x})$.

If we multiply the particular inequalities of (1) by coordinates of a vector of weights w and we add formed inequalities then we obtain a surrogate inequality (surrogate constraint)

$$w^{\top}G^{\top}x \le w^{\top}b.$$

Of course $M \subset H_w = \{x \in \mathbb{R}^n : w^\top G^\top x \leq w^\top b\}$. In one iteration of the surrogate constraints method we calculate a vector of weights $w \in \Delta_m$ and a projection vector t(w) onto the halfspace H_w , i.e.,

$$t(w) = P_{H_w}(\bar{x}) - \bar{x}.$$

Thus, the next point x^+ has the form

$$x^{+} = \bar{x} + \lambda t(w), \tag{3}$$

2 Construction of a new surrogate constraint

Let $\bar{x} \notin M$ be an approximation of a solution $x^* \in M$ and let

$$\bar{H} = H(\bar{x}) = \{ x \in \mathbb{R}^n : v^{\top}(x - \bar{x}) \le 0 \}$$

be a halfspace with a normal vector $v \in \mathbb{R}$, such that $M \subset \overline{H}$.

Make a new point $x^+ \in \bar{H}$ which essentially better approximates a solution x^* will be our main aim. Let x^+ has the form

$$x^+ = \bar{x} + \lambda t,$$

where $\lambda \geq 0$ is a parameter and $t \in \mathbb{R}^n$ is a direction of search.

We propose the following manner of evaluation of the vector t:

- (a) evaluate a vector of weights w,
- (b) evaluate the vectors s^i for $i \in I(\bar{x})$, by (2),
- (c) evaluate the projections $P_{\bar{H}}(\bar{x}+s^i)$ for $i \in I(\bar{x})$,
- (d) set $t = P_{\bar{H}}(\bar{x} + s^i) \bar{x}$.

In the point x^+ we create a new surrogate inequality H^+ with a normal vector -t. Thus, H^+ has a following form

$$H^+ = \{x \in \mathbb{R}^n : -t^{\top}(x - x^+) \le 0\}.$$

In this Section we answer the question: how big may be the parameter λ to satisfy the condition $M \subset H^+$?

Denote for $i \in I(\bar{x})$

and

$$p^{i} = y^{\bar{i}} - \hat{x}^{i}, \qquad ($$

$$t^{i} - y^{\bar{i}} - \bar{x}$$

 $t = \sum w_i t^i$ Let $i \in I(\bar{x})$

 $x^+ = \bar{x} + \lambda t,$

where

Lemma 2.1 For each $z \in \overline{M} \cap \overline{H}$ the following inequality is satisfied

$$\|x^{+} - z\|^{2} \leq \|\bar{x} - z\|^{2} - \mu (2 - \mu) \frac{(\sum_{i \in I(\bar{x})} w_{i} \|s^{i}\|^{2})^{2}}{\|\sum_{i \in I(\bar{x})} w_{i} t^{i}\|^{2}}.$$
 (8)

Iterative scheme

Step 0. (*Initialization*) Choose an arbitrary starting point $x^{(0)}$, an *opti*mality tolerance $\varepsilon > 0$, a small positive quantity $\gamma > 0$ and a quantity $\delta \in (0,1]$. Set $H^{(0)} = \mathbb{R}^n$ and k=0 (iteration's counter).

Step 1. (Stopping criterion) If $x^{(k)}$ is an ε - optimal solution, i.e., $\max\{g_i^{\top}x^{(k)}-b_i:i=1,...,m\}\leq \varepsilon$, terminate.

Step 2. (*Projection*) Evaluate for $i \in I(x^{(k)})$

(a)
$$s^{i(k)} = -(g_i^{\top} x^{(k)} - b_i)g_i$$
,

(b)
$$\hat{x}^{i(k)} = x^{(k)} + s^{i(k)}$$
,

(c)
$$y^{i(k)} = P_{H^k}(\hat{x}^{i(k)}),$$

(d)
$$t^{i(k)} = y^{i(k)} - x^{(k)}$$
.

Step 3. (Approximation's update)

(a) Evaluate
$$x^{(k+1)}=x^{(k)}+\mu^{(k)}\frac{\sum\limits_{i\in I(x^{(k)})}w_i^{(k)}\|s^{i(k)}\|^2}{\|\sum\limits_{i\in I(x^{(k)})}w_i^{(k)}t^{i(k)}\|^2}\cdot t^{(k)},$$
 where

 $t^{(k)} = \sum w_i^{(k)} t^{i(k)}$ for a vector of weights $w^{(k)}$, where $w_i^{(k)} > \gamma$,

 $i \in I(x^{(k)})$ and $\mu^{(k)} \in (\delta, 1]$,

- (b) Set $v^{(k)} = x^{(k)} x^{(k+1)}$,
- (c) Set $H^{(k+1)} = \{x \in \mathbb{R}^n : v^{(k)\top}(x x^{(k+1)}) \le 0\},\$
- (d) Increase k by 1 and go to Step 1.

Theorem 1 If $M \neq \emptyset$, then any infinite sequence $(x^{(k)})_{k=0}^{\infty}$ generated by Iterative scheme has the following properties: (a) $(x^{(k)})$ is strictly Fejér-monotone with respect to M, (b) $\lim_{k \to \infty} \max_{i \in I(x^{(k)})} ||s^{i(k)}|| = 0.$

Consequently, $x^{(k)}$ converges to an $x^* \in M$.

Numerical results

The project can be summarized by the following scheme: We set $\mu = 1, \, \gamma = 10^{-3} \text{ and } \varepsilon = 10^{-6}.$

We have compared two methods: the surrogate constraints method of Yang-Murty [4] and the method presented in Section 2 (Iterative scheme).

For all presented methods we have performed the computation for two variants:

Variant I - equal weights for violated constraints, i.e., $w_i^{(k)} = \frac{1}{|I(r^{(k)})|}$, Variant II - weights proportional to residuum of violated constraints

$$w_i^{(k)} = \max \left\{ \gamma, \frac{g_i^{\top} x^{(k)} - b_i}{\sum_{i \in I(x^{(k)})} g_i^{\top} x^{(k)} - b_i} \right\}, i \in I(x^{(k)})$$

		Variant I		Variant II	
$n \times m$	l	Y-M Method	Iter. Schem. 2.1	Y-M Method	Iter. Schem. 2.1
20 × 20	12	23	9	25	14
	20	40	13	46	13
20 × 40	12	38	13	44	13
	24	71	18	76	19
20 × 80	12	55	15	65	17
	24	91	20	127	23
50 × 50	30	27	13	34	15
	50	38	16	53	18
50 × 100	30	49	18	62	20
	60	89	23	120	26
50 × 200	30	69	23	107	25
	60	178	32	235	34
100 × 100	60	29	14	40	17
	100	42	17	60	20
100 × 200	60	64	21	95	24
	120	116	28	171	30
200 × 200	120	30	16	43	18
	200	40	17	64	20
500 × 500	300	32	17	48	19
	500	36	18	55	20
500 × 1000	300	133	31	194	32
	500	234	40	348	52
	500	234	40	340	32

References

- [1] H. Scolnik, N. Echebest, M. T. Guardarucci, M. C. Vacchino, A class of optimized row projection methods for solving large nonsymetric linear systems, Applied Numerical Mathematics 41 (2002) 499-513.
- [2] S. D. Flåm, J. Zowe, Relaxed outer projections weighted averages and convex feasibility, BIT 30 (1990) 289-300.
- [3] A. R. De Pierro, A. N. Iusem, A simultaneous projection method for linear inequalities, Linear Algebra & Appl. 64 (1985) 243-253.
- [4] K. Yang, K. G. Murty, New Iterative Methods for Linear Inequalities, Journal of Optimization Theory and Applications 72 (1992) 163-185.
- [5] L. G. Gurin, B. T. Polyak and E.V. Raik, *The method of projections* for finding the common point of convex sets, USSR Comput. Math. and Math. Phys. **7** (1967) 1-24.

This poster has been realised with LATEX using Lars Nummendal A0 poster template

where $\lambda \in [0, 2]$ is a relaxation parameter.