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Abstract
Many optimization problems reduce to the solution of a system of lin-
ear inequalities (SLI). Some solution methods use relaxed, averaged
projections. Others invoke surrogate constraints (typically stemming
from aggregation). This paper proposed a blend of these two ap-
proaches. A novelty comes with introducing as surrogate constrained
a halfspace defined by differences of algorithmic iterates. The first
iteration is identical to surrogate constraints methods. In next itera-
tions, for a given approximation x̄, besides the violated constraints in
x̄, we also take into consideration the surrogate inequality, which we
have obtained in the previous iteration.

The motivation for this research comes from the work of H. Scolnik et
al. [1], who studied some projection methods for a system of linear
equations.

1 Introduction
We consider the problem of finding a solution x∗ of a consistent sys-
tem of linear inequalities

G>x ≤ b, (1)

where G is a matrix of size n × m with columns gi ∈ Rn, i ∈ I =
{1, ..., m}, x = (x1, x2, ..., xn)> ∈ Rn, b = (b1, b2, ..., bm)> ∈ Rm.

The problem of finding a solution of a SLI is called also the linear
feasibility problem.

Let x̄ be the current approximation of a solution of this problem and
let x+ be the next approximation, and let I(x̄) = {i ∈ I : g>i x̄ > bi}
denotes the subset of violated constraints in the point x̄,
M = {x ∈ Rn : G>x ≤ b} 6= ∅ denotes the solution set of (1)
M(x̄) = {x ∈ Rn : g>i x ≤ bi, i ∈ I(x̄)} denotes the solution set of
a subsystem of violated constraints for a given approximation x̄ of a
solution x∗ ∈ M.

Let
si = Pi(x̄)− x̄, (2)

where Pi denotes the metric projection onto the halfspace Hi = {x ∈
Rn : g>i x ≤ bi}.
We assume, without loss of generality, that ‖gi‖ = 1, i ∈ I, where ‖·‖
denotes the Euclidean norm.

Let w = (w1, ..., wm)> ∈ ∆m = {u ∈ Rm : u ≥ 0, e>u = 1}, where
e = (1, ..., 1)> ∈ Rm, be a vector of weights. We consider only vectors
of weights with zero weights for nonviolated constraints, i.e., wi = 0
for i ∈ I\I(x̄).

If we multiply the particular inequalities of (1) by coordinates of a vec-
tor of weights w and we add formed inequalities then we obtain a
surrogate inequality (surrogate constraint)

w>G>x ≤ w>b.

Of course M ⊂ Hw = {x ∈ Rn : w>G>x ≤ w>b}. In one iteration
of the surrogate constraints method we calculate a vector of weights
w ∈ ∆m and a projection vector t(w) onto the halfspace Hw, i.e.,

t(w) = PHw
(x̄)− x̄.

Thus, the next point x+ has the form

x+ = x̄ + λt(w), (3)

where λ ∈ [0, 2] is a relaxation parameter.
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2 Construction of a new surrogate
constraint

Let x̄ /∈ M be an approximation of a solution x∗ ∈ M and let

H̄ = H(x̄) = {x ∈ Rn : v>(x− x̄) ≤ 0}
be a halfspace with a normal vector v ∈ R, such that M ⊂ H̄.

Make a new point x+ ∈ H̄ which essentially better approximates a
solution x∗ will be our main aim. Let x+ has the form

x+ = x̄ + λt,

where λ ≥ 0 is a parameter and t ∈ Rn is a direction of search.
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We propose the following manner of evaluation of the vector t :
(a) evaluate a vector of weights w,
(b) evaluate the vectors si for i ∈ I(x̄), by (2),
(c) evaluate the projections PH̄(x̄ + si) for i ∈ I(x̄),

(d) set t = PH̄(x̄ + si)− x̄.

In the point x+ we create a new surrogate inequality H+ with a normal
vector −t. Thus, H+ has a following form

H+ = {x ∈ Rn : −t>(x− x+) ≤ 0}.
In this Section we answer the question: how big may be the parameter
λ to satisfy the condition M ⊂ H+ ?

Denote for i ∈ I(x̄)

x̂i = x̄ + si, (4)
yi = PH̄(x̂i), (5)
pi = yi − x̂i, (6)
ti = yi − x̄. (7)

Let t =
∑

i∈I(x̄)

wit
i

and
x+ = x̄ + λt,

where

λ = µ

∑
i∈I(x̄)

wi‖si‖2

‖ ∑
i∈I(x̄)

witi‖2
, µ ∈ (0, 2].

H

M
M Ç H

v

x y

s

1

v

x1

v

x = y2 2

1 p1

t
1

s
t

=
2

2

1

2

3
4

Lemma 2.1 For each z ∈ M̄ ∩ H̄ the following inequality is satisfied

∥∥x+ − z
∥∥2 ≤ ‖x̄− z‖2 − µ (2− µ)

(
∑

i∈I(x̄)

wi‖si‖2)2

‖ ∑
i∈I(x̄)

witi‖2
. (8)

2.1 Iterative scheme
Step 0. (Initialization) Choose an arbitrary starting point x(0), an opti-
mality tolerance ε > 0, a small positive quantity γ > 0 and a quantity
δ ∈ (0, 1]. Set H(0) = Rn and k = 0 (iteration’s counter ).

Step 1. (Stopping criterion) If x(k) is an ε− optimal solution, i.e.,
max{g>i x(k) − bi : i = 1, ..., m} ≤ ε, terminate.

Step 2. (Projection) Evaluate for i ∈ I(x(k))

(a) si(k) = −(g>i x(k) − bi)gi,

(b) x̂i(k) = x(k) + si(k),

(c) yi(k) = PHk(x̂i(k)),

(d) ti(k) = yi(k) − x(k).

Step 3. (Approximation’s update)

(a) Evaluate x(k+1) = x(k) + µ(k)

∑
i∈I(x(k))

w
(k)
i ‖si(k)‖2

‖ ∑
i∈I(x(k))

w
(k)
i ti(k)‖2

· t(k), where

t(k) =
∑

i∈I(x(k))
w

(k)
i ti(k) for a vector of weights w(k), where w

(k)
i > γ,

i ∈ I(x(k)) and µ(k) ∈ (δ, 1] ,

(b) Set v(k) = x(k) − x(k+1),

(c) Set H(k+1) = {x ∈ Rn : v(k)>(x− x(k+1)) ≤ 0},
(d) Increase k by 1 and go to Step 1.

Theorem 1 If M 6= ∅, then any infinite sequence (x(k))∞k=0 generated
by Iterative scheme has the following properties:
(a) (x(k)) is strictly Fejér-monotone with respect to M,

(b) lim
k→∞

max
i∈I(x(k))

‖si(k)‖ = 0.

Consequently, x(k) converges to an x∗ ∈ M.

3 Numerical results
The project can be summarized by the following scheme: We set
µ = 1, γ = 10−3 and ε = 10−6.

We have compared two methods: the surrogate constraints method
of Yang-Murty [4] and the method presented in Section 2 (Iterative
scheme).

For all presented methods we have performed the computation for two
variants:
Variant I - equal weights for violated constraints, i.e., w

(k)
i = 1

|I(x(k))|,
Variant II - weights proportional to residuum of violated constraints

w
(k)
i = max





γ,
g>i x(k)−bi∑

i∈I(x(k))

g>i x(k)−bi





, i ∈ I(x(k)).

Variant I Variant II

n×m l
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Schem. 2.1
20× 20 12 23 9 25 14

20 40 13 46 13
20× 40 12 38 13 44 13

24 71 18 76 19
20× 80 12 55 15 65 17

24 91 20 127 23
50× 50 30 27 13 34 15

50 38 16 53 18
50× 100 30 49 18 62 20

60 89 23 120 26
50× 200 30 69 23 107 25

60 178 32 235 34
100× 100 60 29 14 40 17

100 42 17 60 20
100× 200 60 64 21 95 24

120 116 28 171 30
200× 200 120 30 16 43 18

200 40 17 64 20
500× 500 300 32 17 48 19

500 36 18 55 20
500× 1000 300 133 31 194 32

500 234 40 348 52
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