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Abstract— We study resource allocation games, where users
send data along paths and links in the network charge a price
equal to marginal cost. When users are price taking, it is known
that there exist distributed dynamics that converge towards a
fully efficient Nash equilibrium. When users are price anticipat-
ing, however, a Nash equilibrium does not maximize total utility
in general. In this paper, we explore the inefficiency of Nash
equilibria for general networks and semi-convex marginal cost
functions. While it is known that for m ≥ 2 users and convex
marginal cost functions, no efficiency guarantee is possible,
we prove that an additional differentiability assumption on
marginal cost functions implies a bounded efficiency loss of
2/(2 m + 1). For polynomial marginal cost functions with
nonnegative coefficients, we precisely characterize the price of
anarchy. We also prove that the efficiency of Nash equilibria
significantly improves if all users have the same strategy space
and the same utility function.

We propose a class of distributed dynamics and prove that
whenever a game admits a potential function, these dynamics
globally converge to a Nash equilibrium. Finally, we show
that in general the only class of marginal cost functions that
guarantees the existence of a potential function are affine linear
functions.

I. INTRODUCTION

We study a resource allocation problem in communication
networks, where users want to route flow from their source
node to some sink node in the network and may strategically
vary their flow rates. It is assumed that each user has a
utility function mapping the total flow rate to a nonnegative
value measuring the received utility. Each link maintains a
flow dependent cost function modeling congestion on that
link. An efficient allocation maximizes total utility defined
as aggregate utility less aggregate cost. Kelly et al. [16]
proposed a pricing mechanism (proportionally-fair pricing),
in which every link charges a price per unit resource equal
to the marginal cost on that link. Despite the simplicity
and scalability of this mechanism, Kelly et al. showed
that an optimal solution can be achieved as a competitive
equilibrium if users are price takers, that is, they do not
anticipate the consequence of price change in response to a
change of their communication rates. Over the past years, the
concept of congestion pricing , such as marginal cost pricing,
has been successfully applied to understand and develop
transport protocols, see for instance Kelly and Voice [15],
Kunniyur and Srikant [18], or the book by Srikant [28].
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Most of the remarkable results that have been obtained
so far require that users behave as price takers. If users
anticipate the price change caused by changing their commu-
nication rates, the structure and efficiency of Nash equilibria
are substantially different. Even for simple single link net-
works, there are instances in which the efficiency loss of a
Nash equilibrium is unbounded, see Johari [12] and Yang
and Hajek [30].

Johari and Tsitsiklis [14] considered resource allocation
games, where users choose rates along each available path
in the network, and optimize their payoff only based on the
aggregate price of each path. If users are price anticipating
and prices are set equal to marginal costs, Johari and Tsitsik-
lis [13] showed that no non-trivial performance guarantee is
possible provided at least two users participate in the game.
It is worth noting that their worst case instance uses a non-
differentiable marginal cost function. For the special case
of linear marginal cost functions, Johari and Tsitsiklis [14]
showed that the efficiency loss is bounded by 2/3. Remark-
ably, this result holds for an arbitrary collection of concave
utility functions (asymmetric games). For symmetric games
(equal utility functions) with m users on a single link, Johari
and Tsitsiklis [13] proved a bound of 2m/(2m + 1) for
arbitrary convex marginal cost functions.

Despite these positive results, several important questions
are still open:

1) How efficient are Nash equilibria when realistic, that
is, differentiable and nonlinear marginal cost functions
are considered?

2) Can we design distributed dynamics that provably
converge to a Nash equilibrium?

The first question is particularly relevant in practice, since for
example link delays grow super-linearly with link flows in
close-to-capacity regions, e.g., M/M/1 functions. In road
networks, for instance, the most frequently used functions
modeling delay are polynomials whose degrees and coeffi-
cients are determined from real-world data through statistical
evaluation methods, see Patrikkson [22], Branston [3], or the
Bureau of Public Roads [4]. The second question concerns
the design of stable transport protocols that are capable of
anticipating their influence of rate changes on prices.

A. Our Results

We study resource allocation games with price anticipating
users and marginal cost pricing. Our contributions to the
above two questions are the following (for an overview, see
Table I):



TABLE I
KNOWN AND NEW LOWER BOUNDS ON THE WORST CASE EFFICIENCY OF NASH EQUILIBRIA DEPENDING ON THE CLASS C OF ALLOWABLE MARGINAL

COST FUNCTIONS. THE CLASS C0conv DENOTES CONTINUOUS, NONDECREASING AND CONVEX FUNCTIONS. THE CLASS C1conv ⊂ C0conv
ADDITIONALLY REQUIRES DIFFERENTIABILITY. THE CLASS C1conc CONTAINS NONDECREASING, DIFFERENTIABLE, CONCAVE, AND SEMI-CONVEX

FUNCTIONS, E.G., log(x+ 1). RESULTS THAT ONLY HOLD FOR COURNOT GAMES (GAMES ON A SINGLE LINK) ARE MARKED WITH (∗). THE CLASS

Cj , j ∈ N ∪ {∞} DENOTES POLYNOMIAL FUNCTIONS WITH NONNEGATIVE COEFFICIENTS AND MAXIMUM DEGREE j .

Asymmetric Games Symmetric Games

|S| C0conv C1conv C1conc C1 Cd C0conv C1conv C1conc C∞

1 2/3 [13] 2/3 [13] 1/2∗ 3/4 [5] 3/4 2/3 [13] 2/3 1/2∗ 3/4

2 0 [13] 2/5 1/2∗ 8/11 [5] Ω
`
1/
√

d
´

4/5∗ [13] 4/5 2/3∗ 8/9

3 0 [13] 2/7 1/2∗ 5/7 [5] Ω
`
1/
√

d
´

6/7∗ [13] 6/7 3/4∗ 15/16

m 0 [13] 2
2m+1

1/2∗ 2m+4
3m+5

[5] Ω
`
1/
√

d
´

2m
2m+1

∗ [13] 2m
2m+1

m
m+1

∗ m (m+2)

(m+1)2

∞ 0 [13] 0 1/2∗ 2/3 [14] Ω
`
1/
√

d
´

1∗ [13] 1 1∗ 1

1) For asymmetric games on general networks (users
have arbitrary differentiable, nondecreasing and con-
cave utility functions) with m ≥ 2 users, we prove
a bound of 2/(2m + 1) on the worst case efficiency
for differentiable, nondecreasing and convex marginal
cost functions. In particular, this bound carries over
to practically relevant M/M/1 functions that model
queuing delays with arc-capacities. Moreover, we char-
acterize the price of anarchy for polynomial marginal
cost functions with nonnegative coefficients (previous
results, e.g. [14], only covered linear marginal costs).

2) For symmetric games (users have equal utility func-
tions and equal strategy space), we present a series of
results showing that the efficiency of Nash equilibria
significantly improves. In particular, we prove that the
worst case efficiency for polynomial marginal costs is
exactly 3/4.

3) For Cournot games on a single link with differentiable,
nondecreasing, semi-convex and concave marginal cost
functions, we prove that the price of anarchy is at most
1/2. This result holds for an arbitrary number of users.
If additionally users have the same utility function, we
prove a bound of m/(m+ 1).

4) We define a class D of distributed dynamics that
can be implemented by end users. We show that this
class contains, among others, the gradient method and
certain replicator dynamics known from evolutionary
game theory, see Wardrop [29] and Fischer et al. [7].
We prove that dynamics from D converge to a Nash
equilibrium from any initial value if the game admits
a potential function. We show that a potential function
always exists if (i) marginal cost functions are linear, or
(ii) all users have the same utility function and share
a common set of paths. We also show that without
restrictions on utility functions and the underlying net-
work, the only marginal cost functions that guarantee
the existence of a potential are affine linear functions.

B. Significance and Techniques

Our first results generalize the result of Johari and Tsit-
siklis [14] for linear marginal cost functions. We prove a
tight characterization of the price of anarchy for polynomial
marginal cost functions. It is worth noting that our proof
technique is significantly simpler than that of [14]. In [14]
the authors explicitely identify the worst possible game by
analytically solving a sequence of quadratic optimization
problems. Hence, this approach becomes increasingly com-
plicated if such optimization problems involve polynomial
cost functions of higher degree. Our approach hinges on
variational inequalities, which are used to relate the total
utility of a Nash flow to that of an optimal flow. As a
consequence, this technique can be applied to derive bounds
on the price of anarchy for arbitrary subclasses of semi-
convex marginal cost functions, see for instance our results
for concave marginal cost functions. Additionally, our proof
technique does not make use of the combinatorial structure
of networks. In fact, most of our results for bounding the
price of anarchy carry over to general congestion games with
fractional assignments and elastic demands.

While our focus is on the marginal pricing scheme,
Chen and Zhang [5] recently presented a class of pricing
mechanisms satisfying certain axioms for which they proved
improved bounds on the price of anarchy, if users are price
anticipating. Their results hold for quadratic total cost, which
correspond to linear marginal cost. For proving bounds on the
price of anarchy for more general cost functions and general
pricing schemes the technique presented in this paper can be
applied to the setting of Chen and Zhang.

Finally, we study distributed dynamics that can be imple-
mented by users. Using potential theory, we derive conditions
under which these dynamics globally converge to a Nash
equilibrium. As a byproduct of our analysis, we establish
(under mild differentiability assumptions) a characterization
of the existence of potentials. Since the initiating paper
of Rosenthal [24] about congestion games and potential
functions, a central topic of game theory is to determine
classes of games that admit a potential. Thus, we believe that



our result is of independent interest as it precisely describes,
which classes of resource allocation games (depending on the
class of marginal cost functions) admit a potential function.

C. Related Work

It is well known that Nash equilibria can be inefficient
in the sense that they need not achieve socially desirable
objectives. Koutsoupias and Papadimitriou [17] initiated the
investigation of the efficiency loss caused by selfish behavior.
They introduced a measure to quantify the inefficiency of
Nash equilibria which they termed the price of anarchy.
The price of anarchy is defined as the worst-case ratio of
the social welfare of a system optimum and that of a Nash
equilibrium.

Moulin [20] studied the price of anarchy for resource
allocation games with three different pricing mechanisms
that are based on cost sharing principles. The used social
welfare function, however, differs from our setting and, thus,
the derived bounds are not transferable. Chen and Zhang [5]
defined certain axioms for a feasible pricing mechanism and
derived for quadratic cost functions (which corresponds to
linear marginal cost functions) a slightly better efficiency
guarantee (0.686) than the bound (2/3) proved for the
marginal cost pricing, see Johari and Tsitsiklis [14].

Related to network resource allocation games are network
routing games. In a seminal work, Roughgarden and Tardos
[27] showed that the price of anarchy for network routing
games with nonatomic players and linear latency functions
is 4/3. The case of more general families of latency functions
can be found in the book by Roughgarden [26] and the survey
by Altman et al. [2].

Even closer to the model considered in this paper are
network routing games with a finite number of players who
can split the flow along available paths, see Altman et al. [1],
Haurie and Marcotte [10], Harks [8], Hayrapetyan et al. [11]
and Cominetti et al. [6]. Haurie and Marcotte presented a
general framework for studying atomic splittable network
games with elastic demands. This class of games implicitly
contains the resource allocation games with price anticipating
users if latency functions are interpreted as marginal cost
functions and the elastic demand functions model the equi-
librium demand functions for the resource allocation game
involving concave utility functions. Haurie and Marcotte,
however, do not study the efficiency of Nash equilibria
with respect to an optimal solution. Altman et al. [1] and
Cominetti et al. [6] studied the atomic splittable selfish
routing model. Altman et al. bounded the price of anarchy
for monomial latency functions. They also derived conditions
under which a Nash equilibrium is unique. Uniqueness
of Nash equilibria has been further studied by Orda et
al. [21]. The main difference between our model and that of
Harks [8], Hayrapetyan et al. [11] and Cominetti et al. [6] is
that our model involves elastic demands that are strategically
set by players according to their utility functions.

II. THE MODEL

In a network resource allocation game we are given a
directed network G = (V,A) and a set S of users with
cardinality |S| = m. Each user s ∈ S is characterized
by an origin-destination pair of nodes and a collection of
paths Ps available through the network. We will assume
that sets of paths Ps are disjoint, so that for each path P
there exists a unique user s such that P ∈ Ps. This can
be done without loss of generality because if two users
share the same physical path, we capture it in our model
by creating two paths which use the same subset of physical
links. Let P = ∪sPs be the set of all available paths of
all users. A flow is then a function x : P → R

|P|
≥0 . For

every user s ∈ S, the demand ds =
∑
P∈Ps

xP specifies
the amount of flow over the available paths. For a given
flow x, we define the aggregate flow on an arc a ∈ A as
xa =

∑
P∈P:a∈P xP . The flow of user s is denoted by

xs : Ps → R|Ps|
≥0 and the aggregate flow of user s on arc a

is given as xsa =
∑
P∈Ps:a∈P xP . The benefit of sending at

rate ds is measured by the utility function Us (ds).
Assumption 2.1: The utility functions Us (ds) , s ∈ S,

are differentiable, strictly increasing, concave, and satisfy
Us(0) ≥ 0 for all s ∈ S.
Furthermore, each arc a ∈ A has an associated flow depen-
dent cost function, which is specified as follows.

Assumption 2.2: The total cost function for a flow x
is defined as C(x) =

∑
a∈A

∫ xa

0
ca(z) dz , where every

function ca (xa) , a ∈ A, is a differentiable, semi-convex,
nondecreasing function over xa ≥ 0, with ca(0) ≥ 0 and
limxa→∞ ca (xa) =∞. Note that a function is semi-convex
if xa ca

(
x) is a convex function of xa. Such functions are

also called standard [25].
Let us briefly explain the differences of our assumption
on marginal cost functions compared to Johari and Tsitsik-
lis [14]. In contrast to [14], we do not assume convexity of
marginal cost functions. In fact, semi-convexity is already
enough to ensure the existence of Nash equilibria. Semi-
convex functions may also be concave, thus, are capable of
modeling the effect of economies of scale. We do assume
(in contrast to [14]) that marginal cost functions are dif-
ferentiable. Even though this assumption is slightly more
restrictive, we are rewarded with a series of non-trivial
bounds on the price of anarchy, see Section III.

Remark 2.3: The total cost function C(x) is thus a non-
decreasing and convex function over x ≥ 0. We call the
functions ca(z), a ∈ A, marginal cost functions or simply
cost functions.

The total utility of a flow x satisfying demand (ds, s ∈ S)
is defined as

U(x) :=
∑
s∈S

Us(ds)− C(x) . (1)

A flow of maximum total utility is called optimal.
Suppose each user s chooses desired rates xP for every

path P ∈ Ps. Given the resulting flow x, the links choose
prices according to marginal cost ca(xa), for every a ∈ A.



If the flow of user s is xs supporting the demand ds, then
this user receives a utility of Us(ds) and pays

∑
P∈Ps

xP ·(∑
a∈P ca(xa)

)
. It is well known that if users are price

taking, that is, they treat ca(xa) as a constant, every Nash
equilibrium of the marginal pricing mechanism maximizes
total utility, see Kelly et al [16], Johari and Tsitsiklis [14].
When users anticipate the cost function ca(xa) on the links
a ∈ A, the payoff for every user s ∈ S is given by

Qs(xs;x−s) := Us (ds)−
∑
P∈Ps

∑
a∈P

ca(xa)xP , (2)

where x−s denotes the flow of all users except s. Unless
stated otherwise, the strategy space of source s is Rs =
R|Ps|
≥0 . We denote by R = ×

s∈S
Rs the set of strategy

profiles of all sources. Then, a resource allocation game I is
completely described by the tuple I =

(
G,S, R, U, c

)
.

Remark 2.4: Using Assumptions 2.1 and 2.2, we obtain
lim
|xs|→∞

Qs (xs;x−s) = −∞, hence, we can effectively re-

strict the strategy space for every user to a compact flow
polytope. As the payoff functions are concave, a Nash
equilibrium exists, see the result of Rosen [23].

III. PRICE OF ANARCHY

In the following, we will study the price of anarchy with
respect to a class of marginal cost functions C satisfying
Assumption 2.2. Throughout the paper we assume that utility
functions for every instance satisfy Assumption 2.1.

Definition 3.1: Let C be a class of marginal cost functions.
Let I

(
C
)

be the set of all resource allocation games with
marginal cost functions in C. For a game I ∈ I

(
C
)
, let

yI be an optimal flow and let XI be the set of pure Nash
equilibria, respectively. Then, the worst case efficiency of
Nash equilibria is defined by

ρ
(
C
)

= inf
I∈I(C)

inf
xI∈XI

UI(x)
UI(y) ,

where UI is the total utility function for instance I . Con-
versely, ρ

(
C
)−1

defines the price of anarchy.
With this definition, the result of Johari and Tsitsiklis [14]
reads as ρ

(
C1
)

= 2/3, where C1 :=
{
c(z) = a1 z+a0, a0 ≥

0, a1 ≥ 0
}

.
In the following, we define the user corrected marginal

path costs ĉP (x) for every s ∈ S by

ĉP (x) =
∑
a∈P

(
ca(xa) + c′a(xa)xsa

)
, P ∈ Ps .

Lemma 3.2: Consider a game I . Let x be a Nash flow and
let y be an optimal flow with flow value d and d̄, respectively.
Then, the following conditions hold for all s ∈ S:

∇Qs(xs;x−s) (gs − xs) ≤ 0, ∀gs ≥ 0 , (3)

U ′s (ds) = ĉP (x), for xP > 0, P ∈ Ps ,
U ′s (ds) ≤ ĉP (x), for xP = 0, P ∈ Ps ,

(4)

U ′s
(
d̄s
)

=
∑
a∈P

ca(ya), for yP > 0, P ∈ Ps ,

U ′s
(
d̄s
)
≤
∑
a∈P

ca(ya), for yP = 0, P ∈ Ps .
(5)

Proof: The function Qs is differentiable and concave
with respect to xs. Furthermore, the set of flows is convex.
Since x is a Nash equilibrium, the flow xs is a maximizer of
Qs(xs;x−s). Thus, we can invoke the variational inequality
as a necessary (and sufficient) optimality condition giv-
ing (3). Note that the derivative with respect to xP , P ∈ Ps,
is given by ∂Qs

∂xP
(xs;x−s) = U ′s (ds) − ĉP (x) . The second

and third conditions follow directly from the Karush-Kuhn-
Tucker conditions for maximizing Qs(xs;x−s) and U(y),
respectively.

The next lemma, which can be found in Johari and
Tsitsiklis [14], Moulin [20], and Chen and Zhang [5], shows
that for bounding the price of anarchy it is sufficient to bound
the price of anarchy for linear utility functions and single link
networks. The idea for proving the lemma is to observe that
every Nash flow x for a game I can be transformed to a
Nash flow x̄ for a modified instance Ī , where linear utility
functions of the form Ūs(d̄s) = U ′s(ds) d̄s are used, where
ds is the equilibrium demand of source s in the game I .

Lemma 3.3: [[5],[14],[20]] For bounding the price of an-
archy, it is enough to consider instances in which utility
functions are linear.
In the following, we represent the total utility of a Nash
flow and that of an optimal flow in terms of the involved
cost functions.

Lemma 3.4: Consider a game I in which utility functions
are linear, that is, Us(ds) = us ds, us ≥ 0, s ∈ S. Let y be an
optimal flow and x be a Nash flow. Then, y and x generate
total utility of U(y) =

∑
a∈A

(
ca(ya) ya −

∫ ya

0
ca(z) dz

)
and U(x) =

∑
a∈A

(
c(xa)xa +

∑
s∈S c

′
a(xa) (xsa)2 −∫ xa

0
ca(z) dz

)
, respectively.

Proof: Using the optimality condition (5) in Lemma 3.2
we get us =

∑
a∈P ca(ya) for all s ∈ S, P ∈ Ps with

yP > 0. Thus, we obtain

U(y) =
∑
s∈S

us
( ∑
P∈Ps

yP )−
∑
a∈A

∫ ya

0

ca(z) dz

=
∑
a∈A

(
ca(ya) ya −

∫ ya

0

ca(z) dz
)

proving the first part of the lemma. For proving the second
equation, we use the optimality condition (4), which implies
us =

∑
a∈P ca(xa) + c′a(xa)xsa, for all s ∈ S, P ∈ Ps with

xP > 0.
Lemma 3.5: Consider a game I with |S| = m in which

utility functions are linear. Let λ > 0, x be a Nash flow, and
y be an optimal flow. For every a ∈ A, we define µa :=
maxj∈S

{xj
a

xa

}
∈ [ 1

m , 1], if xa > 0 and µa := 0, otherwise.
Then, the following inequality is valid:

U(y) ≤ λU(x) +
∑
a∈A

[
ca(xa) ya + c′(xa)µa xa ya

− λ τa(ca, xa, µa)−
∫ ya

0

ca(z) dz
]



where τa(ca, xa, µa) := ca(xa)xa + µ2
a c
′
a(xa)x2

a −∫ xa

0
ca(z) dz.

The proof can be found in Section VIII.
Lemma 3.5 provides an inequality of the form U(y) ≤

λU(x)+
∑
a∈A γa(ca, xa, ya, µa). The main idea for proving

bounds on the price of anarchy is to bound γ from above
in terms of ω U(y) for some ω < 1. This would imply the
inequality U(y) ≤ λU(x)+ω U(y), which yields a bound on
the worst case efficiency of 1−ω

λ . As a consequence, we will
then optimize over λ so as to derive the best possible bound.
This technique (λ-technique) has been previously applied
to bounding the price of anarchy in congestion games, see
Harks [8].

To this end, we define for a cost function c and parameters
λ > 0 and µ ∈ {0} ∪ [ 1

m , 1] the following value:

ωm(c;λ) := sup
µ∈{0}∪[ 1

m ,1]

(x,y)∈R2
+

γ(c, x, y, µ)
c(y) y −

∫ y
0
c(z) dz

. (6)

For a given class of functions C, we further define
ωm(C;λ) := sup

c∈C
ωm(c;λ). Moreover, for a class C of

marginal cost functions that satisfies Assumption 2.2, we de-
fine the feasible λ-region as Λm(C) := {λ > 0|ωm(C;λ) <
1}.

Theorem 3.6: Let C be a class of marginal cost functions.
Consider the set I(C) of games with at most m ∈ N users.
Then, the worst case efficiency is at least

ρ(C) ≥ sup
λ∈Λm(C)

[
1− ωm(C;λ)

λ

]
.

Proof: The proof follows directly from Lemma 3.3,
Lemma 3.5 and the definition of ωm(C;λ).
Notice that Theorem 3.6 can now be used to derive bounds
on the price of anarchy for arbitrary classes of cost functions
(satisfying Assumption 2.2). The challenge is to calculate the
function ωm(C;λ) for a given class C.

A. Convex Marginal Cost Functions

We start with applying Theorem 3.6 for arbitrary convex
marginal cost functions.

Theorem 3.7: Let Cconv be a class of convex marginal
cost function. Consider the set I(Cconv) of games with at
most m ∈ N users. Then, ρ(Cconv) ≥ 2

2m+1 .
The proof can be found in Section VIII.

The above result gives a finite price of anarchy for
convex marginal cost functions provided a finite number
users participate in the game. Compared to the negative result
of Johari and Tsitsiklis [13], this result shows that a mild
differentiability assumption on cost functions is enough to
obtain a bounded efficiency loss.

B. Polynomial Marginal Cost Functions

In practice, the most frequently used functions modeling
delay are polynomials whose degrees and coefficients are
determined from real-world data through statistical evalua-
tion methods, see Patrikkson [22] and Branston [3]. Thus,
we will explicitly calculate the price of anarchy for the class

Cd :=
{
c(z) =

∑d
j=1 aj z

j , aj ≥ 0, j = 0, . . . , d
}

of
polynomials with nonnegative coefficients. To simplify the
analysis, we focus on the general case |S| ∈ N ∪ {∞}. Let
us define ω∞(c;λ) := limm→∞ ωm(c;λ). Then, it is easy to
see that ω∞(c;λ) ≥ ωm(c;λ) for any m ∈ N.

Remark 3.8: We observe that for polynomial marginal
cost functions the total cost function C(x) is linear in
each of the marginal cost functions ca(·). We can therefore
reduce the analysis to monomial price functions. For this, we
subdivide each arc a into d arcs a0, . . . , ad with monomial
price functions cas

(x) = cs x
s for any s = 0, . . . , d.

Lemma 3.9: Consider the class Mj :=
{
c(z) =

aj z
j , aj ≥ 0, j ∈ N

}
. Then, ω∞(Mj ;λ) is at most[( 1+µ(j) j

λ (1+µ(j)2 j+µ(j)2)

)j (
µ(j) j + 1

)
− 1
]
/j, where µ(j) =

1√
j+1

.
Proof: Using (6) for c ∈ Mj , ω∞(c;λ) is at most

supµ∈[0,1],β≥0

(
βj
(
1 + j µ

)
− λ

(
1 + µ2 j − 1

j+1

)
βj+1 −

1
j+1

)
/
(
1 − 1

j+1

)
, where β := x

y (the case y = 0 can be
excluded since then the expression becomes negative). The
supremum with respect to β is a strictly convex program
with the unique global maximizer β∗ = 1+µ j

λ
(

1+µ2 j+µ2
) . Thus,

since c ∈ Mj was arbitrary, ω∞(Mj ;λ) is bounded from
above by

sup
µ∈[0,1]

[(
1+µ j

λ (1+µ2 j+µ2)

)j (
µ j + 1

)
− 1
]
/j.

The unique maximizer for this supremum is given by µ(j) =
1√
j+1

.
Theorem 3.10: Let Cd be the class of polynomial cost

functions with nonnegative coefficients and maximum degree
d ∈ N. Then,

ρ(Cd) ≥
[(

1 + µ(d) d
)1+ 1

d

]
/
[
1 + µ(d)2 d+ µ(d)2

]
,

where µ(d) = 1√
d+1

. Furthermore, this bound is tight.
The proof of Theorem 3.10 can be found in Section VIII.

Remark 3.11: The worst case efficiency for marginal cost
functions in Cd is asymptotically bounded from below by
Ω
(
1/
√
d
)
.

IV. SYMMETRIC GAMES

In this section, we consider symmetric games in which
all users have the same utility function U(·) and the same
strategy space, that is, Pi = Pj for all i, j ∈ S. In this case,
we get improved bounds on the price of anarchy.

Consider a symmetric game with |S| = m users. Then,
there exists a symmetric optimal flow y such that ys = y

m
for all s ∈ S . Using an adapted version of Lemma 3.5, we
get the following variational inequality relating any Nash
equilibrium flow to a symmetric optimal flow.∑

a∈A
ca(ya) ya ≤

∑
a∈A

[
ca(xa) ya + c′(xa)xa

ya
m

]
. (7)

Furthermore, Lemma 3.4 implies that U(x) is greater
or equal than

∑
a∈A

(
c(xa)xa +

∑
s∈S c

′
a(xa) x

2
a

m −∫ xa

0
ca(z) dz

)
dz.



In the following, we evaluate the efficiency of Nash equi-
libria for symmetric games and several classes of marginal
cost functions using a similar technique as in the asymmetric
case. For a cost function c and parameters λ > 0 and m ∈ N
we define the value δm(c;λ) as in (6) except that

γ(c, x, y, µ) = c(x) y + c′(x)
x y

m
−
∫ y

0

c(z) dz

− λ
(
c(x)x+ c′(x)

x2

m
−
∫ x

0

c(z) dz
)
.

For a given class of functions C, we further define
δm(C;λ) := sup

c∈C
δm(c;λ). Moreover, we define ∆m(C) :=

{λ > 0| δm(C;λ) < 1}.
Theorem 4.1: Let C be a class of marginal cost functions.

Consider a set I(C) of symmetric games with at most m ∈ N
users. Then, the worst case efficiency is at least

ρ(C) ≥ sup
λ∈∆m(C)

[
1− δm(C;λ)

λ

]
.

Proof: The proof follows directly from Lemma 3.5, the
representation of U(x) and the definition of δm(C;λ).

A. Convex Marginal Cost Functions

The following result for convex marginal cost functions
has been previously obtained by Johari and Tsitsiklis [13]
for the special case of single link networks. We present here
a more general result (arbitrary symmetric strategy space)
with a simpler proof.

Proposition 4.2: Let Cconv be the class of convex
marginal cost function. Consider the set I(Cconv) of games
with symmetric utility functions and strategy space and at
most m ∈ N users. Then, ρ(Cconv) ≥ 2m

2m+1 .
Proof: The proof proceeds along the lines of the proof

of Theorem 3.7, except that λ = 1+2m
2m and the values µ and

µ2 are replaced by 1
m .

B. Polynomial Marginal Cost Functions

For polynomials with nonnegative coefficients and arbi-
trary degree d ∈ N ∪ {∞} we prove the following.

Theorem 4.3: Let C∞ be the class of polynomial marginal
cost function with nonnegative coefficients and arbitrary
degree d ∈ N ∪ {∞}. Consider the set I(C∞) of games
with symmetric utility functions and strategy space. Then,
ρ(C∞) ≥ 3

4 . Furthermore, this bound is tight.
The proof proceeds along similar lines as in the asymmetric
case and is omitted.

V. CONCAVE COURNOT GAMES

In the following, we analyze the efficiency loss of Nash
equilibria for Cournot games. In Cournot games, it is as-
sumed that the network consists of a single link only. We will
establish bounds on the price of anarchy for Cournot games
involving concave marginal cost functions. These functions
are of particular interest as they model the effect of economy
of scale.

Theorem 5.1: Let Cconc be a class of concave marginal
cost functions. Consider the set I(Cconc) of resource alloca-
tion games on a single link. Then, ρ(Cconc) ≥ 1

2 .

Proof: Let x and y be Nash and optimal flows,
respectively. Let x := β y. Then, on the one hand side, the
variational inequality gives

c(y) ≤ c(β y) + c′(β y)β µ y.

On the other hand, since c is concave, we have

c(y) ≤ c(β y) + c′(β y) (1− β) y.

Thus, it follows that β ≥ 1
1+µ must hold. Then, since µ ≤

1 and U(z) is concave, we have β ≥ 1/2 and U(β y) ≥
β U(y).

Similar to the previous section, we will also provide a
bound that holds for symmetric Cournot games with concave
marginal cost functions.

Proposition 5.2: Let Cconc be the class of concave
marginal cost functions. Consider the set I(C) of games with
symmetric utility functions and at most m ∈ N users. Then,
ρ(Cconc) ≥ m

m+1 .
For the proof, we refer to the full version [9]. Proof:
For concave marginal cost functions, we have the following
relationship

c(x) + c′(x) (y − x) ≥ c(y), for all y ≥ 0.

Let x and y be Nash and optimal flows, respectively. Let x :=
β y. Then, on the one hand side, the variational inequality
gives

c(y) y ≤ c(β y) y + c′(β y)
β y2

m
,

which implies (y > 0)

c(y) ≤ c(β y) + c′(β y)
β y

m
.

On the other hand, we have

c(y) ≤ c(β y) + c′(β y) (1− β) y.

Thus, it follows that β ≥ m
m+1 must hold. Then, since U(z)

is concave, we have U(β y) ≥ β U(y).

VI. STABILITY OF DISTRIBUTED DYNAMICS AND
POTENTIAL FUNCTIONS

In this section, we define a class of distributed dynamics
DI for the resource allocation game I and show that all dy-
namics from this class converge to a Nash equilibrium from
any initial state, provided that I admits a potential function.
One representative of this class is the well known gradient
descent method. Another representative is a combination of
the gradient method with atomic splittable routing principles,
inspired by replicator dynamics known from evolutionary
game theory, see Wardrop [29] and Fischer et al. [7]. For
a detailed description of this dynamic, we refer to the full
version [9].

As we link the stability of a class of dynamics with a
potential function argument, we consequently study nec-
essary and sufficient conditions for a game to possess a
potential function. We show that a game I with affine linear
marginal costs admits a potential function. We also show that
affine linear cost functions are the only functions that always



guarantee the existence of a potential. For nonlinear marginal
costs, we show that if we restrict the set of joint strategies
R to symmetric flows, then a potential function exists.

A. Stability of Distributed Dynamics

We will now define a class DI of dynamics that are stable
if game I admits a potential function.

Definition 6.1: Given a game I , we say that a dynamic
described by a differential equation ẋP = f IP (x), P ∈ P ,
belongs to the class DI if

1) x being a Nash equilibrium of I implies f IP (x) =
0, ∀P ∈ P ,

2)
∑
P∈P

∂Qs(x)
∂xP

· f IP (x) ≥ 0, for all flows x ∈ R and
s ∈ S such that P ∈ Ps,

3)
∑
P∈P

∂Qs(x)
∂xP

· f IP (x) = 0 if and only if x ∈ R is a
Nash equilibrium.

Before we study stability of dynamics in DI , we define
the notion of an (exact) potential function for the game I
and present two necessary and sufficient conditions for a
game to admit a potential. The following definition is due to
Monderer and Shapley [19].

Definition 6.2 (Monderer and Shapley [19]): A function
Φ : R|P|≥0 → R is a potential function for the game I if
and only if

Φ(x)− Φ(ys, x−s) = Qs(x)−Qs(ys, x−s),

forall x, y ∈ R|P|≥0 , ∀s ∈ S .
In other words, a potential function for game I is a

real-valued function on the strategy space, which exactly
tracks the difference in the payoff that occurs if one player
unilaterally deviates. Similar to [19], we observe that if
the payoffs are continuously differentiable, we obtain a
characterization of potential functions in terms of the first
derivatives of the payoffs. Different to [19], where strategies
are scalars, in our case the strategies are vectors from R|P|≥0 .

Lemma 6.3: Given that payoff functions are continuously
differentiable, a function Φ : R|P|≥0 → R is a potential
function for the game I if and only if

∂Φ
∂xP

=
∂Qs
∂xP

, ∀s ∈ S, ∀P ∈ Ps .
Proof: Obvious.

Again, similar to [19], given that the payoffs are twice
continuously differentiable, we obtain the following charac-
terization of games admitting a potential function.

Lemma 6.4: A game I , where all payoffs are twice con-
tinuously differentiable, admits a potential function if and
only if

∂2Qs
∂xP∂xQ

=
∂2Qt

∂xP∂xQ
, ∀s, t ∈ S, ∀P ∈ Ps, Q ∈ Pt.

Proof: Obvious.
Now, the following theorem establishes a stability result

for dynamics in DI .
Theorem 6.5: If a game I admits a potential function ΦI ,

all dynamics in DI converge to a Nash equilibrium from any
initial value x ∈ R.

Proof: We will show that ΦI is a Lyapunov function for
an arbitrary dynamic in DI defined by ẋP = f IP (x), P ∈ P .
According to the definition of a Lyapunov function, we need
to show that∑

P∈P

∂ΦI(x)
∂xP

· f IP (x) ≥ 0, ∀x ∈ R ,

and that
∑
P∈P

∂ΦI(x)
∂xP

· f IP (x) = 0 if and only if x ∈ R is
a Nash equilibrium. However, both conditions follow from
the definition of DI and Lemma 6.3.

Note that the first condition in Definition 6.1 is not
required for the proof. Indeed, what we show in Theorem 6.5
is that any trajectory converges to the set of Nash equilibria.
However, Theorem 6.5 does not exclude the case, where the
trajectory continues to oscillate within this set. Condition 1
is a sufficient condition to preclude such oscillations. From
Theorem 6.5 it immediately follows that the gradient method
is asymptotically stable for all games I that admit a potential
function.

Corollary 6.6: Let I admit a potential function. Then, the
gradient method

ẋP = κs
(
ds
)[
U ′s
(
ds
)
− ĉP (x)

]+
xP
, ∀P ∈ Ps, s ∈ S , (8)

where κs
(
ds
)

is a parameter determining the step size along
the gradient, and

[a]+b =

{
0 if b = 0 and a < 0 ,
a otherwise ,

converges to a Nash equilibrium of game I from any initial
value x ∈ R.

Proof: All we need to show is that the gradient
method is in DI . First, note that condition 1 in Defini-
tion 6.1 is implied by equation (4) in Lemma 3.2. Next,
observe that

∑
P∈P

∂Qs(x)
∂xP

· f IP (x) is equal to κs (ds) ·∑
P∈P

(
[U ′s (ds)− ĉP (x)]+xP

)2

≥ 0 , and that due to (4)
in Lemma 3.2 equality holds if and only if x is a Nash
equilibrium.

In the following, we propose a distributed dynamic, which
is a combination of the gradient method with atomic split-
table routing, inspired by replicator dynamics known from
evolutionary game theory, see Wardrop [29] and Fischer et
al. [7]. We show that this dynamic is in DI so that it is
asymptotically stable whenever I admits a potential function.

The interpretation of atomic splittable routing is that the
flow of each source is seen as a population of agents
each controlling a very small fraction of flow. An agent
continuously samples an alternative path in the network and
switches to the sampled path with a probability depending on
the difference of costs of the own and the sampled path. We
apply this model in the fluid limit so that these two logical
steps result in a single dynamic expressed by a differential
equation. Our setting generalizes the model of [7] as we
allow players to strategically vary their demands. Further,
instead of summarized marginal link costs, we let the agents
minimize user corrected path costs in order to count for the



ability of the sources to anticipate the costs, which makes
the stability analysis more challenging.

The routing update consists of two logical steps: sampling
and migration. During the sampling step, each agent using
path P ∈ Ps samples a path Q ∈ Ps with probability
σPQ. During the migration step, each agent switches to the
sampled path Q with probability µPQ

(
ĉP − ĉQ

)
depending

on the difference of path costs. An example for a sampling
policy is uniform sampling with σPQ = 1

|Ps| for P,Q ∈ Ps,
where each path is sampled with an equal probability. An
example for a migration policy is linear migration policy
µPQ

(
ĉP − ĉQ

)
= max{ ĉP−ĉQ

ĉmax
, 0}. We restrict the class of

considered sampling policies and migration probabilities by
the following Assumption.

Assumption 6.7:
1) Sampling policies are assumed to be strictly positive:

σPQ > 0, ∀P,Q ∈ Ps, ∀s ∈ S.
2) Migration probability functions µPQ(·), P,Q ∈
Ps, s ∈ S, are assumed to be continuous and strictly
increasing with µPQ(0) = 0. For brevity, we will write
µPQ instead of µPQ

(
ĉP − ĉQ

)
.

Let us denote by γP the fraction of demand of user s that is
routed over the path P ∈ Ps so that

∑
P∈Ps

γP = 1, ∀s ∈
S. Then, the sample and migration probabilities induce a
migration rate rPQ = γP · σPQ · µPQ. The growth rate of
the fraction of flow on path P is then γ̇P =

∑
Q∈Ps

(
rPQ−

rQP
)
. Note that this dynamic is a pure rerouting, it does

not change the total demand of user s since
∑
P∈Ps

γ̇P = 0.
Combining this with a gradient method to update the demand
of a source, we obtain the following dynamics:

ḋs = κs
(
ds
)[
U ′s
(
ds
)
− ĉs(x)

]+
ds
, ∀s ∈ S, (9)

γ̇P =
∑
Q∈Ps

(
rQP − rPQ

)
, ∀P ∈ Ps, s ∈ S. (10)

Here, ĉs(x) =
∑
P∈Ps

γP · ĉP (x) are the average user-
corrected path costs of the user s. Note that this dynamic
can also be expressed in terms of the path flows as follows.

ẋP = γ̇P ds + γP ḋs , ∀P ∈ Ps, s ∈ S ,

where γ̇ and ḋ are as in (9), (10).
Similar to a feasible flow x ≥ 0, we want to define a

feasible tuple (γ, d).
Definition 6.8: A tuple (d, γ) is feasible if and only if

d, γ ≥ 0 and
∑
P∈Ps

γP = 1, ∀s ∈ S.
Obviously, each feasible flow x ≥ 0 corresponds to a unique
feasible tuple (d, γ) and vice versa. Now we are ready to
prove the following Theorem.

Theorem 6.9: For a game I , the dynamic defined by (9),
(10) is contained in DI and thus converges to a Nash
equilibrium whenever I admits a potential.
The proof is contained in the full version [9].

B. Potential Functions

So far, we defined a class of dynamics that are stable
whenever a game I admits a potential function. In the
following, we study necessary and sufficient conditions for

existence of such a function. The next theorem shows that
without any restriction of the network topology and the class
of utility functions, the only class of marginal cost functions
that always admits a potential is the class of affine linear
functions.

Theorem 6.10: Let I(C̄) be the set of games with
marginal cost functions in C̄ such that payoff functions
are twice continuously differentiable. Then, the following
statements are equivalent:

1) Every I ∈ I(C̄) is a potential game
2) C̄ contains only affine linear functions on R≥0

Proof: Calculating the corresponding second deriva-
tives, Lemma 6.4 implies that the game I possess a potential
if and only if for all flows x ∈ R∑

a∈P∩Q
c′′a(xa)

(
xsa − xta) = 0 (11)

for all s, t ∈ S, P ∈ Ps, Q ∈ Pt . The direction 2. ⇒ 1. is
proved by simply verifying that affine linear marginal cost
functions satisfy the above condition. For proving 1. ⇒ 2.,
we will assume that marginal cost functions are not linear
and then construct a game that violates condition (11). First,
observe that c is affine linear onR≥0 if and only if c′′(z) = 0
for all z ∈ R≥0. Assume by contradiction that C̄ contains
a function c that is not affine linear on R≥0. Then, there
exists a z0 ∈ R≥0 such that c′′(z0) 6= 0. W.l.o.g., we assume
c′′(z0) > 0. We further assume w.l.o.g. that z0 > 0, since
if z0 = 0, by continuity of c′′(x), there exists z̃0 > 0 with
c′′(z̃0) > 0. Now consider a game I , where two sources share
a single link. Let the flow of source 1 be x1 = 1/3 z0 and the
flow of source 2, x2 = 2/3 z0. It is easy to see that for x = z0

condition (11) fails as c′′(z0)
(
x2− x1) = c′′(x) 1/3 z0 > 0.

A potential function for linear marginal cost functions is
given in the full version [9].

Theorem 6.10 implies that if all marginal cost functions
are affine linear then all dynamics in DI converge to a Nash
equilibrium from any initial state x ∈ R. Further, it implies
that in order to find a potential function for games with
nonlinear marginal costs, we have to restrict the topology,
the utility functions, or the set of common strategies R.
Condition (11) implies another sufficient condition for an
instance I to possess a potential, which is based on the notion
of a symmetric flow.

Definition 6.11: A flow x ≥ 0 is called symmetric, if
xsa = xta, ∀a ∈ Ps ∩ Pt, ∀s, t,∈ S.

Theorem 6.12: Let I be a game with twice continuously
payoff functions. Let the set of common strategies R be
restricted to symmetric flows. Then, I admits a potential
function.

Proof: Follows from condition (11) in Lemma 6.4 and
the definition of a symmetric flow.

The following corollary follows straight-forwardly.
Corollary 6.13: Let I be a game, where all sources share

the same set of physical paths, have the same utility func-
tions, and all marginal cost functions are twice continuously
differentiable. Then, the gradient method and the combi-



nation of gradient method and atomic splittable routing
converge to a Nash equilibrium from any symmetric initial
state.
A potential function for this setting is given in the full
version [9].

VII. EXTENSIONS AND FUTURE WORK

In this work, we studied the efficiency and stability of
Nash equilibria in resource allocation games with price
anticipating users. We considered the marginal cost pricing
mechanism and derived various results about the price of
anarchy depending on the structure of allowable marginal
cost functions. In particular, we were able to provide tight
bounds for the price of anarchy for polynomial marginal link
costs. As this class of functions is quite rich and widely used
for modeling for instance queuing delays at links, we see our
results as an important contribution towards the applicability
of the marginal pricing mechanism in practice.

The second contribution of this paper concerns the design
of a class of distributed dynamics that converge towards
a Nash equilibrium. We identified conditions under which
global stability of the proposed dynamics can be proved.
An open issue is the stability of the proposed class of
algorithms if communication delays are considered. While
the stability of delayed differential equations for resource
allocation games with price taking users has been well
studied, this issue is largely open for games with price-
anticipating users.

VIII. PROOFS

Proof of Lemma 3.5

Proof: We first sum the variational inequality (3) in
Lemma 3.2 with gs = ys over all s ∈ S.∑

s∈S
U ′s(ds) (d̄s − ds)−

∑
a∈A

[
ca(xa) (ya − xa)

+
∑
s∈S

c′(xa)xsa (ysa − xsa)
]
≤ 0.

Using that utility functions are linear and rewriting yields∑
s∈S

us d̄s ≤
∑
s∈S

us ds +
∑
a∈A

[
ca(xa) (ya − xa)

+
∑
s∈S

c′a(xa)xsa (ysa − xsa)
]
.

Using Lemma 3.4 and the definition of µa we get∑
a∈A

ca(ya) ya ≤
∑
s∈S

us ds +
∑
a∈A

[
ca(xa) (ya − xa)

+ c′(xa)µa xa ya −
∑
s∈S

c′(xa) (xs)2
]

=
∑
a∈A

[
ca(xa) ya + c′(xa)µa xa ya

]
.

0
0

c(z)

∆1

∆2

Lβ y(z)

c(β y)

yβ y

Fig. 1. The gray-shaded area illustrates the term
R y
0 c(z) dz −R β y

0 c(z) dz = ∆1 + ∆2. The linear approximation Lβ y(·) of the convex
function c(·) bounds c(z) from below, i.e., Lβ y(z) ≤ c(z). Then, we have

∆1 = (y − β y) c(β y) and ∆2 ≥ (y−β y)2
2

c′(β y).

Subtracting
∑
a∈A

∫ ya

0
ca(z) dz on both sides gives

U(y) ≤
∑
a∈A

[
ca(xa) ya + c′(xa)µa xa ya

−
∫ ya

0

ca(z) dz
]
.

Now we add and subtract λU(x) for λ ≥ 0 on the right-hand
side.

Finally, we observe that λU(x) ≥ λ
(∑

a∈A
[
ca(xa)xa+

µ2
a c
′(xa)x2

a −
∫ xa

0
ca(z) dz

])
. Thus, the claim is proved.

Proof of Theorem 3.7

Proof: We define λ = 1
2 + m and prove the claim by

showing ωm(c;λ) ≤ 0 for c ∈ Cconv . We proceed by a case
distinction. First, we assume x ≥ y. Then, the nominator
of (6) can be bounded from above as follows.

c(x) y + c′(x)µx y − λ τ(c, x, µ)−
∫ y

0

c(z) dz

≤ c′(x)
(
µx y − λµ2 x2

)
≤ c′(x)x2

(
µ− λµ2

)
.

For the first inequality, we used that

c(x) y − λ c(x)x+ λ

∫ x

0

c(z) dz −
∫ y

0

c(z) dz ≤ 0,

since y ≤ x and λ ≥ 1. The second inequality follows from
y ≤ x and c′(x) ≥ 0. Then, λ = 1

2 +m yields ωm(c;λ) ≤ 0
as maxµ∈{0}∪[ 1

m ,1] µ− ( 1
2 +m)µ2 ≤ 0.

Now, we consider the case x < y. We define β := x
y ∈

[0, 1). We now observe that∫ y

0

c(z) dz − λ
∫ β y

0

c(z) dz =
∫ y

0

c(z) dz

−
∫ β y

0

c(z) dz − (λ− 1)
∫ β y

0

c(z) dz.

Then, we use the following inequality, which is illustrated
in Fig. 1.∫ y

0

c(z) dz −
∫ β y

0

c(z) dz ≥ (y − β y) c(β y)

+
(y − β y)2

2
c′(β y).



Together with

(λ− 1)
∫ β y

0

c(z) dz ≤ (λ− 1) c(β y)β y,

we obtain that ωm(c;λ) is at most

sup
β∈[0,1)

µ∈{0}∪[ 1
m ,1]

y∈R+

c′(β y) y2
(
β µ− λµ2 β2 − (1−β)2

2

)
c(y) y −

∫ y
0
c(z) dz

.

We now arrive at

max
β∈[0,1)

(
β µ− λµ2 β2 − (1−β)2

2

)
≤ µ (2+µ−2λµ)

2 (2λµ2+1) ,

where β∗ = µ+1
2λµ2+1 is the unique maximizer. Thus, since

λ = 1
2 +m and using that µ ≥ 1

m we obtain ωm(c;λ) ≤ 0.
Notice that also µ = 0 implies ωm(c;λ) ≤ 0.

Applying Theorem 3.6 for both cases proves the claim.

Proof of Theorem 3.10

Proof: We define λ =
[(

1 + µ(d) d
)1+ 1

d

]
/
[
1 +

µ(d)2 d + µ(d)2
]
. Then, invoking Lemma 3.9 implies

ω∞(Mj ;λ) ≤ 0 for all j < d and ω∞(Mj ;λ) = 0 for
j = d. Thus, using Theorem 3.6, we have λU(x) ≥ U(y).

Now we prove the upper bound. Consider a single link
with marginal cost function c(x) = xd for some d ∈ N.
Assume we have N users, where user 1 has the utility
function U1(x1) = x1, while the remaining N−1 users have
utility functions Uk(xk) = bxk for some b ∈ [0, 1] specified
later. We denote the total rate on the link by x(N). Then, the
Nash condition for user 1 yields 1 = x(N)d+d x(N)d−1 x1.

Thus, we have x1(N) = 1−xd

d x(N)d−1 . The conditions for users

k, k = 2, . . . , N yield xk(N) = b−x(N)d

d x(N)d−1 . Summing all
rates we get

x(N) = 1−x(N)d

d x(N)d−1 +
(
N − 1

) b−x(N)d

d x(N)d−1

⇔ x(N) =
( 1+(N−1) b

d+N

) 1
d .

We get limN→∞ x(N) = b
1
d , limN→∞ x1(N) =

b
1
d (1−b)
d b , limN→∞ b (N − 1)xk(N) = b

1
d (b d−1+b)

d . Thus,
we get in the limit for the total utility of the Nash flow x

lim
N→∞

U(x(N)) = b
1
d (1−b)
d b + b

1
d (b d−1+b)

d − b
1
d b
d+1 .

The optimal solution is given by y = (1, 0, . . . , 0) with total
utility of U(y) = 1 − 1

d+1 . Now choosing b = 1+d
3
2

d2+d+1 one
can check that the ratio U(x)

U(y) coincides with the lower bound
of the theorem.
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