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t-tests,F -tests and Otsu’s Methods for Image Thresholding
Jing-Hao Xue* and D. Michael Titterington

Abstract—Otsu’s binarisation method is one of the most popular image-
thresholding methods; Student’s t-test is one of the most widely-used
statistical tests to compare two groups. This paper aims to stress the
equivalence between Otsu’s binarisation method and the search for
an optimal threshold that provides the largest absolute Student’s t-
statistic. It is then naturally demonstrated that the extension of Otsu’s
binarisation method to multi-level thresholding is equivalent to the search
for optimal thresholds that provide the largest F -statistic through one-
way analysis of variance (ANOVA). Furthermore, general equivalences
between some parametric image-thresholding methods and the search
for optimal thresholds with the largest likelihood-ratio t est statistics is
briefly discussed.

Index Terms—Analysis of variance (ANOVA), F -tests, image thresh-
olding, likelihood-ratio tests, Otsu’s methods, Student’s t-tests.
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I. I NTRODUCTION

T HE purpose of image segmentation is to partition an image into
a number of segments, each segment containing some pixels

that belong to one ofK groups; the number of groups,K, is often
predetermined in practice [1], [2].

As the simplest technique for image segmentation, image thresh-
olding usually only needs the information embedded in gray levels
of pixels in an image.

For an image with the range of gray levels being[0, T ), an
image-thresholding method first assumes that theK groups are
distinguishable by their gray levels, then determines a vector of K−1
thresholds,t = (t1, . . . , tK−1) with t1 < . . . < tK−1, such thatK
intervals, [t0 = 0, t1), . . . , [tK−1, tK = T ), are constructed, and
finally assigns a pixel (denoted by its gray levelx) to groupk if x
lies in thek-th interval (i.e.x ∈ [tk−1, tk)).

The majority of image-thresholding methods are based on analysis
of the gray-level histogram of the image, and were developedfor
binarisation of the image into two groups (i.e.K = 2: one group for
the foreground and the other group for the background). Excellent
surveys and comparative studies have been reported in [3], [4], [5]
and [6], among others.

Among these methods, one of the most popular is Otsu’s approach
[7]. In the case of image binarisation (i.e.K = 2), the basic idea
of Otsu’s binarisation method to find an optimal thresholdt∗1 is as
follows.

First, given a candidate thresholdt1, the pixels are divided into
two groups. Then a measure of distance between the two groups,
defined as a ratioλ(t1) of the between-group varianceσ2

B(t1) to the
within-group varianceσ2

W (t1), can be calculated. Finally, thet1 that
provides the highest ratio is selected ast∗1.

As mentioned in [8], between-group variance and within-group
variance are two statistical terms used in analysis of variance
(ANOVA). Indeed, the use of the variance ratio ofσ2

B(t1) to σ2
W (t1)
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suggests that Otsu’s methods should bear some relationshipto two-
group (or more-commonly-termed two-sample)t-tests or their multi-
group counterpart, one-way ANOVA.

In fact, if K = 2, we shall show shortly, with simple algebra, that
the rule underlying Otsu’s binarisation method is equivalent to the
search fort∗1 that provides the largest absolute Student’st-statistic,
or equivalently the largestF -statistic as defined by the squaredt-
statistic, fromt-tests for two independent normal groups with equal,
although unknown, within-group variances. ForK > 2, we shall
show that the rule underlying Otsu’s multi-level thresholding method
is equivalent to the search for thresholds that provide the largest
F -statistic corresponding to one-way ANOVA. The search is over
candidate vectors ofK − 1 thresholds.

Some benefits of stressing such equivalences are as follows.
First, it can enhance understanding of the properties and thresh-

olding performance of Otsu’s methods, becauset-tests for two
groups andF -tests for ANOVA are two of the most established
and investigated techniques in statistics. Secondly, it can provide a
statistical-hypothesis-testing view of image-thresholding methods and
thus facilitate their investigation and development.

II. M ETHODS

In the thresholding procedure for a digital imageX of N pixels
(with each pixel represented by its gray levelxi, i = 1, . . . , N ), a
vector of K − 1 gray-level thresholds,t = (t1, . . . , tK−1), along
with two boundary gray levels,t0 = 0 and tK = T , partitions the
image intoK groups.

TheseK groups are denoted byC1(t), . . . , CK(t) hereafter, such
that Ck(t) contains all pixels with gray levels lying in the interval
[tk−1, tk). The value ofT is one over the largest possible gray
level (i.e. T = 256 for an 8-bit gray-level image). As such,CK(t)
represents the background including the brightest pixels,andC1(t)
includes the darkest pixels.

The core of an image-thresholding method is its rule or algorithm
for determining an optimalt∗. The majority of existing methods
determinet∗ by analysis of the gray-level histogram of the image
X .

The histogram ofX can be simply constructed by first counting
the frequencies of gray levels and then dividing them byN . The
histogram is an empirical probability mass function (PMF),or prob-
ability density function (PDF), of the gray level. In the histogram,
the proportion for a gray levelx is denoted byh(x) hereafter; it
follows that

∑T−1
x=0 h(x) = 1, althoughx is often assumed to be a

continuous random variable with Gaussian group-conditional PDF’s.

A. Otsu’s binarisation method and Student’s t-tests

In the caseK = 2, the threshold vectort has only one ele-
ment, t1; pixels are grouped intoC1(t1) with a group proportion
π1(t1) =

∑t1−1
x=0 h(x), and intoC2(t1) with a proportionπ2(t1) =

∑T−1
x=t1

h(x). The two group means (also called population means)
can be estimated by their sample versions, denoted byµ1(t1) and
µ2(t1) hereafter respectively. Correspondingly, the group variances
are estimated by (biased) sample estimatorsσ2

1(t1) andσ2
2(t1).



2 IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010

It follows that the between-group variance and within-group vari-
ance can be written as

σ2
B(t1) =

2
∑

k=1

πk(t1){µk(t1) − µT }2

= π1(t1)π2(t1){µ1(t1) − µ2(t1)}2 , (1)

σ2
W (t1) = π1(t1)σ

2
1(t1) + π2(t1)σ

2
2(t1) , (2)

respectively, whereµT =
∑T−1

x=0 xh(x) is the grand mean of gray
levels (also called intensities) of all pixels in the image.

For the selection of an optimal thresholdt∗1, reference [7] suggests
optimising either of the following three equivalent measures:λ(t1) =
σ2

B(t1)/σ2
W (t1), κ(t1) = σ2

T /σ2
W (t1) and η(t1) = σ2

B(t1)/σ2
T .

They are equivalent because the total varianceσ2
T = σ2

B(t1) +
σ2

W (t1) is a constant with respect tot1,
The use of the ratioλ(t1) = σ2

B(t1)/σ2
W (t1) can be traced back

to Fisher’s linear discriminant analysis, in whichσ2
B andσ2

W are the
variances along a directionw, and λ is maximised with respect to
w for the selection of the normal to the best plane separating the
two given groups. Here let us giveλ(t1) another interpretation by
rewriting it as

λ(t1) =
σ2

B(t1)

σ2
W (t1)

=
π1(t1)π2(t1){µ1(t1) − µ2(t1)}2

π1(t1)σ2
1(t1) + π2(t1)σ2

2(t1)

=
{µ1(t1) − µ2(t1)}2

σ2

1
(t1)

π2(t1)
+

σ2

2
(t1)

π1(t1)

. (3)

It can be recognised that the expression of(N − 2)λ(t1) is
the classicalF -statistic, or equivalently the square of a Student’s
t-statistic, for two independent normal groups with equal group
variances. In addition, the scaling constant,N − 2, is the degrees of
freedom of the Student’st distribution of thet-statistic; it is also the
ratio between the two degrees of freedom of theF1,N−2 distribution
of theF -statistic, if the null hypothesis is that the locations (ormore
precisely the means) of the two groups are the same.

To see this, rewrite the classical Student’st-statistic as

T (t1) =
µ1(t1) − µ2(t1)

sp(t1)
√

1
N1(t1)

+ 1
N2(t1)

, (4)

where, respectively for the two groups determined byt1, N1(t1) and
N2(t1) = N −N1(t1) are the group sizes, ands2

p(t1) is the pooled
estimator of variance:

s2
p(t1) =

{N1(t1) − 1}s2
1(t1) + {N2(t1) − 1}s2

2(t1)

N − 2

=
N1(t1)σ

2
1(t1) + N2(t1)σ

2
2(t1)

N − 2
, (5)

in which s2
1(t1) ands2

2(t1) are the unbiased estimators of the group
variances.

It follows that, with simple algebra, ifµ1(t1) > µ2(t1),

T (t1) =
µ1(t1) − µ2(t1)

√

N1(t1)σ2

1
(t1)+N2(t1)σ2

2
(t1)

N−2

{

1
N1(t1)

+ 1
N2(t1)

}

=
µ1(t1) − µ2(t1)

√

1
(N−2)

√

σ2

1
(t1)

π2(t1)
+

σ2

2
(t1)

π1(t1)

=
√

(N − 2)λ(t1) ,(6)

andT (t1) = −
√

(N − 2)λ(t1) otherwise.
Equation (6) suggests that, for image binarisation, the optimal t∗1

determined by Otsu’s binarisation method is the same as thatwhich
can be obtained by searching overt1 for the value that provides the
largest absolute Student’st-statistic, or the value that provides the

lowest p-value. In principle, usingp-values or absolute Student’st-
statistics will give the same optimalt∗1, because for differentt1 the
degrees of freedom,N − 2, are the same. For image-thresholding
practice, however, usingp-values is not a good strategy, because
Student’st-statistics are often large enough to make allp-values very
close to zero.

Equation (6) also suggests that the equivalence between Otsu’s
binarisation method and the comparison ofF -statistics from a set of
F -tests also holds, and in fact becomes more clearly in the case of
multi-level thresholding, as shown below in section II-B.

The existence of such an equivalence may imply that we can base
a measure of the thresholding performance of Otsu’s method on
established properties of Student’st-test. We discuss some examples
briefly as follows.

First, Student’st-test is based on the assumption of two normally
distributed groups with equal within-group variances. Therefore,
Otsu’s binarisation method is expected to work well when that
assumption is satisfied. However, the normality of the two group
(sample) means is more important. If the data are not far away
from being normally distributed, Student’st-test still performs well,
because the approximate normality of two group (sample) means can
be asserted by the central limit theorem for sufficiently large groups.
Therefore, Otsu’s binarisation method is expected to be robust for
an image in which the within-group gray levels only roughly follow
normal distributions.

Secondly, as just mentioned, Student’st-test also assumes that
the two groups share a common, although unknown, within-group
variance. In spite of this, the test is in general insensitive to the
presence of unequal variances across the two groups, when the
two groups are of roughly equal sizes [9]. However, when the two
group sizes are fairly unequal, Student’st-test is not so robust to
the assumption of unequal within-group variances; therefore, Otsu’s
binarisation method may perform poorly for an image in such cases.
We shall use simple numerical examples to demonstrate thesein
section II-C.

B. Otsu’s multi-level thresholding method and F -tests for one-way
ANOVA

Reference [7] proposes a straightforward extension of Otsu’s
binarisation method for multi-level thresholding. In thisextension,
an optimal vector ofK − 1 thresholds,t∗, is determined by use of
the following rule:

t
∗ = argmax

t

σ2
B(t) = argmax

t

K
∑

k=1

πk(t){µk(t) − µT }2 , (7)

whereπk(t) and µk(t) are the proportion and the sample mean of
the k-th group, respectively, andµT is, as before, the grand mean.

Here, as with binarisation, let us look at the rule in equation (7)
in the context ofF -tests.

Since, withσ2
W (t) =

∑K

k=1 πk(t)σ2
k(t), the total varianceσ2

T =
σ2

B(t) + σ2
W (t) is a constant with respect tot, the rule in equation

(7) is equivalent to the following rule:

t
∗ = argmax

t

σ2
B(t)/σ2

W (t) , (8)

where the ratioλ(t) is defined as

λ(t) =

∑K

k=1 πk(t){µk(t) − µT }2

∑K

k=1 πk(t)σ2
k(t)

=

∑K

k=1 Nk(t){µk(t) − µT }2

∑K

k=1 Nk(t)σ2
k(t)

,

(9)
in which Nk(t) and σ2

k(t) are the sample size and the sample
variance of thek-th group.
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Comparing the ratioλ(t) with the classicalF -statistic,F (t), that
is adopted in one-way ANOVA forK groups, we can find that

F (t) =
1

K−1

∑K

k=1 Nk(t){µk(t) − µT }2

1
N−K

∑K

k=1 Nk(t)σ2
k(t)

=
N − K

K − 1
λ(t) ; (10)

that is, the multi-level version of Otsu’s method is equivalent to
the selection oft∗ by searching for the thresholdst that provide
the largestF -statistic, or equivalently the one that provides the
lowestp-value using theFK−1,N−K distribution. This is because the
scaling constant,N−K

K−1
, is the ratio of the two degrees of freedom

of theFK−1,N−K distribution, and this ratio has no influence on the
selection oft∗. In addition, whenK = 2, equation (10) becomes
equation (6).

Therefore, some advantages and disadvantages of using Otsu’s
multi-level thresholding method can be implied from the established
properties of one-way ANOVA, similarly to those of using Otsu’s
binarisation method described in section II-A.

C. Numerical validation of properties of Otsu’s binarisation method

In this section, we shall numerically validate the properties of
Otsu’s binarisation method that have been discussed in the end of
section II-A based on some established properties of Student’s t-
statistics. For illustrative purposes, we shall use gray-level histograms
constructed from four simulated data sets, which can be viewed as
four types of image. As with [10], [11] and [4], we use histograms
of simulated Gaussian-mixture data.

Here four simulated data sets, each with 10,000 members corre-
sponding to a virtual imageXj of 100×100 pixels withj = 1, . . . , 4,
were constructed by randomly sampling from four mixtures, respec-
tively. Each mixture is composed of two normal distributions, which
are N(µ1, σ

2
1) and N(µ2, σ

2
2) for the two groups, respectively; the

group proportions areπ1 andπ2 = 1 − π1.
As with [4], we let T = 256, µ1 = 100 andµ2 = 151. The data

are discretised into the range of[0, T ). The differences among the
four data sets lie in the group proportions and within-groupvariances,
as shown in Table I.

π1 π2 σ1 σ2

X1 0.50 0.50 10 10
X2 0.50 0.50 15 5
X3 0.95 0.05 15 5
X4 0.95 0.05 5 15

TABLE I
PARAMETERS OF TWO-COMPONENTGAUSSIAN MIXTURES FOR FOUR

SIMULATED DATA SETS.

The data set forX2 is similar to that used by [4]. Similarly to [11]
and [4], we chose these simply-structured data sets to illustrate the
performance of Otsu’s binarisation method, here in particular for the
following three patterns (as expected in section II-A).

First, for X1, Otsu’s method should perform well in threshold se-
lection, because the assumptions of normality and equal within-group
variances are satisfied. Secondly, forX2, although the within-group
variances are unequal, Otsu’s method should perform acceptably as
the two groups are of the same size. Thirdly, forX3, Otsu’s method is
expected to perform poorly because of extremely-unbalanced group
sizes and unequal within-group variances.

These characteristics are clearly apparent in the histograms, su-
perimposed with the selected thresholds, in Fig. 1: Otsu’s method
performs the best forX1, worse but acceptably forX2 with a slight
bias, and the worst forX3 with an unacceptable bias towards equal
group sizes. This can also be observed from the boxplots (in Fig. 2)

0
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0.15

0.2

0.25

0.3

0.35

X1 X2 X3 X4

Fig. 2. Boxplots for the misclassification error rates obtained from applying
Otsu’s method to 100 replicates of each ofX1, X2, X3 andX4.

for the misclassification error rates obtained from applying Otsu’s
method to 100 replicates of each simulated data set.

Usually, as withX3, in an image with two groups of extremely-
unbalanced sizes, the majority group has a larger variance than the
minority group. Nevertheless, a case that the minority group has a
larger variance may happen, as withX4. In this case, as shown in
Fig. 1, the performance of Otsu’s method is in general acceptable;
however, we should be cautious if the cost of misclassification of the
minority group is much higher than that of the majority group.

The simulation of two-component Gaussian mixtures, Otsu’sbina-
risation method and Student’st-tests are readily implemented in the
software MATLAB (The MathWorks, Inc. 2010).

III. D ISCUSSION

We now discuss some issues related to the work presented in this
paper.

A. A hypothesis-testing view of image thresholding

ANOVA has been employed in many areas of image processing
[12], but not yet for histogram-based multi-level thresholding as far as
we know. The link between image thresholding and two-groupt-tests
and one-way ANOVA is stressed in this paper, with the expectation of
providing a novel view of image thresholding from the perspective of
statistical hypothesis testing, in addition to those from cluster analysis
and probabilistic distances.

Otsu’s binarisation method is not only an original, simple and
elegant approach to image thresholding, but also has a solidfounda-
tion in statistics: its rule for selectingt∗1 is based on Fisher’s linear
discriminant analysis, and involves only means and variances (i.e. up
to the second moments of the underlying within-group distributions).
As a result, the rule for selectingt∗1 can also be derived from the
point of view of normal-distributions-based maximum likelihood, as
follows.

For pixels grouped by usingt1, a maximum log-likelihood can be
obtained based on the conditional distributionp(x|y; t1) of x given
the group (indexed byy, with y = 1, 2 for the two groups), under the
assumption thatp(x|y; t1) is a normal distribution with a common
variance shared by the two groups. In the end,t∗1 is determined as
the t1 that provides the largest of the maximum log-likelihoods [11].
Meanwhile, as mentioned in [11], the extension of Otsu’s binarisation
method to multi-level thresholding can also be derived in terms of
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Fig. 1. From left to right and from top to bottom: histograms from simulated data sets,X1, X2, X3 and X4, with the corresponding thresholds (t∗1 =

126, 125, 107 and127) selected by Otsu’s binarisation method and indicated by dashed lines.

selectingt∗ as thet that provides the largest maximum log-likelihood
based on normalp(x|y; t) with equal variances across groups.

If we look at such derivation from a hypothesis-testing point of
view, it essentially suggests the equivalence of Otsu’s method to
the search for the largest test statistic from a set of likelihood-ratio
tests. Here the tests in the set for comparison are indexed bythe
candidate thresholdst1, and the null model in the tests is the same
for different t1 (e.g. by assuming that two groups follow a common
distribution independent oft1), while the alternative model varies
with t1 (e.g. by assuming that, for each value oft1, two groups
follow two different distributions). Such an equivalence,as well as
the derivation originated in [11], is not surprising, because, in our
cases of two independent normal groups and one-way ANOVA, the
F -test is equivalent to a likelihood-ratio test.

Furthermore, such equivalence can be extended to offering
a general (log-)likelihood-ratio view of other parametricimage-
thresholding methods, such as minimum error thresholding [10],
[11] and its variants based on approximating the histogram by a
finite mixture of distributions other than normal distributions, such
as Poisson distributions [13], generalised Gaussian distributions [14],
[15] and certain distributions derived from Rayleigh [16],Nakagami-
Gamma, Weibull and log-normal distributions [17].

B. Variants based on variance decomposition/combination

The total varianceσ2
T can be decomposed into a sum ofσ2

B(t1)
andσ2

W (t1). Otsu’s binarisation method maximises, overt1, the ratio
of the between-group varianceσ2

B(t1) and the within-group variance

σ2
W (t1). Since the sumσ2

T is invariant tot1, the rule is equivalent
to maximisingσ2

B(t1) only or to minimisingσ2
W (t1) only [7], [11].

There can be other way of combining these two variances to
select an optimal thresholdt∗1 for image thresholding. Two interesting
proposals recently reported are as follows: reference [8] minimises
a variant of σ2

W (t1) by ensuring that the two groups are of the
same size whenσ2

W (t1) is calculated; reference [18] minimises an
weighted average of the within-group standard deviationσW (t1) and
the negative distance between two group means, the latter ofwhich
can be regarded as a negatively-scaled version of between-group
standard deviationσB(t1). These proposals may not be as well-
founded as Otsu’s binarisation methods from a statistical point of
view, but this does not necessarily cast a shadow on their encouraging
performance in optimal threshold selection for synthetic and real
images, as well demonstrated in those papers.

C. Variants based on t-tests

1) Rank-based non-parametric tests: As mentioned in the end of
section II-A, when group sizes are sufficiently large (whichis often
the case in image thresholding), Student’st-test is fairly insensitive to
the violation of normality of within-group data. In statistical practice,
when the normality assumption is violated for small groups,non-
parametric tests such as the Wilcoxon rank-sum test (also termed the
Wilcoxon-Mann-Whitney test) are robust alternatives to Student’st-
test. However, such rank-based tests are not appropriate for image
thresholding, as the two groups determined by the candidatethresh-
old, t1, are always perfectly separated, whatever the value oft1 is.
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Therefore, these rank-based tests do not offer appropriatevariants of,
or extensions to, Otsu’s binarisation method.

2) Welch’s t-tests: When the equal-variance assumption is violated
and when the sizes of the two groups are clearly different, inference
based on Student’st-statistic may be misleading. In this case, the use
of Student’st-statistics (or equivalently Otsu’s binarisation method)
for threshold selection is hindered; from hypothesis-testing point of
view, this explains a characteristic mentioned in [10], [11] and [4]
and in section II-C of this paper, among others, namely that Otsu’s
binarisation method gives a biased threshold,t∗1, when the variances
and sizes of the two groups are distinctly different from each other.

In statistical hypothesis testing, Welch’st-test is a variant of
Student’st-test that is used when the two group variances are assumed
unequal [19]. Therefore, based on Welch’st-statistics, a variant of
Otsu’s binarisation method can be proposed as follows.

First, in our case, Welch’st-statistic can be written as

TW (t1) =
µ1(t1) − µ2(t1)

√

s2

1
(t1)

N1(t1)
+

s2

2
(t1)

N2(t1)

=
√

N
µ1(t1) − µ2(t1)

√

s2

1
(t1)

π1(t1)
+

s2

2
(t1)

π2(t1)

. (11)

Then, it is possible simply to select ast∗1 the t1 that provides the
largest absoluteTW (t1), or the smallestp-value.

Such a threshold-selection method based on Welch’st-statistics
might be expected to be less sensitive to the presence of two unequal
within-group variances than Otsu’s original binarisationmethod,
which is based on Student’st-tests. However, this may not be the
case in image-thresholding practice, for various reasons including
the following.

First, the degrees of freedom for the approximated Student’s t
distribution ofTW (t1) depends on the values ofσ2

k(t1) andπk(t1),
k = 1, 2. That is, for differentt1, the degrees of freedom are not the
same in our case. Therefore, it may not be reasonable to compare
TW (t1) without performing calibration.

Secondly, although we may comparep-values instead of the abso-
lute values ofTW (t1), thep-values for differentt1 are often all very
close to zero, as with Otsu’s binarisation method in sectionII-A, and
the degrees of freedom for the calculation of ap-value are estimated
by using, for example, the Welch-Satterthwaite approximation for
eacht1 [19], [20].

Thirdly, when t1 is at either end of the gray-level range, a small
group with a small variance is often obtained. This leads to a
denominator (with squaring) in equation (11) that is much smaller
than that in equation (3), i.e., there might be spikes in the absolute
value of TW (t1) at both ends of the gray-level range. In addition,
the absolute value ofT (t1) is not as much unimodal overt1 as is
the case with that ofTW (t1).

Therefore, Welch’st-test may not be suggested as an appropriate
variant of, or extension to, Otsu’s binarisation method to mitigate its
sensitivity to the presence of two unequal within-group variances.

D. Unifying image-thresholding methods

Last but not the least, the investigation of the unification of various
image-thresholding methods has attracted research effortfor a long
time, not just shown in those nice surveys mentioned in section I,
but also by individual reports such as [11] and [21].

E. Robust statistics for image thresholding

Our intention in this paper was to demonstrate the link between
Otsu’s method and some statistical tests. Nevertheless, itmerits a
mention that some estimators developed in robust statistics [22], in
particular those for the estimation of variances, can be employed to
improve the robustness of Otsu’s method. This was highlighted by a
referee of this paper and coincidentally explored in one of our recent
pieces of work [23].

IV. CONCLUSIONS

In this paper, the equivalences of Otsu’s binarisation method
to the search for an optimal threshold that provides the largest
absolute Student’st-statistic, and of Otsu’s multi-level thresholding
method to the search for optimal thresholds that provide thelargest
F -statistic from one-way ANOVA, have been stressed. Moreover,
general equivalences of some parametric image-thresholding methods
to the search for optimal thresholds with the largest likelihood-ratio
test statistics have also been discussed.
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