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t-tests, f'-tests and Otsu’s Methods for Image Thresholding

Jing-Hao Xue* and D. Michael Titterington

Abstract—Otsu’s binarisation method is one of the most popular image
thresholding methods; Student's¢-test is one of the most widely-used
statistical tests to compare two groups. This paper aims totsess the
equivalence between Otsu’s binarisation method and the sesh for
an optimal threshold that provides the largest absolute Stdent's ¢-
statistic. It is then naturally demonstrated that the extersion of Otsu’s
binarisation method to multi-level thresholding is equivdent to the search
for optimal thresholds that provide the largest F'-statistic through one-
way analysis of variance (ANOVA). Furthermore, general eqivalences
between some parametric image-thresholding methods and ¢hsearch
for optimal thresholds with the largest likelihood-ratio test statistics is
briefly discussed.

Index Terms—Analysis of variance (ANOVA), F-tests, image thresh-
olding, likelihood-ratio tests, Otsu’s methods, Studens t¢-tests.

EDICS Category: ARS-IIU

I. INTRODUCTION

T

that belong to one o groups; the number of group#’, is often
predetermined in practice [1], [2].

As the simplest technique for image segmentation, imagesthr
olding usually only needs the information embedded in gevels
of pixels in an image.

For an image with the range of gray levels beifig7), an
image-thresholding method first assumes that Hiegroups are
distinguishable by their gray levels, then determines goveaf K —1
thresholdst = (¢1,...,tx—1) with t; < ... < tx—1, such thatk

suggests that Otsu’s methods should bear some relatiottsvpo-
group (or more-commonly-termed two-samplefests or their multi-
group counterpart, one-way ANOVA.

In fact, if K = 2, we shall show shortly, with simple algebra, that
the rule underlying Otsu’s binarisation method is equinval® the
search fort] that provides the largest absolute Student&atistic,
or equivalently the largesk'-statistic as defined by the squared
statistic, fromt¢-tests for two independent normal groups with equal,
although unknown, within-group variances. F&Ar > 2, we shall
show that the rule underlying Otsu’s multi-level thresliogdmethod
is equivalent to the search for thresholds that provide #rgelt
F-statistic corresponding to one-way ANOVA. The search isrov
candidate vectors ok — 1 thresholds.

Some benefits of stressing such equivalences are as follows.

First, it can enhance understanding of the properties aretlih
olding performance of Otsu’'s methods, becausests for two

HE purpose of image segmentation is to partition an image inroups andf-tests for ANOVA are two of the most established
a number of segments, each segment containing some pix@§l investigated techniques in statistics. Secondly, it mavide a

statistical-hypothesis-testing view of image-thresh@dnethods and
thus facilitate their investigation and development.

Il. METHODS

In the thresholding procedure for a digital imageof N pixels
(with each pixel represented by its gray lewgl: = 1,...,N), a
vector of K — 1 gray-level thresholdst = (t1,...,tx—1), along
with two boundary gray levels,y = 0 andtx = T, partitions the

intervals, [to = 0,t1),...,[tk-1,tx = T), are constructed, and image intoK groups.

finally assigns a pixel (denoted by its gray lewglto groupk if =
lies in thek-th interval (i.e.x € [tx_1, tx)).

The majority of image-thresholding methods are based olysina
of the gray-level histogram of the image, and were develdjoed
binarisation of the image into two groups (i. = 2: one group for
the foreground and the other group for the background). llerte
surveys and comparative studies have been reported in4R][4]
and [6], among others.

TheseK groups are denoted Wy (t), ..., Ck(t) hereafter, such
that C(t) contains all pixels with gray levels lying in the interval
[tk—1,tx). The value ofT is one over the largest possible gray
level (i.e. T = 256 for an 8-bit gray-level image). As suclijx (t)
represents the background including the brightest pixais,C1 (t)
includes the darkest pixels.

The core of an image-thresholding method is its rule or @gor
for determining an optimat*. The majority of existing methods

Among these methods, one of the most popular is Otsu’s agiproajeterminet™ by analysis of the gray-level histogram of the image

[7]. In the case of image binarisation (i.& = 2), the basic idea
of Otsu’s binarisation method to find an optimal threshgldis as
follows.

First, given a candidate threshold, the pixels are divided into

X.

The histogram oft’ can be simply constructed by first counting
the frequencies of gray levels and then dividing them My The
histogram is an empirical probability mass function (PMsf)prob-

two groups. Then a measure of distance between the two grougsility density function (PDF), of the gray level. In the tagram,

defined as a ratia\(¢;) of the between-group varianes; (¢1) to the
within-group variances3, (t1), can be calculated. Finally, the that
provides the highest ratio is selectedtas

As mentioned in [8], between-group variance and withinagro
variance are two statistical terms used in analysis of wada
(ANOVA). Indeed, the use of the variance ratioad (1) to o3 (t1)
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the proportion for a gray levet is denoted byh(z) hereafter; it
follows that """ h(x) = 1, althoughz is often assumed to be a

continuous random variable with Gaussian group-condii®DF’s.

A. Otsu's binarisation method and Sudent’s ¢-tests

In the caseK = 2, the threshold vectot has only one ele-
ment, ¢1; pixels are grouped int@ (¢1) with a group proportion
mi(t1) = 20, h(z), and intoCa(t1) with a proportionms (t1) =
Zf;tll h(z). The two group means (also called population means)
can be estimated by their sample versions, denoteg.lfy:) and
u2(t1) hereafter respectively. Correspondingly, the group waea

are estimated by (biased) sample estimatdi&:) and o3 (1).
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It follows that the between-group variance and within-graari- lowestp-value. In principle, using-values or absolute Student’s

ance can be written as statistics will give the same optimaf, because for different; the
2 degrees of freedom)N — 2, are the same. For image-thresholding
023(151) = Zm(h){uk(h) —HT}2 practice, however, using-values is not a good strategy, because
k=1 Student’st-statistics are often large enough to makepallalues very
= mt)m(t){m(t) — p2(t2)}* (1) close to zero.

Equation (6) also suggests that the equivalence betweem'sOts
binarisation method and the comparisonraftatistics from a set of
respectively, whergir = >." ") xh(z) is the grand mean of gray F-tests also holds, and in fact becomes more clearly in the ofs

o (t1) = mi(t)ot(tr) +ma(t)os(t) , )

levels (also called intensities) of all pixels in the image. multi-level thresholding, as shown below in section II-B.
For the selection of an optimal threshaifd reference [7] suggests  The existence of such an equivalence may imply that we cam bas
optimising either of the following three equivalent me&sui(¢,) = a measure of the thresholding performance of Otsu's method o

o4 (t) /ot (1), Kk(t1) = o2 /o (t1) and n(t1) = o3(t1)/c%. established properties of Studentisest. We discuss some examples

They are equivalent because the total varianée = o%(t1) +  briefly as follows.

o, (t1) is a constant with respect ta, First, Student's-test is based on the assumption of two normally
The use of the ratio\(t1) = 0% (t1)/0%, (t1) can be traced back distributed groups with equal within-group variances. fEfiere,

to Fisher's linear discriminant analysis, in whiefy, ando3, are the Otsu’s binarisation method is expected to work well whent tha

variances along a directiow, and X is maximised with respect to assumption is satisfied. However, the normality of the twougr

w for the selection of the normal to the best plane separatieg t(sample) means is more important. If the data are not far away

two given groups. Here let us givi(t1) another interpretation by from being normally distributed, Studentgtest still performs well,

rewriting it as because the approximate normality of two group (sample)nsean
oB(h) () ma(t) { (1) — pa(t) 12 be asserted by t’he (_:ent_ral I_|m|t theorem_ for sufficientlgéagroups.
At) = > = > > Therefore, Otsu’s binarisation method is expected to beisoor
o (t) ™1 ()0t (tr) + m2(t1) o3 (t) an image in which the within-group gray levels only roughbyidw
) — pe(ta))? (3) Normal distributions.

o?(t1) o2 (t1)

G ) Secondly, as just mentioned, Student$est also assumes that
T2 (t1 1ty

the two groups share a common, although unknown, withinygro

It can be recognised that the expression (&f — 2)A(t1) is variance. In spite of this, the test is in general insensitiv the
the classicalF-statistic, or equivalently the square of a Studentsresence of unequal variances across the two groups, when th
t-statistic, for two independent normal groups with equabugr two groups are of roughly equal sizes [9]. However, when the t
variances. In addition, the scaling constaht— 2, is the degrees of group sizes are fairly unequal, Studenti$est is not so robust to
freedom of the Studentsdistribution of thet-statistic; it is also the the assumption of unequal within-group variances; theegf@tsu's
ratio between the two degrees of freedom of figv—» distribution  binarisation method may perform poorly for an image in suaes.
of the F'-statistic, if the null hypothesis is that the locations ifoore  We shall use simple numerical examples to demonstrate timese
precisely the means) of the two groups are the same. section II-C.

To see this, rewrite the classical Studentstatistic as

T(t) = pa(ts) — pa(ta) (4) B Otsu's multi-level thresholding method and F-tests for one-way

sp(t)\/ 7oy + o ANOVA

] ] Reference [7] proposes a straightforward extension of '©tsu
where, respectively for the two groups determinedhyN: (t1) and  hinarisation method for multi-level thresholding. In théstension,

Na(t1) = N — Ni(t1) are the group sizes, ang(t1) is the pooled 4, optimal vector ofK — 1 thresholdst*, is determined by use of
estimator of variance: the foIIowing rule:
{N1(t1) — 1387 (t1) + {N2(t1) — 1}s3(t1) K
. N-2 t* = argmax o%(t) = argmax > me(6){u(t) — pr}® . (7)
_ Nu(ta)oi(ta) + Na(ta)oa(tr) 5) ¢ L,
N =2 wherem(t) and ux(t) are the proportion and the sample mean of
in which s3(¢1) ands(t1) are the unbiased estimators of the groughe k-th group, respectively, andr is, as before, the grand mean.

sp(t1)

variances. Here, as with binarisation, let us look at the rule in equat{d)
It follows that, with simple algebra, ifi1 (t1) > p2(t1), in the context ofF-tests.

(1) — (1) Since, withod, (t) = S5, m(t)o2(t), the total variancer? =

T(t) = Hih) — Aol 0% (t) + o2, (t) is a constant with respect tg the rule in equation
N1(t1)o3(t1)+Na(t1)o3 () { LI | } (7) is equivalent to the following rule:
N—2 N1(t1) N2 (t1)
* 2 2
t1) — ot S t" = argmax op(t)/ow(t) , (8)
- el o) ) :
1 g 1 g 1
V-2 ) T T where the ratio\(t) is defined as

and 7 (t1) = —/(N — 2)A(t1) otherwise. A = S T O (®) — pr} T Ne®mn () — er)?
Equation (6) suggests that, for image binarisation, thérabtt] o ZkKﬂ m(t)o2(t) - 2571 Nu(6)o2(t) )

determined by Otsu’s binarisation method is the same aswhizth B B 9)

can be obtained by searching overfor the value that provides the in which Ny (t) and o7 (t) are the sample size and the sample
largest absolute Studentisstatistic, or the value that provides thevariance of thek-th group.
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Comparing the ratio\(t) with the classicalF-statistic, F'(t), that
is adopted in one-way ANOVA fo¥ groups, we can find that 0351 ;

751 Siea N (O (6) —pr) N K
o et Ni(t)o?(t) K-1

that is, the multi-level version of Otsu’s method is equavdl to
the selection oft™ by searching for the thresholds that provide
the largest F'-statistic, or equivalently the one that provides th
lowestp-value using theF'x _1, v k distribution. This is because the
scaling constantd=%, is the ratio of the two degrees of freedom
of the Fix_1 nv_k distribution, and this ratio has no influence on the
selection oft™. In addition, whenK = 2, equation (10) becomes
equation (6).

Therefore, some advantages and disadvantages of usings Ot
multi-level thresholding method can be implied from theabfished
properties of one-way ANOVA, similarly to those of using @ss
binarisation method described in section II-A.

0.3

F(t) = At) 5 (10)

0.25
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0.15¢
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0.05
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Fig. 2. Boxplots for the misclassification error rates atedi from applying
Otsu’s method to 100 replicates of eachXf, X2, X3 and Xy.

C. Numerical validation of properties of Otsu’s binarisation method

In this section, we shall numerically validate the propestiof
Otsu’s binarisation method that have been discussed in neoé
section II-A based on some established properties of Stisden
statistics. For illustrative purposes, we shall use gesgll histograms
constructed from four simulated data sets, which can beedeas

for the misclassification error rates obtained from apmgytsu’s
method to 100 replicates of each simulated data set.

Usually, as withXs, in an image with two groups of extremely-
unbalanced sizes, the majority group has a larger variamme the
minority group. Nevertheless, a case that the minority grbas a
four types of image. As with [10], [11] and [4], we use histagns larger variance may happen, as witf. In this case, as shown in
of simulated Gaussian-mixture data. Fig. 1, the performance of Otsu’'s method is in general aatdgt

Here four simulated data sets, each with 10,000 memberg-comowever, we should be cautious if the cost of misclassificatif the

sponding to a virtual imagé&’; of 100 x 100 pixels withj = 1,...,4,
were constructed by randomly sampling from four mixturespec-
tively. Each mixture is composed of two normal distribupmvhich

minority group is much higher than that of the majority group
The simulation of two-component Gaussian mixtures, Otiria-
risation method and Studentstests are readily implemented in the

are N(ui1,0?) and N(uz,03) for the two groups, respectively; the software MATLAB (The MathWorks, Inc. 2010).

group proportions are; andme = 1 — 1.
As with [4], we letT = 256, 1 = 100 and u2 = 151. The data

are discretised into the range fif, ). The differences among the

four data sets lie in the group proportions and within-greapances,
as shown in Table I.

T T o1 02

X; 050 0.50 10 10

X, 050 0.50 15 5

X3 0.95 0.05 15 5

Xy, 095 0.05 5 15
TABLE |

PARAMETERS OF TWG-COMPONENTGAUSSIAN MIXTURES FOR FOUR
SIMULATED DATA SETS.

The data set foA; is similar to that used by [4]. Similarly to [11]

and [4], we chose these simply-structured data sets tariligsthe
performance of Otsu’s binarisation method, here in pddicfor the
following three patterns (as expected in section II-A).

I11. DISCUSSION

We now discuss some issues related to the work presentedsin th
paper.

A. A hypothesis-testing view of image thresholding

ANOVA has been employed in many areas of image processing
[12], but not yet for histogram-based multi-level threstioy as far as
we know. The link between image thresholding and two-grotgsts
and one-way ANOVA is stressed in this paper, with the exprectaf
providing a novel view of image thresholding from the pecijpe of
statistical hypothesis testing, in addition to those frdoster analysis
and probabilistic distances.

Otsu’s binarisation method is not only an original, simpled a
elegant approach to image thresholding, but also has a fenlitia-
tion in statistics: its rule for selecting is based on Fisher’s linear
discriminant analysis, and involves only means and vaesirce. up

First, for X1, Otsu’'s method should perform well in threshold seto the second moments of the underlying within-group distions).

lection, because the assumptions of normality and equalmwgroup
variances are satisfied. Secondly, fof, although the within-group
variances are unequal, Otsu’s method should perform aalolgpas
the two groups are of the same size. Thirdly, Ay, Otsu’s method is
expected to perform poorly because of extremely-unbathrgreup
sizes and unequal within-group variances.

These characteristics are clearly apparent in the histograu-
perimposed with the selected thresholds, in Fig. 1: Otswshod
performs the best foA’;, worse but acceptably fok’, with a slight

As a result, the rule for selecting can also be derived from the
point of view of normal-distributions-based maximum likelod, as
follows.

For pixels grouped by using, a maximum log-likelihood can be
obtained based on the conditional distributiofx|y;¢1) of = given
the group (indexed by, with y = 1, 2 for the two groups), under the
assumption thap(z|y;t1) is a normal distribution with a common
variance shared by the two groups. In the etidjs determined as
the t; that provides the largest of the maximum log-likelihood][1

bias, and the worst fo’s with an unacceptable bias towards equaMeanwhile, as mentioned in [11], the extension of Otsu'sibgation

group sizes. This can also be observed from the boxplotsi¢n2y

method to multi-level thresholding can also be derived imte of
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Fig. 1. From left to right and from top to bottom: histogranmmenfi simulated data setst;, X2, X3 and &, with the corresponding thresholds; (=
126,125,107 and 127) selected by Otsu’s binarisation method and indicated ksheid lines.

selectingt* as thet that provides the largest maximum log-likelihoodo 3, (¢1). Since the sumw?. is invariant tot:, the rule is equivalent
based on normab(z|y; t) with equal variances across groups. to maximisinga (t1) only or to minimisingos, (¢1) only [7], [11].

If we look at such derivation from a hypothesis-testing pah There can be other way of combining these two variances to
view, it essentially suggests the equivalence of Otsu'shotetto select an optimal threshotd for image thresholding. Two interesting
the search for the largest test statistic from a set of likeld-ratio proposals recently reported are as follows: reference [Bjmises
tests. Here the tests in the set for comparison are indexethdyy a variant of o (¢1) by ensuring that the two groups are of the
candidate thresholds, and the null model in the tests is the samsame size whew3, (1) is calculated; reference [18] minimises an
for different¢; (e.g. by assuming that two groups follow a commonveighted average of the within-group standard deviatign(t;) and
distribution independent of;), while the alternative model varies the negative distance between two group means, the latt@hich
with ¢; (e.g. by assuming that, for each value tof two groups can be regarded as a negatively-scaled version of betweeip-g
follow two different distributions). Such an equivalenaes well as standard deviationrg(t1). These proposals may not be as well-
the derivation originated in [11], is not surprising, besauin our founded as Otsu’s binarisation methods from a statisticahtpof
cases of two independent normal groups and one-way ANOMA, tkiiew, but this does not necessarily cast a shadow on theaueaging
F-test is equivalent to a likelihood-ratio test. performance in optimal threshold selection for synthetid aeal

Furthermore, such equivalence can be extended to offeringages, as well demonstrated in those papers.

a general (log-)likelihood-ratio view of other parametiimage-

thresholding methods, such as minimum error thresholdit@®],[ C. Variants based on t-tests

[11] and its variants based on approximating the histogramab 1) Rank-based non-parametric tests: As mentioned in the end of
finite .mlxture. of. dlsFrlbutlons other than normal.dllstrllkgmts, such section II-A, when group sizes are sufficiently large (whistoften
as Poisson distributions [13], generalised Gaussianililisions [14], e case in image thresholding), Studenttest is fairly insensitive to
[15] and certain distributions derived from Rayleigh [18Rkagami-  yhe yiolation of normality of within-group data. In statistl practice,

Gamma, Weibull and log-normal distributions [17]. when the normality assumption is violated for small groupsn-
parametric tests such as the Wilcoxon rank-sum test (atstetbthe

B. Variants based on variance decomposition/combination Wilcoxon-Mann-Whitney test) are robust alternatives tadgnt'st-
The total variancer2 can be decomposed into a sumad(t,) test. However, such rank-based tests are not appropriatenfige
ando?, (t1). Otsu’s binarisation method maximises, overthe ratio thresholding, as the two groups determined by the canditiagsh-
of the between-group varianes; (1) and the within-group variance old, ¢, are always perfectly separated, whatever the valug 6.
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Therefore, these rank-based tests do not offer appropraiants of, IV. CONCLUSIONS

or extensions to, Otsu's binarisation method. L In this paper, the equivalences of Otsu's binarisation ogth
2) Welch'st-tests: When the equal-variance assumption is violateg, the search for an optimal threshold that provides theefirg
and when the sizes of the two groups are clearly differeférémce apqo|yte Student's-statistic, and of Otsu's multi-level thresholding
based on Studentisstatistic may be misleading. In this case, the USgathod to the search for optimal thresholds that providelargest
of Student'st-statistics (or equivalently Otsu’s binarisation method)._ciatistic from one-way ANOVA, have been stressed. Morgove
for threshold selection is hindered; from hypothesisitgspoint of general equivalences of some parametric image-threstypidithods

view, this explains a characteristic mentioned in [10],][ahd [4] {5 the search for optimal thresholds with the largest Ih@tid-ratio
and in section 1I-C of this paper, among others, namely that'® ..« statistics have also been discussed.

binarisation method gives a biased thresheold,when the variances

and sizes of the two groups are distinctly different fromheather.
In statistical hypothesis testing, Welchistest is a variant of

Student'st-test that is used when the two group variances are assuméd N- R. Pal and S. K. Pal, A review on image segmentatiorhtégques,’

unequal [19]. Therefore, based on Welch'statistics, a variant of ;attgnGFf)eﬁgglrggoghgok 22' T/Ségégigit;ﬁ?lgéégéryoi'sﬁg ard ed
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