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Abstract

This article gives an introduction to the R package rdrobust. This package includes
three main functions to conduct robust data-driven statistical inference in regression-
discontinuity (RD) designs. The first and main function, rdrobust, implements con-
ventional nonparametric RD treatment-effect point estimators and confidence intervals,
as well as the robust bias-corrected confidence intervals proposed in Calonico, Cattaneo,
and Titiunik (2013c) for local average treatment effects. This function covers sharp RD,
sharp kink RD, fuzzy RD and fuzzy kink RD designs, among other possibilities. The
second function, rdbwselect, implements several bandwidth selectors proposed in the
RD literature. Finally, the third function, rdbinselect, implements a novel data-driven
optimal choice of evenly-spaced bins, employs the resulting optimal bins to approximate
the underlying regression functions by local sample means, and constructs the familiar RD
plots usually found in empirical applications. A companion Stata package is described in
Calonico, Cattaneo, and Titiunik (2013b).
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1. Introduction

The regression-discontinuity (RD) design is a widely employed empirical research design in
social, behavioral and related sciences.1 In this research design units are assigned to treatment
based on whether their value of an observed covariate is above or below a known cutoff, and
the probability of receiving treatment conditional on this covariate jumps discontinuously at

1For review see, among others, Cook (2008), Imbens and Lemieux (2008), van der Klaauw (2008), Lee and
Lemieux (2010) and Dinardo and Lee (2011).

http://www.jstatsoft.org/
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the cutoff. This jump induces “variation” in treatment assignment that may be regarded,
under appropriate assumptions, as being unrelated to potential confounders. Thus, inference
in RD designs is typically conducted using only observations near the cutoff or threshold,
where the discontinuous change in the probability of treatment assignment occurs. Due
to its local nature, RD average treatment effects estimators are usually constructed using
local-polynomial nonparametric regression, and statistical inference is based on large-sample
approximations.2

This article gives an introduction to the R package rdrobust, which offers an array of data-
driven (i.e., fully automatic) local-polynomial-based inference procedures in the RD design.
We introduce three main functions allowing for a variety of data-driven nonparametric point
and confidence intervals estimators, as well as bandwidth selectors and plotting procedures
useful for RD empirical applications. The first and main function is rdrobust, which imple-
ments the bias-corrected robust (to “large” bandwidth choices) inference procedure proposed
by Calonico, Cattaneo, and Titiunik (2013c). This function also implements many other RD
inference procedures employing local-polynomial regression; see, e.g., references in footnote 1.
The function rdrobust offers bias-corrected confidence intervals for average treatment effects
at the cutoff for sharp RD, sharp kink RD, fuzzy RD and fuzzy kink RD designs, among other
possibilities.

The second function is rdbwselect. This function implements several data-driven bandwidth
selectors for RD designs based on the recent work of Imbens and Kalyanaraman (2012) and
Calonico et al. (2013c). Although this command may be used as a stand-alone bandwidth
selector in RD applications, its main purpose is to provide fully data-driven bandwidth choices
to be used by our main function rdrobust.

Finally, our third function is rdbinselect. This function implements a data-driven optimal
length choice of equally-spaced bins, which are useful to approximate the regression function
by local sample averages of the outcome variable. Following Cattaneo and Farrell (2013),
this optimal choice is based on an integrated mean-square error expansion of the appropriate
estimators. We discuss how these binned sample means, and hence the bin-length choice, may
be used to construct the plots commonly found in RD applications. Employing this optimal
choice, rdbinselect offers an automatic way of constructing RD plots.

The rest of this article is organized as follows. Section 2 provides a brief review of all the
methods implemented in our commands. Section 3 illustrates some of the main features of
our functions rdrobust, rdbwselect and rdbinselect, by employing the RD research design
in Cattaneo et al. (2013) and analyzing the corresponding data on party advantages in the
U.S. Senate. Section 4 concludes and briefly describes some upcoming extensions. A full
description of the capabilities of the R package rdrobust may be found in the R help files. A
companion Stata package is described in Calonico, Cattaneo, and Titiunik (2013b).

2. Methods

We now present the basic RD framework, describe the population parameters of interest,
introduce the local-polynomial based estimators, review the different inference procedures and
briefly summarize the RD plotting capabilities available in our R package rdrobust. We do

2An alternative approach based on exact finite-sample inference, under different assumptions, is discussed
in Cattaneo, Frandsen, and Titiunik (2013).
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not, however, discuss regularity conditions or other technical aspects underlying the estimands
and estimators – these may be found in the references given throughout. In addition to the
references given in footnote 1, recent results and further details on RD designs are discussed
in Imbens and Kalyanaraman (2012, IK hereafter), (Calonico, Cattaneo, and Titiunik 2013c,
CCT hereafter) and its supplemental appendix (Calonico, Cattaneo, and Titiunik (2013d)),
and references therein.

2.1. Setup and Notation

We adopt the potential outcomes framework commonly employed in the treatment effects
literature (e.g., Heckman and Vytlacil (2007) and Imbens and Wooldridge (2009) for re-
views). Let {(Yi(0), Yi(1), Ti(0), Ti(1), Xi)

′ : i = 1, 2, . . . , n} be a random sample from
(Y (0), Y (1), T (0), T (1), X)′, where Y (1) and Y (0) denote the potential outcomes with and
without treatment, respectively, T (0) and T (1) denote potential actual treatment status, and
the scalar regressor Xi ∈ R is the so-called “running variable” or “score” determining treat-
ment assignment based on whether it exceeds a known cutoff. In particular, unit i is assigned
treatment if Xi > x̄ and not assigned treatment if Xi < x̄, for some known fixed value x̄ ∈ R.

This setup allows for imperfect compliance, which in the RD literature is known as the fuzzy
RD design. The case of perfect treatment compliance is usually called the sharp RD design.
In either case, the observed outcome and treatment status are

Yi =

{
Yi(0) if Xi < x̄
Yi(1) if Xi ≥ x̄

and Ti =

{
Ti(0) if Xi < x̄
Ti(1) if Xi ≥ x̄

,

respectively. Notice that P[Ti = 0|Xi < x̄] = 1 = P[Ti = 1|Xi ≥ x̄] in the sharp RD design,
while this need not to be the case in the fuzzy RD design.

The observed data is {(Yi, Ti, Xi)
′ : i = 1, 2, . . . , n}, a random sample from a large population,

allowing for (but not requiring that) Ti = 1(Xi ≥ x̄) with 1(·) denoting the indicator function.
Therefore, for each unit i, the scalar random variable Yi ∈ R denotes the outcome of interest,
and Ti ∈ {0, 1} denotes actual treatment take-up (Ti = 1 treatment taken, Ti = 0 treatment
not taken).

We also introduce additional notation that will be useful throughout the paper. For ν ∈ Z+ =
{0, 1, 2, · · · }, define

µ
(ν)
Y+(x̄) = lim

x→x̄+
∂ν

∂xν
µY+(x), µ

(ν)
Y−(x̄) = lim

x→x̄−
∂ν

∂xν
µY−(x),

with µY+(x) = E[Y (1)|X = x] and µY−(x) = E[Y (0)|X = x], and

µ
(ν)
T+(x̄) = lim

x→x̄+
∂ν

∂xν
µT+(x), µ

(ν)
T−(x̄) = lim

x→x̄−
∂ν

∂xν
µT−(x),

with µT+(x) = E[T (1)|X = x] and µT−(x) = E[T (0)|X = x]. We also define

σ2
Y+(x̄) = lim

x→x̄+
σ2
Y (x), σ2

Y−(x̄) = lim
x→x̄−

σ2
Y (x), σ2

Y (x) = V[Yi|Xi = x],

σ2
T+(x̄) = lim

x→x̄+
σ2
T (x), σ2

T−(x̄) = lim
x→x̄−

σ2
T (x), σ2

T (x) = V[Yi|Xi = x],

and let f(x) be the continuous (Lebesgue) density of Xi.
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Whenever there is no confusion, we drop the subindex denoting the dependent variable or the
point of evaluation in the conditional expectations and other functions.

2.2. Population Parameters of Interest

We focus on mean treatment effects. In particular, we consider local average treatment
effects at the cutoff in the sharp RD, fuzzy RD, sharp kink RD and fuzzy kink RD designs.
Our package also covers higher-order derivative estimation in the context of both sharp and
fuzzy RD designs. For other extensions of interest see Section 4. For further details on the
interpretation of these estimands and regularity conditions see, among others, Hahn, Todd,
and van der Klaauw (2001), Lee (2008), Card, Lee, Pei, and Weber (2012), Dong (2012),
Dong and Lewbel (2012) and the references mentioned in footnote 1.

Sharp RD Designs

In the sharp RD design, two popular parameters of interest are the sharp RD average treat-
ment effect at the threshold, denoted by τ0, and the the sharp kink RD average treatment
effect at the threshold, denoted by τ1, with the notation

τν := τY,ν(x̄) =
∂ν

∂xν
E[Yi(1)− Yi(0)|Xi = x]

∣∣∣∣
x=x̄

, ν ∈ Z+,

where the definition drops the subindex denoting the dependent random variable and evalua-
tion point for notation simplicity. These popular estimands in the RD literature are nonpara-
metrically identifiable under mild continuity conditions. Specifically, these parameters can be
written as a function of observed data as follows:

τν = µ
(ν)
Y+ − µ

(ν)
Y−,

where here we drop the the evaluation point (x̄) for simplicity. Notice that µ
(ν)
Y+ = µ

(ν)
Y+(x̄)

and µ
(ν)
Y− = µ

(ν)
Y−(x̄) are estimable from the observed data: τν = τY,ν is a difference of two

(one-sided) nonparametric regression functions at x̄.

Fuzzy RD Designs

In the fuzzy RD designs, the two main population parameters are ς0 and ς1, where

ςν := ςν(x̄) =
∂ν

∂xνE[Yi(1)− Yi(0)|Xi = x]
∣∣
x=x̄

∂ν

∂xνE[Ti(1)− Ti(0)|Xi = x]
∣∣
x=x̄

, ν ∈ Z+.

These parameters are the instrumental variable analogue estimands of τ0 and τ1, respectively.
In the RD literature, ς0 is the fuzzy RD average treatment effect at the cutoff and ς1 is the fuzzy
kink RD average treatment effect at the cutoff. As in the case of the sharp RD design, the
fuzzy population parameters are (under appropriate regularity conditions) nonparametrically
identifiable as

ςν =
τY,ν
τT,ν

=
µ

(ν)
Y+ − µ

(ν)
Y−

µ
(ν)
T+ − µ

(ν)
T−

,
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where here µ
(ν)
Y+ = µ

(ν)
Y+(x̄), µ

(ν)
Y− = µ

(ν)
Y−(x̄), µ

(ν)
T+ = µ

(ν)
T+(x̄) and µ

(ν)
T− = µ

(ν)
T−(x̄) are all

estimable from the observed data –τY,ν and τT,ν are each a difference of two (one-sided)
nonparametric regression problems at x̄, and ςν is just their ratio.

2.3. Local Polynomial Estimators

Statistical inference in the RD design reduces to nonparametric regression-based inference at
the induced boundary point x̄, and thus employs observations at either side of the threshold
separately. Naturally, local-polynomial estimators have become the preferred choice of non-
parametric estimator used in the RD literature (see Hahn et al. (2001), Porter (2003) and the
references mentioned in footnote 1) because of their excellent boundary properties (see, e.g.,
Fan and Gijbels (1996) and Cheng, Fan, and Marron (1997)).

Our R package rdrobust implements local polynomial estimators of various orders for the two
outcome variables (Yi and Ti), as appropriate depending on the RD design considered, and
also includes different bandwidths selectors and alternative confidence intervals estimators.
All these features are briefly reviewed in the following subsections, but first we introduce the
local polynomial RD estimators of order p in general. To reduce repetition, we describe the
estimators using a generic outcome variable Z which either takes the value Y or T , depending
on the outcome variable under consideration. For Z ∈ {Y, T} and ν, p ∈ Z+ with ν ≤ p,

τ̂Z,ν,p(x;hn) = µ̂
(ν)
Z+,p(x;hn)− µ̂(ν)

Z−,p(x;hn),

µ̂
(ν)
Z+,p(x;hn) = e′νβ̂Z+,p(x;hn) and µ̂

(ν)
Z−,p(x;hn) = e′νβ̂Z−,p(x;hn),

β̂Z+,p(x;hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi ≥ x)(Zi − rp(Xi − x)′β)2Khn(Xi − x),

β̂Z−,p(x;hn) = arg min
β∈Rp+1

n∑
i=1

1(Xi < x)(Zi − rp(Xi − x)′β)2Khn(Xi − x),

where here rp(x) = (1, x, · · · , xp)′, eν is the conformable (ν + 1)-th unit vector (e.g., e1 =
(0, 1, 0)′ if p = 2), Kh(u) = K(u/h)/h with K(·) a kernel function and hn is a positive
bandwidth sequence.

RD Estimators and Consistency

Using the generic notation above, we can easily construct the sharp RD estimators:

τ̂ν,p(hn) := τ̂Y,ν,p(x̄;hn), ν ≤ p.

Similarly, for the fuzzy RD designs we have the RD estimators:

ς̂ν,p(hn) :=
τ̂Y,ν,p(hn)

τ̂T,ν,p(hn)
, τ̂Y,ν,p(hn) := τ̂Y,ν,p(x̄;hn), τ̂T,ν,p(hn) := τ̂T,ν,p(x̄;hn), ν ≤ p.

Assuming the bandwidth hn vanishes at an appropriate rate, and other regularity conditions
hold, consistency of these estimators follows easily from well-known properties of local poly-
nomial estimators (Fan and Gijbels (1996)). Specifically, consistency follows from the fact



6 rdrobust: Robust Inference in RD Designs with R

that local polynomial estimators satisfy, for Z ∈ {Y, T},

β̂Z+,p(x;hn)→p βZ+,p(x) and βZ+,p(x) =

[
µZ+(x), µ

(1)
Z+(x),

µ
(2)
Z+(x)

2!
, · · · ,

µ
(p)
Z+(x)

p!

]′
,

and

β̂Z−,p(x;hn)→p βZ−,p(x) and βZ−,p(x) =

[
µZ−(x), µ

(1)
Z−(x),

µ
(2)
Z−(x)

2!
, · · · ,

µ
(p)
Z−(x)

p!

]′
.

In applications, the most common choices are p = 1 for τ0 (local-linear sharp RD estimator),
p = 2 for τ1 (local-quadratic sharp kink RD estimator), p = 1 for ς0 (local-linear fuzzy RD
estimator), and p = 2 for ς1 (local-quadratic fuzzy kink RD estimator).

2.4. Bandwidth Selectors

This subsection discusses bandwidth selection, the main obstacle in the practical implemen-
tation of RD point estimators. We briefly review two approaches: (i) plug-in rules based
on mean-square error (MSE) expansions, and (ii) a cross-validation procedure. IK provide a
comprehensive review of these approaches, and CCT discuss some extensions and alternative
ways of implementation. We define Xn = (X1, X2, · · · , Xn)′ to save notation.

Direct Plug-in Rules

The R package rdrobust implements several direct plug-in (DPI) approaches to select the
bandwidths, all based on a mean-square error expansion of the sharp RD estimators. CCT
also discuss briefly the analogous DPI rules for fuzzy designs, but these are not currently im-
plemented. (Of course, using our package, one can still choose optimal sharp RD bandwidths
separately for the numerator and denominator of the fuzzy RD estimators.) We have the
following result for the (conditional) mean-square error:

E
[

(τ̂ν,p(hn)− τν)2
∣∣∣Xn

]
≈ h2(p+1−ν)

n B2
ν,p +

1

nh1+2ν
n

Vν,p, ν ≤ p,

where the bias and variance are, respectively,

Bν,p =
µ

(p+1)
+ − µ(p+1)

−
(p+ 1)!

e′νΓ−1
p ϑp, Vν,p =

σ2
− + σ2

+

f
ν!2e′νΓ−1

p ΨpΓ
−1
p eν , (1)

and f = f(x̄). CCT describe the exact form of the non-random scalars e′νΓ−1
p ϑp and

e′νΓ−1
p ΨpΓ

−1
p eν , which are functions of the kernel choice. Notice that we have dropped the

dependent variables and evaluation points from the notation for simplicity – these expressions
apply to both Yi and Ti, and the functions are evaluated at x = x̄.

It follows that, if µ
(p+1)
+ 6= µ

(p+1)
− , then the (asymptotic) MSE-optimal bandwidth is

hMSE,ν,p = CMSE,ν,p n
− 1

2p+3 , CMSE,ν,p =

(
(1 + 2ν)Vν,p

2(p+ 1− ν)B2
ν,p

) 1
2p+3

.
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In the context of ν = 0, IK noted that B0,p,p+1 ∝ µ
(p+1)
+ − µ(p+1)

− may be (close to) zero in
some applications and thus proposed the more “robust”, data-driven consistent bandwidth
estimator:

ĥIK,0,p =

(
V̂IK,0,p

2(p+ 1)B̂2
IK,0,p + R̂IK,0,p

)1/(2p+3)

n−1/(2p+3),

where the additional (regularization) term R̂IK,0,p is introduced to avoid small denominators

in finite samples. Here B̂IK,0,p and V̂IK,0,p (and R̂IK,0,p) are nonparametric consistent esti-
mators of their respective population counterparts, which require the choice of preliminary
bandwidths, generically denoted by bn herein. IK provide a simple, direct implementation
approach for p = 1 where these estimators (B̂IK,0,p, V̂IK,0,p, R̂IK,0,p) are consistent for their
population counterparts, but the preliminary bandwidths used in their construction are not
chosen optimally. As a consequence, ĥIK,ν,p may be viewed as a nonparametric first-generation
plug-in rule (e.g., Wand and Jones (1995)), sometimes called a DPI-1 (direct plug-in of order
1) selector.

CCT propose a second-generation plug-in bandwidth selection approach, extending the work
of IK. Specifically, CCT propose a second-order direct plug-in rule (DPI-2) of the form:

ĥCCT,ν,p =

(
(1 + 2ν)V̂CCT,ν,p

2(p+ 1− ν)B̂2
CCT,ν,p + R̂CCT,ν,p

)1/(2p+3)

n−1/(2p+3), ν ≤ p.

This alternative bandwidth estimator has two distinct features relative to ĥIK,0,p. First, the

preliminary bandwidths used in the construction of the (consistent) estimators V̂CCT,ν,p and

B̂CCT,ν,p are consistent estimators of the corresponding population MSE-optimal bandwidths.

In this sense, ĥCCT,ν,p is a DPI-2 (direct plug-in of order 2) selector. Second, CCT construct

an alternative estimator of Vν,p (denoted by V̂CCT,ν,p above), that does not require an ad-
ditional choice of bandwidth for its construction and thus may lead to better small-sample
performance. This estimator relies on a fixed-matches nearest-neighbor-based “estimate” of
the residuals, following the work of Abadie and Imbens (2006), rather than on estimating the
residuals using conventional nonparametric methods. This approach and the traditional one
are both discussed further below where we discuss the construction of confidence intervals.

All other details on implementation of the bandwidth selectors included in the R package
rdrobust may be found in CCT.

Cross-validation Bandwidth Selector

The cross-validation bandwidth choice implemented in our package is as follows:

ĥCV,p = arg min
h>0

CVδ(h), CVδ(h) =

n∑
i=1

1(X−,[δ] ≤ Xi ≤ X+,[δ]) (Yi − µ̂p (Xi;h))2 ,

where

µ̂p(x;h) =

{
e′0β̂Y+,p(x, h) if x > x̄

e′0β̂Y−,p(x, h) if x < x̄
,

and, for δ ∈ (0, 1), X−,[δ] and X+,[δ] denote the δ-th quantile of {Xi : Xi < x̄} and {Xi : Xi >
x̄}, respectively. Of course, this approach may also be employed using Ti as the outcome
variable. See IK for further discussion on this alternative bandwidth selection approach.
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2.5. Asymptotic Properties and Confidence Intervals

We briefly review the main asymptotic properties of the local polynomial RD estimators for
sharp RD designs, with particular emphasis on the properties of the associated confidence
interval estimators. Specifically, we discuss three type of confidence intervals (CI) based on
Gaussian approximations: (i) conventional CI based on undersmoothing, (ii) bias-corrected CI
(not necessarily requiring undersmoothing), and (iii) robust bias-corrected CI (not necessarily
requiring undersmoothing). All the results presented herein extend immediately to the case
of fuzzy RD designs, as we will discuss briefly at the end of this section.

Optimal Point Estimators

The results discussed so far lead to the following data-driven RD treatment effect point
estimators.

Sharp RD: τ̂ν,p(ĥIK,ν,p), τ̂ν,p(ĥCCT,ν,p), τ̂ν,p(ĥCV,p), ν ≤ p.
Fuzzy RD: ς̂ν,p(ĥIK,ν,p), ς̂ν,p(ĥCCT,ν,p), ς̂ν,p(ĥCV,p), ν ≤ p.

Notice that these estimators are constructed employing MSE-optimal bandwidth choices for
the sharp RD case, which means that τ̂ν,p(ĥIK,ν,p), τ̂ν,p(ĥCCT,ν,p) and τ̂ν,p(ĥCV,p) may be inter-
preted as consistent and (asymptotically) MSE-optimal point estimators of τν , under appro-
priate regularity conditions. For the fuzzy RD cases, the bandwidth choices employed are
technically optimal only for the numerator of the estimators, but since the rate of the MSE-
optimal bandwidth choice does not differ from the sharp RD case, the estimators ς̂ν,p(ĥIK,ν,p),

ς̂ν,p(ĥCCT,ν,p) and ς̂ν,p(ĥCV,p) may also be viewed as consistent and (asymptotically) MSE-
optimal point estimators of ςν , under appropriate regularity conditions.

Sharp RD Conventional Confidence Intervals

In the sharp RD design, under appropriate regularity conditions and rate-restrictions on
the bandwidth sequence hn → 0, conventional confidence intervals accompanying the point
estimators discussed above rely on the following distributional approximation:√

nh1+2ν
n

(
τ̂ν,p(hn)− τν − hp+1−ν

n Bν,p
)
→d N (0,Vν,p), ν ≤ p, (2)

where Bν,p and Vν,p are given in Equation (1). Therefore, an infeasible, asymptotic 100(1−α)-
percent confidence interval for τν is

CI1−α(hn) =

[ (
τ̂ν,p(hn)− hp+1−ν

n Bν,p
)
± Φ−1

1−α/2

√
Vν,p

nh1+2ν
n

]
,

where Φ−1
a denotes the appropriate quantile of the Gaussian distribution (e.g., 1.96 for a =

.025). To implement this confidence interval in practice, we need to handle the leading bias
(Bν,p) and the variance (Vν,p) of the RD estimator, because they involve unknown quantities.

Bias. In practice, the conventional approach to handling the smoothing bias is to rely on an
“undersmoothing” argument: that is, to choose a “small” enough bandwidth so that the bias is
negligible. Theoretically, this approach requires selecting a bandwidth sequence hn → 0 such

that
√
nh1+2ν

n hp+1−ν
n Bν,p = op(1). In practice, however, this procedure may be difficult to
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implement because most bandwidth selectors, such as hMSE,ν,p, will not satisfy the conditions
required for undersmoothing. This fact implies that most empirical bandwidth selectors could
in principle lead to a non-negligible leading bias in the distributional approximation, which in
turn will bias the associated confidence intervals. Simulation evidence highlighting this poten-
tial drawback of the undersmoothing/small-bias approach is provided in CCT. Nonetheless,
in applications, it is common for researchers to simply ignore the leading bias, proceeding as
if Bν,p ≈ 0. This approach is justified by either assuming the bias is “small,” or by shrinking
the bandwidth choice by some ad-hoc factor (i.e., undersmoothing).

Standard Errors. The asymptotic variance is handled by replacing Vν,p with a consistent
estimator. A natural approach is to construct a plug-in estimator based on the conditional
(on Xn) variance of τ̂ν,p(hn):

Vn,ν,p := nh1+2ν
n V[τ̂ν,p(hn)|Xn] = V+,n,ν,p + V−,n,ν,p, ν ≤ p,

with
V+,n,ν,p = hne

′
νΓ
−1
+,n,pX+,n,pW+,n,pΣW+,n,pX+,n,pΓ

−1
+,n,peν ,

V−,n,ν,p = hne
′
νΓ
−1
−,n,pX−,n,pW−,n,pΣW−,n,pX−,n,pΓ

−1
−,n,peν ,

where

Σ =


σ2(X1) 0 · · · 0

0 σ2(X2) · · · 0
...

...
. . .

...
0 0 0 σ2(Xn)

 = E[εε′|Xn], ε =


ε1

ε2
...
εn

 , εi = Yi − E[Yi|Xi],

and the exact form of the other matrices is given in CCT. Importantly, the only matrix
including unknown quantities is Σ. It is easy to show that Vn,ν,p →p Vν,p.

The variance Vn,ν,p has a “sandwich” structure coming from the weighted least-squares struc-
ture of local polynomials. It looks exactly like the usual heteroskedasticity-robust standard-
error formula in linear-regression models, and hence constructing standard errors requires
only an estimator of Σ. Thus, to construct valid standard errors we consider two types of
plug-in“estimators”of σ2(Xi) = E[ε2

i |Xi], for control and treatment units separately: “plug-in
estimated residuals” and “fixed-matches estimated residuals”. Both approaches construct an
estimator of Vn,ν,p by removing the conditional expectation in Σ and replacing εi by some
estimator of it.

� Plug-in Estimated Residuals. In this approach, εi’s are replaced by

ε̌+,i = Yi − µ̂(0)
+,p(Xi; cn) and ε̌−,i = Yi − µ̂(0)

−,p(Xi; cn),

for treated and control units, respectively. In practice, the bandwidth employed, cn, is
typically set to cn = hn, although in general it could be different. In fact, the choice
cn = hn may not be optimal and could lead to poor finite-sample performance of the
standard errors estimator. This approach leads to the Huber-Eicker-White standard
errors estimator, which is robust to heteroskedasticity of unknown form. We denote
this estimator by

V̌n,ν,p = V̌+,n,ν,p + V̌−,n,ν,p,

where V̌+,n,ν,p and V̌−,n,ν,p employ, respectively, ε̌+,i and ε̌−,i in their construction.
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� Fixed-matches Estimated Residuals. CCT propose an alternative standard errors es-
timator employing a different construction for the residuals, motivated by the work
of Abadie and Imbens (2006). This estimator is constructed using a simple nearest-
neighbor (or fixed-matches) estimator for the residuals, which are in general unbiased
but inconsistent. We denote these statistics by ε̂+,i and ε̂−,i. After plugging them into
Σ, the resulting standard errors estimator is denoted by

V̂n,ν,p = V̂+,n,ν,p + V̂−,n,ν,p,

where V̂+,n,ν,p and V̂−,n,ν,p employ, respectively, the fixed-matches estimators ε̂+,i and
ε̂−,i in their construction. These estimators are shown to be consistent under appropriate
regularity conditions in CCT, although we do not provide further details here to conserve
space.

Recap. Our R package rdrobust offers two alternative consistent estimators of Vν,p: (i)

the plug-in estimated residuals estimator V̌n,ν,p and (ii) the fixed-matches estimator V̂n,ν,p.
These estimators may be used for both standard error constructions and plug-in bandwidth
selectors, as discussed above. As a general rule for implementation, we always employ the
same estimated bandwidth used in the treatment effect estimator τ̂ν,p(hn) whenever additional
bandwidth choices are required, unless explicitly noted otherwise. See CCT for all other details
omitted here.

Sharp RD Bias-Corrected Confidence Intervals

As an alternative to undersmoothing, we can consider dealing with the leading bias in the
distributional approximation explicitly: we can directly bias-correct the estimator by con-
structing an estimator of Bν,p, which is then subtracted from the RD point estimate in an
attempt to eliminate the leading bias in (2).

A simple bias estimator is constructed using a higher-order local polynomial to estimate the

unknown derivatives in Bν,p ∝ µ(p+1)
+ −µ(p+1)

− . For example, µ
(p+1)
+ can be estimated by using

a q-th order local polynomial (q ≥ p + 1) with pilot bandwidth bn, leading to the estimator

µ̂
(p+1)
+ = e′p+1β̂+,q(bn). The resulting bias-corrected estimator is

τ̂bcν,p,q(hn, bn) = τ̂ν,p(hn)− hp+1−ν
n B̂ν,p,q, B̂ν,p,q := B̂ν,p,q(hn, bn), ν ≤ p < q,

where the exact form of B̂ν,p,q is described in CCT.

Using the bias-corrected estimator, and imposing appropriate regularity conditions and band-
width restrictions, we obtain:√

nh1+2ν
n

(
τ̂bcν,p,q(hn, bn)− τν

)
=

√
nh1+2ν

n

(
τ̂ν,p(hn)− τν − hp+1−ν

n Bν,p
)︸ ︷︷ ︸

→d N (0,Vν,p)

−
√
nh1+2ν

n hp+1−ν
n (B̂ν,p,q − Bν,p)︸ ︷︷ ︸
→p 0

,

which is valid if hn/bn → 0. This result immediately justifies bias-corrected confidence inter-
vals, where the unknown bias in CI1−α(hn) is replaced by the bias-estimate B̂ν,p,q. The exact
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formula of the resulting confidence intervals is

CIbc1−α(hn, bn) =

[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q
)
± Φ−1

1−α/2

√
Vν,p

nh1+2ν
n

]
,

where for implementation one replaces Vν,p by a consistent estimator, like either of the two
discussed previously.

To implement this approach, CCT discuss a choice of pilot bandwidth bn along the lines of
the MSE expansion described above. This leads to the following MSE-optimal choice of bn
for the bias-correction estimator B̂ν,p,q:

bMSE,p,q =

(
(2p+ 3) Vp+1,q

2(q − p)B2
p+1,q

)1/(2q+3)

n−1/(2q+3),

where Vp,q and Bp,q are the corresponding leading variance and bias terms arising from the
MSE expansion. (Note that this choice is not necessarily optimal for τ̂bcν,p,q(hn, bn).) CCT also
discuss an implementation procedure of bMSE,p,q, leading to the data-driven estimator:

b̂CCT,p,q =

(
(2p+ 3)V̂CCT,p+1,q

2(q − p)B̂2
CCT,p+1,q + R̂CCT,p+1,q

)1/(2q+3)

n−1/(2q+3),

where the exact form of the estimators V̂CCT,p,q, B̂CCT,p,q and R̂CCT,p,q is given in CCT. We
employ this pilot bandwidth estimator in our default implementation, but we also implement
bandwidth estimators constructed following the underlying logic in IK, denoted by b̂IK,p,q.

Sharp RD Robust Bias-Corrected Confidence Intervals

The confidence intervals discussed so far have some unappealing properties that may affect
their performance in applications. On the one hand, the confidence intervals CI1−α(hn) require
undersmoothing (or, alternatively, a “small” bias), which may lead to coverage distortions in
cases where the bias is important. On the other hand, the bias-corrected confidence inter-
vals CIbc1−α(hn, bn), while theoretically justified for a larger range of bandwidths, are usually
regarded as having poor performance in empirical settings, also leading to potentially large
coverage distortions in applications. Monte Carlo evidence showing some of these potential
pitfalls is reported in CCT.

CCT propose an alternative, more robust confidence interval formula based on the bias-
corrected RD treatment effect estimators, but employing different standard errors. Intuitively,
the bias-corrected RD estimator does not perform well in finite-samples because the bias-
estimate introduces additional variability in τ̂bcν,p,q(hn, bn) = τ̂ν,p(hn) − hp+1−ν

n B̂ν,p,q, ν ≤ p,
which is not accounted for when forming the associated confidence intervals CIbc1−α(hn, bn).
Thus, CCT propose an alternative asymptotic approximation for τ̂bcp,q(hn, bn) which, provided
appropriate regularity conditions hold and hn/bn → ρ ∈ [0,∞), may be summarized as
follows:√

nh1+2ν
n

(
τ̂bcν,p,q(hn, bn)− τν

)
=

√
nh1+2ν

n

(
τ̂ν,p(hn)− τν − hp+1−ν

n Bν,p
)︸ ︷︷ ︸

→d N (0,Vν,p)

−
√
nh1+2ν

n hp+1−ν
n (B̂ν,p,q − Bν,p)︸ ︷︷ ︸

→d N (0,Vp+1,q(ρ))

,
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where here Vp,q(ρ) could be interpreted as the contribution of the bias-correction to the
variability of the bias-corrected estimator. (It can be shown that Vp,q(0) = 0.)

Under weaker conditions than those typically imposed in the results summarized in the pre-
vious subsections, CCT show that√

nh1+2ν
n

(
τ̂bcν,p,q(hn, bn)− τν

)
→d N (0,Vbc

ν,p,q(ρ)),

where Vbc
ν,p,q(ρ) is the asymptotic variance for the bias-corrected estimator, which is different

from the usual one, Vν,p. Indeed, it can be shown that Vbc
ν,p,q(ρ)→ Vν,p if ρ ↓ 0, but in general

Vbc
ν,p,q(ρ) > Vν,p under standard conditions. More generally,

τ̂bcν,p,q(hn, bn)− τν√
Vbc
n,ν,p,q

→d N (0, 1), Vbc
n,ν,p,q := Vbc

n,ν,p,q(hn, bn),

where the exact formula for Vbc
n,ν,p,q(hn, bn) is given in CCT. Intuitively, this variance formula is

constructed to account for the variability of both the original RD treatment effect estimator
(τ̂ν,p(hn)) and the bias-correction term (B̂ν,p,q) in the distributional approximation of the
studentized statistic.

Thus, this result justifies the confidence intervals:

CIrbc1−α(hn, bn) =
[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q
)
± Φ−1

1−α/2

√
Vbc
n,ν,p,q

]
,

where for implementation Vbc
n,ν,p,q(hn, bn) is replaced by an appropriate estimator. Two pos-

sible estimators are discussed in CCT: V̌bc
n,ν,p,q := V̌bc

n,ν,p,q(hn, bn) (using plug-in estimated

residuals) and V̂bc
n,ν,p,q := V̂bc

n,ν,p,q(hn, bn) (using fixed-matches estimated residuals), as dis-
cussed above for the case of conventional confidence intervals.

All omitted notational, methodological and technical details are given in CCT. Further theo-
retical implications of this alternative approach to nonparametric bias-correction are discussed
in CCT.

Sharp RD Confidence Intervals: Summary

Our R package rdrobust provides the following data-driven RD treatment effect confidence
intervals for sharp RD designs:

(i) Undersmoothing / Small-Bias:

� Plug-in estimated errors: ČI1−α(ĥn) where

ČI1−α(hn) =

τ̂ν,p(hn)± Φ−1
1−α/2

√
V̌ν,p

nh1+2ν
n

 .
� Fixed-matches estimated errors: ĈI1−α(ĥn) where

ĈI1−α(hn) =

τ̂ν,p(hn)± Φ−1
1−α/2

√
V̂ν,p

nh1+2ν
n

 .
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(ii) Bias-Correction:

� Plug-in estimated errors: ČI
bc

1−α(ĥn, b̂n), where

ČI
bc

1−α(hn, bn) =

(τ̂ν,p(hn)− hp+1−ν
n B̂ν,p,q

)
± Φ−1

1−α/2

√
V̌ν,p

nh1+2ν
n

 .
� Fixed-matches estimated errors: ĈI

bc

1−α(ĥn, b̂n), where

ĈI
bc

1−α(hn, bn) =

(τ̂ν,p(hn)− hp+1−ν
n B̂ν,p,q

)
± Φ−1

1−α/2

√
V̂ν,p

nh1+2ν
n

 .
(iii) Robust Bias-Correction:

� Plug-in estimated errors: ČI
rbc

1−α(ĥn, b̂n), where

ČI
rbc

1−α(hn, bn) =

[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q
)
± Φ−1

1−α/2

√
V̌bc
n,ν,p,q

]
.

� Fixed-matches estimated errors: ĈI
rbc

1−α(ĥn, b̂n), where

ĈI
rbc

1−α(hn, bn) =

[(
τ̂ν,p(hn)− hp+1−ν

n B̂ν,p,q
)
± Φ−1

1−α/2

√
V̂bc
n,ν,p,q

]
.

In the above displays ĥn ∈ {ĥIK,ν,p, ĥCCT,ν,p, ĥCV,p} and b̂n ∈ {b̂IK,n, b̂CCT,n}, among other pos-
sibilities. The exact formulas for the different standard errors estimators and other technical
details may be found in Calonico, Cattaneo, and Farrell (2013a).

Fuzzy RD Confidence Intervals

All the ideas and results presented above extend to the case of fuzzy RD designs. We do
not describe this case here to conserve space, but we do note that our R package rdrobust
implements all the fuzzy RD estimators and confidence intervals, which follow the same logic
as the ones described above for the sharp RD design. See CCT for details.

2.6. RD Plots

Exploratory data analysis plays a crucial role in empirical work in RD designs. Because of the
simplicity of the research design, it is customary and advisable to present the main features of
the design graphically. In this section, we briefly describe the main results implemented in our
function rdbinselect, which selects tuning parameters optimally and produces commonly
used RD plots.

The main graph commonly used in RD applications presents global estimates of the regression
function, µY−(x) and µY+(x), in an attempt to describe their shapes for control (Xi < x̄)
and treated (Xi ≥ x̄) units relative to some summary of the raw data. This RD plot gives
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an idea of overall fit and, at the same time, exhibits graphically the sharp RD estimate. In
most empirical applications, this figure is constructed using“dots” for local sample means over
non-overlapping bins or partitions of the support of X, in addition to the two smooth “global”
polynomial regression curve estimates for control and treatment units. The binned means are
usually included to capture the behavior of the “cloud of points” and to show whether other
discontinuities are likely to be present in the data. Figure 1 gives an example of this typical
RD plot using the data from Lee (2008).

This figure has two main ingredients: (i) two polynomial regression curves (estimated for
Xi < x̄ and Xi ≥ x̄, separately), and (ii) sample means over non-overlapping regions of the
support of the running variable X, for control and treatment units separately.

Constructing the first ingredient (i) of the RD plot is easy, as it requires only estimating
a polynomial regression on the data. Typical choices encountered in the literature are 4th
and 5th order polynomials, but our implementation allows any polynomial order. In some
applications a restricted support of the running variable is used, instead of the full support
of the data.

The second ingredient (ii) of the RD plot requires computing sample means over non-overlapping
regions of the support of the running variable X, which are meant to provide an approxima-
tion of the population regression functions as well while also giving a sense of the dispersion
of the data around them. This graphical device could also be used to highlight other poten-
tial discontinuities in the data (as a form of a visual falsification test). For implementation,
one needs to decide the number of bins that will be used, denoted by J−,n (control) and J+,n

(treatment), and the length of each bin. Typically, the partition is chosen to be evenly-spaced,
thereby reducing the problem to two tuning parameters to be selected: J−,n and J+,n.

As discussed in Calonico, Cattaneo, and Titiunik (2013b, Section 2.7), it turns out that this
approach (ii) can be viewed as a simple version of a nonparametric partitioning estimator;
see, e.g., Cattaneo and Farrell (2013) and references therein. This formalization, and the
asymptotic (integrated) MSE expansion given in Cattaneo and Farrell (2013, Theorem 3),
may be used to derive an optimal choice for J−,n and J+,n. These choices take the form

J∗−,n =
〈

(C− n)1/3
〉
, C− =

2 B−
V−

, J∗+,n =
〈

(C+ n)1/3
〉
, C+ =

2 B+

V+
,

where 〈·〉 denotes the nearest integer, and assuming that xl ≤ Xi < x̄ (control units) and
x̄ ≤ Xi ≤ xu (treatment units),

V− =
1

x̄− xl

∫ x̄

xl

σ2
−(x)

f(x)
w(x) dx, B− =

(x̄− xl)2

12

∫ x̄

xl

(
µ

(1)
− (x)

)2
w(x) dx,

V+ =
1

xu − x̄

∫ xu

x̄

σ2
+(x)

f(x)
w(x) dx, B+ =

(xu − x̄)2

12

∫ xu

x̄

(
µ

(1)
+ (x)

)2
w(x) dx,

and where w(x) is a weighting function. A feasible plug-in rule can be easily constructed by
using preliminary estimators for the unknown objects in C− and C+. In our implementation,
we set w(x) = f(x) to simplify the constants and propose simple polynomial-based approxi-
mations to the unknown quantities, which we then estimate in a preliminary step to construct
data-driven optimal bin-length choices:

Ĵ−,n =
〈

(Ĉ− n)1/3
〉
, Ĉ− =

2 B̂−

V̂−
, Ĵ+,n =

〈
(Ĉ+ n)1/3

〉
, Ĉ+ =

2 B̂+

V̂+

.
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The function rdbinselect implements these bin-length selectors and also gives all the other
ingredients required to construct the RD plots discussed in this section. Further details on
implementation are presented in Calonico, Cattaneo, and Titiunik (2013b, Section 2.7).

3. The rdrobust Package

To illustrate some of the features of our R package rdrobust, we employ an extract of the
dataset constructed by Cattaneo, Frandsen, and Titiunik (2013). This dataset contains infor-
mation on elections for the U.S. Senate during the period 1914–2010. We focus here on the
RD effect of the Democratic party winning a U.S. Senate seat on the vote share obtained in
the following election for that same seat, mimicking the analysis conducted in Lee (2008) for
the U.S. House.

The dataset rdrobust_RDsenate.dta contains two variables: vote and margin. The variable
vote records the state-level vote share of the Democratic party in a given election for a Senate
seat, while the variable margin records the margin of victory of the Democratic party in the
previous election for the same Senate seat (i.e., six years prior).

First, we load the database and present basic summary statistics.

> library(rdrobust)

> senate = load("rdrobust_RDsenate.rda")

> vote=rdrobust_RDsenate$vote

> margin=rdrobust_RDsenate$margin

> summary(vote)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.00 42.67 50.55 52.67 61.35 100.00 93

> summary(margin)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-100.000 -12.210 2.166 7.171 22.770 100.000

This data set has a total of 1297 complete observations. The variable margin ranges from
-100 to 100, and records the margin of victory in a given election for a given U.S. Senate
seat, defined as the vote share of the Democratic party minus the vote share of the strongest
opponent. When margin is above zero, the Democratic party wins the election for that seat,
otherwise it looses. The variable vote ranges from 0 to 100 because it records the outcome
of the (two-periods ahead) election for that given seat. Thus, observations for years 2008
and 2010 have missing vote. As it is usual in the literature, we exploit the discontinuity in
incumbency status that occurs at 0 on margin to employ an RD design.

To gain further intuition on the available data, we use rdbinselect to construct an automatic
plot of the RD design.

> rdbinselect(y=vote, x=margin, title="RD Plot - Senate Elections Data",

+ y.label="Vote Share in Election at time t+1",

+ x.label="Vote Share in Election at time t")
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Left Right

Number of Obs. 595.00000 702.00000

Number of Bins 8.00000 8.00000

Number of Bins Orig. 8.00000 8.00000

Bin Length 12.49013 12.49554

Bin Length Orig. 12.49013 12.49554
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Figure 2 is constructed using the default options in the command rdbinselect. Using the
notation introduced above, the number of optimal bins for control and treatment units are
Ĵ−,n = 8 and Ĵ+,n = 8, respectively, implying a bin length of roughly 12 percentage points.
The global polynomial is constructed using a 4 − th degree polynomial (p = 4 for µ̂−.p,1(x)
and µ̂+.p,1(x)). Figure 2 shows the resulting RD plot. The default bin choices are explicitly
constructed to approximate the underlying regression function. As this figure shows, the local,
binned sample means indeed seem to approximate well the underlying regression function
(taking the global polynomial fit as benchmark).

While providing a natural starting point, the default number of bins will usually be too small
in applications. This happens because the optimal formulas seek to balance square-bias and
variance in order to approximate the underlying regression function globally. To obtain a
visual “cloud of points” we need to increase the number of bins, that is, to undersmooth the
estimator. In other words, in order to increase the overall variability of the plotted points, we
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may reduce the bin-length -which is done by increasing the total number of bins used. This
may be easily done using the option scale(.) as follows:

> rdbinselect(y=vote, x=margin, scale=5,

+ title="RD Plot - Senate Elections Data",

+ y.label="Vote Share in Election at time t+1",

+ x.label="Vote Share in Election at time t")

Left Right

Number of Obs. 595.000000 702.000000

Number of Bins 40.000000 40.000000

Number of Bins Orig. 8.000000 8.000000

Bin Length 2.498027 2.499109

Bin Length Orig. 12.490134 12.495543
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Figure 3 shows the resulting (undersmoothed) RD plot, where now the number of bins used
is five times larger than the optimal choice in an integrated mean square error sense. The
resulting estimator is naturally more variable than before.

Next, we conduct fully data-driven RD treatment effect estimation and inference. The com-
mand rdrobust using its default options leads to the following output:
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> rdrobust(y=vote, x=margin)

$Details

Value

Cutoff 0.0000000

N_l 332.0000000

N_r 298.0000000

p 1.0000000

q 2.0000000

h 16.0073008

b 26.0502314

rho 0.6144783

$AddDetails

Value

BW Type "CCT"

Kernel Type "Triangular"

$RDresults

Coef. Std. Err. z P>|z| 95% CI Left 95% CI Right

Conventional 7.429218 1.573146 4.722523 2.329362e-06 4.345909 10.51253

Robust NA NA NA NA 4.011582 11.28118

These results contain a variety of information, which is organized in three panels. The first
two panels of the output table contain a summary of the main choices selected to construct the
RD treatment effect estimators, while the lower panel includes the main estimation results.
Specifically, using the notation introduced above, this table shows:

1. The total number of observations is 1, 297, with effective 332 control and 298 treated units
(given the bandwidth hn chosen; see below). The estimation is conducted using a local-linear
(p = 1) estimator with a local-quadratic (q = 2) bias-correction estimate, with a triangular
kernel. The standard-error estimators are the robust ones proposed by CCT, computed using
3 nearest-neighbors.

2. The bandwidth selection procedure is the one proposed by CCT, leading to ĥCCT,n,p =

16.007, (p = 1) and b̂CCT,n,q = 26.050, (q = 2)

3. The point estimator, robust standard-errors and robust confidence intervals are: τ̂p(ĥCCT,n,p) =

7.429, V̂bcn,q,p(ĥCCT,n,p, b̂CCT,n,q) = (1.573)2, and ĈI
rbc

1−α(ĥCCT,n,p, b̂CCT,n,q) = [ 4.011 , 11.281 ]
(α = 0.05).

The command rdrobust also offers a more detailed output, which includes all the point
estimators, standard-errors estimators and confidence intervals discussed in Section 2. These
results are retrieved by including the option all. The corresponding output is as follows:

> rdrobust(y=vote, x=margin, all=TRUE)
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$Details

Value

Cutoff 0.0000000

N_l 332.0000000

N_r 298.0000000

p 1.0000000

q 2.0000000

h 16.0073008

b 26.0502314

rho 0.6144783

$AddDetails

Value

BW Type "CCT"

Kernel Type "Triangular"

$RDresults

Coef. Std. Err. z P>|z| 95% CI Left

Conventional 7.429218 1.573146 4.722523 2.329362e-06 4.345909

Bias Correction 7.646383 1.573146 4.860569 1.170491e-06 4.563074

Robust 7.646383 1.854524 4.123097 3.738128e-05 4.011582

95% CI Right

Conventional 10.51253

Bias Correction 10.72969

Robust 11.28118

Finally, we explore all the bandwidth selection procedures contained in our package. Specif-
ically, we may employ our companion package rdbwselect to compare the CCT bandwidth
selectors with the IK and CV approaches. We have:

> rdbwselect(y=vote, x=margin, all=TRUE)

h b

CCT 16.00730 26.05023

IK 19.11819 18.13554

CV 35.42113 NA

In this case we employed the option all, which computes the three bandwidth selectors briefly
discussed above. Notice that the option CV is currently not available for derivative estimation.
To further understand the performance of the CV approach, we include a graph of the CV
objective function over the grid being considered. This is done using the option cvplot as
shown next (in this example we also changed the grid features to obtain a better plot, and to
show this additional functionality in action as well).

> rdbwselect(y=vote, x=margin, bwselect="CV",

+ cvgrid_min=10, cvgrid_max=80, cvplot=TRUE)
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h b

CCT NA NA

IK NA NA

CV 34.5 NA
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As discussed above, our commands have many other options. For example, for the main com-
mand rdrobust we have the following additional examples (output is not provided to conserve
space):

1. rdrobust(y= vote, x= margin, kernel= “uniform”)

Estimation using uniform kernel.

2. rdrobust(y= vote, x= margin, bwselect= “IK”)

Estimation using the IK bandwidth selectors.

3. rdrobust(y= vote, x= margin, bwselect= “CV ”)

Estimation using the CV bandwidth selector

4. rdrobust(y= vote, x= margin, h= 15, rho= 0.8)
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Estimation using

5. rdrobust(y= vote, x= margin, p= 2, q= 4)

Estimation using p = 2 and q = 4.

6. rdrobust(y= vote, x= margin, vce= “resid”)

Estimation using plug-in residuals estimates in the VCE.

Finally, our commands may also be used to conduct inference in other RD design settings.
For example, assuming y is the output variable, t is the treatment status variable, and x is
the running variable:

1. rdrobust(y, x, deriv= 1)

Estimation for sharp kink RD.

2. rdrobust(y, x, fuzzy= t)

Estimation for fuzzy RD.

3. rdrobust(y, x, fuzzy= t, deriv= 1)

Estimation for fuzzy kink RD.

4. Conclusions

We introduced and discussed the main features of the R package rdrobust, which provides
several functions to conduct data-driven, local-polynomial based (robust) inference in RD
designs. In particular, this package includes three main functions (rdrobus, rdbwselect and
rdbinselect), which together offer an array of data-driven nonparametric inference methods
useful to perform empirical work in the context of RD applications. This implementation
covers average RD treatment effects at the cutoff in the sharp RD, sharp kink RD, fuzzy RD
and fuzzy kink RD designs, among other possibilities.

A full description of the R package rdrobust capabilities may be found in the help files. A
companion Stata package offering the same structure and capabilities is described in Calonico,
Cattaneo, and Titiunik (2013b). In future versions, we plan to include other estimands (e.g.,
quantile RD treatment effects at the cutoff) as well as other estimation procedures (e.g., RD
estimators based on generalized linear models).
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