
Virtualizing Power Distribution in Datacenters

Di Wang, Chuangang Ren, Anand Sivasubramaniam
Department of Computer Science and Engineering

The Pennsylvania State University
University Park, PA

{diw5108,cyr5126,anand}@cse.psu.edu

ABSTRACT

Power infrastructure contributes to a significant portion of
datacenter expenditures. Overbooking this infrastructure
for a high percentile of the needs is becoming more attractive
than for occasional peaks. There exist several computing
knobs to cap the power draw within such under-provisioned
capacity. Recently, batteries and other energy storage de-
vices have been proposed to provide a complementary alter-
native to these knobs, which when decentralized (or hierar-
chically placed), can temporarily take the load to suppress
power peaks propagating up the hierarchy. With aggressive
under-provisioning, the power hierarchy becomes as central
a datacenter resource as other computing resources, making
it imperative to carefully allocate, isolate and manage this
resource (including batteries), across applications. Towards
this goal, we present vPower, a software system to virtu-
alize power distribution. vPower includes mechanisms and
policies to provide a virtual power hierarchy for each applica-
tion. It leverages traditional computing knobs as well as bat-
teries, to apportion and manage the infrastructure between
co-existing applications in the hierarchy. vPower allows ap-
plications to specify their power needs, performs admission
control and placement, dynamically monitors power usage,
and enforces allocations for fairness and system efficiency.
Using several datacenter applications, and a 2-level power
hierarchy prototype containing batteries at both levels, we
demonstrate the effectiveness of vPower when working in an
under-provisioned power infrastructure, using the right com-
puting knobs and the right batteries at the right time. Re-
sults show over 50% improved system utilization and scale-
out for vPower’s over-booking, and between 12-28% bet-
ter application performance than traditional power-capping
control knobs. It also ensures isolation between applications
competing for power.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General

Keywords

Datacenters, Power Management, Batteries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA ’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

1. INTRODUCTION
Power consumption of datacenters has tremendous impli-

cations on both operating (op-ex) and capital (cap-ex) ex-
penditures. While energy consumption has been the target
of many prior studies to reduce op-ex, there is growing in-
terest (e.g. [17, 21, 7, 30, 11]) in reducing cap-ex of power
provisioning. Power infrastructure/distribution costs can
contribute to over a third of a large datacenter’s amortized
monthly expenditures, with each provisioned watt costing
between $10-20 [11, 18]. Consequently, it has become in-
creasingly attractive to under-provision this resource. With
aggressive under-provisioning, the power hierarchy - from in-
coming utility lines, switch gear and UPS units, going down
to Power Distribution Units (PDUs) and even server power
supplies - becomes a precious resource that needs to be care-
fully allocated and managed across applications to ensure
safe operation. As in any other hardware resource, virtu-
alizing this infrastructure can hide the under-provisioning
(scarcity) from applications, providing each with the illu-
sion of a dedicated/insulated hierarchy, while extracting the
maximum value from each provisioned watt. This paper
presents vPower, a software system to create virtual power
hierarchies on this valuable physical resource.

We draw an analogy with physical memory, a valuable
and under-provisioned resource. Even single applications
need capacities larger than the available physical memory.
Further, co-existing applications that are time and/or space
multiplexed on that system, need to share this limited ca-
pacity. Virtual memory was introduced to overbook its ca-
pacity while insulating applications from each other. It pro-
vides applications with the illusion of a large address space
without their having to deal with physical memory man-
agement explicitly. Dynamic memory management (using
malloc()/free()) is at best employed at the virtual mem-
ory interface by the application. The underlying system/OS
treats these calls more as hints in managing physical mem-
ory. We believe that as power infrastructure is aggressively
under-provisioned, it becomes as central as other computing
resources, mandating a similar management strategy. How-
ever, virtualizing power infrastructure poses unique chal-
lenges and opportunities:

• Power distribution uses a hierarchical network spanning
several servers, and the levels in the hierarchy that are
under-provisioned play a key role in how the resource has
to be managed. A power over-draw in one part of the
hierarchy can imply a reduction in power capacity for an-
other part. Further, with many datacenter applications
spanning multiple servers, we need the ability to create,

manage and police virtual sub-hierarchies (unlike virtual-
izing physical memory of a single machine).

• Power demand management is system controlled by mod-
ulating other resources - mainly the CPU through schedul-
ing, migration, consolidation and power state (DVFS)
modulation. Application participation/hints, such as a
palloc(), to guide such power management, has not been
explored in greater depth, particularly for applications
spanning several servers. In many conventional applica-
tions, since memory is an explicit abstraction, their direct
involvement to give such hints seems more natural. On
the other hand, conventional applications are oblivious
of power as a resource, making the ability to give such
hints less apparent. However, we believe that with many
datacenter applications going through extensive profiling,
debugging and tuning before they go into production [23],
there may be adequate opportunities to gauge their power
needs. For instance, [23] details the pre-production pro-
filing of Google datacenter applications, on diverse server
hardware before they are deployed on production systems,
and one could envision collecting their power demands
during such pre-production profiling phases. These can
subsequently be used as hints in production mode. More
importantly, since these are hints, over or under stating
these needs or even stating these at a coarse temporal
resolution, may still be better than not specifying at all.

• Demand modulation using computing knobs - scheduling,
DVFS, migration, etc. - is no longer the only (indirect)
means for controlling this resource. Supply side knobs
that leverage batteries and other energy storage devices
placed in one or more layers of the hierarchy, have recently
been proposed [17, 21, 39] to facilitate aggressive power
provisioning. A battery in a given level can temporarily
boost the power capacity of the sub-hierarchy under it,
even if the capacity of the line above this sub-hierarchy
cannot sustain this power draw. With potentially several
hierarchically distributed batteries, the choice of which to
use to temporarily boost a sub-hierarchy’s capacity, and
a fair allocation of this capacity across applications, poses
interesting trade-offs.

Provisioning virtual power hierarchies requires (i) under-
standing an application’s power needs, (ii) admitting and
co-locating the right set of applications, (iii) accounting for
their power usage, and (iv) policing their execution to en-
sure fairness and effectiveness of power usage. This pa-
per presents the design, implementation and evaluation of
vPower, incorporating mechanisms and policies for these
functionalities. It provides an optional and flexible inter-
face (palloc()) for applications to give hints of their power
needs, at different resolutions and accuracies. vPower has
three main components - admission control/placement man-
ager, accounting manager and enforcer. The admission con-
trol/placement manager regulates admission of applications,
places them on appropriate servers and allocates power hi-
erarchies. The accounting manager continuously tracks the
power draw of different applications, that can span several
servers, with respect to their allocations. It is the enforcer’s
job to (i) ensure no emergencies/violations during runtime
(i.e., power on a line does not exceed provisioned capacity),
(ii) maximize resource utilization, (iii) insulate the usage
across applications, and (iv) ensure fairness. It uses a com-
bination of computing knobs, such as DVFS and migration,
and battery-based power boosts, for these purposes. Simul-

taneously it also incorporates intelligence to source power
from the right batteries in the hierarchy at the right time.

We prototype vPower on a 2-level hierarchy, with batter-
ies in both layers, containing 8 servers. Using representa-
tive datacenter benchmarks, we study the impact of differ-
ent policies on system consolidation, performance and scale-
out, fairness, and effectiveness in suppressing power emer-
gencies. vPower provides 12-28% better performance than
conventional approaches that use only computing knobs, on
a rack that is 50% under-provisioned. It improves utiliza-
tion by over 50% compared to an approach which conser-
vatively schedules based on peak load requirements. It also
effectively isolates mis-behaving applications ensuring other
applications are not penalized. To our knowledge, this is
the first paper that attempts to virtualize the power hierar-
chy of a datacenter spanning several servers, incorporating
a combination of computing knobs and multi-level batteries.

2. BACKGROUND AND RELATEDWORK
Power Hierarchy:

���

���

���
�

������� �������

	�
�����

����	
��
���

����	
��
������

����	
��
���

����	
��
����������

���

���

� ���

Figure 1: Power Hierarchy

Figure 1 shows a typical
4-level datacenter power
hierarchy. At the highest
layer, switchgear scales
down the voltage of utility
power, which then passes
through centralized UPS
units. The UPS units get
another feed from backup diesel generators. Power then goes
through Power Distribution Units (PDUs) to different racks,
which then gets distributed through power strips to individ-
ual servers which all have their own power supplies.
Power Capping: When under-provisioning a layer, we
need to ensure the resulting power limits (caps) are obeyed
to ensure safety. Demand Response for power capping [2]
has primarily leveraged three broad computing knobs: (i)
Spatial Allocation/Consolidation [5, 31, 36, 24, 9] of work-
loads when they arrive, exploiting statistical multiplexing of
the power profiles of different applications (enabling more
aggressive power provisioning than would have been possi-
ble if we consider the peaks of all in unison); (ii) Migration
[2, 34] of these workloads spatially to a different part of the
datacenter (with more headroom), or even to a different dat-
acenter, and (iii) Temporally Shaping the demand by power
state modulation (throttling) of hardware devices [32, 40,
13, 3, 25, 22] and/or workload scheduling [28, 6].
Leveraging Energy Storage/Batteries: Some datacen-
ters use distributed UPS units - server level in Google [14],
rack level in Microsoft [27] and Facebook [10], though their
motivation is to avoid double-conversion losses (and not power
capping). There are recent proposals [17, 15, 21, 39] to pro-
vision extra battery capacities in different layers of the hi-
erarchy. Whenever the power needs in the sub-hierarchy hit
safety limits (termed emergencies in this paper), the batter-
ies can step in to temporarily source/supplement the power,
so that the layers higher up do not notice the emergency.
These studies have demonstrated that power availability is
not compromised by keeping a reserve capacity that is suf-
ficient to fail-over to diesel generators upon power outages.
Computing knobs are still needed to handle long emergency
durations that are beyond the capacities of the provisioned
storage. These studies have shown that provisioning addi-
tional battery capacities, whether placed centrally [15], or

distributed at server/rack levels [17, 21], is economically
attractive, with the consequent cap-ex savings of under-
provisioning the power infrastructure more than offsetting
additional battery capacity costs. Further, a recent work
[39] has also shown that placing energy storage devices (not
just batteries) in multiple layers of the hierarchy, rather than
single-level placement, can be even more economically at-
tractive. Battery capacity (over-)provisioning/placement is
orthogonal to this paper, and we leverage all this prior work,
considering these energy storage devices, at different layers,
as part of the power infrastructure, towards creating virtual
power sub-hierarchies. In fact, lower capacities at one or
more levels make it even more important to manage these
devices intelligently, further motivating this work. Trade-
offs between sharing versus interference in using these bat-
teries across applications is an important consideration for
building virtual hierarchies.
Power Virtualization: Unlike other resources, virtual-
ization of power has not been studied extensively. Rel-
evant work in this area is on accounting and control of
power/energy usage of workloads in a co-hosted environment
(e.g. [1, 35]) or on a multicore server [33], and coordinating
(possibly conflicting) power management decisions of indi-
vidual virtual machines co-hosted on a physical server [29].
However, our work looks at (i) virtualizing entire power hi-
erarchies and not just a single server, and (ii) looks to lever-
age multi-level energy storage (batteries) to achieve this goal
(not just computing knobs). As we will see, sharing and iso-
lation of battery usage across applications, especially in a
hierarchical setting, introduces several new considerations
in the power hierarchy management. Virtualizing and man-
aging batteries across applications has been mainly studied
(e.g. [4, 41]) in the context of embedded and mobile devices,
where the primary goal is to prolong battery runtime, rather
than power capping.

3. VPOWER SYSTEM ARCHITECTURE
Goals and Problem Statement: We work with an ab-
straction of the power hierarchy which has an imposed power
cap P

cap
i at one or more levels Li, where Li= L1 (server

level) to LL (datacenter level). Our focus here is only on
mechanisms and policies to adhere to these imposed P

cap
i

values, and a detailed evaluation of the trade-offs with dif-
ferent P

cap
i s (examined in prior work [15, 21, 17, 39]) is

orthogonal to this paper. Specifically, the implementation
and evaluation platform in this paper uses a 2-level hierar-
chy, L1 (server) and L2 (rack) with associated power caps
P

cap
1

and P
cap
2

, but the discussions and results can generalize
to more levels. At each level, we assume the presence of en-
ergy storage - our experimental platform uses lead-acid bat-
teries, which are currently the most common in datacenter
UPS units. The goal is to ensure that the power draw never
exceeds P

cap
i at all corresponding Lis in the hierarchy, us-

ing a combination of (i) demand-response computing knobs
- workload placement, consolidation, migration, scheduling,
power state modulation (DVFS states), etc., and (ii) batter-
ies with maximum power P bmax

i and energy capacity Ebmax
i

available at each level Li in the hierarchy which can tem-
porarily step in to provide the extra power needed to handle
the needs beyond P

cap
i . Table 1 summarizes these nota-

tions. This paper explores application interfaces, software
mechanisms and policies to attain this goal when hosting
multiple applications that share this power infrastructure.

In the process, we need to adhere to application SLAs, meet
these SLAs with minimum amount of resources (i.e., max-
imize consolidation and utilization), and ensure fairness in
how this power is allocated and shared between applications.

Notation Description
Li Power sub-hierarchy i

P
cap
i

Power cap of Li

P
t
i Power draw of Li at time t

P
req
t Requested power from an application for time t

P
bmax
i Power capacity of a battery at Li

E
bmax
i Energy capacity of a battery at Li

Table 1: Some Common Notations

Overview of System Architecture: Towards this goal,
we implement a software-based virtual power hierarchy (vPower)
(from the datacenter at the root, to the servers) for each ap-
plication, within which it can safely execute, insulated from
any power-related emergencies arising from co-existing ap-
plications, even when their aggregated peak demand can ex-
ceed the power cap in any level. The power hierarchy that
is being virtualized includes the capacities of all the power
equipment (switchgear, transformers, UPS units, PDUs, and
individual power outlets) from the root, all the way down
to individual servers running this application. In addition,
it also virtualizes the battery capacities of each layer.

While one could conservatively book/reserve for the peak
power demands of applications, and admit only those whose
collective peak demand fits within the power caps P

cap
i ,

overbooking can improve system utilization, since simultane-
ous and sustained peak demands from all applications may
be less common. vPower has to: admit the right set of
applications (admission control described in section 4.2.1);
place/co-locate them with the right/synergistic mix of appli-
cations in the sub-hierarchy that would lead to fewer power
emergencies (placement described in section 4.2.1); and sup-
press any power violations, if and when they occur, from
propagating higher up the hierarchy using both comput-
ing knobs and right batteries (enforcer described in section
4.2.3). An accounting manager needs to track the dynamic
power consumption of different applications, as described in
section 4.2.2, to provide up-to-date information for the en-
forcer to ensure fairness. As with any other shared resource
management, vPower can leverage application-level power
related information that can be explicitly provided using a
palloc() interface described in section 4.1.

The interfaces to the“power infrastructure hardware”that
can be exploited by our system are shown in Table 2. Apart
from interfaces to monitor the instantaneous power draw on
any line in the hierarchy (power()), there are also interfaces
to batteries in each level to monitor their state-of-charge
(soc()), and control their charge and discharge rates. There
are programmable power electronics circuitry to control the
latter, but since our experimental setup does not provide
this functionality, our evaluations account for such control
capability in the management decisions. In addition, the
system also uses hardware/kernel/VM interfaces to change
DVFS states, modulate scheduling and migration decisions,
etc.

Our system architecture is pictorially depicted in Figure
2 for a 2-level hierarchy with server and rack level batteries,
and power caps to be enforced at each of these two levels.
There are two main software components: (i) one running
as a driver within each server to initiate server level con-
trol knobs (DVFS, scheduling, etc.); and (ii) another run-

Interface Description
power(...) returns instantaneous power draw of given line
soc(...) return state of charge of a battery

charge(...) charge battery at specified rate
discharge(...) discharge battery at specified rate

Table 2: Hardware Interfaces to Power Infrastructure

�����

�����

�

����������

����		�
��

�
��
����

���������

�������

���
�����

�������

�
����

���
����
�����

	
���
�

���

palloc(…)
DVFS(…)

migrate(…)

soc(…)

…

�
�
�
�
�
��
�
�	
�
� ����

����

����

����

charge(…)

discharge(…)

soc(…)

����
������������������

power(…)

Figure 2: vPower Architecture

ning as middleware on a dedicated server, which implements
the management/control policies and appropriately inter-
faces with the server drivers. The latter also interfaces with
the power distribution network to monitor (measure power
draw, battery SoC, etc.) and control their operation (sourc-
ing from batteries, switching off outlets, etc.). The next
section gives details on the design choices and implementa-
tion details for vPower.

4. VPOWERMECHANISMSANDPOLICIES
4.1 The palloc() Interface

As with any other resource, providing detailed and accu-
rate information of an application’s power profile can help
manage it better, especially in aggressively under-provisioned
settings. There are two dimensions to providing this infor-
mation - how much? and over what duration? - and our
application interface is accordingly specified as

palloc(<power,interval>,<power,interval>,...)

where the arguments are tuples specifying anticipated ap-
plication power needs during different time intervals over its
execution. Ideally one would like to accurate power needs at
fine temporal resolution as is depicted in the power profile
graphs of Figure 3. While many datacenter applications are
long running services (e.g., web searching, memcached, etc.)
and/or periodic/repetitive workloads (e.g., web crawling),
with many of them going through profiling and fine-tuning
phases before going into production mode [23], one may be
able to obtain detailed and accurate power needs through
profiling, barring execution and data dependency vagaries.
Further, prior work on load predictability (time-of-day be-
havior in web services, flash crowd behavior for media ser-
vices, etc.) may be useful for these specifications, as is prior
work on phase characterization [19] to make such requests
ahead of their need. However, getting accurate and fine-
grained information (depicted as “Exact”) may not always
be feasible, and we accommodate several loose specifications
(Table 3) both in requesting power, as well as in the tem-
poral durations (possibly not even needing to specify dura-
tions) as below.

Along the temporal dimension, one need not even give

No Entire Every Every
Time Execn. 60 secs. Instant

Max. Power PMax PMax-entire PMax-60 Exact
90th Per. Power P90 P90-entire P90-60 -

Avg. Power PAvg - - -
Min. Power PMin - - -

Table 3: Example palloc() Specifications considered in

evaluations.

any time information (as in PMax, PMin, PAvg, P90) if
jobs are long running without much variance. It is also pos-
sible to estimate broadly defined execution phases (as in
the MapReduce profile shown in Figure 3 where the power
draws are quite different between map and reduce phases)
and accordingly specify the intervals. In the interest of a
uniform comparison across workloads, we introduce a range
of pre-determined interval sizes between the “Every Instant”
and “No Time” extremes, and consider representative inter-
vals of entire application duration (PMax-entire, P90-entire)
and 60 seconds (PMax-60, P90-60) in our evaluations.

Along the power dimension, one could consider a wide
range of values starting from the peak (PMax) (which can
be conservative depending on the time interval it is specified
for), a 90th percentile (P90) of this peak (less conservative),
an average over the interval (PAvg) or even as low as the
minimum power (PMin). Note that our interface does not
preclude an application from specifying any power value,
over any particular duration. However, our system ensures
that regardless of what the application specifies (which is
treated more as a hint), it will insulate applications from
each other. By giving bad hints - either intentionally or
unintentionally - an application can at best hurt itself. For
instance, when an application specifies values higher than
PMax - this would come at the cost of our system possibly
not admitting this application when power budgets are tight.
At the other end, when an application requests very low
power needs, and then (misbehaves) starts consuming higher
power than what it initially specified, our enforcer will step
in and penalize it.

4.2 The Middleware
The middleware is the core software component for allo-

cating and controlling power across applications. It consists
of an admission control and placement manager, an account-
ing manager and a power enforcer. We next explain their
goals, design tradeoffs and implementation details.

4.2.1 Admission Control and Placement Manager

Goal: Based on an application’s palloc() hints, this man-
ager evaluates whether it can accommodate these needs with-
out violating existing allocations, and if so where in the hier-
archy it should be placed (i.e., co-location with others). The
shared power infrastructure (even if the computing load is
spread across different physical servers), and shared energy
storage (batteries) at multiple layers in the hierarchy, intro-
duces additional considerations to this problem compared to
approaches that only consider computing resources.
Design Tradeoffs and Discussions: Note that, the net
power draw of a hierarchy can be temporarily boosted be-
yond its provisioned capacity by as much as the sum of the
power draws that can be sustained by all the batteries (dis-
tributed and hierarchical) within that hierarchy. Our ad-
mission control policies are therefore based on our reliance

on these batteries to achieve power capping:

• Conservative Policy: In this policy, batteries are not taken
into consideration for admitting applications. Batteries
may still step in during execution to suppress peaks if
they arise, which may be rare because of the conservative
admission control. Hence, it may be better to use less
stringent power needs in palloc() when using this policy.

• Moderate Policy: This allows a certain percentage (e.g.,
20%) of battery power (P battAD

i) and energy (EbattAD
i)

capacity to be available in addition to normal line capacity
when admitting applications. It can admit more, with
possible subsequent emergencies when batteries run out.

• Aggressive Policy: This is the same as Moderate, with
100% (still leaves reserve capacity to ensure power avail-
ability mandates upon outages [16, 15]) of the capacity
used for admission control. It is better to specify more
stringent needs in palloc() (e.g., PMax or P90) in conjunc-
tion with this policy, to lessen emergency occurrences.

Once admitted, we need to decide where to locate/co-
locate this application. With distributed batteries across
the hierarchy, the degree of balancing/unbalancing their us-
age serves as the main criteria when exploring this question.
This can be captured by the correlations - High, Low and
Anti - of the power profile of this application with those in
the sub-hierarchy/server where it is being considered. Co-
location effectiveness is also a function of the admission con-
trol policy. Co-location of anti-correlated workloads may
be a better option when conservative admission control is
used, since the latter is less reliant on batteries, and the
anti-correlation would lessen the possibility of power emer-
gencies. At the other end, co-location of correlated work-
loads may be better for an aggressive admission control pol-
icy (which may have higher emergencies) since it aggregates
(batches together) the discharging of batteries, giving longer
time windows for charging, similar to how unbalancing of
load creates more opportunities for server shutdown in [31].
The design choices along these two dimensions are qualita-
tively summarized in Table 4 indicating the priority order
of correlation degrees for placement under a given admis-
sion control policy. We will show experimental results to
corroborate these choices.
Implementation: When an application specifies its power
needs via palloc(P req

t ,∆t), the admission control algorithm
checks two aspects of this requirement - power (P req

t) and
energy (P req

t ×∆t) needs - and is admitted only if both can
be met. For applications which only specify power (e.g.,
PMax, P90, PAvg, PMin) due to the lack of time informa-
tion, we deal with energy constraint on a best effort ba-
sis and simply assume the energy constraint is met for ad-
mission. These checks are recursively made starting from
the root. For each sub-hierarchy Li, a check is made to
ensure: (i) for every time interval t, total allocated power
(P alloc

i,t) for existing applications plus the new power needs
(P req

t) from the requesting application should be less than
or equal to the sum of provisioned power cap of this sub-
hierarchy (P cap

i) plus the amount of power from batter-
ies (P battAD

i) dedicated for admission control (as per the
above 3 policies); (ii) total allocated energy for existing ap-
plications (Ealloc

i) plus the new application’s energy needs
(
P

(P req
t × ∆t)) should be less than or equal to the sum

of maximum energy from the outlet (Eoutlet
i) and energy

from batteries (EbattAD
i) committed to admission control.

Different amounts of power/energy from batteries represent
the aggressiveness of admission control policies as described
above. Once admitted to a sub-hierarchy, we place an ap-
plication based on the choices from Table 4.

Conservative Moderate Aggressive

P
battAD
i = 0 P

battAD
i = 0.2P

bmax
i P

battAD
i = P

bmax
i

E
battAD
i = 0 E

battAD
i = 0.2E

bmax
i E

battAD
i = E

bmax
i

High Corr. (3) (3) (1)
Low Corr. (2) (2) (2)
Anti-Corr. (1) (1) (3)

Table 4: Placement choice for a given admission control

policy. Priority order is (1), (2) and then (3).

4.2.2 Accounting Manager

Goal: It dynamically tracks an application’s power with
respect to its allocation across its servers.
Design Tradeoffs and Discussions: We adopt a simple
credit based accounting mechanism [4] to track the differ-
ence between power reservation and its actual consumption
for each application. An application is given positive credits
if it consumes (Pt) below its reservation (P req

t) while cred-
its are subtracted if its power goes above reservation. How-
ever, to prevent misbehaving applications from continuously
banking credits without using them, a bound is enforced on
the amount of credits that it can bank (e.g., the bound can
be the battery capacity allocated to an application). Simi-
larly, to prevent misbehaving applications from continuously
discharging battery, a bound is enforced on the amount of
credits that can be in debt.
Implementation: For each application, we maintain a
data structure called PCB (Power Control Block), which
contains its power needs, accumulated credits, assigned server(s),
etc., and the credits are updated periodically. Outlet power
is sampled for each server at a second granularity, which suf-
fices if only one application is running on that server. Within
a server, one could use apportioning techniques between
co-existing applications using system metrics for power ac-
counting as in [20, 35, 33], though outlet level server meter-
ing suffices in our evaluations which places applications on
distinct servers.

4.2.3 Power Enforcer

Goal: Despite admission control, there may be power emer-
gencies during the runtime due to under-estimates of ap-
plication needs and/or aggressive over-booking as explained
earlier. The enforcer uses different computing demand-response
knobs (DVFS/clock throttling and migration) and batteries
in different layers of the hierarchy to handle these emer-
gencies. Specifically, issues related to which knob(s) to use
for different applications, which batteries to employ in a hi-
erarchical setting, are some considerations in the design of
the enforcer. The goal is to meet application performance
SLAs, as well as maximize system utilization, while ensuring
fairness between applications in the choice of knobs (perfor-
mance detrimental computing knobs versus use of batteries).
Design Tradeoffs and Discussions: Consider any two hi-
erarchy levels Li and Li−1,j , with the latter having j = 1..n

components (and hence its 2-dimensional representation) di-
rectly connected to Li. We use the following notations: the
provisioned peak power (power cap) of the outlet that level
Li can draw from is P

cap
i ; the required aggregate power draw

by level Li is P t
i =

Pn

j=1
P t

i−1,j at time t; each component

Li−1,j can draw power from its own battery with energy ca-
pacity Ebmax

i−1,j and maximum discharge/charge power P bmax
i−1,j ,

and some or all of the parent battery at Li depending on the
capacity of the provisioned line between Li−1,j and Li. One
or more of the n + 1 (n at Li−1 and 1 at Li) batteries can
be used to shave all or part of the power violation at Li.
Lemma. No matter which strategy is taken to discharge
batteries (i.e., which battery to use), a given peak P t

i ex-
ceeding P

cap
i at Li can be shaved by batteries in the hi-

erarchy if the following three conditions are satisfied: (A)
(P t

i − P
cap
i) ≤ min(P t

i−1,j , P
bmax
i−1,j), ∀j, (B) a battery is dis-

charged only when P t
i > P

cap
i , and (C) discharging de-

cisions of all batteries are coordinated (i.e., the aggregate
power drawn from all n + 1 batteries at instant t is at most
(P t

i − P
cap
i)).

This lemma implies that all batteries in the hierarchy
can be treated as one large battery placed at Li provided
the three conditions are obeyed. Condition (A) says that
the violation at Li can be shaved by removing the contri-
bution from any child component Li−1,j by sourcing that
component from its local battery. Hence, any one of the
batteries at i − 1 can be used to suppress the violation.
Condition (B) says that the battery at Li−1,j is used only
to address the violation at the parent Li, and not to sup-
press a peak violation that happens at Li−1,j itself (i.e.,
only the parent is under-provisioned and not each child).
These, together with perfect coordinated control of all child
batteries to shave this peak (Condition C), gives the sim-
plistic illusion of a centralized larger battery of energy ca-
pacity Ebmax

i =
Pn

j=1
Ebmax

i−1,j + Ebmax
i and power capacity

P bmax
i =

Pn

j=1
P bmax

i−1,j + P bmax
i at Li. The proof is given in

our technical report [38]. However, in practice, these con-
ditions may not hold. We need to, thus, carefully choose
the right battery to handle the emergencies as described be-
low to lessen the probability of violating these conditions.
For clarity, we discuss these issues assuming Li (parent) is
a rack, and each child Li−1,j is an individual server.
Parent’s violation is larger than power consumption
of m children (i.e., (P t

i − P
cap
i) >

Pm

j=1
P t

i−1,j): If some
policy schedules an imbalanced lower workload on m servers
than the other (n − m) servers, and has drained out the
batteries of these n − m other servers and the rack battery
because of prior usage, then the power violation at the par-
ent can not be handled by batteries alone. Even if these
m servers completely draw power from their local batter-
ies, the reduction will not suffice to address the emergency
at the parent. The problem gets accentuated when m de-
creases, especially as we move towards the root. To address
this concern, it is better for policies to (i) balance the load
across servers to increase Pi−1,j for under-utilized servers,
(ii) use up the batteries at the servers which have less power
demanding applications first before going to others in cases
of load imbalance.
Parent’s violation is larger than power suppliable by
m children batteries (i.e., (P t

i − P
cap
i) >

Pm

j=1
P bmax

i−1,j):
Consider a case where a policy leaves residual capacities in
only these m batteries after prior usage, and has already
drained out the other n − m + 1 batteries (including the
rack battery). In this case, the residual capacities of these
m server batteries are not sufficient to handle the rack vio-
lation (again the problem accentuates when m decreases as
we move to the root). To address this concern, it is better
to (i) use batteries evenly at the servers, and (ii) save rack

battery for such power violations since they are typically
provisioned with larger power/energy capacity to handle a
potentially larger load.
Child is itself under-provisioned (i.e., P t

i−1,j > P
cap
i−1,j

for some j): With aggressive under-provisioning deeper in
the hierarchy, a child battery may have been used to shave
its own peak, rather than the peak of a parent, thereby
violating Condition B. Subsequently, when called upon to
suppress the peak of a parent, there may not be residual ca-
pacity. Since a battery can be useful to suppress peaks from
propagating higher in the hierarchy and not in the reverse
direction, we use the following general guidelines in our poli-
cies: (i) reserve some capacity for suppressing emergencies
at its own level, and (ii) use higher level batteries for the
higher level violations as much as possible (provided lower
levels stay within their budget).
Implementation: Note that palloc() from applications,
in combination with our accounting manager, helps track
the positive/negative credits accumulated by each applica-
tion. Our runtime enforcer takes these credits into consider-
ation when employing the computing and battery knobs in
apportioning the emergency suppression mechanisms across
applications. Such proportional power allocation (whether
it be in the computing knobs or in the power from batteries),
is similar to proportional fairness studied in other resources
[37]. The enforcer prioritizes the order of employing knobs
based on the impact on performance (e.g., migration can be
relatively costly as studied in [17]), as well as the duration
and stringency of the emergency.

When the estimated duration of violations exceeds a thresh-
old, the power enforcer will start to migrate applications
with least accumulated credits to destination hierarchies with
sufficient slack. For smaller emergency durations, it uses lo-
cal DVFS and battery knobs. Based on the guidelines of
hierarchical battery usage discussed above, we use the hints
coming from palloc() to implement the enforcer as follows:
(i) reserve certain local battery capacity at each server if any
local power violations are anticipated; (ii) use local batteries
for smaller power violations, saving the shared higher level
batteries for larger ones, and supplement it with DVFS if
batteries alone cannot handle the need; and (iii) as far as
possible, source from batteries of servers with low antici-
pated future demand.

When there is slack in power usage, batteries are re-charged
in the following order: (i) batteries without sufficient charge
on servers estimated to have local power violations are given
first priority; (ii) batteries with lower state of charge are
given higher priority; (iii) batteries on servers estimated to
have low power demand (hence unlikely to incur power vio-
lations) are given the least priority.

5. EVALUATION

5.1 Experimental Setup
We evaluate vPower on a scaled-down prototype using a

cluster (rack) of n = 8 servers. The face-plate rating of
these servers is 450W, idle power is around 120W and the
peak power that we can push them to across our workloads
is 300W. The dynamic power consumption can be modu-
lated with several DVFS states and clock throttling states.
The “Power Driver” at each server changes power states us-
ing the MSR registers. Each server is equipped with a UPS
unit which serves as the server level battery. A larger ca-

pacity UPS is used as the rack-level battery. We consider
a 4-minute battery per server, of which we leave a residual
capacity of 3 minutes for availability guarantees. The UPS
is able to report its load and remaining battery runtime.
By switching off the incoming power to a UPS unit over
the network, we create the illusion of a power outage to the
UPS to source power from its batteries. This is a conserva-
tive way compared to a more elaborate approach which has
power electronics circuitry to instantaneously source only
the additional power needs (excess over the cap) from bat-
teries with the remaining coming from outlet power. Since
our experimental setup does not provide this functionality,
our evaluations account for such control capability in the
management decisions. vPower can leverage the server bat-
tery for enforcing server level caps, and can use one or more
(and perhaps taking turns to extend the duration) server
batteries and/or the rack battery for enforcing rack level
caps. We use another cluster as the destination for migrat-
ing workloads. All our applications are hosted as VMs, with
Red-Hat Linux 5.5, under Xen. A separate machine runs our
“Middleware” which implements the algorithms, and sends
appropriate throttling and VM migration commands to the
server power driver.

5.2 Workloads
Workload Type Runtime

(Secs)
YCSB user-facing 587

MediaServer user-facing 370
Memcached user-facing 1020
WebSearch user-facing 629
MapReduce batch 365

WebCrawling batch 370
GPU batch 1000

VirusScan batch 888

Table 5: Workloads

We consider a
suite of 8 repre-
sentative datacen-
ter applications (Ta-
ble 5), that are
both user-facing (in-
teractive) and batch
workloads. Inter-
active applications
include the Yahoo!
Cloud Serving Bench-
mark (YCSB) [8], an in-memory key-value store Memcached
benchmark [26], two other applications (MediaServer, Web-
Search) from Cloudsuite [12]. Batch applications include
a WebCrawling benchmark from Cloudsuite, a Hadoop
MapReduce application (word count used in several analyt-
ics applications), a GPU application in CUDA implementing
the Black-Scholes financial model using a NVIDIA card, and
a virus scanner (VirusScan). The last 2 are not amenable to
migration from the server where they are executing. Figure 3
shows the power profiles on a representative server running
these applications, and their runtime is given in Table 5.

0 100 200 300
0

100

200

300

Po
w

er
 (W

) YCSB

0 100 200 300
0

100

200

300

Po
w

er
 (W

) MapReduce

0 100 200 300
0

100

200

300

Po
w

er
 (W

) MediaServer

0 100 200 300
0

100

200

300

Po
w

er
 (W

) GPU

0 100 200 300
0

100

200

300

Po
w

er
 (W

) Memcached

0 100 200 300
0

100

200

300

Po
w

er
 (W

) VirusScan

0 100 200 300
0

100

200

300

Time (second)

Po
w

er
 (W

) WebSearch

0 100 200 300
0

100

200

300

Time (second)

Po
w

er
 (W

) WebCrawling

Figure 3: Application power profiles. For clarity, only

first 350 seconds of execution is shown.

5.3 Evaluation Metrics
We consider the following metrics from the system and

application perspectives:

• Power violations: the number of times that a power cap
is violated at any of the two levels. Note that in our com-
plete system, the enforcer will ensure no violations. We
use this metric to compare the pros and cons of isolat-
ing the admission control/placement policies by removing
the power enforcer in those experiments. In practice, the
extent (magnitude and duration) of the violations should
be tracked, but in the interest of clarity when presenting
results we find that the number of power violations is a
reasonable proxy for comparisons.

• Degree of consolidation: the number of applications that
can be co-located on the same server/rack without exceed-
ing the specified power caps. Consolidation can extract
more value from existing compute and power infrastruc-
ture, and is also attractive from the viewpoint of lowering
energy consumption/costs.

• Scale-out: the number of instances that an application can
be replicated, to improve its throughput. This metric is
more useful when the goal is to accelerate the performance
of a single application (e.g., Memcached) as opposed to
consolidation of disparate applications.

• Performance Degradation: the percentage degradation (of
response time, throughput, completion time, etc. depend-
ing on the application) of running an application under a
power cap with respect to the same experiment running
without a power cap.

• Fairness: a measure of how the system treats co-existing
applications from the performance viewpoint when meet-
ing the power budgets. Rather than a single numerical
metric, our results will clearly depict the differences be-
tween policies in penalizing applications.

5.4 Impact of Admission Control Policies
We begin by evaluating the three admission control poli-

cies - Conservative (II), Moderate (III) and Aggressive (IV)
- and compare them with two baseline schemes - “Baseline-
power” (I) which admits applications as long as adding their
peak power consumption (PMax) does not violate the caps
(i.e., assumes no statistical multiplexing or dynamic modula-
tion knobs and is thus extremely conservative), and“Baseline-
utilization” (V) which admits applications considering only
the average utilization of the applications (which is some-
what representative of how consolidation is currently con-
ducted, without regard to any power caps in the hierar-
chy, and is consequently very aggressive). As explained in
section 4.2.1, the effectiveness of these policies depends on
the specifications/hints that an application can give, and we
consider the design space for the specifications given earlier
in Table 3. In the following experiments, we set a rack level
power cap of 1200W (approximately half of the maximum
power to which we can push our rack). To isolate the impact
of admission control, we remove the power enforcer in these
experiments (which can lead to power violations depending
on the aggressiveness of admission control), and study the
resulting consolidation and scale-out effectiveness.

Consolidation:. Admission control restricts the consolida-
tion degree (the number of applications in a rack) with the
possible benefit of fewer power emergencies. To study these
trade-offs, we conduct a stress-test where we try to place

as many of the eight applications (as allowed by the admis-
sion control policy) in the rack, and examine the resulting
violations at the rack level. In reality, the choice for co-
locating applications on a rack or a server would depend on
additional issues such as performance interference, storage
locality, security, etc., over and beyond power caps. How-
ever, we ignore such considerations to mainly isolate the
impact of the power cap at the rack level, and allow up to
8 applications to co-exist in the same rack, but place each
application on a separate server, i.e., there is no server level
interference, but there could be rack level interferences.

I II III IV V
0

2

4

6

8

10

D
e

g
re

e
 o

f
C

o
n

s
o

li
d

a
ti

o
n (a) PMin

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

(b) PAvg

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

(c) P90

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

#
 o

f
P

o
w

e
r

V
io

la
ti

o
n

s

(d) PMax

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

D
e

g
re

e
 o

f
C

o
n

s
o

li
d

a
ti

o
n (e) P90−entire

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

(f) P90−60

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

(g) PMax−entire

0

80

160

240

320

400

I II III IV V
0

2

4

6

8

10

#
 o

f
P

o
w

e
r

V
io

la
ti

o
n

s

(h) PMax−60

0

80

160

240

320

400

Figure 4: Consolidation Results for different Admis-

sion Control policies and Power Need specifications.

Bars depict consolidation degree (left y-axis) and points

on line depict number of power violations (right y-

axis) of rack power cap set at 1200W. I:Baseline-

power, II:Conservative, III:Moderate, IV:Aggressive,

V:Baseline-utilization. Horizontal line represents consol-

idation degree (= 7) possible with “Exact” power speci-

fication without any power violations.

Figure 4 shows the trade-offs between consolidation de-
gree and its consequences on power violations for each of
the three admission control policies, comparing them with
the two baseline extremes. Results are shown for the appli-
cation power specifications outlined earlier in Table 3. In
these graphs, we also show the maximum possible consoli-
dation that can be attained (which is 7) without having any
violations (and not requiring either batteries or computing
knobs in the runtime), as a horizontal line. From these re-
sults, we make the following observations:

• A conservative admission control policy (II) which does
not consider batteries, is comparable to “Baseline-power”
(I) that provisions for the peak, and degenerates to the lat-
ter when the applications use the PMax specification (Fig
4 (d)). Unless applications grossly under-estimate their
power (PMin in Figure 4 (a)), this policy is not prefer-
able.

• At the other end, the aggressive policy (IV) achieves the
same consolidation degree as “Baseline-utilization” (in the
cases where a time interval is not specified).

• As long as the consolidation degree is less than or equal to
7, there are no violations, even when there is no dynamic
enforcement i.e., statistical multiplexing of workload pro-
files suffices to keep the power draw within the cap. This
is the case for all 3 policies in all the specifications which
have a duration component (either“entire”or“60 seconds”
in Figure 4 (e-h)).

• It is only when durations (even the execution time of the
application) are not specified, that the moderate and ag-
gressive policies start overbooking the power infrastruc-
ture, which can potentially lead to power violations - these
would be suppressed at runtime by the enforcer with ei-
ther battery or computing knobs. While this may appear
counter-intuitive (i.e., no time component should lead to
less flexibility in multiplexing needs and thereby lower
consolidation), recall that there are 2 criteria to admis-
sion control - power and energy. Even though power mul-
tiplexing may be better with temporal information, note
that when time durations are not specified, the energy
criteria is always assumed to be met (section 4.2.1) from
batteries, allowing more applications to be co-located.

Scale-Out:. Instead of co-locating disparate applications
within a given infrastructure capacity, a datacenter may only
be interested in accelerating the performance of a single ap-
plication with additional instances for scale-out. We conduct
similar experiments by creating more instances of the Mem-
cached server workload within the rack as allowed by the
admission control policies. Figure 5 (a) shows a represen-
tative result for the P90 specification, which reiterates the
observations made in the consolidation studies. With more
aggressive admission control, we can add more instances,
with the number of memcached servers supported by the
rack going to 8 for the Aggressive (IV) policy. Violations
also increase, but we will shortly show that these can be ef-
fectively managed without significant performance degrada-
tion when we introduce the enforcer. Without any runtime
enforcement, one can achieve a scale-out to at most 5 servers
(horizontal line) if we are constrained by the power cap.

I II III IV V
0

2

4

6

8

10

S
c
a
le

−
o

u
t

(#
 o

f
s
e
rv

e
rs

)

I II III IV V
100

150

200

250

300

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(b)

#
 o

f
P

o
w

e
r

V
io

la
ti

o
n

s

(a)

0

50

100

150

200

250
No Power Cap

DVFS

vPower

Figure 5: Memcached Scaleout with P90. I:Baseline-

power, II:Conservative, III:Moderate, IV:Aggressive,

V:Baseline-utilization. In (a), the horizontal line rep-

resents scale-out degree (= 5) using “Exact” power spec-

ification without any power violations, bars depict scale-

out degree, and points on line represent number of power

violations.

5.5 Impact of Placement Policies
We conduct experiments to study the impact of the poli-

cies when placing two applications - WebCrawling and Me-
diaServer - in the same rack, with each application placed on
its own server. These two are representative of more sinu-
soidal behavior in the power profile, helping us to study the
influence of cross-correlations. To capture different cross-
correlations, we simply vary the starting time of these ap-
plications, helping us capture a wide range of multiplexing
possibilities (correlations). The “P90” interface is used to
specify the power needs of these applications, and the en-
forcer is in place to avoid violations at the potential cost
of performance degradation. As explained in section 4.2.1,
placement choices go hand-in-hand with admission control,

and we consider the correlation factor interactions with the
aggressiveness of admission control as is depicted in Table
6. Note that the power caps need to be changed in order
to ensure the two applications are admitted in all the ad-
mission control schemes, i.e., power cap is increased by the
amount of battery capacity as you move from aggressive
(right column where the power cap is 300W) to conserva-
tive (left column where the power cap is 500W) in Table
6. Consequently, one should not compare the performance
degradations across columns. Rather, the trend within each
column, and how that trend changes when we move from ag-
gressive to conservative is what is important. As we can see,
the columns to the left prefer an anti-correlated co-location
of workloads, while the aggressive admission control prefers
a more correlated placement. These observations validate
our choice of placement priorities based on the admission
control policies as discussed earlier in section 4.2.1.

Conservative Moderate Aggressive
Rack Cap 500W 460W 300W

High corr. (1,1) (8,6) (15,14)
Low corr. (0,0) (0,0) (20,18)
Anti-corr. (0,0) (0,0) (25,20)

Table 6: Performance degradation of placing WebCrawl-

ing + MediaServer in the same rack with different

cross-correlations and admission control policies. Tuples

(WebCrawling, MediaServer) show % degradation w.r.t.

running the same experiment without a power cap.

5.6 Effectiveness of Enforcer

Performance. Results in Figures 4 and 5 (a), showed the
impact of the admission control policies without the enforcer
in place, which can lead to power violations in some of the
cases. We now reinstate the enforcer to suppress these vio-
lations, and show the resulting application degradation for
those two sets of experiments with the “P90” specification
in Figure 6 (a) and Figure 5 (b) respectively.

Application DVFS vPower
YCSB 49 20

MediaServer 24 9
Memcached 49 25
WebSearch 107 48
MapReduce 72 41

GPU 60 25
WebCrawling 39 10

VirusScan 0 0 0 50 100 150 200 250 300 350
0

500

1000

1500

Time (second)

P
o

w
e

r
(W

)

Aggregate Power Demand

Rack Power Cap

Utility

Rack Battery

Server Battery

Throttling

(a) Perf. Degradation (%) (b) Power Profile (Sourcing and Capping)

Figure 6: P90 specification in the Figure 4 experiment

with Enforcer

As can be seen, while the degradation is non-zero in most
applications for the consolidation experiment (Figure 6 (a)),
it is still significantly better than a DVFS-only approach
(an Oracle-based best DVFS states are chosen to adhere
to the power caps). Degradation with vPower is between
15% to 69% lower than in a DVFS-only approach (12%-
28% performance improvement) for the more power hungry
applications (VirusScan draws relatively low power). The
effectiveness of the enforcer can be explained with Figure
6 (b), which shows how it meets the aggregate power de-
mand of all 8 applications - through normal power (utility),
one or more batteries, and DVFS throttling when necessary.

With vPower, DVFS is employed mainly when batteries do
not suffice (from 270 seconds onwards). There are periods
in-between (e.g. 120-200 seconds), when some applications
reach their credit limits, and DVFS is used to enforce their
debt, as seen in a small top portion of the curve in this
region. Server batteries are the first choice for small am-
plitude violations while the rack battery is used for most
large amplitude violations. The choice of which battery to
use, and the fairness to differently meet application demands
(through batteries or throttling) is explained in more detail
later in this section. In the shown zoomed-in 350 second
time window, there is little opportunity for re-charging the
batteries, though such re-charging does happen with power
slack from 370 seconds (not shown in Figure 6 (b)).

Similarly, the scale-out experiment for Memcached in Fig-
ure 5 (b) shows vPower giving throughput close to the un-
capped case, and a value that is 25%-75% higher than the
throughput of a DVFS-only option. Note that for aggressive
policies (IV and V), the throughput of DVFS-only enforce-
ment actually drops below the throughput of less aggressive
policies (I, II and III); while the throughput with vPower
actually increases despite the power cap. This shows that
vPower can help applications such as Memcached achieve
better scaleout capabilities when hosted in aggressively under-
provisioned power infrastructure.

Battery Management. We now show two examples depict-
ing the importance of picking the right batteries at the right
time towards maintaining the power caps, and show how the
enforcer in vPower chooses the better option than always
opting to first use the rack battery or server batteries.
Rack (Shared) Battery First being the better option:
We run an experiment with a rack of two servers running
MapReduce and MediaServer respectively, and the aggre-
gate rack level power draw is shown in Figure 7 (a). Both
applications specify their power needs using “P90-60”, and
we set both a server-level power cap of 240W and a rack level
power cap of 340W (we proportionally reduce the amount of
power that can be drawn from the rack level battery, which
was originally provisioned for 8 servers). As per heuristics
described earlier in section 4.2.3, when the enforcer antici-
pates local power violations, it first discharges rack (shared)
battery for rack power violations and uses server level (local)
batteries for such violations only when the shared battery
reaches its lower threshold. This leaves more charge in lo-
cal batteries for later use, and Figures 7 (e) and (f) show
the amount of power that is capped for each application
by throttling and the state of charge (SoC) of batteries (at
the two servers and at the rack), respectively with vPower.
On the other hand, a scheme (local battery first) that dis-
charges local batteries greedily and goes to the rack battery
only when the former runs out of charge, will not be able to
handle the higher load that may come later to exceed the
server level power cap. This can be seen in the throttling
power and SoC graphs in Figures 7 (c) and (d) respectively.
Using up the MediaServer server’s battery in the first 200
seconds to handle rack level violations, leads to its inability
to handle its own power violations later on, resulting in a
9% performance penalty (Figure 7 (b)). Note that we inten-
tionally leave a residual capacity of 20% of the usable bat-
tery capacity (which already excludes residual capacity for
availability guarantees) due to battery lifetime issues [39].
Interestingly, MapReduce is throttled by vPower at around
time 200s, despite having capacity in its local battery. This

is because it is in debt, and its local battery is being con-
served for possible subsequent rack level violations, in the
interest of fairness that is covered later in this section.

0 50 100 150 200 250 300 350
0

100

200

300

400

500

Time (second)

P
o

w
e

r
(W

)

Total Power

Rack Power Cap

Local-First vPower

MediaServer 9 0

MapReduce 1 1

(a) Aggregate Rack Power (b) Performance Degradation (%)

0 50 100 150 200 250 300 350
0

50

100

150

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

MapReduce

MediaServer

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (second)

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

MapReduce

MediaServer

Rack Battery

(c) Throttling (Local First) (d) SoC (Local First)

0 50 100 150 200 250 300 350
0

50

100

150

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

MapReduce

MediaServer

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Time (second)

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

MapReduce

MediaServer

Rack Battery

(e) Throttling (vPower) (f) SoC (vPower)

Figure 7: Shared Battery First is Better Option (Medi-

aServer+MapReduce)

0 50 100 150 200 250 300 350 400 450
0

200

400

600

Time (second)

P
o

w
e

r
(W

)

Total Power

Rack Power Cap

Shared-First vPower

VirusScan 0 0

GPU 8 0

Memcached 15 0

(a) Aggregate Rack Power (b) Performance Degradation (%)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

VirusScan

Memcached

GPU

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (second)

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

VirusScan

Memcached

GPU

Rack Battery

(c) Throttling (Shared First) (d) SoC (Shared First)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

VirusScan

Memcached

GPU

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (second)

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

VirusScan

Memcached

GPU

Rack Battery

(e) Throttling (vPower) (f) SoC (vPower)

Figure 8: Local Battery First is better Option (Mem-

cached+GPU+VirusScan)

Server (Local) Battery First being the better op-
tion: On the other hand, Figure 8 (a) shows the aggregate
power of three applications (Memcached, GPU and VirusS-
can) running on a server each in the rack, specifying their
power needs using “P90-60”. We intentionally reduce the
runtime of VirusScan to 200s and show results for a dura-
tion of 450s. Only a rack level power cap is set at 450W
and we proportionally reduce the amount of power that can
be drawn from the rack battery as in the previous exper-
iment. vPower anticipates no local power violations, and
also anticipates an earlier completion of VirusScan with the
P90-60 specification. Based on its heuristics, it uses local
batteries first to handle rack level power violations in this
case, and in fact prioritizes the draw from VirusScan server’s

battery before it finishes (Figure 8 (f)), removing any ne-
cessity for throttling (Figure 8 (e)). However, obliviously
using a shared battery first approach in this case mandates
subsequently throttling Memcached and GPU, causing per-
formance degradation of 15% and 8% in these applications,
respectively.

Fairness. We finally evaluate vPower’s ability to enforce
isolation between power draws of different applications for
fairness. As noted earlier, there are pros and cons in the
stringency of power demands made by an application. Ask-
ing for very stringent power may lessen their chances of be-
ing admitted, making them wait longer for power allocation.
At the other end, even though grossly under-specifying the
power may get them admitted, vPower will ensure that such
applications do not mis-behave/mis-appropriate much more
power in the runtime at the expense of others. The account-
ing mechanism in vPower, enforces a bound on the amount of
credits that can be banked, as well as a bound on the credits
that can be in debt. To illustrate these issues, we conduct
an experiment with WebCrawling and MediaServer, each
running on its own server. WebCrawling uses PMin=180W
for its power specification (a significant under-statement),
while MediaServer uses PAvg=180W. Rack power cap is set
to 325W, with no individual server power caps. We show the
benefits of vPower’s accounting mechanism by comparing its
execution with that for a scheme which uses DVFS and bat-
teries as vPower, but without the accounting mechanisms
as shown in Figure 9. Without accounting in place, power
needs of WebCrawling are continuing to be met (there is no
throttling for it for the first 225 seconds) through batter-
ies, and both applications are being penalized subsequently
(12-13% performance degradation). MediaServer is being
penalized in this case for WebCrawling’s fault, making it
unfair. On the other hand, with our accounting mechanism
in place, WebCrawling’s credits deplete rapidly, while Me-
diaServer saves/accumulates its credits. Consequently the
penalization for WebCrawling (which is mis-behaving) steps
in a lot sooner, and MediaServer is not affected at all.

0 50 100 150 200 250 300 350
0

100

200

300

400

500

Time (second)

P
o

w
e
r

(W
)

Total Power

Rack Power Cap

0 50 100 150 200 250 300 350 400
0

50

100

150

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

MediaServer

WebCrawling

(a) Aggregate Power (b) Throttling (vPower w/o Account.)

0 50 100 150 200 250 300 350 400

−1

−0.5

0

0.5

1

Time (second)

N
o

rm
a

li
z
e

d
 C

re
d

it

MediaServer

WebCrawling

0 50 100 150 200 250 300 350 400
0

50

100

150

Time (second)

T
h

ro
tt

li
n

g
 P

o
w

e
r

(W
)

MediaServer

WebCrawling

(c) vPower Account. (d) Throttling (vPower w/ Account.)

Application Name w/ Account. w/o Account.

MediaServer 0 12

WebCrawling 28 13

(e) Performance Degradation (%)

Figure 9: Insulation from Power-hungry Applications

(MediaServer+WebCrawling)

6. CONCLUDINGREMARKSANDFUTURE

WORK
With aggressive under-provisioning of the power infras-

tructure, this resource becomes as valuable as any other

computing resource that needs to be appropriately rationed
and managed between competing applications. Virtualizing
this infrastructure gives the illusion of a potentially larger
and insulated infrastructure for each application, voiding the
need to expose its physical capacity and management to the
applications. Until now, apportioning power has at best
used modulation of other computing resources (demand-side
knobs) - CPUs in particular through DVFS, scheduling, mi-
gration, etc. However, power distribution can also bene-
fit tremendously from supply-side resources such as energy
storage devices (batteries), at potentially multiple layers in
the hierarchy. Hence, explicit virtualization of power hierar-
chies is essential, than just controlling power draws through
demand-side knobs as has been the case until now. Towards
this goal, this paper has presented the design and imple-
mentation of vPower, to create, allocate and manage virtual
power hierarchies for co-existing datacenter applications.

vPower allows applications (not essential) to explicitly
request their power needs at different resolutions using a
palloc() interface. We have shown that such information
can considerably help system performance, while still shield-
ing individual applications from explicitly managing this re-
source, similar to the malloc() analogy. Specifying needs
even as a high percentile (e.g., P90,) and not necessarily the
exact maximum, and fairly coarse time resolutions (a minute
or coarser at application phases such as Map/Reduce) seems
to offer a good trade-off point. vPower uses these specifi-
cations in determining whether to admit them, and if so,
where to place them. We have shown that ignoring the bat-
tery capacities, and conservatively allocating for the poten-
tial peaks to avoid any power emergencies, results in over
30% reduction in system utilization. This also highly limits
the scale-out capabilities of applications such as memcached.
Consequently, an aggressive admission control policy that
places correlated workloads together - to offer more oppor-
tunities for batteries to recharge - is a better policy.

Despite an aggressive admission control policy, vPower’s
enforcer is able to effectively manage the power violations.
We have shown that in our experimental rack of 8 servers,
vPower shows 12-28% better performance than for a scheme
that uses purely demand-side computing knobs, on a 50%
under-provisioned power infrastructure. It also provides at
least 50% higher throughput than the latter, for a mem-
cached scale-out workload in this aggressively under-provisioned
system. We have also demonstrated that the choice of bat-
teries to draw upon during the runtime in a hierarchical
2-layer setting is very important. Based on a theoretical
framework that identifies the conditions when this decision
making becomes important, we have incorporated heuris-
tics into vPower for battery sourcing. We have shown that
vPower does much better than greedily using up local batter-
ies or shared batteries first. Finally, we have demonstrated
the effectiveness of vPower in fairly treating applications,
by insulating the misbehavior of one application from the
power needs of another. Our contributions are applicable
regardless of where batteries are placed, the choice of energy
storage technologies, and battery capacities. In fact, more
stringent battery capacities make it even more important to
manage hierarchies intelligently.

There are several interesting directions for future work.
We have only been able to prototype a small 2-level hier-
archy on our available experimental testbed, and we would
like to conduct similar evaluations on a larger and deeper

hierarchy, and examine a more hierarchical/distributed im-
plementation of vPower for its scalability. Despite flexibility
in our software to modulate the draw/charge rates of bat-
teries, and possibly using those to source only a portion of
the power exceeding the cap, our current hardware platform
does not have those facilities. We are looking to build such
capabilities in the future. Having shown the utility of a
palloc() interface, even if it is at coarse resolutions, in man-
aging the under-provisioned infrastructure, there is consid-
erable scope for leveraging this interface. First, as described
in [23], many current datacenter applications undergo ex-
tensive pre-production profiling on different hardware plat-
forms, making them well-suited for exploiting this interface
(as even a command line argument). Second, long-running
services (e.g. mail, search, etc.) that may have predictability
in load patterns (e.g. time-of-day behavior) could also use
prior history for these purposes. Finally, a challenging area
for future work is targeting cloud datacenters with sporadic
jobs dynamically arriving, where pre-profiling may be diffi-
cult. While the infrastructure could assume average/worst
case scenarios for such applications, one could envision a new
set of runtime abstractions for power. Analogous to data
structures that are explicitly (by the program) or implicitly
(by the runtime system) allocated/deleted in (virtual) mem-
ory, we propose to investigate such “power” abstractions for
this aggressively under-provisioned resource, to make pal-
loc() a more natural feature, just as malloc() is in today’s
programs/runtime-systems.

7. ACKNOWLEDGMENTS
This work was supported, in part, by NSF grants 0811670,
1152479, 1205618, 1213052, 1147388, CAREER award 0953541,
and a research award from Google.

8. REFERENCES
[1] F. Bellosa, A. Weibel, M. Waitz, and S. Kellner.

Event-Driven Energy Accounting for Dynamic
Thermal Management. In Workshop on Compilers and
Operating Systems for Low Power (COLP), 2003.

[2] R. Bianchini and R. Rajamony. Power and Energy
Management for Server Systems. IEEE Computer,
37(11), 2004.

[3] O. Bilgir, M. Martonosi, and Q. Wu. Exploring the
Potential of CMP Core Count Management on Data
Center Energy Savings. In Workshop on Energy
Efficient Design, 2011.

[4] Q. Cao, D. Kassa, N. Pham, Y. Sarwar, and
T. Abdelzaher. Virtual Battery: An Energy
Reservation Abstraction for Embedded Sensor
Networks. In Proceedings of RTSS, 2008.

[5] J. Chase, D. Anderson, P. Thakur, and A. Vahdat.
Managing Energy and Server Resources in Hosting
Centers. In Proceedings of SOSP, 2001.

[6] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao. Energy-aware Server Provisioning and
Load Dispatching for Connection-intensive Internet
Services. In Proceedings of NSDI, 2008.

[7] J. Choi, S. Govindan, B. Urgaonkar, and
A. Sivasubramaniam. Profiling, Prediction, and
Capping of Power Consumption in Consolidated
Environments. In Proceedings of MASCOTS, 2008.

[8] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking Cloud

Serving Systems with YCSB. In Proceedings of SoCC,
2010.

[9] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: A
System for Energy-Efficient Management of Virtual
Machines. ACM TODAES, 16(1):6:1–6:27, 2010.

[10] Facebook Rack-level UPS for Improved Efficiency.
http://www.datacenterknowledge.com/archives/

2011/04/07/.

[11] X. Fan, W.-D. Weber, and L. A. Barroso. Power
Provisioning for a Warehouse-Sized Computer. In
Proceedings of ISCA, 2007.

[12] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In Proceedings of ASPLOS, 2012.

[13] A. Gandhi, M. Harchol-Balter, R. Das, and
C. Lefurgy. Optimal Power Allocation in Server
Farms. In Proceedings of SIGMETRICS, 2009.

[14] Google Server-level UPS for Improved Efficiency.
http:

//news.cnet.com/8301-1001_3-10209580-92.html.

[15] S. Govindan, A. Sivasubramaniam, and B. Urgaonkar.
Benefits and Limitations of Tapping into Stored
Energy For Datacenters. In Proceedings of ISCA, 2011.

[16] S. Govindan, D. Wang, L. Y. Chen,
A. Sivasubramaniam, and B.Urgaonkar. Towards
Realizing a Low Cost and Highly Available Datacenter
Power Infrastructure. In Workshop on HotPower,
2011.

[17] S. Govindan, D. Wang, A. Sivasubramaniam, and
B. Urgaonkar. Leveraging Stored Energy for Handling
Power Emergencies in Aggressively Provisioned
Datacenters. In Proceedings of ASPLOS, 2012.

[18] J. Hamilton. Internet-scale Service Infrastructure
Efficiency, ISCA Keynote, 2009.

[19] C. Isci, G. Contreras, and M. Martonosi. Live, runtime
phase monitoring and prediction on real systems with
application to dynamic power management. In
Proceedings of MICRO, 2006.

[20] A. Kansal, F. Zhao, J. Liu, N. Kothari, and
A. Bhattacharya. Virtual Machine Power Metering
and Provisioning. In Proceedings of SOCC, 2010.

[21] V. Kontorinis, L. Zhang, B. Aksanli, J. Sampson,
H.Homayoun, E. Pettis, T. Rosing, and D. Tullsen.
Managing Distributed UPS Energy for Effective Power
Capping in Data Centers. In Proceedings of ISCA,
2012.

[22] J. Leverich, M. Monchiero, V. Talwar,
P. Ranganathan, and C. Kozyrakis. Power
Management of Datacenter Workloads Using Per-Core
Power Gating. IEEE Computer Architecture Letters,
8(2):48–51, 2009.

[23] J. Mars, L. Tang, and R. Hundt. Heterogeneity in
Homogeneous Warehouse-Scale Computers: A
Performance Opportunity. IEEE Computer
Architecture Letters, 10(2):29–32, 2011.

[24] M. R. Marty and M. D. Hill. Virtual Hierarchies to
Support Server Consolidation. In Proceedings of ISCA,
2007.

[25] D. Meisner, B. T. Gold, and T. F. Wenisch.

PowerNap: Eliminating Server Idle Power. In
Proceedings of ASPLOS, 2009.

[26] Memslap: Load Testing and Benchmarking a Server,
2012.
http://docs.libmemcached.org/memslap.html/.

[27] Microsoft Reveals its Specialty Servers, Racks, Apr.
2011.
http://www.datacenterknowledge.com/archives/.

[28] J. Moore, J. Chase, P. Ranganathan, and R. Sharma.
Making Scheduling Cool: Temperature-Aware
Workload Placement in Data Centers. In Proceedings
of USENIX, 2005.

[29] R. Nathuji and K. Schwan. VirtualPower:
Coordinated Power Management in Virtualized
Enterprise Systems. In Proceedings of SOSP, 2007.

[30] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch,
and J. Underwood. Power routing: Dynamic power
provisioning in the data center. In Proceedings of
ASPLOS, 2010.

[31] E. Pinheiro, R. Bianchini, E.Carrera, and T. Heath.
Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems. In Workshop
on COLP, 2001.

[32] R. Raghavendra, P. Ranganathan, V. Talwar,
Z. Wang, and X. Zhu. No Power Struggles:
Coordinated Multi-level Power Management for the
Data Center. In Proceedings of ASPLOS, 2008.

[33] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and
Z. Chen. Power Containers: An OS Facility for
Fine-Grained Power and Energy Management on
Multicore Servers. In Proceedings of ASPLOS, 2013.

[34] J. Stoess, C. Klee, S. Domthera, and F. Bellosa.
Transparent, power-aware migration in virtualized
systems. In GI/ITG Fachgruppentreffen
Betriebssysteme, number 2007-23, pages 3–8, 2007.

[35] J. Stoess, C. Lang, and F. Bellosa. Energy
management for hypervisor-based virtual machines. In
Proceedings of USENIX, 2007.

[36] A. Verma, G. Dasgupta, T. Kumar, N. Pradipta, and
R. Kothari. Server Workload Analysis for Power
Minimization Using Consolidation. In Proceedings of
USENIX, 2009.

[37] C. A. Waldspurger and W. E. Weihl. Lottery
scheduling: Flexible Proportional-share Resource
Management. In Proceedings of OSDI, 1994.

[38] D. Wang, C. Ren, and A. Sivasubramaniam.
Virtualizing Power Distribution in the Datacenter.
Technical Report CSE-13-004, The Pennsylvania State
University, 2013.

[39] D. Wang, C. Ren, A. Sivasubramaniam, B. Urgaonkar,
and H. Fathy. Energy Storage in Datacenters: What,
Where, and How Much? In Proceedings of
SIGMETRICS, 2012.

[40] X. Wang and M. Chen. Cluster-level Feedback Power
Control for Performance Optimization. In Proceedings
of HPCA, 2008.

[41] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
ECOSystem: Managing Energy as a First Class
Operating System Resource. In Proceedings of
ASPLOS, 2002.

