
Springer Optimization and Its Applications

VOLUME 76

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

For further volumes:
http://www.springer.com/series/7393

http://www.springer.com/series/7393




Altannar Chinchuluun • Panos M. Pardalos
Rentsen Enkhbat • Efstratios N. Pistikopoulos
Editors

Optimization, Simulation,
and Control

123



Editors
Altannar Chinchuluun
Institute of Mathematics
National University of Mongolia
Ulaanbaatar, Mongolia

Rentsen Enkhbat
School of Economic Studies
National University of Mongolia
Ulaanbaatar, Mongolia

Panos M. Pardalos
Department of Industrial and Systems

Engineering
University of Florida
Gainesville, FL, USA

Efstratios N. Pistikopoulos
Centre for Process Systems Engineering
Department of Chemical Engineering
Imperial College London
London, UK

ISSN 1931-6828
ISBN 978-1-4614-5130-3 ISBN 978-1-4614-5131-0 (eBook)
DOI 10.1007/978-1-4614-5131-0
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012951286

© Springer Science+Business Media New York 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Mathematics is the language with which God
wrote the universe

—Galileo Galilei





Preface

Optimization and optimal control are very powerful tools in engineering and
applied mathematics. Problems in the fields are derived from real-world applications
in finance, economics, telecommunications, and many other fields. There have
been major algorithmic and theoretical developments in the fields of optimization
and optimal control during the last decade. Lately simulation-based optimization
methods are becoming a very popular approach for solving optimization problems
due to developments of computer hardware. This book brings together recent
developments in these areas as well as recent applications of these results to
real-world problems. This book is aimed at both practitioners and academics and
assumes that the reader has appropriate background in the above fields. The book
consists of 21 chapters contributed by experts around the world who work with
optimization, control, simulation, and numerical analysis.

The first eight chapters of the book are concerned with optimization theory and
algorithms.

The spatial branch-and-bound algorithm for solving mixed-integer nonlinear
programming problems uses convex relaxations for multilinear terms by applying
associativity. The chapter by Belotti et al. gives two different convex relaxations
using associativity in different ways and proves that having fewer groupings of
longer terms yields tighter convex relaxations. Numerical examples show the
efficiency of the algorithm.

The gap functions are generally used to investigate variational inequality prob-
lems through optimization problems. The chapter by Altangerel and Wanka in-
vestigates properties of gap functions for vector variational inequalities using the
oriented distance functions. Enkhbat and Barsbold study the problem of finding two
largest inscribed balls in a polyhedron so that sum of their radiuses is maximized.
The problem is formulated as a bilevel programming problem and a gradient-based
method is proposed to solve the program. The chapter by Tseveendorj gives a short
survey on the theoretical and algorithmic results for mathematical programs with
equilibrium constraints which have many applications in telecommunication and
transportation networks, economical modeling, and computational mechanics.

vii



viii Preface

Many real-world optimization design problems contain uncertainties which are
characterized as parameters. The chapter by Kao and Liu studies linear program-
ming problems with interval-valued parameters. For linear programs, the objective
value is also interval-valued. They formulate two bilevel programs to calculate the
lower and upper bounds of the objective values of the interval linear programs.
These bilevel programs are then reduced to a single-level nonlinear program which
can be tackled by standard nonlinear algorithms.

In order to solve optimization or control problems, existing simulation model or
tools can be used. However, the transition is not simple. Here simulation means
solving a system of state equations by a fixed-point iteration. The chapter by
Griewank et al. quantifies and estimates the complexity of an optimization run
compared to that of a single simulation, measured in terms of contraction rates. The
chapter by Majig et al. considers the generalized Nash equilibrium problem. The
problem can be formulated as a quasi-variational inequality problem. Using this
reformulation, they propose a method for finding multiple, hopefully all, solutions
to the generalized Nash equilibrium problem. Numerical experiments are provided
to show the efficiency of the proposed approach. The chapter by Lorenz and
Wanka studies scalar and vector optimization problems with objective functions,
which consist of a convex function and a linear mapping and cone and geometric
constraints. They formulate dual problems and establish weak, strong, and converse
duality results between the dual and original programs.

Network optimization is one of the main fields of optimization and has many
real-world applications. The next two chapters are concerned with network op-
timization problems and their applications in telecommunication. The minimum
connected dominating set problem has a wide range of applications in wireless
sensor networks and it gives an efficient virtual backbone for routing protocols.
However, in some real-world problems, routing paths between pairs of vertices
might be greater than the shortest path between them. In that case, minimum routing
cost connected dominating set (MOC-CDS) is applied. The chapter by Liu et al.
considers a variation of the MOC-CDS in the graph so-called g-MOC-CDS. They
also propose a polynomial-time approximation scheme for the problem. The chapter
by Charalambous studies some distributed power control algorithms for wireless ad
hoc networks and discusses their convergence under uncertainties. The chapter also
suggests directions for future research in the field.

The next four chapters are concerned with direct and indirect applications of
optimization.

Nowadays, urban planning has been very critical for the development of many
world cities. In their chapter, Keirstead and Shah model urban planning using
optimization framework. The chapter by Enkhbat and Bayanjargal studies an
extension of the classical Solow growth theory where the production function is
an arbitrary continuous differentiable function and the saving and depreciation rates
depend on time. The per capita consumption problem is reduced to a parametric
maximization problem and a finite method for the problem is proposed. The chapter
by Asada studies the existence of cyclical fluctuations in continuous time dynamic
optimization models with two state variables. The results are applied to a continuous



Preface ix

time dynamic optimization economic model. The chapter by Lippe focuses on
modeling and optimizing fuzzy-rule-based expert systems. It gives an overview
of existing methods that combine fuzzy-rule-based systems with neural networks
and presents a new tool for modeling an existing fuzzy-rule-based system using an
artificial neural network.

The next four chapters are concerned with optimal control and its applications.
The chapter by Gao and Baoyin introduces a smoothing technique for solving
bang-bang optimal control problems. In order to speed up the convergence of this
algorithm, an integration switching method based on a termed homotopy method is
applied. They also provide some numerical examples illustrating the effectiveness
of their method.

There are many methods for solving optimization and optimal control problems.
However, it is hard to select the best approach for specific problems. The paper by
Gornov et al. discusses and provides a set of optimal control problems that can be
used to test the efficiency of different algorithms.

Lately parallel computing has been widely used to tackle real-world large-
sized problems. The paper by Tyatushkin gives an algorithm for solving optimal
control problems in the form of parallel computing. The algorithm uses a sequence
of different methods in order to obtain fast convergence to an optimal solution.
The chapter by Gornov and Zarodnyuk proposes an algorithm for finding global
extremum of nonlinear and nonconvex optimal control problems. The method uses
a curvilinear search technique to implement the tunneling phase of the algorithm.
Numerical examples are presented to describe the efficiency of the proposed
approach.

It is important to note that many optimization and optimal control algorithms
require using methods in numerical analysis. The remaining three chapters are
concerned with methods for solving system of linear equations, nonlinear equations,
and differential equations. The chapter by Garloff et al. gives a survey on methods
for finding the enclosure of the solution set of a system of linear equations, where
the coefficients of the matrix and the right-hand side depend on parameters. Based
on the methods, the chapter presents a hybrid method for the problem when the
dependency is polynomial. The chapter by Bouhamidi and Jbilou proposes a new
method for solving stiff ordinary differential equations using block Krylov iterative
method. Some numerical examples are given to illustrate the efficiency of the
proposed method. The chapter by Tugal and Dashdondog considers modifications
of the Chebyshev method for solving nonlinear equations that are free from second
derivative and prove semilocal convergence theorems for the methods.

We would like to take this opportunity to thank the authors of the chapters, the
anonymous referees, and Springer for making the publication of this book possible.

Ulaanbaatar, Mongolia Altannar Chinchuluun
Gainesville, FL, USA Panos M. Pardalos
Ulaanbaatar, Mongolia Rentsen Enkhbat
London, UK Efstratios N. Pistikopoulos
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On the Composition of Convex Envelopes
for Quadrilinear Terms

Pietro Belotti, Sonia Cafieri, Jon Lee, Leo Liberti, and Andrew J. Miller

Abstract Within the framework of the spatial Branch-and-Bound algorithm for
solving mixed-integer nonlinear programs, different convex relaxations can be
obtained for multilinear terms by applying associativity in different ways. The two
groupings ((x1x2)x3)x4 and (x1x2x3)x4 of a quadrilinear term, for example, give rise
to two different convex relaxations. In Cafieri et al. (J Global Optim 47:661–685,
2010) we prove that having fewer groupings of longer terms yields tighter convex
relaxations. In this chapter we give an alternative proof of the same fact and perform
a computational study to assess the impact of the tightened convex relaxation in a
spatial Branch-and-Bound setting.
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2 P. Belotti et al.

1 Introduction

One of the most crucial steps of the spatial Branch-and-Bound algorithm for solving
mixed-integer nonlinear programming (MINLP) problems is the lower bound
computation. When the MINLP is factorable, it is possible to construct a convex
relaxation automatically by means of a particular type of lifting reformulation
(called MINLP standard form [10, 27]) first proposed in [16] and then exploited
in most existing sBB algorithms [1,5,9,22,27,31]. If we consider polynomial prob-
lems, higher-order monomials are recursively rewritten as products of monomials
of sufficiently low order for which a tight convex relaxation (possibly the convex
envelope) is known. Each lower-order monomial is replaced by an added variable,
and an equality constraint defining the added variable in terms of the monomial it
replaces is adjoined to the MINLP. This operation is carried out recursively until the
MINLP consists of a linear objective, some linear constraints, and several defining
constraints of the form wj = h j(x,w) for all j in some appropriate set J, where
the functions h j represent monomials. To obtain a convex relaxation, each defining
constraint is replaced by a set of constraints defining the convex relaxation of its
feasible set, thus yielding a convex relaxation for the whole problem.

Let B = [xL,xU ]. The quadrilinear feasible set S4 = {(w1,x1,x2,x3,x4) | w1 =
x1x2x3x4} ∩ B over a box can be lifted in many different ways according to the
way associativity is applied: the grouping ((x1x2)x3)x4, for example, yields the
set S2,2,2 = {(w1,w2,w3,x1,x2,x3,x4) | w2 = x1x2 ∧w3 = w2x3 ∧w1 = w3x4}∩B,
whereas the grouping (x1,x2,x3)x4 yields S3,2 = {(w1,w2,x1,x2,x3,x4) | w2 =
x1x2x3∧w1 = w2x4}∩B. Since convex/concave envelopes exist in explicit form for
both bilinear [2, 16] and trilinear terms [17, 18], we can derive two different convex
relaxations of S4. The first, S̄2,2,2, consists in replacing the bilinear constraints
wi = x jxk appearing in S2,2,2 by the corresponding bilinear envelopes. The second,
S̄3,2, consists in replacing the trilinear terms with the trilinear envelope and the
bilinear term with the bilinear envelope. A question then arises naturally: which
one is tighter?

In [6] we proved that S̄3,2 ⊆ S̄2,2,2 and performed a computational study of the
containment of the convex relaxations when different parameters were varied. In this
chapter we provide an alternative proof (based on formal grammars) of the same
result, and then test the impact of the tightened convex relaxation S̄3,2 using sBB.

The rest of this chapter is organized as follows. In Sect. 2 we present the main
motivations of this work and a literature review on convex relaxations for multilinear
monomials and their impact on a sBB algorithm. In Sect. 3 we propose a theoretical
framework, based on concepts from the formal languages theory, to compare convex
relaxations of multilinear monomials obtained as a composition of convex envelopes
of lower-degree monomials. In Sect. 4 we discuss some computational experiments
aimed at comparing different convex relaxations of quadrilinear terms in a spatial
Branch-and-Bound setting. Concluding remarks are given in Sect. 5.
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2 Motivation and Literature

The above discussion implies that deriving convex relaxations that are as strong as
possible (i.e., that approximate the convex hull as closely as possible) for multilinear
monomials can be critically important for the performance of a spatial Branch-and-
Bound algorithm designed to globally solve nonconvex polynomial optimization
problems. Because of this, numerous efforts have studied the convex hulls of sets
defined by lower-order product terms and the use of these convex hulls in recursively
factorized formulations (such as the MINLP standard form defined above).

Four valid inequalities for the three-dimensional set S2 = {w,x1,x2 : w = x1x2,x∈
[xL,xU ]} were proposed by McCormick [16], and later Al-Khayyal and Falk [2]
showed that these four inequalities suffice to describe the convex hull. At present
most global MINLP solvers that use general sBB methods (among recent examples
see [5, 14, 23]) use the convex hull for recursively defined instances of S2 to
define the polyhedral relaxations that are solved at each node of the Branch-and-
Bound tree.

However, it may be thought that limiting solvers to the use of envelopes defined
by simple bilinear terms may result in convex approximations for the original
problem that are less strong (perhaps much less so) than those that exploit envelopes
for more complex expressions. For problems involving multilinear multinomials
defined by products of more than two variables, this consideration has motivated
research into the envelopes of trilinear functions [17, 18]. Comparing the use of
convex envelopes for bilinear and trilinear forms in building convex approximations
for MINLPs motivated the study in [6], and comparisons involving more general
functional forms motivate the present article.

Bi- and trilinear functions are naturally generalized to functions with vertex
polyhedral convex envelopes. (The convex envelope of an n-dimensional function
f (x) is said to be vertex polyhedral if its domain X is a polyhedron, and if every
extreme point of the convex hull of {(x, f (x) : x ∈ X} is defined by an extreme point
of X itself). In [19] Meyer and Floudas generalized the approach developed for
trilinear functions to functions with vertex polyhedral convex envelopes. Essentially,
their approaches can be thought of as enumerative methods that consider all
possible combinations of n+1 extreme points of X (equivalently, extreme points of
conv({(x, f (x)) : x ∈ X})) and then establish conditions under which the hyperplane
defined by such a set of points defines a linear inequality satisfied by all the other
extreme points of conv({(x, f (x)) : x ∈ X}). Such an inequality is then valid for
{(x, f (x)) : x ∈ X} and facet defining for the convex hull of this set.

General multilinear functions (i.e., any function composed of a sum of products
of variables, in which the degree of each variable in each product is 0 or 1) were
shown to have vertex polyhedral convex envelopes by Rikun [21]. An implication
of this result is that many of the concepts mentioned in the preceding paragraph
can be used for general mutilinear functions; their use is not limited to monomial
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products (for example). The extension of such results to define convex envelopes
for multilinear functions (and generalizations of them) has been discussed in
[26, 28–30], among other references.

Empirical testing of the approaches mentioned above (beyond the use of bilinear
envelopes defined by McCormick [16]) has been limited, but recently authors
have begun exploiting some of these concepts to solve quadratically constrained
quadratic programs, in which sums of bilinear products often figure prominently.
In particular, the authors of [4] discuss how to dynamically generate facets of the
convex hull of the sum of bilinear products in order to define a stronger relaxation
of the original MINLP, and they report that strengthening the formulation with such
inequalities can significantly improve the performance of BARON [23], which by
default uses only McCormick envelopes to exploit multilinear terms in defining
convex relaxations. Even more recently, Luedtke et al. [15] provide rigorous bounds
for how much the approach of [23] (and, implicitly, of [26]) can strengthen the
relaxations defined by the use of McCormick envelopes, and also provide numerical
results illustrating that these bounds are tight.

It is important to note that the bounds defined by Luedtke [15] apply only to
problems that have sums of bilinear products but not quadratic terms (i.e., if the
quadratic function in a given constraint is represented by fQ(x) = xT Qx, the bounds
defined in [15] are valid for problems in which the diagonal elements of Q are all 0).
Moreover, computational experience seems to confirm that the smaller the absolute
values of elements on the diagonal of Q are in comparison to the off-diagonal
elements, the more important the role played by strong convex relaxations for
bilinear functions becomes in defining strong relaxations for the MINLP. (Defining
effective relaxations for nonconvex quadratically constrained problems in which the
diagonal elements of Q are large requires, in addition to the techniques described in
this section, other methods that are fundamentally different. References that discuss
solving nonconvex quadratically constrained problems with large diagonal absolute
values include [3, 4, 8, 24, 25] and the references contained therein.)

An unresolved issue that is directly related to much of the research on multilinear
functions described above is the question of whether or not it is possible to define a
description of the convex envelope of multilinear functions that does not require
the explicit a priori enumeration of all of the extreme points of the domain.
More formally, given an n-dimensional function f (x) = ∏n

i=1 xi over a domain
B = [xL,xU ], is it possible to define a set of criteria that (1) each facet of the convex
envelope must satisfy and (2) can be checked in time polynomial in n? Most of
the approaches described above, as well as the motivation of this article, are based
on the implicit assumption that the answer to this question is no. However, only a
comparatively small number of research efforts (e.g., [15, 26]) have addressed this
question directly. Moreover, their consideration of this question has been limited to
establishing criteria for xL and xU that are sufficient to guarantee that the answer
is yes.

Computational complexity theory, and in particular results of [7] suggest that
a short (i.e., polynomial in n) description of the convex envelopes of multilinear
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functions can be defined if and only if the following optimization problem is
polynomial solvable:

min
n

∏
i=1

xi−
n

∑
i=1

cixi (1)

s.t. xL
i ≤ xi ≤ xU

i , i = 1, . . . ,n, (2)

where c ∈ R
n is some rational vector. It seems that this problem is likely to be

NP-complete unless fairly restrictive assumptions on xL and xU are satisfied. For
example, generalizing some of the results of [15], in [20] the authors show that it
is possible to solve the above optimization problem in polynomial time if there
exists a constant a < 1 such that axL

i = xU
i for i = 1, . . . ,n. It is also clear that

slightly more general conditions can be established. However, the authors of [20]
conjecture that the above optimization problem is NP-complete in general and the
complexity of this problem remains an important open question in the area of how
best to approximate the convex envelopes of functions involving multilinear terms.

We will next turn to the general question of when, and how, one approach
to defining convex relaxations of factorable functions can be shown to yield
relaxations that are stronger than those generated by another approach. The primary
contribution of this article is to establish a general result concerning this issue. We
should perhaps first note, however, that this contribution does not tell us how much
stronger the dominant formulation will be; this is necessarily an empirical question.
Moreover, the comparative ease with which different relaxations can be solved is
also a necessarily empirical criterion, and in general both of these considerations
must be weighed in considering relaxation to use in a given situation.

3 The Composition of Convex Envelopes

In this section we prove that a stronger relaxation is obtained when one replaces
“large terms” with tight convex relaxations instead of breaking up such terms in
sums/products of smaller terms before replacing each small term with its respective
convex relaxation. Although we find that this is quite an intuitive result, because of
the inherently recursive nature of factorable functions and of the fact that we deal
with a recursive symbolic procedure for constructing the convex relaxation, we did
not find it easy to prove this result formally. For this purpose, we use theoretical
tools that are well known to the formal languages community but perhaps not so
commonly found in the optimization literature: this is why we detail every step and
attempt to be somewhat didactical in presentation, alternating formal statements to
informal explanations and examples. To the well versed in such matters, a brief
glimpse to the section might suffice to understand our strategy: assign a special
semantic value (the corresponding convex relaxation) to each operator node of
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an expression tree, define the semantics of the composition operator, and finally
compare the resulting relaxation with the tight convex relaxation given for the
composite operator at “atomic” level.

3.1 Alphabets, Languages, and Grammars

An alphabet A is a set of symbols. We let A ∗ be the set of all finite sequences of
elements of A . A formal language L is a subset of A ∗. A language L is decidable
if, given a string s ∈ A ∗, there exists a finite algorithmic procedure that decides
whether s ∈L or not.

Informally, decidability of a language is concerned with its syntax: is a string
a valid element of the language or not? Having decided what a language is, we
have to decide what it says: to every string there corresponds a semantic value,
which, in the theory and language of Zermelo–Fraenkel, is usually a set. In this
setting, our formal language is the set of all valid functions f (x) that can be written
as finite strings of symbols in infix notation. The semantic values assigned to
f (x) are sets such as {(w,x) ∈ R

n+1 | w = f (x)∧ xL ≤ x ≤ xU} (exact semantics)
and {(w,x) ∈ R

n+1 | w ∈ R( f ,xL,xU )∧ xL ≤ x ≤ xU} (relaxed semantics) where
R( f ,xL,xU ) is a convex relaxation of the exact semantics. Since the cardinality
of our language is countably infinite, we cannot explicitly assign exact/relaxed
semantics to each function in the language. Instead, we recall that a decidable
language has finite procedure for recognizing strings in the language: for each of
the (finitely many) operations specified by this procedure we define a corresponding
operation on the semantic values involved, thus obtaining a semantic definition for
the whole language.

To this effect, we make use of possibly the best known device for specifying
the syntax of a formal language L , i.e., a formal grammar. This is a quadruplet
Γ = (Σ ,N,P,S) such that:

• Σ ⊆A is the set of terminal symbols.
• N is a set of nonterminal symbols (N ∩Σ = /0).
• P is a set of rewriting or production rules (P⊆ (Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗).
• S ∈ N is the start symbol.

In practice, one recursively applies the production rules to the start symbol as many
times as possible, generating strings in (Σ ∪N)∗. Those generated strings that are in
Σ∗ are strings of the language L . If a string in A ∗ is not in the set of all strings in
Σ∗ that the grammar generates, then it is not in L .

Example 1. Consider the alphabet {a,b} and the grammar given by N = {S}where
S is the start symbol, Σ = {a,b} and the production rules 〈p1 = aS → bS, p2 =
Sb→ Sa, p3 = S→ aSSb, p4 = SS→ /0〉. We repeatedly apply p1, . . . , p4 to the start
symbol, obtaining the situation below:
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bb

S aSSb

bSSb

aSSa

bSSa

p4
p4p1p2

p1
p3

p2

p4 aa

ba

ab

other strings

p3
p3

p3

p4

p3

From this, we conclude that aa,ab,ba,bb are in the language specified by the
grammar. It must be remarked that formal grammars can also be given for languages
which are not decidable (e.g., if the recursion does not terminate); this is one
such grammar: the repeated application of p3 yields longer and longer strings all
involving the nonterminal symbol S.

3.2 Mathematical Expression Language: Syntax

We now formally define our function language through the use of a formal grammar.
We use an alphabet A =X∪K∪B∪O where X= {x1, . . . ,xn} is the set of symbols
denoting original variables, K is the set of all computable numbers, B = {‘(’, ‘)’},
and O is a finite set of operators {+,−,×,÷,↑,√, log,exp,sin,cos, tan}, where
+,× are binary operators, − can be unary or binary, and ↑ is the (binary) power
operator. The grammar Γ is defined as follows. The start symbol is F , N = {F},
Σ = A , and P is

F −→ xi ∈ X (3)

F −→ k ∈K (4)

F −→ (F ) (5)

F −→ (−F ) (6)

F −→ log(F ) (7)

F −→ exp(F ) (8)

F −→ sin(F ) (9)

F −→ cos(F ) (10)

F −→ tan(F ) (11)

F −→ (F −F ) (12)

F −→ (F ÷F ) (13)

F −→ (F ↑F ) (14)

F −→ (F +F ) (15)

F −→ (F ×F ) (16)

Notice that rules (3)–(4) are given in schematic form: i.e., the string on the left of
the arrow is not in (Σ ∪N)∗, but it is possible to define “sublanguages” that decide
whether a string is in X or in K.

Example 2. In order to recognize that the string F ≡ x1 +((x2 ↑ 2)+ (x3× (x4×
log(x1)))) is in L we can apply the production rules as follows (there are other
possible orders in which the rules can be applied yielding the same result):
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F −[1]→ (F +F ) by (15)
−[2]→ (F +(F +F )) by (15)
−[3]→ (F +((F ↑F )+F )) by (14)
−[4]→ (F +((F ↑F )+ (F ×F ))) by (16)
−[5]→ (F +((F ↑F )+ (F × (F ×F )))) by (16)
−[6]→ (F +((F ↑F )+ (F × (F × log(F ))))) by (7)
−[7]→ (x1 +((x2 ↑F )+ (F × (F × log(F ))))) by (3)
−[8]→ (x1 +((x2 ↑F )+ (F × (F × log(F ))))) by (3)
−[9]→ (x1 +((x2 ↑F )+ (x3× (F × log(F ))))) by (3)
−[10]→ (x1 +((x2 ↑F )+ (x3× (x4× log(F ))))) by (3)
−[11]→ (x1 +((x2 ↑F )+ (x3× (x4× log(x1))))) by (3)
−[12]→ (x1 +((x2 ↑ 2)+ (x3× (x4× log(x1))))) by (4)
−[13]→ x1 +((x2 ↑ 2)+ (x3× (x4× log(x1)))) by (5).

We need to apply 13 rewriting rules in order to recognize that F ∈L .

3.3 Mathematical Expression Language: Semantics

We are now going to use the formal grammar Γ to assign semantic values to strings.
Informally, we assign different sets to the different occurrences of the symbol F
in each production rule, in such a way that the set assigned to F appearing in the
left-hand side of each rule is defined in terms of the sets assigned to the symbols F
appearing in the right-hand side. More precisely, for a production rule ρ in (3)–(16)
of the form F → T , where T ∈ (Σ ∪N)∗, let ν(ρ) be the number of occurrences
of the symbol F in the string T . Let X0(ρ) be the set assigned to the symbol F
appearing on the left-hand side of ρ , and for all i ∈ {1, . . . ,ν(ρ)} let Xi(ρ) be the
set assigned to the ith occurrence of the symbol F in T .

3.3.1 Exact Semantics

The exact semantics of L is defined according to the following rules.

F −→ xi ∈X : X0 = [xL
i ,x

U
i ]

F −→ k ∈K : X0 = {k}
F −→ (F ) : X0 = X1

F −→ (−F ) : X0 = {(w,x) | w =−x∧ x ∈ X1}
F −→ log(F ) : X0 = {(w,x) | w = log(x)∧ x ∈ X1}
F −→ exp(F ) : X0 = {(w,x) | w = exp(x)∧ x ∈ X1}
F −→ sin(F ) : X0 = {(w,x) | w = sin(x)∧ x ∈ X1}
F −→ cos(F ) : X0 = {(w,x) | w = cos(x)∧ x ∈ X1}
F −→ tan(F ) : X0 = {(w,x) | w = tan(x)∧ x ∈ X1}
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F −→ (F −F ) : X0 = {(w,x1,x2) | w = x1− x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ÷F ) : X0 = {(w,x1,x2) | w = x1/x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ↑F ) : X0 = {(w,x1,x2) | w = xx2

1 ∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F +F ) : X0 = {(w,x1,x2) | w = x1 + x2∧∀i ∈ {1,2} xi ∈ Xi}
F −→ (F ×F ) : X0 = {(w,x1,x2) | w = x1x2∧∀i ∈ {1,2} xi ∈ Xi}

A meta-linguistic note: the naming of the semantic values X0,X1,X2 must be local to
each rule. Otherwise, if the same rule ρ is applied twice, we might get two different
definitions assigned to the same name X0(ρ). In order to obtain a consistent naming,
we observe that the recursive nature of string recognition in L is finite, so the
different strings of (Σ ∪N)∗ generated during the recognition procedure can be listed
in the order of rewriting, as in Example 2. For a string f ∈L let r( f ) be the length
of this list. For all k ≤ r( f ), we can now let Xk

0 be the semantic value assigned to
F appearing in the left-hand side of the production rule ρ being applied at the kth
rewriting step, and let Xk

1 , . . . ,X
k
ν(ρ) be the sets assigned to the various occurrences

of F in the right-hand side of ρ .
As will appear clear in Example 3, some of the semantic sets will be projections

of other semantic sets on some of their coordinates. For every semantic set X we
shall therefore let V (X) be the sequence of variable symbols in terms of which X is
defined (so that X ⊆ R

|V (X)|), and for all W ⊆ V (X) let π(X ,W ) be the projection
of X on the w coordinate (if W = {w}, we write π(X ,w)).

Example 3. The exact semantics of F , as defined in Example 2, is derived as
follows.

X1
0 = {(w1,w2,w3) | w1 = w2 +w3∧w2 ∈ X1

1 ∧w3 ∈ X1
2 }

X2
0 = {(w3,w4,w5) | w3 = w4 +w5∧w4 ∈ X2

1 ∧w5 ∈ X2
2 } and X1

2 = π(X2
0 ,w3)

X3
0 = {(w4,w6,w7) | w4 = ww7

6 ∧w6 ∈ X3
1 ∧w7 ∈ X3

2 } and X2
1 = π(X3

0 ,w4)

X4
0 = {(w5,w8,w9) | w5 = w8w9∧w8 ∈ X4

1 ∧w9 ∈ X4
2 } and X2

2 = π(X4
0 ,w5)

X5
0 = {(w9,w10,w11) | w9 = w10w11∧w10 ∈ X5

1 ∧w11 ∈ X5
2 } and X4

2 = π(X5
0 ,w9)

X6
0 = {(w11,w12) | w11 = log(w12)∧w12 ∈ X6

1 } and X5
2 = π(X6

0 ,w11)

X7
0 = [xL

1 ,x
U
1 ] and X1

1 = X7
0

X8
0 = [xL

2 ,x
U
2 ] and X3

1 = X8
0

X9
0 = [xL

3 ,x
U
3 ] and X4

1 = X9
0

X10
0 = [xL

4 ,x
U
4 ] and X5

1 = X10
0

X11
0 = [xL

1 ,x
U
1 ] and X6

1 = X11
0

X12
0 = {2} and X3

2 = X12
0

X13
0 = X1

0 .
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Replacing symbols where possible, we obtain a definition of the exact semantics of
our string in function of only six sets and ten variables (four original variables and
six added variables):

X1
0 = {(w1,x1,w3) | w1 = x1 +w3∧ x1 ∈ [xL

1 ,x
U
1 ]∧w3 ∈ π(X2

0 ,w3)}
X2

0 = {(w3,w4,w5) | w3 = w4 +w5∧w4 ∈ π(X3
0 ,w4)∧w5 ∈ π(X4

0 ,w5)}
X3

0 = {(w4,x2) | w4 = x2
2∧ x2 ∈ [xL

2 ,x
U
2 ]}

X4
0 = {(w5,x3,w9) | w5 = w8w9∧ x3 ∈ [xL

3 ,x
U
3 ]∧w9 ∈ π(X5

0 ,w9)}
X5

0 = {(w9,x4,w11) | w9 = w10w11∧ x4 ∈ [xL
4 ,x

U
4 ]∧w11 ∈ π(X6

0 ,w11)}
X6

0 = {(w11,x1) | w11 = log(x1)∧ x1 ∈ [xL
1 ,x

U
1 ]}.

Suppose now we consider an enriched alphabet A ′ with one more 4-ary operator⊗
such that ⊗(x1, . . . ,x4) = x1 + x2

2 + x3x4 log(x1) and an extended grammar with one
more production rule ρ ′ ≡ F −→ F +F ↑ 2+F ×F log(F ). The generated
language L ’ is identical to L because we showed previously that L contains
strings as that appearing in the right-hand side of ρ ′ even without the production
rule ρ ′. However, using the extended grammar, the string F can be recognized in
only one step. By replacement of the appropriate variable symbols w�, the exact
semantics {(w,x) | w = ⊗(x1, . . . ,x4)∧∀i≤ 4xi ∈ [xL

i ,x
U
i ]} of F computed with the

extended grammar is precisely the projection of X1
0 on the subspace of R10 spanned

by (w1,x1, . . . ,x4).

3.3.2 Relaxed Semantics

We now define the relaxed semantics of L . Whereas in the exact semantics we
assigned to each string the set of values taken by the corresponding function as its
arguments range in the appropriate (recursively defined) sets, the relaxed semantics
assigns to strings convex relaxations of such sets. To this end, we shall describe an
operator RΓ that computes the convex relaxation of a set using the composition
of production rules in Γ . For each operator ⊕ ∈ O, let α(⊕) be its arity (the
number of its arguments). Denote α(⊕) by �, I the class of all closed and bounded
intervals in R, and let I1, . . . , I� ∈ I; then we use the notation RΓ (⊕, I1, . . . , I�) to
indicate a convex relaxation in R

n+1 of the exact semantic value of ⊕, i.e., the set
{(w0,w1, . . . ,w�) |w0 =⊕(w1, . . . ,w�)∧∀i≤ n (wi ∈ Ii)}. We impose a consistency
(monotonicity) requirement:

∀⊕ ∈O, I1, . . . , I�,J ∈ I s.t. ∃i≤ � J ⊆ Ii

RΓ (⊕, I1, . . . , I�) ⊇ RΓ (⊕, I1, . . . , Ii−1,J, Ii+1, . . . , I�)), (17)

which means that convex relaxations should get tighter when the definition intervals
get smaller.
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We remark that R is a symbol in the metalanguage, in the sense that it should
be replaced by an actual description of the convex sets assigned to each operator
(in other words, it stands for the sentence “for all possible ways of defining convex
relaxations of operators. . . ”). A typical definition of RΓ used by most sBB solver
codes (e.g., ooOPS [13] and COUENNE [5], both based on a grammar very similar
to Γ ) is as follows: for all linear operators, RΓ applied to that operator is the same
as the exact semantics (because, as an affine space defined over a cartesian product
of intervals, it is convex). The log,exp operators are concave/convex univariate, and
hence RΓ is defined as a convex subset of R2 delimited by the function itself and
the secant at the interval endpoints [9]; for piecewise convex/concave functions
we employ the convex envelope defined in [12]; for trigonometric functions it is
easy to work out convex relaxations/envelopes using secants and convex/concave
portions of the functions themselves. We remark that providing convex/concave
relaxations/envelopes of convex/concave functions and piecewise convex/concave
functions suffices to define RΓ over all univariate monomials of the form xk where
x ∈ I ∈ I. For bilinear products, we employ the well-known McCormick envelopes:

R(×, [wL
1 ,w

U
1 ], [w

L
2 ,w

U
2 ]) = {(w0,w1,w2) |
w0 ≥ wL

1w2 +wL
2w1−wL

1wL
2 ∧

w0 ≥ wU
1 w2 +wU

2 w1−wU
1 wU

2 ∧
w0 ≤ wL

1w2 +wU
2 w1−wL

1wU
2 ∧

w0 ≤ wU
1 w2 +wL

2w1−wU
1 wL

2)∧
w1 ∈ [wL

1 ,w
U
1 ]∧w2 ∈ [wL

2 ,w
U
2 ]}.

It is easy to check that the above definition of R satisfies (17).
The relaxed semantics of L is defined according to the rules:

F −→⊕(F , . . . ,F ) : X0 = RΓ (⊕, I1, . . . , Iα(⊕)).

Relaxed semantics can be combined following grammatic production rule compo-
sition in much the same way as exact semantics can, by noticing that when X is a
convex subset of Rn, the projection of X on one coordinate axis is always an interval
(because projection preserves convexity).

Now let F be a valid string of L : then F is a mathematical expression with,
say, x = (x1, . . . ,xn) as variable symbol arguments corresponding to a certain
mathematical function f : Rn → R. Then we can certainly add the following
rule to Γ :

ρ ′ ≡F −→ F(F , . . . ,F
︸ ︷︷ ︸

n

), (18)

yielding an extended grammar Γ ′, and still obtain L as generated language. The
advantage is that Γ ′ allows recognition of the string F in one step and assignment
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of a special relaxed semantics to F (instead of relying on the composition of relaxed
semantics of substrings of F through the production rules). This is useful for those
operators which do not appear in the list of production rules but for which we have
a tight convex relaxation (or a convex envelope).

3.4 Comparison of Relaxed Semantics

Let F ∈ L represent an n-ary function such that ρ ′, defined as in (18), is not a
production rule of Γ . Define A ′ as A ∪ {F} and Γ ′ as Γ with ρ ′ as an added
production rule. Assume that the given relaxed semantics for F in Γ ′ is included in
the computed relaxed semantics for F in Γ (which is usually the case in practice, for
otherwise we would not add the “useless” rule ρ ′ to Γ ′), i.e., that, for all I1, . . . , I� ∈ I,

RΓ ′(F, I1, . . . , I�)⊆RΓ (F, I1, . . . , I�). (19)

Theorem 1. For all strings T ∈ L that are functions of p variable symbol
arguments and for all I1, . . . , Ip ∈ I, we have RΓ ′(T, I1, . . . , Ip)⊆RΓ (T, I1, . . . , Ip).

Proof. If recognition of T through Γ ′ never involves rule ρ ′, both grammars yield
the same relaxed semantics. Otherwise, consider the last time that ρ ′ is used on T :
then Γ ′ matches a string F which is an operator F of n arguments. Let J1, . . . ,J�
be the relaxed semantics assigned to each of the n arguments. Since this is the last
time ρ ′ is used, each of the Ji (i ≤ n) is the same whether we use Γ or Γ ′, which
means that, by (19), JΓ ′ = RΓ ′(F,J1, . . . ,J�)⊆RΓ (F,J1, . . . ,J�) = JΓ . By (17), any
relaxed semantics involving JΓ ′ will be contained in the same relaxed semantics
with JΓ ′ replaced by JΓ . Thus, if the statement holds from the (k+ 1)-st to the last
time rule ρ ′ is used, the kth time ρ ′ is used the argument intervals of the relaxed
semantics in Γ ′ must be contained in the argument intervals of the corresponding
relaxed semantics in Γ . ��

In particular, we have the following.

Corollary 1. If F(x1,x2,x3) = x1x2x3 and we assign to F the relaxed semantics
given by the trilinear envelopes given in [17, 18], the convex relaxation obtained
through Γ ′ is at least as tight as that obtained through Γ for any mathematical
function in L .

Proof. Assumption (19) holds by definition of convex envelope. ��

4 Computational Results

In this section, we computationally evaluate the tightness of convex relaxations for
quadrilinear monomials obtained combining bilinear and trilinear convex envelopes
in different ways. Specifically, we consider relaxations of the following four sets:
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S222 = {(x,w) ∈ R
4×R

3 |xi ∈ [xL
i ,x

U
i ]∧ w1 = x1x2,w2 = w1x3,w3 = w2x4},

S̃222 = {(x,w) ∈ R
4×R

3 |xi ∈ [xL
i ,x

U
i ]∧ w1 = x1x2,w2 = x3x4,w3 = w1w2},

S32 = {(x,w) ∈ R
4×R

2 |xi ∈ [xL
i ,x

U
i ]∧ w1 = x1x2x3,w2 = w1x4},

S23 = {(x,w) ∈ R
4×R

2 |xi ∈ [xL
i ,x

U
i ]∧ w1 = x1x2,w2 = w1x3x4}.

In [6] numerical experiments were carried out in order to evaluate the relative
tightness of the four considered relaxations. The comparison was mainly made in
terms of volume of the corresponding enveloping polytopes (projected onto R

5 to
have comparable results) on a set of randomly generated instances. It showed that
the smallest values of volumes correspond to relaxations involving the composition
of trilinear and bilinear envelopes, and in particular the best results for more than
80% of the considered instances were obtained using relaxation S23. Numerical
experiments on some real-life problems were carried out using a bound evaluation
algorithm, whose purpose is to assess the quality of the proposed alternative bounds
for quadrilinear terms. This “partial sBB” algorithm at each branching step only
records the most promising node and discards the other, thus exploring a single
branch up to a leaf. The best bounds were obtained using a relaxation involving a
trilinear envelope.

In the present chapter, we further investigate the strength of the proposed
relaxations in a sBB algorithm. To that effect, we implemented the computation
of the four relaxations for quadrilinear monomials in COUENNE [5]. Computational
experiments were carried out runningCOUENNE on seven instances of the molecular
distance geometry problem (MDGP) [11], the problem of finding an embedding
x : V → R

3 of the vertices V of a weighted graph G = (V,E) such that all the
edge weights duv (for {u,v} ∈ E) are equal to the Euclidean distances ‖xu− xv‖.
The MDGP mathematical programming formulation is:

min
x ∑
{u,v}∈E

(‖xu− xv‖2− d2
uv

)2
, (20)

a nonconvex NLP involving polynomials of fourth degree. In our experiments we
impose a time limit equal to 4 h. Results were obtained on a 2.4 GHz Intel Xeon CPU
of a computer with 8 GB RAM shared by three other similar CPU running Linux.
For the smallest MDGP instance, the optimal solution is computed within the time
limit using all the considered relaxations. A comparison of CPU time is reported in
Table 1 and shows that the time needed to solve the problem when relaxation S23

is used is 81% smaller than the time needed using S222, which is the second best
time to solve the problem. For the other instances, for which the optimal solution
is not reached within the time limit, we compare the (lower) bounds obtained with
the four relaxations. Results are shown in Table 2. These results confirm the results
obtained in [6]. It appears that the best bounds are always obtained using a relaxation
involving a trilinear envelope and, in five cases out of six, correspond to relaxation
S23. The sBB based on this relaxation gives bounds which are significantly better
than the ones obtained using a relaxation based on the composition of bilinear
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Table 1 Comparison of CPU time (seconds) obtained by
running COUENNE with relaxations S222, S̃222, S32, S23 on the
smallest MDGP instance

Instance S222 S̃222 S32 S23

lavor3 311.934 372.306 475.835 58.0872

The best value is reported in bold face
Solutions were obtained on a 2.4 GHz Intel Xeon CPU of a
computer with 8 GB RAM shared by three other similar CPU
running Linux

Table 2 Comparison of lower bounds obtained by running COUENNE with
relaxations S222, S̃222, S32, S23 on MDGP instances

Instance S222 S̃222 S32 S23

lavor5 228.574(∗) 199.864 200.45 228.574(∗)

lavor6 93.4905 135.899 84.9467 144.399
lavor7 2.75184 90.3962 70.9786 207.255
lavor8 24.5401 95.0223 36.421 334.968
lavor10 −266.843 −105.584 −91.4539 93.6579
lavor20 −1571.58 −1215.7 −589.636 −1146.5

Bounds were obtained within a 4 h time limit
The best values are reported in bold face
The symbol (*) denotes optimal solutions found
Solutions were obtained on a 2.4 GHz Intel Xeon CPU of a computer with
8 GB RAM shared by three other similar CPU running Linux

envelopes, in particular on the largest instances. For the first instance in Table 2
the optimal solution is found with relaxations S222 and S23 within the time limit. It
took 8,311.97 s in the first case and 7,063.73 s in the second one.

5 Conclusion

We analyzed four different convex relaxations for quadrilinear monomials, obtained
by the composition of the known convex envelopes for bilinear and trilinear
monomials. Starting from theoretical as well as computational results given in
[6], we further investigated these relaxations. We provided an alternative proof
of the fact that a relaxation of k-linear terms that employs a successive use of
relaxing bilinear terms (via the bilinear convex envelope) can be improved by
employing instead a relaxation of a trilinear term (via the trilinear convex envelope).
We computationally evaluated the impact of the tightened convex relaxations in a
spatial Branch-and-Bound algorithm on a set of instances of a real-life problem.
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An Oriented Distance Function Application
to Gap Functions for Vector Variational
Inequalities

Lkhamsuren Altangerel, Gert Wanka, and Oleg Wilfer

Abstract This paper aims to extend some results dealing with gap functions for
vector variational inequalities from the literature by using the so-called oriented
distance function.

Key words Vector variational inequalities • Gap function • Oriented distance
function.

1 Introduction

The so-called gap function approach allows to reduce the investigation of variational
inequalities into the study of optimization problems. Let us mention several papers
which are devoted to the study of set-valued gap functions for vector variational
inequalities. Specially, the generalizations of Auslender’s and Giannessi’s gap
functions for vector variational inequalities have been introduced in [5]. More
recently, a conjugate duality approach to the construction of a gap function has been
applied to vector variational inequalities (see [2]).

On the other hand, scalarization techniques in vector optimization have been
applied to the construction of a gap function for vector variational inequalities.
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For instance, we refer to [3, 11, 13, 17] for vector variational inequalities, to [12]
for generalized vector variational inequalities and to [15] for set-valued vector
variational-like inequalities.

This paper concentrates on scalar-valued gap functions for vector variational
inequalities on the basis of the oriented distance function and the approach presented
in [14]. For some investigations dealing with the oriented distance function we
refer to [6–10, 16] and [18]. The oriented distance function allows us to extend
some results dealing with gap functions for vector variational inequalities from the
literature (cf. [11–13, 15] and [17]).

The paper is organized as follows. In section 2 we recall some preliminary results
dealing with the oriented distance function. The section 3 is devoted to introduce gap
functions for vector variational inequalities. Moreover, we suggest another type of
gap functions, which are based on dual problems. For this purpose, we use the
powerful approach of the perturbation theory of the conjugate duality. We conclude
our paper with the extension to some set-valued problems in section 4.

2 Mathematical preliminaries

Let X be a Hausdorff locally convex space. The dual space of X is denoted by X∗.
For x ∈ X and x∗ ∈ X∗, let 〈x∗,x〉 := x∗(x) be the value of the linear continuous
functional x∗ at x. For a subset A⊆ X we define the indicator function δA : X →R=
R∪{±∞} by

δA(x) :=

{

0, if x ∈ A,
+∞, otherwise.

For a given function h : X → R the effective domain is

dom h := {x ∈ X : h(x)<+∞}.

The function h is called proper if dom h �= /0 and h(x) > −∞ for all x ∈ X . For a
nonempty subset E ⊆ X we define the conjugate function of h by

h∗E : X∗ → R, h∗E(p∗) = (h+ δE)
∗(p∗) = sup

x∈E
{〈x∗,x〉− h(x)}.

When E = X , one can see that h∗E turns into the classical Fenchel-Moreau conjugate
function of h denoted by h∗.

Let Y be a real Banach space partially ordered by a closed convex pointed cone
C with nonempty interior, i.e. intC �= /0. A weak ordering in Y is defined by

y≺ x⇔ x− y ∈ intC and y ⊀ x⇔ x− y /∈ intC, x,y ∈ Y.
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Let C∗ = {y∗ ∈ Y ∗ : 〈y∗,y〉 ≥ 0, ∀y ∈ C} be the dual cone of C. The space of
the linear continuous mappings from X to Y is denoted by L(X ,Y ). Moreover, let
SY := {y ∈Y : ‖y‖= 1} and S(M) := {y ∈M : ‖y‖= 1}, M ⊆ Y.
Further, we consider a Hausdorff locally convex vector space Z and a nonempty
convex cone D ⊆ Z, which induces on Z a partial ordering �D, i.e. for x,y ∈ Z it
holds x �D y ⇔ y− x ∈ D. We attach to Z a greatest and a smallest element with
respect to “�D”, denoted by +∞D and −∞D, respectively, which do not belong to
Z and denote Z = Z ∪ {±∞D}. Besides, we define x ≤D y if and only if x �D y
and x �= y. For all x ∈ Z it holds −∞D �D x �D +∞D and for all x ∈ Z it holds
−∞D ≤D x≤D +∞D.

In this paper, we consider on Z the following operations and conventions (cf.
[4]): x+(+∞D) = (+∞D)+ x := +∞D ∀x ∈ Z ∪{+∞D}, x+(−∞D) = (−∞D)+
x := −∞D ∀x ∈ Z ∪ {−∞D}, λ · (+∞D) := +∞D ∀λ ∈ (0,+∞], λ · (+∞D) :=
−∞D ∀λ ∈ [−∞,0), λ · (−∞D) := −∞D ∀λ ∈ (0,+∞], λ · (−∞D) := +∞D ∀λ ∈
[−∞,0), (+∞D) + (−∞D) = (−∞D) + (+∞D) := +∞D, 0(+∞D) := +∞D and
0(−∞D) := 0. Further, define 〈z∗,+∞D〉 :=+∞D for z∗ ∈ D∗.
For a vector function g : X→ Z the domain is the set dom g := {x∈X : g(x) �=+∞D}.
If g(x) �= −∞D for all x ∈ X and dom g �= /0, then the vector function g is called
proper.

When g(λ x+(1− λ )y) �D λ g(x) + (1− λ )g(y) holds for all x,y ∈ X and all
λ ∈ [0,1] the vector function g is said to be D-convex.

Definition 2.1. Let M ⊆ Y. Then the function ΔM : Y → R defined by

ΔM(y) := dM(y)− dMc(y), y ∈Y,

is called the oriented distance function, where dM(y) = inf
z∈M
‖y− z‖ is the distance

function from the point y ∈ Y to the set M and Mc := Y\M.

The oriented distance function was introduced by Hiriart-Urruty ([9], [10]) in
order to investigate optimality conditions in nonsmooth optimization. The main
properties of ΔM can be summarized as follows.

Proposition 2.1. ([18]) Let M ⊆ Y be an nontrivial subset of Y, i.e.,
M �= /0 and M �= Y. Then

(i) ΔM is real-valued.
(ii) ΔM is Lipschitz function with constant 1.

(iii) ΔM(y) =

⎧

⎨

⎩

< 0, ∀y ∈ intM,

= 0, ∀y ∈ ∂M,

> 0, ∀y ∈ intMc.
(iv) if M is closed, then it holds that M := {y : ΔM(y)≤ 0}.
(v) if M is convex, then ΔM is convex.

(vi) if M is a cone, then ΔM is positively homogeneous.
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(vii) if M is a closed convex cone, then ΔM is nonincreasing with respect to the
ordering relation induced on Y, i.e., if y1,y2 ∈ Y, then

y1− y2 ∈M ⇒ ΔM(y1)≤ ΔM(y2);

if intM �= /0, then

y1− y2 ∈ intM ⇒ ΔM(y1)< ΔM(y2).

Proposition 2.2. ([14]) Let M ⊆ Y be convex and ri(M) �= /0. Then ΔM can be
represented as

ΔM(y) = sup
x∗∈SY∗

inf
x∈M
〈x∗,y− x〉, ∀y ∈ Y,

where ri (M) :=

{

rint M, if aff(M) is closed,
/0, otherwise

and by rint M we denote the interior

of M with respect to affine hull aff(M).

Remark. The above-mentioned canonical representation of a convex set has been
investigated also in [6], [7] and [8].

Corollary 2.1. ([14]) For a convex cone C with intC �= /0, we have that

ΔC(y) = sup
x∗∈S(C∗)

〈−x∗,y〉, ∀y ∈ Y.

Let M ⊆ Y be a given set. Then one can introduce the function ξ defined by

ξM,C(y) :=− inf
z∈M

ΔC(y− z), ∀y ∈ Y.

Proposition 2.3. (cf. [14]) The following assertions are true.

(i) ξM,C(y) = sup
x∈M

inf
x∗∈S(C∗)

〈x∗,y− x〉, ∀y ∈ Y.

(ii) ξM,C(y)≥ 0, ∀y ∈M.

Proof:

(i) This formula follows directly from Corollary 2.1 and the Definition of ξM,C.
(ii) For y ∈M there is

ξM,C(y) = sup
x∈M

inf
x∗∈S(C∗)

〈x∗,y− x〉 ≥ inf
x∗∈S(C∗)

〈x∗,y− y〉= 0.

�
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3 Gap functions for vector variational inequalities

Let X be a Hausdorff locally convex space and Y be a real Banach space, K ⊆ X
be a nonempty set and F : K →L(X ,Y ) be a given mapping. We consider the weak
vector variational inequality which consists in finding x̄ ∈ K such that

(WVVI) 〈F(x̄),y− x̄〉⊀ 0, ∀y ∈ K,

where 〈F(x̄),y− x̄〉 ∈ Y denotes the image of y− x̄ ∈ X under the linear continuous
mapping F(x̄) ∈ L(X ,Y ), we use this notation synonymously with F(x̄)(y− x̄).

In this section we concentrate on the investigation of scalar-valued gap functions
for the problem (WVVI) on the basis of the oriented distance function. Recently
a similar approach was applied to vector optimization in [14]. Let us recall the
definition of a gap function for (WVVI).

Definition 3.1. A function γ : K → R is said to be a gap function for the problem
(WVVI) if it satisfies the following properties:

(i) γ(x)≥ 0, ∀x ∈ K;
(ii) γ(x̄) = 0 if and only if x̄ solves the problem (WVVI).

Additionally, we want to consider another type of gap functions which have weaker
properties as the gap functions defined above. These functions are called weak gap
functions.

Definition 3.2. A function γ : K → R is said to be a weak gap function for the
problem (WVVI) if it satisfies the following properties:

(i) γ(x)≥ 0, ∀x ∈ K;
(ii) γ(x̄) = 0⇒ x̄ solves the problem (WVV I).

Let us introduce with

F(x)K := {z ∈ Y : ∃w ∈ K such that z = 〈F(x),w〉}

(notice again that 〈F(x),w〉 stands for F(x)w and F(x) ∈ L(X ,Y )) the function
(setting M = F(x)K for any x ∈ K)

γF
Δ ,x(y) : = ξF(x)K,C(y) =− inf

z∈F(x)K
ΔC(y− z)

= − inf
w∈K

ΔC(y−〈F(x),w〉), ∀y ∈ Y.

Then setting y = 〈F(x),x〉 in γF
Δ ,x(y) we define for x ∈ K

γF
Δ (x) := γF

Δ ,x(〈F(x),x〉) = ξF(x)K,C(〈F(x),x〉)
= − inf

w∈K
ΔC(〈F(x),x−w〉)
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= − inf
w∈K

sup
y∗∈S(C∗)

〈−y∗,〈F(x),x−w〉〉

= sup
w∈K

inf
y∗∈S(C∗)

〈y∗,〈F(x),x−w〉〉

because of Corollary 2.1.

Theorem 3.1. γF
Δ is a gap function for (WVVI).

Proof. (i) By Proposition 2.3(ii) it holds γF
Δ (x) = ξF(x)K,C(〈F(x),x〉) ≥ 0, since

〈F(x),x〉 ∈ F(x)K for any x ∈ K.
(ii) Let x ∈ K be fixed. Then γF

Δ (x)> 0 if and only if ∃x̃ ∈ K such that

ΔC(〈F(x),x− x̃〉)< 0 ⇔ 〈F(x),x− x̃〉 ∈ intC.

This equivalently means that 〈F(x), x̃− x〉 ≺ 0, i.e., x is not a solution to
(WVV I). Consequently, taking (i) into account, for some x ∈ K it holds
γF

Δ (x) = 0 if and only if x is a solution to (WVVI). �
In order to suggest some other gap functions, let us consider optimization problems
having the composition with a linear continuous mapping in the objective function
and formulate some duality results. As mentioned in the introduction we use for our
investigations the perturbation theory (cf. [4]), where to a general primal problem

(P) inf
x∈X

Φ(x,0),

with the perturbation function Φ : X × Y → R, the conjugate dual problem is
defined by:

(D) sup
p∗∈Y ∗

{−Φ∗(0, p∗)}.

Assume that f : Y → R and g : X → Z are proper functions, S ⊆ X a nonempty
set and A ∈ L(X ,Y ) fullfilling (y−A−1(dom f ))∩g−1(−D)∩S �= /0. Consider the
following primal optimization problem

(PC) inf
x∈K

f (A(y− x))

K = {x ∈ S : g(x) ∈−D},

where y ∈ K is fixed and S ⊆ X .
The first dual problem of interest is the well-known Lagrange-dual problem:

(DCL) sup
z∗∈D∗

inf
x∈S
{ f (A(y− x))+ 〈z∗,g(x)〉}.

To construct another dual problem we introduce the following perturbation function
ΦCF : X×Y →R,
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ΦCF (x, p) :=

{

f (A(y− x)+ p), if x ∈ S,g(x) ∈ −D,

+∞, otherwise,

where p∈Y is the perturbation variable. The perturbation function can be written as

ΦCF (x, p) = f (A(y− x)+ p)+ δK(x).

For the formula of the conjugate function (ΦCF )∗ : X∗ ×Y ∗ →R of ΦCF we get for
all (x∗, p∗) ∈ X∗ ×Y ∗ :

(ΦCF )∗(x∗, p∗) = sup
x∈X ,p∈Y

{〈x∗,x〉+ 〈p∗, p〉−ΦCF (x, p)}

= sup
x∈X ,p∈Y

{〈x∗,x〉+ 〈p∗, p〉− f (A(y− x)+ p)− δK(x)}

= sup
x∈X ,r∈Y

{〈x∗,x〉+ 〈p∗,r−A(y− x)〉− f (r)− δK(x)}

= sup
x∈X ,r∈Y

{〈x∗,x〉+ 〈p∗,r〉− 〈p∗,Ay〉+ 〈p∗,Ax〉− f (r)−

δK(x)}
= sup

x∈X
{〈x∗+A∗p∗,x〉− δK(x)}+ sup

r∈Y
{〈p∗,r〉− f (r)}−

〈A∗p∗,y〉
= δ ∗K(x

∗+A∗p∗)+ f ∗(p∗)−〈A∗p∗,y〉.

This leads to the following dual problem to (PC):

(DCF ) sup
p∗∈Y ∗

{〈A∗p∗,y〉− δ ∗K(A
∗p∗)− f ∗(p∗)},

which can be interpreted as a Fenchel dual problem. As the above construction
shows it applies also if K is any nonempty set not necessarily given in the form as
in (PC).

Remark. From the calculations we made above for the Fenchel dual problem, we
can easily conclude that to the primal problem

(P) inf
x∈X
{ f (A(y− x))+ g(x)},

where A ∈ L(X ,Y ) and f : Y → R and g : X → R are proper functions fullfilling
(y−A−1(dom f ))∩domg �= /0, the Fenchel dual problem looks like

(D) sup
p∗∈Y∗

{〈A∗p∗,y〉− g∗(A∗p∗)− f ∗(p∗)}.
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The last perturbation function we consider leads to the Fenchel-Lagrange dual
problem and is defined by ΦCFL : X×Y ×Z →R,

ΦCFL(x, p,z) :=

{

f (A(y− x)+ p), if x ∈ S,g(x) ∈ z−D,

+∞, otherwise,

where (p,z) ∈Y ×Z are the perturbation variables. We define (z∗g)(x) := 〈z∗,g(x)〉
and obtain for the conjugate of ΦCFL , (ΦCFL)∗ : X∗ × Y ∗ × Z∗ → R, for all
(x∗, p∗,z∗) ∈ X∗ ×Y∗ ×Z∗:

(ΦCFL)∗(x∗, p∗,z∗) = sup
x∈X ,p∈Y

z∈Z

{〈x∗,x〉+ 〈p∗, p〉+ 〈z∗,z〉−ΦCFL(x, p,z)}

= sup
x∈S,(p,z)∈Y×Z

g(x)∈z−D

{〈x∗,x〉+ 〈p∗, p〉+ 〈z∗,z〉−

f (A(y− x)+ p)}
= sup

x∈S,r∈Y
s∈−D

{〈x∗,x〉+ 〈p∗,r−A(y− x)〉+

〈z∗,g(x)− s〉− f (r)}
= sup

x∈S,r∈Y
s∈−D

{〈x∗,x〉+ 〈p∗,r〉− 〈p∗,Ay〉+

〈p∗,Ax〉+ 〈z∗,g(x)〉+ 〈−z∗,s〉− f (r)}
= sup

s∈−D
{〈−z∗,s〉}+ sup

r∈Y
{〈p∗,r〉− f (r)}+

sup
x∈S
{〈x∗+A∗p∗,x〉− 〈−z∗,g(x)〉}− 〈A∗p∗,y〉

= δ−D∗(z
∗)+ f ∗(p∗)+ (−z∗g)∗S(x

∗+A∗p∗)−〈A∗p∗,y〉.

As a consequence, the Fenchel-Lagrange dual problem is actually

(DCFL) sup
(p∗,z∗)∈Y∗×D∗

{〈A∗p∗,y〉− f ∗(p∗)− (z∗g)∗S(A
∗p∗)}.

According to the general theory (cf. [4]) the weak duality is always full-
filled, i.e. v(DCL) ≤ v(PC), v(DCF ) ≤ v(PC) and v(DCFL) ≤ v(PC), where
v(PC),v(DCL),v(DCF ) and v(DCFL) are the optimal objective values of (PC),(DCL),
(DCF ) and (DCFL), respectively.
We consider now for any x ∈ K the following optimization problem

(PF
x ) inf

y∈K
ΔC(〈F(x),x− y〉),

where the ground set K is defined by
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K = {y ∈ S : g(y) ∈ −D}.

It is easy to see that the optimal objective value v(PF
x ) =−γF

Δ (x)≤ 0, ∀x ∈ K.
By using the calculations we made above we get for the dual problems of (PF

x ):

(DFL
x ) sup

z∗∈D∗
inf
y∈S
{ΔC(〈F(x),x− y〉)+ 〈z∗,g(y)〉},

(DFF
x ) sup

p∗∈Y ∗
{〈F(x)∗p∗,x〉−Δ∗C(p∗)− δ ∗K(F(x)∗p∗)}

(here, K may be any nonempty set) and

(DFFL
x ) sup

p∗∈Y ∗,z∗∈D∗
{〈F(x)∗p∗,x〉− (z∗g)∗S(F(x)∗p∗)−Δ∗C(p∗)}.

It is well known that for any set A ⊆ X it holds that σA(x∗) = supx∈A〈x∗,x〉 =
σclcoA(x∗), whereas clcoA is the closed convex hull of the set A. Hence, for a convex
cone C with intC �= /0, by Corollary 2.1 it follows that ΔC(y) = supy∗∈S(C∗)〈−y∗,y〉=
supy∗∈S(−C∗)〈y∗,y〉 = σS(−C∗)(y) = σclcoS(−C∗)(y), i.e. ΔC(y) = σclcoS(−C∗)(y) =
δ ∗clcoS(−C∗)(y). Further, since clcoS(−C∗) is a closed convex set we have by the
Fenchel-Moreau Theorem (cf. [4, Theorem 2.3.6]) for the conjugate of the oriented
distance function Δ∗C(y

∗) = δ ∗∗clcoS(−C∗)(y
∗)= δclcoS(−C∗)(y

∗). As a result, the Fenchel
dual problem and the Fenchel-Lagrange dual problem can be written as

(DFF
x ) sup

p∗∈clcoS(−C∗)
{〈F(x)∗p∗x〉− δ ∗K(F(x)∗p∗)}

and
(DFFL

x ) sup
p∗∈clcoS(−C∗)

z∗∈D∗

{〈F(x)∗p∗,x〉− (z∗g)∗S(F(x)∗p∗)}.

Example. Let X = Y = R
2 be equipped with the Euclidean topology and C = R

2
+,

then we have X∗ = Y ∗ = R
2 also equipped with the Euclidean topology and C∗ =

R
2
+. Let the ground set K ⊆ X be a nonempty set and F : K →L(X ,Y ) be a given

mapping. For the set clcoS(−C∗) we get

clcoS(−C∗) = {p∗ = (p∗1, p∗2)
T ∈ −R2

+∩B(0,1) : p∗1 + p∗2 ≤−1}
= {p∗ ∈ R

2 : ‖p∗‖ ≤ 1, p∗1 + p∗2 ≤−1},

where B(0,1) = {p∗ ∈ R
2 : ‖p∗‖ ≤ 1}. Therefore, the corresponding Fenchel dual

problem looks like

(˜DF
x ) sup

‖p∗‖≤1
p∗1+p∗2≤−1

{〈F(x)∗p∗,x〉− δ ∗K(F(x)∗p∗)}.
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Remark. If the convex set C is not a cone with intC �= /0 we refer to [6] for the
conjugate of the oriented distance function.

By using the duals (DFL
x ),(DFF

x ) and (DFFL
x ) of the optimization problem (PF

x ), we
introduce the following functions for x ∈ K:

γFL
Δ (x) : = − sup

z∗∈D∗
inf
y∈S
{ΔC(〈F(x),x− y〉)+ 〈z∗,g(y)〉}

= inf
z∗∈D∗

sup
y∈S
{−ΔC(〈F(x),x− y〉)−〈z∗,g(y)〉},

γFF
Δ (x) : = − sup

p∗∈clcoS(−C∗)
{〈F(x)∗p∗,x〉− δ ∗K(F(x)∗p∗)}

= inf
p∗∈clcoS(−C∗)

{δ ∗K(F(x)∗p∗)−〈F(x)∗p∗,x〉}

and

γFFL
Δ (x) : = − sup

p∗∈clcoS(−C∗)
z∗∈D∗

{〈F(x)∗p∗,x〉− (z∗g)∗S(F(x)∗p∗)}

= inf
p∗∈clcoS(−C∗)

z∗∈D∗
{(z∗g)∗S(F(x)∗p∗)−〈F(x)∗p∗,x〉}.

Remark. A similar approach was introduced in [1] in order to construct a gap
function for scalar variational inequalities.

Proposition 3.1. It holds that

γFFL
Δ (x)≥ γFF

Δ (x), ∀x ∈ K.

Proof. We fix x ∈ K and p∗ ∈Y ∗ and consider the following primal problem

(P0) inf
y∈K
〈−F(x)∗p∗,y〉,

K = {y ∈ S : g(y) ∈ −D}.

The corresponding Lagrange dual problem is

(D0) sup
z∗∈D∗

{inf
y∈S
〈−F(x)∗p∗,y〉+ 〈z∗,g(y)〉}

= sup
z∗∈D∗

inf
y∈S
{−[〈F(x)∗p∗,y〉− 〈z∗,g(y)〉]}

= sup
z∗∈D∗

−sup
y∈S
{〈F(x)∗p∗,y〉− 〈z∗,g(y)〉}

= sup
z∗∈D∗

{−(z∗g)∗S(F(x)∗p∗)}.
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By the weak duality it follows that

sup
z∗∈D∗

{−(z∗g)∗S(F(x)∗p∗)} ≤ inf
y∈K
{〈−F(x)∗p∗,y〉}

or, equivalently,

− sup
z∗∈D∗

{−(z∗g)∗S(F(x)∗p∗)}+ δclcoS(−C∗)(p∗)−〈F(x)∗p∗,x〉 ≥

− inf
y∈K
{〈−F(x)∗p∗,y〉}+ δclcoS(−C∗)(p∗)−〈F(x)∗p∗,x〉.

Now we take the infimum over p∗ ∈ Y ∗ in both sides and get

γFFL
Δ (x) = inf

p∗∈clcoS(−C∗)
z∗∈D∗

{(z∗g)∗S(F(x)∗p∗)−〈F(x)∗p∗,x〉}

≥ inf
p∗∈clcoS(−C∗)

{δ ∗K(F(x)∗p∗)−〈F(x)∗p∗,x〉} = γFF
Δ (x).

�
Proposition 3.2. It holds that

γFFL
Δ (x)≥ γFL

Δ (x), ∀x ∈ K.

Proof. Let z∗ ∈ D∗ be fixed. Since

sup
p∗∈Y ∗

{−δclcoS(−C∗)(p∗)− (z∗g)∗S(F(x)∗p∗)+ 〈F(x)∗p∗,x〉}

is the Fenchel dual problem of the primal problem (cf. Remark for the Fenchel
dual problem)

inf
y∈X
{ΔC(〈F(x),x− y〉)+ ((z∗g)+ δS)(y)}=

inf
y∈S
{ΔC(〈F(x),x− y〉)+ 〈z∗,g(y)〉},

we get by the weak duality

sup
p∗∈Y ∗

{−δclcoS(−C∗)(p∗)− (z∗g)∗S(F(x)∗p∗)+ 〈F(x)∗p∗,x〉〉} ≤

inf
y∈S
{ΔC(〈F(x),x− y〉)+ 〈z∗,g(y)〉}

or

inf
p∗∈Y ∗

{δclcoS(−C∗)(p∗)+ (z∗g)∗S(F(x)
∗p∗)−〈F(x)∗p∗,x〉〉} ≥

sup
y∈S
{−ΔC(〈F(x),x− y〉)−〈z∗,g(y)〉}.
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Taking the infimum over z∗ ∈ D∗ in both sides yields the desired result

γFFL
Δ (x) = inf

p∗∈clcoS(−C∗)
z∗∈D∗

{(z∗g)∗S(F(x)∗p∗)−〈F(x)∗p∗,x〉} ≥

inf
z∗∈D∗

sup
y∈S
{−ΔC(〈F(x),x− y〉)−〈z∗,g(y)〉}= γFL

Δ (x).

�
Proposition 3.3. It holds for all x ∈ K that

γF
Δ (x)≤ γFL

Δ (x),γF
Δ (x)≤ γFF

Δ (x) and γF
Δ (x)≤ γFL

Δ (x).

Proof. Let x∈K. Since γF
Δ (x) =−v(PF

x ),γFL
Δ (x) =−v(DFL

x ),γFF
Δ (x) =−v(DFF

x ) and
γFFL

Δ (x) =−v(DFFL
x ) the assertions follow from the weak duality between (PF

x ) and
the corresponding different dual problems. �
Remark. By the last three propositions we obtain the following relations between
the introduced functions

γFFL
Δ (x)≥ γFL

Δ (x)
γFF

Δ (x)
≥ γF

Δ (x) ∀x ∈ K,

which is equivalent to

v(PF
x )≥ v(DFL

x )

v(DFF
x )

≥ v(DFFL
x ) ∀x ∈ K.

Remark. The relations in the Remark above show that if strong duality for the pair
(PF

x )− (DFFL
x ) holds, then strong duality holds also for the pairs (PF

x )− (DFL
x ) and

(PF
x )− (DFF

x ).

Proposition 3.4. γFL
Δ ,γFF

Δ and γFFL
Δ are weak gap functions for the problem (WVV I)

where K = {y ∈ S : g(y) ∈−D} �= /0. Concerning γFF
Δ , K may be any nonempty set.

Proof. (i) By Theorem 3.1 and Propositions 3.1, 3.2 and 3.3 it holds that

γFFL
Δ (x)≥ γFL

Δ (x)
γFF

Δ (x)
≥ γF

Δ (x)≥ 0 ∀x ∈ K.

(ii) Let γFL
Δ (x̄) = 0 for some x̄ ∈ K. Then we obtain by (i) that γF

Δ (x̄) = 0. From
Theorem 3.1 we have that x̄ solves the problem (WVVI).
For γFF

Δ and γFFL
Δ it follows analogously. �
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In order to guarantee the strong duality between the primal problem (PC) and the
corresponding dual problems (DCL), (DCF ) and (DCFL) we assume for the rest of
this chapter that S is a convex set, f is a convex function and g is a D-convex
function.

First, we state a strong duality proposition for the primal-dual pair (PC)− (DCL),
which is a direct conclusion of [4, Theorem 3.2.1].

Proposition 3.5. If there exists x′ ∈ (y−A−1(dom f ))∩S such that g(x′) ∈− intD,
then v(PC) = v(DCL) and (DCL) has an optimal solution.

In the case where f = ΔC and A = F(x), we have (notice that x and y are changed in
(PF

x ) compared with (PC))

y′ ∈ (x−F(x)−1(dom ΔC))∩S

⇔ y′ ∈ (x−F(x)−1(Y ))∩S

⇔ y′ ∈ (x−X)∩S

⇔ y′ ∈ S.

Therefore we have for the pair (PF
x )− (DFL

x ), x ∈ K, the following strong duality
proposition.

Proposition 3.6. If there exists y′ ∈ S such that g(y′)∈− intD, then v(PF
x ) = v(DFL

x )

and (DFL
x ) has an optimal solution.

Next, we give for any convex set K �= /0 a strong duality proposition for the primal-
dual problems (PC)− (DCF ) by using [4, Theorem 3.2.1] again.

Proposition 3.7. If there exists x′ ∈ (y−A−1(dom f ))∩K such that f is continuous
at A(y− x′), then v(PC) = v(DCF ) and (DCF ) has an optimal solution.

Since ΔC is a Lipschitz function, i.e. ΔC is also continuous everywhere on Y , the
Proposition 3.7 can be rewritten for the pairs (PF

x )− (DFF
x ), x ∈ K, as follows.

Proposition 3.8. If K �= /0 is any convex set, then v(PF
x ) = v(DFF

x ) and (DFF
x ) has

an optimal solution.

Remark. Note that in this case there is no regularity condition needed.

Finally, we state a strong duality proposition for the primal-dual pair (PC)− (DCFL)
which also follows as a simple conclusion of [4, Theorem 3.2.1].

Proposition 3.9. If there exists x′ ∈ (y−A−1(dom f ))∩S such that f is continuous
at A(y− x′) and g(x′) ∈ − intD, then v(PC) = v(DCFL) and (DCFL) has an optimal
solution.

As application we can establish strong duality for (PF
x ) and (DFFL

x ), x ∈ K.

Proposition 3.10. If there exists y′ ∈ S such that g(y′) ∈ − intD, then v(PF
x ) =

v(DFFL
x ) and (DFFL

x ) has an optimal solution.
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Theorem 3.2. (i) γFF
Δ is a gap function for (WVV I) for any convex set K �= /0.

(ii) If there exists y′ ∈ S such that g(y′)∈− intD then γFL
Δ and γFFL

Δ are gap functions
for (WVVI).

Proof. (i) By Proposition 3.4, it follows that γFF
Δ is a weak gap function. For that

reason, we need only to prove that if x̄ ∈ K solves (WVVI), then it holds that
γFF

Δ (x̄) = 0. According to Theorem 3.1, for some x̄∈ K it holds that γF
Δ (x̄) = 0 if

and only if x̄ is a solution to (WVV I). That means v(PF
x̄ ) =−γF

Δ (x̄) = 0. On the
other hand, by Proposition 3.8 strong duality holds, i.e. if x̄∈K solves (WVVI),
then γFF

Δ (x̄) =−v(DFF
x̄ ) =−v(PF

x̄ ) = 0.
(ii) This can be proved in a similar way taking into account Proposition 3.6 and

Proposition 3.10 instead of Proposition 3.8 as in the proof of i). �

4 Extension to set-valued problems

In this section we discuss how the presented approach can be extended to some
variational inequalities with set-valued mappings investigated in the literature (see
[11], [12], [13], [15] and [17]). Let us notice that in all mentioned works the space Y
was supposed to be Euclidean one. Under compactness assumptions we will extend
above results in Banach spaces.

4.1 Vector variational inequalities with set-valued mappings

Let X ,Y be real Banach spaces, Y be partially ordered by a closed convex pointed
cone C with intC �= /0 and /0 �= K ⊆ X be a compact set. Further let T : K ⇒ L(X ,Y )
be a set-valued mapping, where L(X ,Y ) is equipped with the usual operator norm,
i.e. (L(X ,Y ),‖ · ‖) is a Banach space. We consider the vector variational inequality
with set-valued mapping which consists in finding x̄ ∈ K such that

(SVVI) ∃t̄ ∈ T (x̄) : 〈t̄,y− x̄〉⊀ 0, ∀y ∈ K.

Let us introduce the function

γT
S (x) = − sup

t∈T (x)
inf
y∈K

ΔC(〈t,x− y〉)

= inf
t∈T (x)

sup
y∈K
{−ΔC(〈t,x− y〉)}, x ∈ K.

Theorem 4.1. Assume that for each x ∈ K, T (x) is nonempty and compact. Then
γT

S is a gap function for (SVV I).
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Proof: Let x ∈ K and t ∈ T (x). Then, from Proposition 2.3(ii) follows

ξtK,C(〈t,x〉) : = − inf
z∈tK

ΔC(〈t,x〉− z) (set z := 〈t,y〉, y ∈ K)

= − inf
y∈K

ΔC(〈t,x〉− 〈t,y〉)

= − inf
y∈K

ΔC(〈t,x− y〉)≥ 0.

Consequently, we have

γT
S (x) = inf

t∈T (x)
ξtK,C(〈t,x〉)≥ 0.

Since K and T (x) are compact and ΔC is continuous, then by standard arguments
(uniform continuity), we obtain that the function supy∈K{−ΔC(〈t,x − y〉)} is
continuous with respect to t ∈ T (x). Moreover, the function γT

S is well defined and
can be written as

γT
S (x) = min

t∈T (x)
sup
y∈K
{−ΔC(〈t,x− y〉)}

(the infimum is attained). For some x̄ ∈ K it holds γT
S (x̄) = 0 if and only if ∃t̄ ∈ T (x̄)

such that
sup
y∈K
{−ΔC(〈t̄, x̄− y〉)}= 0

or

ΔC(〈t̄, x̄− y〉)≥ 0, ∀y ∈ K.

This equivalently means (cf. Proposition 2.1) that

〈t̄, x̄− y〉 /∈ intC ⇔ 〈t̄,y− x̄〉⊀ 0, ∀y ∈ K,

i.e., x̄ is a solution to (SVVI). �

Example. If Y = R
m, C = R

m
+, then Y ∗ = Y, C∗ = R

m
+. Let x, y ∈ K. Then T (x) =

m
∏
i=1

Ti(x), Ti : K ⇒ X∗. For any t ∈ T it holds t = (t1, ..., tm) and

〈t,x− y〉= (〈t1,x− y〉, ...,〈tm,x− y〉).

According to Corollary 2.1 and Proposition 3(iv) in [14], we have

ΔC(〈t,x− y〉) = sup
z∈Rm

+
‖z‖=1

〈−z,〈t,x− y〉〉= max
1≤i≤m

〈ti,y− x〉.
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Consequently, we get

γT
S (x) = inf

t∈T (x)
sup
y∈K

min
1≤i≤m

〈ti,x− y〉

which is nothing else than the gap function for (SVV I) investigated in [13] and [17].

4.2 Vector variational-like inequalities with set-valued
mappings

Under the general assumptions of section 4.1 let η : K×K → X be a vector-valued
mapping such that η(x,x) = 0, ∀x ∈ K, which is continuous with respect to the
first variable for any fixed second variable in K. Then the vector variational-like
inequality with set-valued mapping consists in finding x̄ ∈ K such that

(SVVLI) ∃t̄ ∈ T (x̄) : 〈t̄,η(y, x̄)〉⊀ 0, ∀y ∈ K.

Let us introduce the function

γL
S (x) = − sup

t∈T (x)
inf
y∈K

ΔC(−〈t,η(y,x)〉)

= inf
t∈T (x)

sup
y∈K
{−ΔC(−〈t,η(y,x)〉)}, x ∈ K,

and verify the following assertion.

Theorem 4.2. Assume that for each x ∈ K, T (x) is nonempty and compact. Then
γL

S is a gap function for (SVVLI).

Proof. First we prove that γL
S (x) ≥ 0 ∀x ∈ K. It holds η(x,x) = 0 ∀x ∈ K and

hence 〈t,η(x,x)〉 = 0 ∀x ∈ K, t ∈ T (x). Further we have by Corollary 2.1 that
supx∗∈S(C∗)〈−x∗,−〈t,η(x,x)〉〉 = 0 ∀x ∈ K, t ∈ T (x), i.e. ΔC(−〈t,η(x,x)〉) =
ΔC(0) = 0 ∀x ∈ K, t ∈ T (x). By taking the infimum over y ∈ K we get
infy∈K ΔC(−〈t,η(y,x)〉) ≤ 0 ∀x ∈ K, t ∈ T (x), which is equivalent to supy∈K{−ΔC

(−〈t,η(y,x)〉)} ≥ 0 ∀x ∈ K, t ∈ T (x). Finally, it follows that

γL
S (x) = inf

t∈T (x)
sup
y∈K
{−ΔC(−〈t,η(y,x)〉)} ≥ 0 ∀x ∈ K.

Next, we show that γL
S (x̄) = 0 if and only if x̄ solves (SVV LI). As in the proof of

Theorem 4.1 it follows that supy∈K{−ΔC(−〈t,η(y,x)〉)} is a continuous function
with respect to t ∈ T (x). Moreover, from the assumption for T (x), the function γL

S is
well defined and can be formulated as

γL
S (x) = min

t∈T (x)
sup
y∈K
{−ΔC(−〈t,η(y,x)〉)}.
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Further, let x̄ ∈ K, then γL
S (x̄) = 0 if and only if ∃t̄ ∈ T (x̄) such that

sup
y∈K
{−ΔC(−〈t̄,η(y, x̄)〉)} = 0

and hence follows

ΔC(−〈t̄,η(y, x̄)〉)≥ 0 ∀y ∈ K.

This implies

−〈t̄,η(y, x̄)〉 /∈ intC⇔ 〈t̄,η(y, x̄)〉⊀ 0, ∀y ∈ K,

which means that x̄ is a solution to (SVV LI). �
Remark. As mentioned before, if Y = R

m, C = R
m
+, then it can be shown that γL

S
reduces to the gap function investigated in [15].

4.3 Generalized vector variational-like inequalities
with set-valued mappings

Under the general suppositions as given in section 4.1 let η : K×K→ X and h : K×
K → Y be two vector-valued mappings satisfying η(x,x) = 0 and h(x,x) = 0, ∀x ∈
K, which are continuous with respect to the first variable for any fixed second
variable in K. Let us consider the generalized vector variational-like inequality with
set-valued mapping which consists in finding x̄ ∈ K such that

(SGVVLI) ∃t̄ ∈ T (x̄) : 〈t̄,η(y, x̄)〉+ h(y, x̄)⊀ 0, ∀y ∈ K

and introduce the function

γGL
S (x) = − sup

t∈T (x)
inf
y∈K

ΔC(−〈t,η(y,x)〉− h(y,x))

= inf
t∈T (x)

sup
y∈K
{−ΔC(−〈t,η(y,x)〉− h(y,x))}, x ∈ K.

Analogously, we can verify the following assertion.

Theorem 4.3. Assume that for each x ∈ K, T (x) is nonempty and compact. Then
γGL

S is a gap function for (SGVVLI).

Proof. The proof is similary to the proof of Theorem 4.2. �
Remark. If Y =R

m, C =R
m
+, then it is easy to verify that γGL

S can be reduced to the
gap function investigated in [12].
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Remark. For the readers who are interested in the existence of solutions to vector
variational inequalities, we refer to [12] and [17].
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Optimal Inscribing of Two Balls
into Polyhedral Set

Rentsen Enkhbat and Bazarragchaa Barsbold

Abstract In this chapter, we consider the problem for optimal inscribing of two
balls into bounded polyhedral set, so that sum of their radiuses is maximized.
We formulate this problem as a bilevel programming problem and investigated
its some properties. The gradient-based method for solving it has been proposed.
We illustrate our approach on some test problems.

Key words Chebyshev center • Continuity • Differentiability • Bilevel program-
ming problem

1 Introduction

We consider a problem of optimal inscribing of two balls into a polyhedral set.
Such problem can be found in many applications such as facility location problem,
cluster analysis, data mining, machine learning, regression analysis of models with
bounded noise. On the other hand, the above problem generalizes the Chebyshev
center problem in the case of two balls.

In [3] the Chebyshev center is shown to be a maximum likelihood estimator for
the center of a uniform distribution over a k-sphere and both unbiased and consistent
for the multivariate spherical normal distribution and any spherical finite range
distribution. In the field of parameter estimation, the Chebyshev center approach
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tries to find an estimator x̂ for all x from the given feasibility set Q, such that x̂
minimizes the worst possible estimation error for x (e.g., best worst-case estimate).
The other direction in the bounded error estimation is to compute a specific estimate
in the membership set enjoying some optimality properties [2]. A well-known
estimate is the Chebyshev center [5] of the set Ω n

θc = arg min
θ∈Ωn

max
η∈Ωn

‖θ −η‖,

where ‖ · ‖ is the lp norm. This is the best worst-case estimate of the true but
unknown system parameter vector in the sense that it minimizes the maximum
distance between and the unknown parameter vector that generated the data. With
p = ∞ or 1 , the calculation of θ is basically a linear programming problem.

The problem of estimating a vector z in the regression model B = Az+w, where
w is an unknown but bounded noise, has been considered in [1]. To estimate z, a
relaxation of the Chebyshev center, which is the vector that minimizes the worst-
case estimation error over all feasible vectors z, was considered in [1]. It is shown
that the estimate can be viewed as a Tikhonov regularization with a special choice
of parameter that can be found efficiently by solving a convex optimization problem
with two variables or a semidefinite program with three variables, regardless of the
problem size. When the norm constraint on z is a Euclidean one, the problem reduces
to a single-variable convex minimization problem [1]. The chapter is organized
as follows. In Sect. 2, we consider the problem of optimal inscribing of two balls
into a polyhedral set. Section 3 is devoted to some properties of proposed auxiliary
functions. In Sect. 4, some test problems have been solved numerically.

2 Optimal Inscribing of Two Balls

We formulate the problem of optimal subdivision of a bounded polyhedral set, so
that sum of radiuses of inscribed balls is maximized. For this purpose, we need to
introduce the following conventions. Let A be an m× n matrix, b ∈ R

m, and D =
{x ∈R

n : Ax≤ b, x≥ 0}. For all c ∈ Rn, c �= 0, and z ∈D hyperplane cT (x− z) = 0
subdivides D into the following two parts:

D1(c,z) = {x ∈ R
n : Ax≤ b, cT x≤ cT z, x≥ 0}, (1)

D2(c,z) = {x ∈ R
n : Ax≤ b, cT x≥ cT z, x≥ 0}. (2)

Let v(A) = (‖A1‖, . . . ,‖Am‖)T ,

where ‖Ai‖=
√

a2
i1 + · · ·+ a2

in for all i = 1, . . . ,m and

X1(c,z) = {(x,r) ∈ R
n+1 : Ax+ v(A)r≤ b, cT x+ ‖c‖r≤ cT z,

r ≥ 0, x≥ 0}, (3)
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X2(c,z) = {(x,r) ∈ R
n+1 : Ax+ v(A)r≤ b, cT x−‖c‖r≥ cT z,

r ≥ 0, x≥ 0}. (4)

Introduce the following auxiliary functions:

r1(c,z) = max
(x,r1)∈X1(c,z)

r1. (5)

r2(c,z) = max
(x,r2)∈X2(c,z)

r2. (6)

Then, the problem for optimally inscribing of two balls into a polyhedral set is
formulated as follows:

max Γ (c,z) = r1(c,z)+ r2(c,z) (7)

s.t.

⎧

⎨

⎩

max
(x,r1)∈X1(c,z)

r1,

max
(x,r2)∈X2(c,z)

r2,
(8)

where c ∈R
n, c �= 0, and z ∈D.

We denote by Y1(c) and Y2(c) constraints of dual problems to (5) and (6),
respectively, i.e.,

Y1(c) =
{

y ∈R
m+1 : a1 jy1 + · · ·+ am jym + c jym+1 ≥ 0, ∀ j = 1, . . . ,n

‖a1‖y1 + · · ·+ ‖am‖ym + ‖c‖ym+1 ≥ 1, y1, . . . ,ym+1 ≥ 0} , (9)

Y2(c) =
{

y ∈R
m+1 : a1 jy1 + · · ·+ am jym− c jym+1 ≥ 0, ∀ j = 1, . . . ,n

‖a1‖y1 + · · ·+ ‖am‖ym + ‖c‖ym+1 ≥ 1, y1, . . . ,ym+1 ≥ 0} . (10)

Then dual problems to (5) and (6) are given by

Ω1(z) = min bT y+ cT zym+1 (11)

s.t.

⎧

⎨

⎩

AT y+ cym+1 ≥ 0,
vT (A)y+ ‖c‖ym+1 ≥ 1,
y≥ 0, ym+1 ≥ 0

(12)

and

Ω2(z) = min bT y− cT zym+1 (13)

s.t.

⎧

⎨

⎩

AT y− cym+1 ≥ 0,
vT (A)y+ ‖c‖ym+1 ≥ 1,
y≥ 0, ym+1 ≥ 0.

(14)

Let us establish some basic properties of function Γ .
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Proposition 1. 1. Function Γ (·,z) : Rn →R is homogeneous of degree zero.
2. Functions r1(c, ·) : D → R and r2(c, ·) : D → R are concave on D for all c ∈

R
n\{0}.

Proof. 1. Clearly, Xi(αc,z) = Xi(c,z) hold for all α ∈ R, α �= 0, c ∈ R
n,

c �=0, and i = 1,2. This implies that Γ (αc,z) = Γ (c,z) for all α ∈ R, α �= 0,
and c ∈ R

n, c �= 0, which is our claim.
2. Now we show that r1(c, ·) is concave on D. Problem (11) is dual to (5).

According to strong duality theorem [6], we have r∗1 = bT y∗+ cT zy∗m+1, where
r∗1 is an optimal value of (5) and (y∗,y∗m+1) is an optimal solution to (11). This
follows that

r1(c,z) = Ω1(z) (15)

for all c ∈ R
n, c �= 0, and z ∈ D. By definition of Ω1(z), it is concave as a

minimum to family of linear functions over convex set. The latter and (15) imply
that function r1(c, ·) is concave.
Concavity of r2(c, ·) can be shown easily by analogy to the above. By considering
problem (13), we show that the function Ω2(z) is concave as the minimum to
family of linear functions. On the other hand, we have Ω2(z) = r2(c,z). Since
both r1(c, ·) and r2(c, ·) are concave, their sum is concave, too. This completes
the proof. ��

It is well known [4] that concavity of a function implies its continuity on interior
of its domain. Therefore, Proposition 1.2 implies continuity of functions r1(c, ·)
and r2(c, ·) with respect to z for all c ∈ R

n\{0}. However, it does not guarantee
continuity of the functions with respect to all pairs (c,z), where c ∈ R

n\{0}. In the
next proposition, we establish continuity of the above function. First, we introduce
some notations.

Let {ck}∞
k=1 be a sequence convergent to c, i.e., lim

k→∞
ck = c, {zk}∞

k=1 be convergent

to z, z ∈ X1(c,z), and zk ∈ X1(ck,zk) for all k = 1,2, . . . . We denote by (x∗,r∗1) a
solution to problem (5) and let a pair (y∗,y∗m+1) be a solution to its dual problem
given by (11). Similarly, we denote by

(

xk

rk
1

)

and

(

yk

yk
m+1

)

(16)

solutions to primal and dual problems defined by

max
(x, r1)∈X1(ck, zk)

r1 and min
(y, ym+1)∈Y1(ck)

bT y+(ck)T zkym+1 (17)

for all k = 1,2, . . . .

Lemma 1. 1. If D is nonempty and bounded, then X1(c,z) is nonempty and
bounded for all c ∈R

n\{0} and z ∈ D.



Optimal Inscribing of Two Balls into Polyhedral Set 39

2. If D is nonempty and bounded, then sequences {xk}∞
k=0 and {rk}∞

k=0 defined by
(16) are bounded.

3. If Y1(c) is bounded, then sequence {yk
m+1}+∞

k=0 defined by (16) is bounded.

Proof. 1. Let the set D be nonempty and bounded. Then for all c ∈ R
n\{0} and

z ∈ D, there exists x∗ providing the minimum to

min
x∈D

cT x. (18)

By definition of D1(c,z) given by (1), we have x∗ ∈ D1(c,z). Therefore, D1(c,z)
is nonempty. Since D1(c,z) ⊆ D, it is also bounded. Since D1(c,z) is nonempty
and bounded, problem (5) has a solution and all of them are bounded. Then as
a constraint to (5), X1(c,z) is bounded and nonempty. This proves Part 1 of the
lemma.

2. First, we show that {xk}∞
k=0 is bounded. Since xk ∈ X1(ck,zk), we have

aT
i xk + ‖ai‖rk

1 ≤ bi, for all i = 1, . . . ,m. (19)

This implies

aT
i xk ≤ bi, for all i = 1, . . . ,m,

which means

xk ∈ D, ∀ k = 0,1,2, . . . . (20)

Boundedness and (20) imply that sequence {xk}∞
k=0 is bounded. Now, let us prove

that {rk}∞
k=0 is bounded. Since rk ≥ 0, it is sufficient to show that the sequence is

bounded above. On the contrary to this, we assume that there exists subsequence
{k j}∞

j=0 such that

lim
j→+∞

rk j =+∞. (21)

Since {xk}∞
k=0 is bounded, then we have

lim
j→+∞

(

aT
i xk j + ‖ai‖rk j

1

)

=+∞, ∀i = 1, . . . ,m. (22)

Taking into account this and (19), we obtain bi = +∞, ∀i = 1, . . . ,m, which
contradicts the boundedness of D. This proves Part 2 of the lemma.

3. Let denote by L a set of limit points of {yk}+∞
k=0. Let ȳ ∈ L. Then there exists

{ki}+∞
i=0 such that lim

i→+∞
yki = ȳ, and from definition of Y1(c) given by (9), it

follows that ȳ ∈Y1(c). If Y1(c) is bounded then {yk}+∞
k=0 has bounded limit set, so

sequence {yk
m+1}+∞

k=0 is bounded, too. This proves the lemma. ��
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Lemma 2.

y∗m+1[c
T z− (ck)T zk− (‖c‖−‖ck‖)rk

1− (cT − (ck)T )xk ]

≤ r∗1− rk
1 (23)

≤ yk
m+1[c

T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]. (24)

Proof. Since (x∗,r∗1) ∈ X1(c,z), yk ≥ 0, and yk
m+1 ≥ 0,

m

∑
i=1

yk
i (bi− aT

i x∗ −‖ai‖r∗1)+ yk
m+1(c

T z− cT x∗ −‖c‖r∗1)≥ 0 (25)

hold for all (yk,yk
m+1)

T ∈ Y1(ck). Due to strong duality theorem [6], rk
1 =

m
∑

i=1
yk

i bi +

yk
m+1(c

k)T zk takes place. Moreover, we have dual feasibility given by
m
∑

i=1
yk

i ai j +

ck
jy

k
m+1 ≥ 0, ∀ j = 1, . . . ,n, and

m
∑

i=1
‖ai‖yk

i + ‖ck‖yk
m+1 ≥ 1. Applying these results

to (25), we obtain the following estimation:

r∗1− rk
1 ≤ r∗1− rk

1 +
m

∑
i=1

yk
i (bi− aT

i x∗ −‖ai‖r∗1)

+ yk
m+1(c

T z− cT x∗ − r∗1‖c‖)

= r∗1− rk
1 +

m

∑
i=1

yk
i (bi− aT

i x∗ −‖ai‖r∗1)+ yk
m+1[c

T z− (ck)T zk

+(ck)T zk− cT x∗ −‖c‖r∗1]

=

[

m

∑
i=1

yk
i bi + yk

m+1(c
k)T zk− rk

1

]

+ r∗1−
m

∑
i=1

yk
i (a

T
i x∗+ ‖ai‖r∗1)

− yk
m+1(c

T x∗+ ‖c‖r∗1)+ yk
m+1(c

T z− (ck)T zk) (26)

= r∗1−
m

∑
i=1

yk
i (a

T
i x∗+ ‖ai‖r∗1)− yk

m+1(c
T x∗+ ‖c‖r∗1)

+ yk
m+1[c

T z− (ck)T zk ]

= r∗1−
m

∑
i=1

yk
i (a

T
i x∗+ ‖ai‖r∗1)− yk

m+1((c
k)T x∗+ ‖ck‖r∗1)+ yk

m+1[c
T z

− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]



Optimal Inscribing of Two Balls into Polyhedral Set 41

= r∗1−
m

∑
i=1

n

∑
j=1

yk
i ai jx

∗
j −

m

∑
i=1
‖ai‖yk

i r∗1−
n

∑
j=1

yk
m+1ck

jx
∗
j − yk

m+1‖ck‖r∗1

+ yk
m+1[c

T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]

= r∗1−
n

∑
j=1

(

m

∑
i=1

yk
i ai j + ck

jy
k
m+1

)

x∗j −
(

m

∑
i=1

‖ai‖yk
i + ‖ck‖yk

m+1

)

r∗1

+ yk
m+1[c

T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]
≤ r∗1− r∗1 + yk

m+1[c
T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖) · r∗1 ]

= yk
m+1[c

T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]. (27)

In similar way to (25), we have

m

∑
i=1

y∗i (bi− aT
i xk−‖ai‖rk

1)+ y∗m+1((c
k)T zk− (ck)T xk−‖ck‖rk

1)≥ 0. (28)

Due to above, we obtain

rk
1− r∗1 ≤ rk

1− r∗1 +
m

∑
i=1

y∗i (bi− aT
i xk−‖ai‖rk

1)

+ y∗m+1((c
k)T zk− (ck)T xk−‖ck‖rk

1). (29)

Further, in analogy to (26)–(27), we have the following estimation:

rk
1− r∗1 ≤ y∗m+1[c

T z− (ck)T zk +((ck)T − cT )xk +(‖ck‖−‖c‖)rk
1 ]. (30)

Based on (26), (27) and (30), we have (23)–(24). ��

3 Continuity and Differentiability of Auxiliary Functions

Proposition 2 (Continuity of r1 and r2). Let D be nonempty and bounded and
Y1(c) be bounded. Then functions r1 : Rn× [0;1]→R and r2 : Rn× [0;1]→R given
by (5) and (6) are continuous for all c ∈ R

n\0 and z ∈D.

Proof. It is sufficient to prove continuity of r1. Continuity of r2 can be shown by
analogy. We need to prove that lim

k→+∞
rk

1 = r∗1. Based on (23)–(24) we have
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y∗m+1[c
T z− (ck)T zk− (‖c‖−‖ck‖)rk

1− (cT − (ck)T )xk ]

≤ r∗1− rk
1 (31)

≤ yk
m+1[c

T z− (ck)T zk− (cT − (ck)T )x∗ − (‖c‖−‖ck‖)r∗1 ]. (32)

Since D and Y1(c) are bounded, from Lemma 1 points 2 to 3 it implies that
{

(xk,rk
1)
}∞

k=1 and
{

yk
m+1

}∞
k=1 are bounded. Taking into account this and letting

k→ ∞ in (23)–(24), we obtain

lim
k→∞

(r∗1− rk
1) = 0. (33)

This completes the proof. ��
Let c,h,v ∈R

n,z ∈D, and c(t) = c+ th, z(t) = z+ tv for all sufficiently small t ∈R

satisfying z(t) ∈ D. Vectors

[(

x(t)
r1(t)

)

,

(

y(t)
ym+1(t)

)]

denote primal and dual solutions to problem

max r1
⎧

⎨

⎩

Ax+ v(A)r1 ≤ b
cT (t)x+ ‖c(t)‖r1 ≤ cT (t)z(t)
r1 ≥ 0

(34)

for given t ∈ R with z(t) ∈ D.

Proposition 3 (Directional Differentiability). If primal and dual problems (5)
and (11) have a unique solution1 for c ∈ R

n\0 and z ∈ R
n, then there exists

directional derivative of r1 along h̃ = (hT ,vT )T , and it is given by

∂ r1

∂ h̃
(c,z) =y∗m+1[c

T v+ zT h− cT h
‖c‖ r∗1− hT x∗]. (35)

Proof. Due to Lemma 2, we have

ym+1(t)[c
T (t)z(t)− cT z− (‖c(t)‖−‖c‖)r∗1− thT x∗ ]

≤ r1(t)− r∗1 (36)

≤ y∗m+1[c
T (t)z(t)− cT z− (‖c(t)‖−‖c‖)r1(t)− thT x(t) ]. (37)

1This means that primary and dual problems (5) and (11) are nondegenerated.
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It holds

cT (t)z(t)− cT z = tcT v+ tzT h+ t2hT v. (38)

We substitute it into (36)–(37) and obtain

ym+1(t)[ tc
T v+ tzT h+ t2hT v− (‖c(t)‖−‖c‖)r∗1− thT x∗ ]

≤ r1(t)− r∗1 (39)

≤ y∗m+1[tc
T v+ tzT h+ t2hT v− (‖c(t)‖−‖c‖)r1(t)− thT x(t) ]. (40)

If problems (5) and (11) have a unique solution, then

lim
t→0

x(t) = x∗ and lim
t→0

ym+1(t) = y∗m+1. (41)

Taking into account this, dividing (39)–(40) by t and letting t → 0, we
obtain (35). ��
From (35) it implies that directional derivative is continuous for all (c,z), unless
c = 0. Then we have the following formula for the gradient of r1:

Corollary 1 (Gradient Formula for r1).

∇r1(c,z) = y∗m+1

[

z− c
‖c‖ r∗1− x∗

c

]

. (42)

We denote solutions to primal and dual problems (6) and (13) by

(

x̄∗

r∗2

)

and

(

ȳ∗

ȳ∗m+1

)

,

respectively. In order to derive gradient formula for function r2(c,z) given by (6),
we consider the following problem:

max r2
⎧

⎨

⎩

Ax+ v(A)r2 ≤ b
cT (t)x−‖c(t)‖r2 ≤ cT (t)z(t)
r2 ≥ 0

(43)

for c(t) = c− th and z(t) = z+ tv, where t ∈R is given so that it holds z(t) ∈D and
c,h,z,v ∈ R

n. Let
(

x̄(t)
r2(t)

)

and

(

ȳ(t)
ȳm+1(t)

)

be primal and dual solutions.
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Proposition 4 (Directional Differentiability of r2). If primal and dual problems
(6) and (13) have unique primal and dual solutions for all c ∈ R

n\0 and z ∈ R
n,

then there exists directional derivative of r2 along h̃, where h̃ = (hT ,vT )T , and it is
given by

∂ r2

∂ h̃
(c,z) =− ȳ∗m+1

[

cT v+ zT h+
cT h
‖c‖ r∗1− hT x∗(c,z)

]

. (44)

Proof. By analogy to the proof of Proposition 3. ��
The directional derivative is continuous for all (c,z), whenever c �= 0. Then we

have the following formula for the gradient of r2.

Corollary 2 (Gradient Formula for r2).

∇h̃r2(c,z) =−ȳ∗m+1

[

z+ c
‖c‖ r∗2− x̄∗

c

]

. (45)

We note that assumptions on uniqueness of solutions x∗, ym+1 and x̄, ȳm+1 in
Propositions 3 and 4 are necessary.

4 Numerical Examples

Example 1. Consider a rectangle defined by

D = {x ∈ R
2 : 0≤ x1 ≤ 4, 0≤ x2 ≤ 2}. (46)

Obviously, we can enclose two equal balls into it with radiuses r1 = r2 = 1. This
solves problems (7)–(8) over the rectangle providing the maximum to the objective
function setting r∗1 + r∗2 = 2. On the other hand, we can also, enclose two equal balls
with radiuses r1 = r2 = 0.5 which provides the minimum to the objective function
for r1 + r2 = 1. These solutions were obtained for c∗ = (1,0)T , z∗ = (2,1)T for
the maximum and for c∗ = (0,1)T , z∗ = (2,1)T in the case of the minimum. In
neighborhood of c∗ functions r1 and r2 are nondifferentiable, because we find

x∗ = t

(

0,
1
2

)T

+(1− t)

(

4,
1
2

)T

(47)

x̄ = t

(

0,
3
2

)T

+(1− t)

(

4,
3
2

)T

, (48)
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Table 1 Results of numerical experiment with accuracy ε = 10−5

n rc r0
1 r0

2 ∇ f (c0, z0) r∗1 r∗2 f (c∗, z∗) ∇ f (c∗, z∗) Time

10.0 4.7917 3.6405 4.3576 0.49258 4.7833 4.4303 9.2136 0.000000011147 16.739
15.0 4.3712 3.4742 4.0768 0.33946 4.3050 4.1504 8.4554 0.000000092872 14.258
20.0 4.1143 3.3624 3.8890 0.26124 4.1111 3.9537 8.0648 0.000000024780 35.350
25.0 3.9346 3.2788 3.7509 0.21364 3.8949 3.8111 7.7060 0.00000064499 27.378
30.0 3.7989 3.2124 3.6429 0.18152 3.7658 3.6981 7.4639 0.000000018056 29.406
35.0 3.6912 3.1575 3.5552 0.15834 3.6628 3.6062 7.2690 0.0000000049867 36.863
40.0 3.6027 3.1108 3.4817 0.14078 3.5778 3.5293 7.1071 0.000000028025 46.441
45.0 3.5280 3.0703 3.4189 0.12700 3.5084 3.5083 7.0167 0.000000056647 75.021
50.0 3.4638 3.0346 3.3641 0.11589 3.4439 3.4062 6.8501 0.00000016694 74.709

where t ∈ [0, 1] and there is no guarantee that

lim
k→0

x(t) = x∗ and lim
k→0

x̄(t) = x̄. (49)

Example 2. Consider a triangle defined by

D = {x ∈ R
2 : x1 + 2x2 ≤ 10, x1, x2 ≥ 0}. (50)

A ball inscribed into it has radius given by r = 1.9098 and center at x =
(1.9098, 1.9098)T . Based on gradient formulas (42) and (45) we employed quasi-
Newton algorithm to solve problems (7)–(8) over D given by (50). Starting with
c = (1, 1)T , the algorithm has found a globally optimal subdivision of the triangle.
Balls inscribed into the optimal subdivision are given by x∗ = (1.9098, 1.9098)T ,
r∗1 = 1.9098, x̄∗ = (5.3507, 1.0976), and r∗2 = 1.0976, and sum of their radiuses
satisfies r∗1 + r∗2 = 3.0074.

Example 3. We define D as a simplex set given by

D =
{

x ∈ R
n :

x1

20
+

x2

40
+ · · ·+ xn

20n
≤ 1, x1, x2, . . . ,xn ≥ 0

}

(51)

for given n ∈ R. In this case, we had solved numerically the optimal inscribing
problem for n = 10, . . . ,200. Numerical experiments were made on PC with Intel
Core 2 Duo, 2.93 GHz processor and 2,038 MB RAM using Matlab implementation
of quasi-Newton method. We continued iteration until decreasing of the gradient
norm below given precision ε . Results of the experiments are presented in Tables 1
and 2, where n stands for problem size, rc is radius of the ball inscribed into D,
r0

1 and r0
2 are radiuses of the initially inscribed balls into D, and ∇ f (c0,z0) is a

norm of the gradient at the initial subdivision. Columns labeled by r∗1, r∗2, f (c∗,z∗),
and ∇ f (c∗,z∗) contain approximations to radiuses of the optimally inscribed balls,
optimal value and gradient of the objective function at the optimal subdivision. In
the last column we listed computation time measured in seconds.
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Table 2 Results of numerical experiment with accuracy ε = 10−4

n rc r0
1 r0

2 ∇ f (c0, z0) r∗1 r∗2 f (c∗, z∗) ∇ f (c∗, z∗) Time

10 4.7917 3.6405 4.3576 0.49258 4.6916 4.4366 9.1282 0.000040117 9.7345
15 4.3712 3.4742 4.0768 0.33946 4.3050 4.1504 8.4554 0.000000092872 14.274
20 4.1143 3.3624 3.8890 0.26124 4.0647 3.9554 8.0201 0.000017258 19.485
25 3.9346 3.2788 3.7509 0.21364 3.8949 3.8111 7.7060 0.00000064499 26.770
30 3.7989 3.2124 3.6429 0.18152 3.7658 3.6981 7.4639 0.000000018056 28.330
35 3.6912 3.1575 3.5552 0.15834 3.6628 3.6062 7.2690 0.0000000049867 36.785
40 3.6027 3.1108 3.4817 0.14078 3.5778 3.5293 7.1071 0.000000028025 46.317
45 3.5280 3.0703 3.4189 0.12700 3.5084 3.5083 7.0167 0.000000056647 74.912
50 3.4638 3.0346 3.3641 0.11589 3.4439 3.4062 6.8501 0.00000016694 74.319
55 3.4077 3.0028 3.3158 0.10672 3.3895 3.3558 6.7453 0.0000046109 75.536
60 3.3580 2.9740 3.2727 0.099018 3.3413 3.3107 6.6520 0.0000000028635 108.75
65 3.3135 2.9479 3.2339 0.092454 3.2995 3.2979 6.5974 0.00000040210 2911.8
70 3.2734 2.9239 3.1986 0.086788 3.2591 3.2334 6.4925 0.0000051336 120.50
75 3.2369 2.9018 3.1663 0.081843 3.2270 3.2270 6.4540 0.0000015405 166.87
80 3.2035 2.8814 3.1366 0.077489 3.1909 3.1688 6.3597 0.00000033370 173.61
85 3.1727 2.8623 3.1091 0.073622 3.1609 3.1402 6.3011 0.0000000014511 220.16
90 3.1443 2.8444 3.0836 0.070163 3.1331 3.1136 6.2467 0.0000000032898 225.48
95 3.1178 2.8277 3.0598 0.067050 3.1072 3.0889 6.1960 0.0000017390 272.42

100 3.0931 2.8119 3.0375 0.064232 3.0830 3.0657 6.1487 0.00000030525 284.66
105 3.0699 2.7970 3.0166 0.061669 3.0603 3.0439 6.1043 0.000000018861 344.82
110 3.0482 2.7829 2.9968 0.059325 3.0390 3.0234 6.0624 0.000000014225 413.06
115 3.0277 2.7695 2.9782 0.057174 3.0189 3.0041 6.0230 0.000000023488 456.19
120 3.0083 2.7567 2.9605 0.055192 2.9999 2.9858 5.9856 0.000000083348 502.93
125 2.9900 2.7445 2.9437 0.053360 2.9819 2.9684 5.9503 0.000014221 538.92
130 2.9726 2.7329 2.9278 0.051660 2.9663 2.9662 5.9326 0.0000018209 618.78
135 2.9560 2.7218 2.9125 0.050078 2.9485 2.9361 5.8845 0.000014718 790.63
140 2.9402 2.7111 2.8980 0.048603 2.9330 2.9210 5.8540 0.00000037802 862.19
145 2.9251 2.7009 2.8841 0.047223 2.9209 2.9209 5.8418 0.0000053246 1176.6
150 2.9107 2.6910 2.8708 0.045929 2.9039 2.8929 5.7968 0.00000054939 1226.9
155 2.8969 2.6815 2.8580 0.044714 2.8903 2.8797 5.7700 0.0000014864 1249.9
160 2.8837 2.6724 2.8458 0.043569 2.8800 2.8800 5.7599 0.00000023966 1318.1
165 2.8709 2.6636 2.8340 0.042490 2.8647 2.8548 5.7195 0.00000099447 1080.5
170 2.8587 2.6551 2.8226 0.041470 2.8527 2.8430 5.6957 0.00000000038773 1422.5
175 2.8469 2.6468 2.8116 0.040504 2.8410 2.8317 5.6727 0.000000025851 1563.4
180 2.8355 2.6388 2.8010 0.039588 2.8298 2.8208 5.6506 0.00000060155 1636.1
185 2.8246 2.6311 2.7908 0.038718 2.8204 2.8204 5.6408 0.0000058924 2496.3
190 2.8140 2.6236 2.7809 0.037891 2.8086 2.8000 5.6086 0.00000000038547 1656.0
195 2.8037 2.6164 2.7714 0.037104 2.7985 2.7902 5.5886 0.0000000065744 2328.8
200 2.7938 2.6093 2.7621 0.036353 2.7887 2.7806 5.5693 0.0000016114 2433.4
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Mathematical Programs with Equilibrium
Constraints: A Brief Survey of Methods
and Optimality Conditions

Ider Tseveendorj

Abstract This chapter provides a short survey of the research for an important
class of constrained optimization problems for which their constraints are defined
in part by a variational inequality. Such problems are known as mathematical
programs with equilibrium constraints (MPEC). MPEC arise naturally in different
areas and play an important role, for example, in the pricing of telecommunication
and transportation networks, in economic modeling, in computational mechanics in
many other fields of modern optimization, and have been the subject of a number
of recent studies. We present a general formulation of MPEC, describe the main
characteristics of MPEC, and review the main properties and theoretical results for
these problems. The short survey mainly concentrates on the review of the available
solution methodology.

Key words Mathematical programs • Equilibrium constraints • Variational
inequality • Bilevel optimization • Nonconvex optimization • Nondifferentiable
optimization

Introduction

Mathematical programming is a field extensively studied by many researchers.
Due to its potential for application in real-world problems it has prospered over
the last few decades. Great strides have been made recently in the solution
of large-scale mathematical programming problems arising in different practical
areas, particularly in telecommunication. It is well known that the “classical”
telecommunication problems like the minimum cost flow, the multicommodity flow,
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and network design, to name a few, can be formulated as mathematical programming
problems, and for solving these problems, several efficient algorithms have already
been proposed [2].

But as far as a real-world decision making is concerned, the decision maker
often has to deal with a reaction of other decision makers. For example, in problem
of pricing in telecommunication, a reaction of clients plays an important role
in the total revenue. Analysts have found, however, that standard mathematical
programming models are often inadequate in such situations because more than
a single objective function and single decision maker are involved. Such kind of
problems are formulated as a mathematical program with equilibrium constraints.

We consider the MPEC in the following statement:
⎧

⎨

⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

y ∈ S(x),
(MPEC)

where ϕ : Rn+m→R, Ω ⊂Rn, and S(x) is the solution set of the reactions of the other
decision makers (an equilibrium constraint), that is usually formulated in terms of a
variational inequality.

We recall some definitions and results from the theory of the variational
inequality problems in Sect. 1. The general MPEC is a highly nonconvex, nondif-
ferentiable optimization problem that encompasses certain combinatorial features
in its constraints. As such, it is computationally very difficult to solve, especially if
one wishes to compute a global optimal solution.

MPEC arise naturally in different areas and play an important role, for example,
in the design of telecommunication and transportation networks, in economic
modeling, in computational mechanics in many other fields of modern optimization,
and have been the subject of a number of recent studies. They also include, as a
special case, the bilevel optimization problem, where some variables are restricted
to be in the solution set of another parametric optimization problem [4].

An extensive bibliography on this topic and its application can be found in
the monographs [13, 19]. In this chapter we intend to give an overview over the
literature in the field: we are interested only in basic ideas of methods and optimality
conditions for MPEC, and therefore our list of the literature is not exhaustive.

In the following sections, after Sect. 1 of variational inequality, we present short
review of the basic approaches and optimality conditions for MPEC.

1 Variational Inequality Problem

The variational inequality problem is a general problem formulation that encom-
passes a wide range of problems, including, among others, optimization prob-
lems, complementarity problems, fixed point problems, and network equilibrium
problems. In this section, we briefly review several important moments for solving
variational inequality problems.
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Mathematical programmers’ interest in the variational inequality problem stems
primarily from the recognition that the equilibrium conditions for network equi-
librium problems can be formulated in a natural way as a variational inequality
problems, and secondly it includes as special cases virtually all of classical problems
of mathematical programming: the first-order optimality conditions, linear and
nonlinear complementarity problems, fixed point problems, and minimax problems.

Let an operator F : Rn+m→ Rm and a set-valued map C : Rn → Rm be given. Then
variational inequality problem, VI(F,C), is defined as follows:

{

find y ∈C(x)
such that 〈F(x,y),u− y〉 ≥ 0, for all u ∈C(x),

(1)

and its solution set is denoted by S(x).
Here we will recall some definitions and basic results from [7, 13, 15]. For

simplicity, in the remainder of the current section, we fix variable x and give basic
definitions and results w.r.t. second variable y.

In other words, we have C ⊂ Rm, F : Rm → Rm and consider a version of the
variational inequality problem without parameter x, which is usually referred to as
the variational inequality problem, VI(F,C):

{

find y ∈C
such that 〈F(y),u− y〉 ≥ 0, for all u ∈C.

(2)

Definition 1. An operator F : Rm → Rm is said to be

• Monotone on C if for all u,v ∈C

〈F(u)−F(v),u− v〉 ≥ 0

• Strictly monotone on C if for all u,v ∈C,u �= v :

〈F(u)−F(v),u− v〉> 0

• Strongly monotone on C if there exists a constant κ > 0, such that for all u,v ∈C

〈F(u)−F(v),u− v〉 ≥ κ ‖ u− v ‖

• Antimonotone on C if −F(·) is monotone; i.e.,

for all u,v ∈C 〈F(u)−F(v),u− v〉 ≤ 0;

• Nonmonotone on C if it is not monotone on C; (notice that antimonotone
operator is nonmonotone too)

In the literature C ⊂ Rm is generally assumed to be convex and compact (or, in
some cases , convex and closed), and F : Rm → Rm is generally assumed to be
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• Either continuous, hemicontinuous, or continuously differentiable
• Either

– Monotone on C
– Strictly monotone on C
– Strongly monotone on C

1.1 Existence and Convexity of the Solution Set of VIP

The following results specify conditions ensuring that VI(F,C) has a solution:

Theorem 1 ([10]). If C ⊂ Rm is compact and convex, and F(·) is continuous, then
the variational inequality VI(F,C) has a solution.

Theorem 2 ([10]). Suppose that C is closed convex, and F(·) is continuous and
satisfies the following condition:
There exists an x0 ∈C such that

lim
‖x‖→∞,x∈C

〈F(x)−F(x0),x− x0〉
‖x− x0‖ =+∞.

Then, the variational inequality problem VI(F,C) has a solution.

Theorem 3 ([1]). Suppose that C is closed and convex, and F(·) is monotone,
hemicontinuous, and satisfies the following coercivity condition on C:
There exists an x0 ∈C and a scalar γ > 0 such that

if x ∈C and ‖x‖> γ, then 〈F(x),x− x0〉> 0.

Then, the variational inequality problem VI(F,C) has a solution.

Theorem 4 ([1]). If C is closed and convex, and F(·) is strongly monotone and
hemicontinuous on C, then, the variational inequality problem VI(F,C) has a
solution.

The following theorem specifies conditions on the operator (or mapping) F(·)
which gives an idea of structures (uniqueness and convexity) of the solution set of
the variational inequalities:

Theorem 5 ([10]). Let C be a closed convex set in Rm and F(·) be a continuous
mapping. Let S denote the (possibly empty) solution set of the VI(F,C).

• If F(·) is monotone on C, then S, if nonempty, is a closed convex set.
• If F(·) is strictly monotone on C, then S consists of at most one element.
• If F(·) is strongly monotone on C, then S consists of exactly one element.
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1.2 Relationship to Other Problems

Let us discuss briefly the relationship between the variational inequality problems
and other optimization-related classical problems:

(i) Optimization and VIP : The operator F(·) is a gradient mapping on C if there
exists a Gateaux differentiable functional ϕ(·) such that F(x) = ∇ϕ(x) for
every x in C.

If F(·) is a gradient mapping, namely the gradient of the continuously dif-
ferentiable functional ϕ(·), then y solves VI(F,C) precisely when y minimizes
locally functional ϕ(·) over C.

So, whenever F(·) satisfies the properties of gradient mapping, we can
solve variational inequality problem using any algorithm that will solve the
equivalent optimization problem, if the latter is solvable.

(ii) Complementarity and VIP : If C = Rm
+ then variational inequality problem (2)

is equivalent to the problem of

{

find y≥ 0
such that F(y)≥ 0 and 〈F(y),y〉= 0.

(3)

(iii) Fixed point and VIP : Let F(x) = x−Ω(x) for every x ∈C. Then VI(F,C) and
fixed point problem

find y ∈C such that y = Ω(y)

have precisely the same solutions, if any.

1.3 Traffic Equilibrium

We consider the traffic equilibrium problem.
Let G = (N,A) be a telecommunication network consisting of a set N of nodes

and a set of A of directed arcs. Let W be a set of origin-destination (OD) node pairs.
For each w∈W , let Pw be the set of directed paths joining the OD pair w. We assume
a fixed demand, dw, for sending from the origin node to the destination node of OD
pair w. Let hp be the flow variable on path p ∈ Pw, where w ∈W . Thus

dw = Σp∈Pwhp, for all w ∈W.

We group together the path flows hp into vector h ∈ Rm (where m is the number of
paths in the network). Let C be the set of all feasible path flow vectors:

C = {h | hp ≥ 0,Σp∈Pwhp = dw for every p ∈ Pw, and w ∈W}.
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Let Fp(h) represent the marginal cost of a unit of flow on path p as a known
smooth function of the flow h on the network.

According to the Wardrop equilibrium principle,
for a given OD pair w, if a path p ∈ Pw is used (hp > 0), then the marginal cost
Fp(h) on that path must be minimal among the marginal costs on all paths joining
OD pair w.

This equilibrium principle can be stated mathematically as follows:

⎧

⎨

⎩

h∗ is an equilibrium flow
if for each w ∈W and each p ∈ Pw, it satisfies:
if h∗p > 0, then Fp(h∗) = min{Fq(h∗) | q ∈ Pw}.

Following [23], we now know that these equilibrium conditions can be reformu-
lated as the following variational inequality problem:

find h∗ ∈C such that 〈F(h∗),h− h∗〉 ≥ 0 for every flow h ∈C.

2 Mathematical Programs with Equilibrium Constraints

In the remainder we consider MPEC as the following:

⎧

⎨

⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

y ∈ S(x),
(MPEC)

where ϕ(x,y) is continuously differentiable and

S(x) = {y ∈ Rm | y ∈C(x) and 〈F(x,y),u− y〉 ≥ 0 ∀u s.t. u ∈C(x)}.

We assume that C(x) is defined by

C(x) = {y ∈ Rm | gi(x,y)≥ 0, i = 1, . . . , l}

with g : Rn+m → Rl twice continuously differentiable and concave in the second
variable. We indicate by I(x,y) the set of active constraints, i.e.

I(x,y) = {i | gi(x,y) = 0}.

We make the following blanket assumptions:

A1: C(x) �= /0 for all x ∈ Ω̄ , where Ω̄ is an open set containing Ω .
A2: C(x) is uniformly compact on Ω̄ .
A3: F is strongly monotone with respect to y.
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A4: Ω is compact.
A5: At each x ∈Ω and y ∈ S(x), the partial gradients ∇ygi(x,y), for i ∈ I(x,y) are

linearly independent.

Then by A1, A2, and A3, for every x ∈Ω , there exists one and only one solution
to the lower-level variational inequality. Furthermore by A5, every solution must
satisfy the KKT conditions for the optimization problem:

min{〈F(x,y),u〉 | g(x,u)≥ 0}

for a unique λ ∈ Rl

⎧

⎨

⎩

F(x,y)−∇yg(x,y)λ = 0,
λ ≥ 0,g(x,y)≥ 0,
〈λ ,g(x,y)〉= 0.

(KKT)

Therefore, under our assumptions, the MPEC can be reformulated as the following
nonlinear programming problem:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

F(x,y)−∇yg(x,y)λ = 0,
λ ≥ 0,g(x,y)≥ 0,
〈λ ,g(x,y)〉= 0.

(MPEC’)

This formulation has been used frequently in the literature for designing algorithms
and for establishing optimality conditions for MPEC.

3 Methods for Solving the MPEC

This section reviews recent algorithmic research on MPEC. Few successful numeri-
cal methods have been proposed to date. We divide the algorithms into four general
categories:

• Penalty technique
• Nondifferential optimization
• Smoothing methods
• Heuristic methods

Here we focus our discussion on three papers, one from each categories except
the last; for further references interested reader is referred to [4, 13]. For heuristic
methods see, e.g., [8, 24].
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3.1 Penalty Techniques

The principle of exact penalization [21]: The exact penalization approach toward
constrained optimization problems

min{ f (x) | x ∈C}

goes back to Eremin [5]. It aims at replacing the constrained problem by an
equivalent unconstrained problem by augmenting the objective function f through
the addition of a term which penalizes infeasibility. From a geometric point of view,
infeasibility is most naturally measured in terms of the distance

dC(y) = min{‖x− y‖ | x ∈C}

of the point y to the closed set C.

Theorem 6. Let x∈ S⊂ Rn and let C⊂ S be nonempty and closed. Suppose f : S→
R is Lipschitz of rank K on S and let K̄ > K. Then x is a global minimizer of f over
C if and only if x is a global minimizer of the function f + K̄dC over S.

Corollary 1. Let x ∈ S ⊂ Rn, f : S −→ R be Lipschitz of rank K in a ball around
x which intersects a closed and nonempty set C ⊂ Rn. If K̄ > K, then x is a local
minimizer of f over C if and only if x is an unconstrained local minimizer of f +K̄dC.

Although the foregoing results are theoretically very appealing, they are only of
limited practical value since the mere evaluation of the penalty function involves
the solution of a constrained optimization problem. Thus, nothing is won in passing
from the constrained min{ f (x) | x ∈ C} to the unconstrained problem min{ f (x)+
K̄dC | x ∈ Rn}. One is therefore interested in finding upper bounds for the distance
function in terms of functions which are easier to evaluate. Such majorants can again
be used as penalization terms as pointed out in the following corollary.

Corollary 2. If the assumptions of Theorem 6 hold and if ψ : S → R is a function
such that

1. ψ(y)≥ dC(y) for every y ∈ S
2. ψ(y) = dC(y) for every y ∈C

then x is a global minimizer of f over C if and only if x is a global minimizer of the
function f + K̄ψ over S.

The authors of the paper propose the MPEC penalty function of the type:

f (x) = g(x)+ p(h(x)),

where g is the C1 objective function, p is piecewise affine, and h is a vector-valued
function. Such functions are locally Lipschitz and B-differentiable. Suitable tool for
the minimization of the penalty functions f is the bundle-trust-region method of
Schramm and Zowe [22].
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The authors propose a different trust-region method which is applicable to the
nonsmooth MPEC penalty functions and is designed to find a B-stationary point.

3.2 Nondifferential Optimization

In the case of bilevel problems, the key assumption is that the map, which assigns
to the upper-level variable the solutions of the lower-level problem, is single-valued
and locally Lipschitz. Then the problem can be converted into the minimization of
a locally Lipschitz objective which depends on the upper-level variable only. This
map is nondifferentiable and thus one has to refer to methods from nondifferentiable
optimization.

The authors of the paper [18] extended this approach to (MPEC): the assumptions
similar to (A1)–(A5) are required. This implies that for each x the variational
inequality possesses exactly one solution y, and thus (VI) defines an operator S
assigning to x this unique y = S(x). So, in this case one can write (MPEC) as the
following:

⎧

⎨

⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

y = S(x).
(4)

Another way to write (4) is

{

minimize Θ(x) = ϕ(x,S(x))
subject to x ∈Ω .

(5)

As S and thus also Θ are nondifferentiable in general, standard optimization
methods cannot be applied, and we have to refer to methods from nondifferentiable
optimization. Among them an important place occupies so-called bundle methods
[9] which construct and update during the iteration process piecewise affine local
models of the objective. These local models are based on the objective values and
subgradients at the single iteration points. They are enriched in a finite number of
so-called null steps in such a way that a descent direction for the objective can
be computed. For nonconvex nondifferentiable problems the convergence of bundle
method has been proved in [22] under the basic assumptions that the objectives are
locally Lipschitz and directionally differentiable. In this paper the authors showed
that the composite objective Θ satisfies these requirements, and moreover, they are
able to compute at each iteration a subgradient of Θ needed for building up the
mentioned local model.
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3.3 Smoothing Methods

It is easy to see that, in general, problem (MPEC) does not satisfy standard constraint
qualifications because of the complementarity-type constraint of the paper [6]. The
authors reformulate the (MPEC) as the following nonsmooth equivalent problem:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

F(x,y)−∇yg(x,y)λ = 0,
g(x,y)− z = 0,
−2min{λ ,z}= 0,

(6)

where z ∈ Rl and the min operator is applied componentwise to the vectors λ and z.
Introducing the function H0 : Rn+m+l+l → Rm+l+l , defined as

H0(w) = H0(x,y,z,λ ) =

⎛

⎝

F(x,y)−∇yg(x,y)λ
g(x,y)− z
−2min{λ ,z}

⎞

⎠ ,

the authors rewrite the above problem more compactly as the following:

⎧

⎨

⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

H0(x,y,z,λ ) = 0.
(P)

With respect to Problem (6) the new variable z has been added, which at feasible
points is always equal to g(x,y).

Proposition 1. (x∗,y∗) is the global (a local) solution of the (MPEC) if and only if
there exists a vector (z∗,λ ∗) such that (x∗,y∗,z∗,λ ∗) is the global (a local) solution
to problem (P).

The strategy of so-called smoothing method is to solve a sequence of smooth,
regular one-level problems which progressively approximate problem (P).

Smoothing problem (P)
Let μ be a parameter. Define the function φμ : R2 → R by

φμ(a,b) =
√

(a− b)2 + 4μ2− (a+ b).

Proposition 2. For every μ we have

φμ(a,b) = 0 if and only if a≥ 0,b≥ 0,ab = μ2.
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Note also that for μ = 0, φμ(a,b) = −2min{a,b} while for every μ �= 0,φμ is
smooth. Therefore the function φμ is a smooth perturbation of the min function.
So let us introduce

Hμ(w) = Hμ(x,y,z,λ ) =

⎛

⎝

F(x,y)−∇yg(x,y)λ
g(x,y)− z
Φμ(λ ,z)

⎞

⎠ ,

where

Φμ(λ ,z) = (φμ(λ1,z1), . . . ,φμ(λl ,zl))
� ∈ Rl .

Then, for every μ �= 0, one may define an optimization problem

⎧

⎨

⎩

minimize ϕ(x,y)
subject to x ∈Ω ,

Hμ(x,y,z,λ ) = 0.
(Pμ)

The introduction of the smoothing parameter μ has three consequences:

• Nonsmooth problems are transformed into smooth problems, except when μ = 0.
• Well-posedness can be improved in the sense that feasibility and constraint

qualifications, hence stability, are often more likely to be satisfied for all values
of μ .

• Solvability of quadratic approximation problems is improved.

Algorithm G

Step 0: Let {μk} be a sequence on nonzeros limk→∞ μk = 0.
Choose w0 = (x0,y0,z0,λ 0), and set k = 1.

Step 1: Find a global solution wk to problem (Pμk).
Step 2: Set k := k+ 1, and go to Step 1.

Theorem 7. The sequence {wk} generated by algorithm G is contained in a
compact set, and each of its limit points is a global solution of problem (P).

4 Optimality Conditions for MPEC

In this section we reduce our attention just to optimality conditions for MPECs;
we recognize in the recent works the following approaches:

• In [13, 14] the authors compute under the so-called “basic constraint qualifica-
tion” a tangent cone approximating the equilibrium constraint. This leads directly
to a primal version of optimality conditions. Via dualization, one gets then a finite
family of optimality conditions in the dual, KKT form.
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• In [27] an error bound is constructed for the equilibrium constraint in a
bilevel program using the value function of the lower-level problem. Under the
assumption of so-called partial calmness KKT conditions have been obtained.
This idea is further developed and extended to MPECs in [28].

• In [12, 16] only the strongly regular case is investigated; cf. Robinson [20].
Then, close to the solution, the equilibrium constraint defines a Lipschitz implicit
function assigning the parameters the (unique) solutions of the corresponding VI
(complementarity problem). This implicit function is described by means of the
generalized Jacobians; cf. Clarke [3], and the generalized differential calculus of
F.H. Clarke leads then to optimality conditions, again in the KKT form.

• In [26,29] the generalized differential calculus of B. Mordukhovich is employed.
Zhang and Treiman [29] deal with bilevel programs, [26] with a general MPEC.
In [26, 29] the equilibrium constraint is augmented to the objective by an exact
penalty, whereas in the lower-level problem is replaced by the Mordukhovich
stationarity conditions.

The above list is not exhaustive; further references can be found in [13]. We would
like to underline the following papers [17, 25] devoted to optimality conditions for
MPEC:

• In [17] using the generalized differential calculus for nonsmooth and set-valued
mappings due to B. Mordukhovich, the author derives first-order necessary
optimality conditions. The imposed constraint qualification is studied in detail
and compared with other conditions arising in this context.

• Under mild constraint qualification, in [25] the author derives some necessary
and sufficient optimality conditions involving the proximal coderivatives.

Acknowledgements This research was partly supported by the Agence Nationale de la Recherche
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Linear Programming with Interval Data:
A Two-Level Programming Approach

Chiang Kao and Shiang-Tai Liu

Abstract Linear programming has been widely applied to solving real world
problems. The conventional linear programming model requires the parameters to
be known constants. In the real world, however, the parameters are seldom known
exactly and have to be estimated. This chapter discusses the general interval linear
programming problems where all the parameters, including the cost coefficients,
requirement coefficients, and technological coefficients, are represented by interval
data. Since the parameters are interval-valued, the objective value is interval-valued
as well. A pair of two-level mathematical programs is formulated to calculate the
lower bound and upper bound of the objective values of the interval linear program.
The two-level mathematical programs are then transformed into one-level nonlinear
programs. Solving the pair of nonlinear programs produces the interval of the
objective values of the problem. An example illustrates the whole idea and sheds
some light on interval linear programming.

Key words Linear programming • Interval parameter • Two-level programming

1 Introduction

Linear programming is a mathematical modeling technique designed to optimize
the usage of limited resources. It has been widely used to solve problems in
military, industries, agriculture, economics, and even behavioral and social sciences.
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Several surveys (see, e.g., Hartley [6], Lane et al. [9]) indicate that linear
programming is the most frequently used technique in solving real world problems
among all operations research techniques. Numerous textbooks have been written
about linear programming. Most textbooks of operations research spend the largest
number of pages discussing this topic. Linear programming has become the most
important technique and the fundamental for studying other optimization techniques
in operations research.

Any linear programming problem can be expressed by the following model:

Min Z = cx

s.t. Ax = b

x ≥ 0, (1)

where x = (x j, j = 1, . . . ,n) is the vector of decision variables to be determined.
The other variables are the parameters given by the problem: c = (c j, j = 1, . . . ,n) is
vector of cost coefficients, b=(bi, i= 1, . . . ,m) is vector of requirement coefficients,
and A = ||ai j|| is the matrix of technological coefficients. The problem is to
determine the values of the decision variables under the constraints which minimize
the objective function. The optimal values of the decision variables x j, j = 1, . . . ,n
are functions of the parameters ai j,bi, and c j, i = 1, . . . ,m, j = 1, . . . ,n. When the
value of one or more of the parameters is changed, the optimal values of the decision
variables and the objective function will in general change accordingly.

Linear programming makes several assumptions regarding the parameters. The
major one is that the value assigned to each parameter is a known constant. However,
in real world applications, this assumption is seldom satisfied because linear pro-
gramming models are usually formulated to find some future course of action. The
parameter values used would be based on a prediction of future conditions which
inevitably introduces some degree of uncertainty. There are also situations where
the data cannot be collected without error. In the literature, the approaches for
solving this problem are typified by post-optimality analysis [5]. As implied by its
name, post-optimality analysis concerns how the optimal solution changes when
the value of one or more parameters is changed. It is an ex post facto analysis
after the optimal solution for a set of known parameters is solved. The technique
which deals with changing one parameter at a time is called sensitivity analysis
and the one dealing with changing several parameters simultaneously is called
parametric programming [10, 12, 14]. Another approach in this category is the
tolerance approach which focuses on simultaneous and independent variations of
the requirement coefficients and cost coefficients without affecting the optimality
of the given basis [4, 13, 15–18]. The primary objective is to find the range of the
parameters within which the current solution is still optimal.

In contrast to post-optimality analysis, which is conducted after an optimal solu-
tion is obtained, this chapter deals with the problem of finding the optimal solution
for the linear programming problem whose imprecise parameters are expressed
by intervals in an a priori manner. One approach for dealing with uncertainty in
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parameters is via stochastic programming, in which the parameters are treated as
random variables. The standard procedure is to optimize the expected value of the
objective function. Dantzig [3] discusses the case where random variables appear
only in the requirements, and Charnes et al. [1] discuss the case of random costs. The
problem becomes very complicated when all ai j,bi, and c j are random variables.
Another way to represent imprecise parameters in real world applications is by
intervals [2, 7]. The associated linear program is an interval linear program. When
the parameters have interval values, the objective function will also have an interval
value; that is, it lies in a range. Serafini [11] proposed a two-phase approach for
solving the linear program where the requirement coefficients are represented by
intervals. The method only gives a point value for the objective function. In this
chapter, we construct a pair of two-level mathematical programming models, based
on which the lower bound and upper bound of the objective values are obtained.
In other words, an interval value for the objective function of the interval linear
programming problem is derived. This result should provide the decision maker
with more information for making better decisions.

In the next section, we shall discuss the nature of interval linear programming,
followed with a two-level mathematical programming formulation for finding the
bounds of the interval objective values. Section 3 describes how to transform the
two-level mathematical program into the conventional one-level program. We then
use an example to illustrate how to apply the concept of this chapter to solve the
interval linear programming problem. Finally, we draw a conclusion and suggest
some directions for future study.

2 Problem Formulation

Before we get into the details of this chapter, a simple example helps clarify the
nature of linear programming problems with interval parameters. Consider the
following interval linear program:

Min Z = 4x1 + 3x2 (2)

s.t. x1 +[1,2]x2 = 4 (3)

[2,3]x1 + x+ 2≥ 6 (4)

x1,x2 ≥ 0,

where the parameters a12 and a21 are imprecise and are represented by intervals
[1–3], respectively. As a12 varies from the lower bound 1 to upper bound 2, the
feasible region defined by Constraint (3) and the nonnegativity conditions is a line
segment moving counterclockwise from AF to AG as depicted in Fig. 1.

For the second Constraint (4), as parameter a21 changes from its lower bound 2
to upper bound 3, the boundary of the feasible region represented by this constraint
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Fig. 1 Graphical solution of the example

swings clockwise from HI to HJ. Clearly, the feasible region defined by this
constraint becomes larger when a21 increases in its value. In other words, the
smallest feasible region occurs at a21 = 2 and the largest at a21 = 3. For the former,
when Constraint (3) is also considered, the feasible region is the line segment
moving continuously from AB to AC. If it is AB, then, graphically, the minimal
value of the objective function Z = 4x1 +3x2 occurs at B = (2,2), with an objective
value of 14. As the feasible region moves to AC, the minimal value decreases to
38
3 which occurs at C = ( 8

3 ,
2
3 ). Similarly, for the latter case of largest feasible

region, the feasible region is the line segment AD moving continuously to AE. The
minimal value for AD is 13, occurring at D = (1,3), and for AE it is 10, occurring
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at E = ( 8
5 ,

6
5 ). Combining these results together, we conclude that the lower bound

of the optimal objective values is 10 and the upper bound is 14. The optimal value
lies in the range of [10, 14].

This example shows that if the constraint coefficients are interval-valued,
then the objective value will lie in a range. The graphical solution method helps
derive the lower bound and upper bound of the objective values of the problem. The
lower bound is obtained in the largest feasible region of the triangle ADE while
the upper bound is obtained in the smallest feasible region of the triangle ABC. This
example is so simple that a visual inspection suffices to find the solution. For general
problems, we need to rely on some systematic solution method.

For the conventional linear program of Model (1), if one or more parameters have
interval values, then we have an interval linear program. Without loss of generality,
we assume all parameters are interval-valued since a constant can be represented by
a degenerated interval where the lower bound of the interval coincides with its upper
bound. As opposed to the conventional linear program where an unconstrained
variable can be expressed by the difference of two nonnegative variables, an
unconstrained variable in an interval linear program cannot be transformed in
this way. The reason will be clear later in the derivation of the solution method.
Therefore, the variables are separated into two groups, one nonnegative and the
other unconstrained in sign. To be consistent with the dual problem formulation,
the constraints are also separated into two groups, one of inequality type and the
other of equality type, so that the corresponding dual variables will be nonnegative
and unconstrained in sign, respectively. In this chapter, the interval linear program
is formulated as:

Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n, (5)

where ĉ j ∈ [CL
j ,C

U
j ], b̂i ∈ [BL

i ,B
U
i ], and âi j ∈ [AL

i j,A
U
i j ] are the interval counterparts

of c j, bi, and ai j, respectively. The inequality constraint of the “≤” form can be
transformed to the form of “≥” by multiplying the terms on both sides by “−1.” If
the objective function is “Max,” then it can be changed to “−Min−Z” to conform
to Model (5). Hence, (5) is a generic interval linear programming model.

Clearly, different values of ĉ j, b̂i, and âi j produce different objective values. To
find the interval of the objective values, it suffices to find the lower bound and upper
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bound of the objective values of Model (5). Denote S= {ĉ, b̂, â)|CL
j ≤ ĉ j ≤CU

j ,B
L
i ≤

b̂i ≤ BU
i ,A

L
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1,2, . . . ,n}. The values of ĉ j, b̂i, and âi j

that attain the smallest value for Z can be determined from the following two-level
mathematical programming model:

ZL = Min(ĉ,b̂,â)∈S Minx Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n, (6)

where the inner program calculates the objective value for each ĉ j, b̂i, and âi j

specified by the outer program, while the outer program determines the values of
ĉ j, b̂i, and âi j that produces the smallest objective value. The objective value is the
lower bound of the objective values for Model (5).

By the same token, to find the values of ĉ j, b̂i, and âi j that produce the largest
objective value for Z, a two-level mathematical program is formulated by replacing
the outer program of Model (6) from “Min” to “Max”:

ZU = Max(ĉ,b̂,â)∈S Minx Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign j = q+ 1, . . . ,n. (7)

The objective value ZU is the upper bound of the objective values for Model (5).
When the interval data ĉ j, b̂i, and âi j degenerate to point data c j,bi, and ai j,

respectively, the outer program of Models (6) and (7) vanishes, and Models (6)
and (7) boil down to the same conventional linear program. This shows that the two-
level mathematical program formulation of the interval linear program developed
here is a generalization of the conventional constant-parameter linear program. The
pair of two-level mathematical programs in (6) and (7) clearly express the bounds of
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the objective values. However, they are not solvable in the current form. In the next
section, we discuss how to transform the two-level program into the conventional
one-level program. With the pair of one-level programs, the interval of the objective
values of the interval linear program can be obtained.

3 One-Level Transformation

3.1 Lower Bound

The previous section showed that to find the lower bound of the objective values of
an interval linear programming problem of Model (5), it suffices to solve the two-
level mathematical program of Model (6). Since both the inner program and outer
program of (6) have the same minimization operation, they can be combined into a
conventional one-level program with the constraints of the two programs considered
at the same time.

ZL = Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . , p

n

∑
j=1

âi jx j = b̂i, i = p+ 1, . . . ,m

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n (8)

This model is a nonlinear program. By separating the decision variables into
nonnegative ones and unconstrained-in-sign ones, it can be rewritten as:

ZL = Min Z =
q

∑
j=1

ĉ jx j +
n

∑
j=q+1

ĉ jx j (9)

s.t.
q

∑
j=1

âi jx j +
n

∑
j=q+1

âi jx j ≥ b̂i, i = 1, . . . , p (10)
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q

∑
j=1

âi jx j +
n

∑
j=q+1

âi jx j = b̂i, i = p+ 1, . . . ,m (11)

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n (12)

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m (13)

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n (14)

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n (15)

For nonnegative x j we have CL
j x j ≤ ĉ jx j ≤CU

j x j as is manifested from (12). In
searching for the minimal value of the objective function, the interval parameter
ĉ j, j = 1, . . . ,q, must reach its lower bound. Consequently, we have

Min Z =
q

∑
j=1

CL
j x j +

n

∑
j=q+1

ĉ jx j.

The largest feasible region defined by the inequality constraint ∑n
j=1 âi jx j ≥ b̂i in

Models (9)–(15) appears when the interval parameter b̂i is equal to its lower bound
BL

i . We can reduce the number of nonlinear terms by using a variable transformation
technique, that is, multiplying Constraint (14) by nonnegative x j and substituting
âi jx j by ri j. Models (9)–(15) then become

ZL = Min Z =
q

∑
j=1

CL
j x j +

n

∑
j=q+1

ĉ jx j

s.t.
q

∑
j=1

ri j +
n

∑
j=q+1

âi jx j ≥ BL
i , i = 1, . . . , p

q

∑
j=1

ri j +
n

∑
j=q+1

âi jx j = b̂i, i = p+ 1, . . . ,m

CL
j ≤ ĉ j ≤CU

j , j = q+ 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = p+ 1, . . . ,m

AL
i jx j ≤ ri j ≤ AU

i jx j, i = 1, . . . ,m, j = 1, . . . ,n

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = q+ 1, . . . ,n

x j ≥ 0, j = 1, . . . ,q;

x j unconstrained in sign, j = q+ 1, . . . ,n. (16)

The lower bound of the objective value, ZL , is obtained by solving this mathematical
program.
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3.2 Upper Bound

Conceptually, the upper bound of the objective value of the interval linear program
of Model (5) can be calculated from the two-level program of Model (7). However,
solving Model (7) is not as straightforward as solving Model (6) because the outer
program and inner program have different directions for optimization, viz., one
for maximization and the other for minimization. They cannot be combined into
a one-level program directly. Based on the duality theorem, the dual of a linear
program has the same optimal objective value as its primal when an optimal solution
exists. Hence, we can replace the inner program of Model (7) by its dual to form a
maximization problem:

ZU = Max(ĉ,b̂,â)∈S Maxy Z =
m

∑
i=1

b̂iyi

s.t.
m

∑
i=1

âi jyi ≤ ĉ j, j = 1, . . . ,q

m

∑
i=1

âi jyi = ĉ j, j = q+ 1, . . . ,n

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (17)

Now that both the inner program and outer program have the same maximization
operation, they can be merged into a one-level program with the constraints at the
two levels considered at the same time:

ZU = Max Z =
m

∑
i=1

b̂iyi

s.t.
m

∑
i=1

âi jyi ≤ ĉ j, j = 1, . . . ,q

m

∑
i=1

âi jyi = ĉ j, j = q+ 1, . . . ,n

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (18)
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Similar to the case of lower bound, we separate the decision variables yi into two
parts, those of nonnegative ones and unconstrained-in-sign ones:

ZU = Max Z =
p

∑
i=1

b̂iyi +
m

∑
i=p+1

b̂iyi (19)

s.t.
p

∑
i=1

âi jyi +
m

∑
i=p+1

âi jyi ≤ ĉ j, j = 1, . . . ,q (20)

p

∑
i=1

âi jyi +
m

∑
i=p+1

âi jyi = ĉ j, j = q+ 1, . . . ,n (21)

CL
j ≤ ĉ j ≤CU

j , j = 1, . . . ,n (22)

BL
i ≤ b̂i ≤ BU

i , i = 1, . . . ,m (23)

AL
i j ≤ âi j ≤ AU

i j , i = 1, . . . ,m, j = 1, . . . ,n (24)

yi ≥ 0, i = 1, . . . , p;

yi unconstrained in sign, i = p+ 1, . . . ,m (25)

Regarding the objective function, the interval parameters associated with positive
variables must be set to the upper bound to attain the maximal value. In other words,
the objective function of (19)–(25) can be replaced by

Max Z =
p

∑
i=1

BU
i yi +

m

∑
i=p+1

b̂iyi.

To find the upper bound ZU of Models (19)–(25), the interval parameters ĉ j must be
set to the values which will generate the largest feasible region. For the inequality
constraint ∑p

i=1 âi jyi +∑m
i=p+1 âi jyi ≤ ĉ j, different values of ĉ j define a series of

parallel hyperplanes. Obviously, the largest feasible region appears when ĉ j is set to
its upper bound CU

j . Thus, we have ∑p
i=1 âi jyi+∑m

i=p+1 âi jyi ≤CU
j , j = 1, . . . ,q. The

variable transformation technique, which is utilized in (9)–(15), can also be applied
to the nonlinear term âi jyi with positive yi. One can multiply Constraint (24) by yi

for i = 1, . . . , p and substitute âi jyi by si j to reduce the number of nonlinear terms.
Via the dual formulation, bound value assignment, and variable transformation,

the two-level mathematical program of Model (7) is transformed into the following
nonlinear program:

ZU = Max Z =
p

∑
i=1

BU
i yi +

m

∑
i=p+1

b̂iyi

s.t.
p

∑
i=1

si j +
m

∑
i=p+1

âi jyi ≤CU
j , j = 1, . . . ,q
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p

∑
i=1

si j +
m

∑
i=p+1

âi jyi = ĉ j, j = q+ 1, . . . ,n

CL
j ≤ ĉ j ≤CU

j , j = q+ 1, . . . ,n

BL
i ≤ b̂i ≤ BU

i , i = p+ 1, . . . ,m

AL
i jyi ≤ si j ≤ AU

i jyi, i = 1, . . . , p, j = 1, . . . ,n

AL
i j ≤ âi j ≤ AU

i j , i = p+ 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . , p

yi unconstrained in sign, i = p+ 1, . . . ,m (26)

The optimal solution ZU is the upper bound of the objective values of the interval
linear program. Together with ZL solved from Sect. 3.1, [ZL,ZU ] constitutes the
interval on which the objective values of the interval linear program lie.

3.3 Special Case

If a linear program has only inequality constraints and nonnegative decision
variables, then Model (5) is of the following form:

Min Z =
n

∑
j=1

ĉ jx j

s.t.
n

∑
j=1

âi jx j ≥ b̂i, i = 1, . . . ,m

x j ≥ 0, j = 1, . . . ,n (27)

Models (16) and (26) for calculating the lower bound and upper bound, respectively,
of the objective value are simplified to the following forms:

ZL = Min Z =
n

∑
j=1

CL
j x j

s.t.
n

∑
j=1

ri j ≥ BL
i , i = 1, . . . ,m

AL
i jx j ≤ ri j ≤ AU

i jx j, i = 1, . . . ,m, j = 1, . . . ,n

x j ≥ 0, j = 1, . . . ,n (28)
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ZU = Max Z =
m

∑
i=1

BU
i yi

s.t.
m

∑
i=1

si j ≤CU
j , j = 1, . . . ,n

AL
i jyi ≤ si j ≤ AU

i jyi, i = 1, . . . ,m, j = 1, . . . ,n

yi ≥ 0, i = 1, . . . ,m (29)

Since (28) and (29) are linear programs, one can calculate the lower and upper
bounds of the objective values easily.

4 An Example

Consider the following interval linear programming problem.

Min Z = (7,10)x1 +(7,9)x3− 2x4+(−2,−1)x5+(−3,−1)x6− 10x7

s.t. x1 + 2x2− 2x3+(1,4)x4 +(3,5)x6 +(1,2)x7 = (−6,−4)

−2x1 +(1,3)x2− x3 +(2,3)x4 +(1,2)x5 +(1,2)x6 + 2x7 = (−1,2)

(1,3)x1 + 2x3 + 2x4 +(2,4)x5 + 2x6− 2x7 = (6,10)

x1,x2,x4,x5,x6 ≥ 0;x3,x7 unconstrained in sign

Based on Model (16), the lower bound of the objective value ZL can be formu-
lated as:

ZL = Min 7x1 + ĉ3x3− 2x4− 2x5− 3x6− 10x7

s.t. x1 + 2x2− 2x3+ p14 + p16 + â17x7 = b̂1

−2x1 + p22− x3 + p24 + p25 + p26 + 2x7 = b̂2

p31 + 2x3 + 2x4 + p35 + 2x6− 2x7 = b̂3

7≤ ĉ3 ≤ 9

−6≤ b̂1 ≤−4, −1≤ b̂2 ≤ 2, 6≤ b̂3 ≤ 10

x4 ≤ p14 ≤ 4x4, 3x6 ≤ p16 ≤ 5x6, x2 ≤ p22 ≤ 3x2, 2x4 ≤ p24 ≤ 3x4

x5 ≤ p25 ≤ 2x5, x6 ≤ p26 ≤ 2x6, x1 ≤ p31 ≤ 3x1, 2x5 ≤ p35 ≤ 4x5

1≤ â17 ≤ 2

x1,x2,x4,x5,x6 ≥ 0;x3,x7 unconstrained in sign
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This model is a nonlinear program. By using the nonlinear programming solver
LINGO (LINDO Systems 2005), we derive ZL = −12, x∗1 = 26, x∗3 = 38, x∗7 =

46, x∗2 = x∗4 = x∗5 = x∗6 = 0, ĉ3 = 7, b̂1 =−4, b̂2 = 2, b̂3 = 10, and â17 = 1.
The upper bound of the objective value ZU , according to Model (26), can be

formulated as

ZU = Max b̂1y1 + b̂2y2 + b̂3y3

s.t. y1− 2y2+ â31y3 ≤ 10

2y1 + â22y2 ≤ 0

−2y1− y2 + 2y3 = ĉ3

â14y1 + â24y2 + 2y3 ≤−2

â25y2 + â35y3 ≤−1

â16y1 + â26y2 + 2y3 ≤−1

â17y1 + 2y2− 2y3 =−10

7≤ ĉ3 ≤ 9

−6≤ b̂1 ≤−4, −1≤ b̂2 ≤ 2, 6≤ b̂3 ≤ 10

1≤ â31 ≤ 3, 1≤ â22 ≤ 3, 1≤ â14 ≤ 4, 2≤ â24 ≤ 3, 1≤ â25 ≤ 2

2≤ â35 ≤ 4, 3≤ â16 ≤ 5, 1≤ â26 ≤ 2, 1≤ â17 ≤ 2

y1,y2,y3 unconstrained in sign

By employing LINGO, we obtain ZU = 29.8, which occurs at y∗1 = −1.4, y∗2 =
−2.4, y∗3 = 1.9, ĉ3 = 9, b̂1 =−6, b̂2 =−1, and b̂3 = 10. The corresponding primal
solution is x∗3 = 2.6, x∗5 = 1.6, x∗7 =−0.8, and x∗1 = x∗2 = x∗4 = x∗6 = 0.

Combining these two results, we conclude that the objective values of this
interval linear program lie in the range of [−12,29.8].

5 Conclusion

Linear programming has been considered as the most powerful technique for
improving the efficiency and increasing the productivity of companies and public
organizations. To further expand its applicability, more general models are continu-
ally being developed. This chapter generalizes the conventional linear programming
of constant parameters to interval parameters. As opposed to the post-optimality
analysis which conducts an ex post facto analysis after the optimal solution for a set
of constant parameters is obtained, the interval linear programming discusses the
range of optimal objective values produced from the interval parameters, including
cost, requirement, and technology, in an a priori manner.
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The idea is to find the lower bound and upper bound of the range by employing
the two-level mathematical programming technique. Following the duality theorem,
the two-level mathematical programs are transformed into a pair of one-level
mathematical programs so that the numerical solution method can be applied.
When all interval parameters degenerate to constant parameters, the two-level
mathematical programs boil down to the conventional linear program. An example
illustrates that the proposed idea is indeed able to find the range of the objective
values of the interval linear programming problem.

For general interval linear programming problems, it is very probable that for
some range of interval parameters the problem is infeasible. Our method ignores
those infeasible values and finds the lower bound and upper bound of the feasible
solutions. It does not identify the range of values which cause infeasibility.

While this chapter develops a pair of mathematical programs which are able to
find the lower bound and upper bound of the objective values, the mathematical
programs are nonlinear which may be difficult to solve for large-scale problems.
In the future, a solution method which only involves linear program formulation is
desired to assure solvability.

Finally, interval linear programming is not just a topic for theoretical discussion.
It does have real world applications. Kao and Liu [7] used forecasted financial data,
represented in intervals, to predict the performance of Taiwan commercial banks.
Since the problem has a special structure, it can be solved easily by relying on
the linear programming technique. In a later study, Kao and Liu [8] found that the
interval data approach produces an interval objective value which is too wide to
provide useful information. The values close to the bounds, both the lower bound
and upper bound, have very small probability of occurrence. If the distributions
of the interval data are known, then the distribution of the objective values, which
is more informative for making subsequent decisions, can be obtained. Therefore,
another direction for future study is to derive the distribution of the objective values
based on the distributions of the parameters.
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Quantifying Retardation in Simulation Based
Optimization

Andreas Griewank, Adel Hamdi, and Emre Özkaya

Abstract In many applications one wishes to optimize designs on the basis of an
established simulation tool. We consider the situation where “simulation” means
solving a system of state equations by a fixed point iteration. “Optimization” may
then be performed by appending an adjoint solver and an iteration step on the
design variables. The main mathematical goal of this chapter is to quantify and
estimate the retardation factor, i.e., the complexity of an optimization run compared
to that of a single simulation, measured in terms of contraction rates. It is generally
believed that the retardation factor should be bounded by a reasonably small number
irrespective of discretization widths and other incidental quantities. We show that
this is indeed the case for a simple elliptic control problem, when the state equations
are solved by Jacobi or a multigrid V-cycle. Moreover, there is strong dependence
on a regularization term. This is also shown to be true when the state equation is
solved by Newton’s method and the projected Hessian is explicitly available
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1 Introduction

For many actual or potential users of optimization technology the transition from
an existing simulation model or tool to a corresponding optimization method is
anything but simple. Often the prospect of redesigning and reimplementing their
models to interface with a classical NLP package is so daunting that the idea of
employing calculus-based optimization methods is abandoned altogether. Especially
for discretization of PDEs the specifications of Jacobian sparsity patterns and the
provision of partial derivative values can be extremely laborious. Moreover, due to
sheer size and lack of structure that effort may not even lead to an efficient solver for
the purpose of system simulation, i.e., the resolution of a nonlinear state equation

c(y,u) = 0 with c : Y ×U → Y . (1)

Here u ∈ U is a design vector, which is kept fixed as c(y,u) = 0 is solved for
the corresponding state vector y = y∗(u) ∈ Y . In aerodynamics u may represent
a parameterization of a wing shape, which together with appropriate free stream
boundary conditions determine the flow field y around the wing. In climatological
studies u is a vector of model parameters and y is a vector of prognostic variables,
i.e., ocean and atmosphere flow velocities and temperature.

In the right function space setting one may assume that the linearized operator
cy ≡ ∇yc has a bounded inverse, but often the Jacobian obtained for a suitable
discretization is so unwieldy that no Newton-like solver can be realized. In this
chapter we address also the situation where one has to make do with a fixed point
iteration

yk+1 = G(yk,u) with G(y,u) = y ⇔ c(y,u) = 0, (2)

which frequently may be interpreted as pseudo-time stepping on an underlying
instationary version of the state equation. For example, in aerodynamics one uses
quasi-unsteady formulations which are solved by explicit central finite volume
schemes stabilized by artificial dissipation and Runge–Kutta time integration [14].
In our days, these schemes are most efficient in combination with geometric
multigrid [13, 16].

There is some steady progress in simulation models and of course computing
power. Nevertheless, we have to assume that in many application areas a single
state equation solved to full accuracy takes several hours or even days on a single
machine. Compared to the effort of gaining feasibility for a given u in this way, the
evaluation of an objective

f (y,u) : Y ×U → IR (3)

which may represent a fitting functional or other performance indices is usually a
cheap by-product. Hence the transition from simulation to optimization may appear
at first quite simple. Consequently there are many software tools that implement
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assorted direct search strategies based on computing solutions yk with c(yk,uk)≈ 0
and then f (yk,uk) at a cloud of sampling points uk in the design domain U .

Disregarding occasional claims of global convergence to global minima on
nondifferentiable problems, one can expect that local minima will be approximately
located by Nelder Mead type algorithms [15] if c(y,u) and f (y,u) are at least once
continuously differentiable. Instead of the linear models on which Nelder Mead is
based, one may of course fit other surrogate objective functions through the points
evaluated at any stage. To construct a reasonable response surface of that kind or
to approximate a single gradient by differences one needs at the very least dim(u)
evaluations. Hence there is no hope to achieve what might be called the principle of
bounded deterioration of optimal design:

Cost Optimization∼ Cost Simulation.

This goal has been achieved in several projects of the DFG-sponsored priority
program 1253 (e.g., see [10, 11]), but a general theoretical statement is as yet not
even on the horizon. It is not difficult to construct an example where, depending
on a parameter d in the objective function, the distance between a given initial
state y0 ≈ y(u0) and the optimized state y∗ = y(u∗) grows linearly with d. One
then must expect that reaching y∗ from y0 while staying reasonably feasible and
gradually changing u takes a number of solver steps that are also proportional to
d. We assume here that the problem at hand is so nonlinear or otherwise difficult
that this continuation-like approach cannot be avoided by jumping more or less
directly from u0 and y0 into the vicinity of u∗ and y∗. Then the constant in the above
proportionality claim must also grow with d, which one might view as quantifying
the difficulty of the optimization task relative to the simulation task for given starting
design u0 and state y0. For an elliptic PDE example also used by Kunisch and Schulz
[12], where d represents the reciprocal of a regularization parameter in the objective
is given in Sect. 4 on page 9. In that case we were able to explicitly compute the
optimal retardation factor for our currently preferred design space preconditioner,
which turns out to be a multiple of I, in this special situation.

This chapter is organized as follows: In Sect. 2 we consider the general design
optimization problem and its solution in a one-shot fashion using a design-space
preconditioner B! 0. We discuss in particular the key characteristics that determine
the algorithmic performance. In Sect. 3 we consider a model scenario, where
the state equation is solved by Newton’s method, the adjoint is separable, and the
projected Hessian is evaluated exactly. This analysis applies similarly to hierarchical
approaches, where the state equation is resolved rather accurately after each design
change. Here the one-shot approach yields a retardation factor that is proportional
a parameter γ that depends on the size of the Lagrange Hessian with respect to the
design alone relative to the full projected Hessian. In Sects. 4 and 5 we analyze
the minimal retardation for Jacobi and multigrid on the test problem of Kunisch and
Schulz in 1D. In both cases, we obtain factors that are essentially mesh independent.



82 A. Griewank et al.

2 One-Shot Optimization and Problem Characteristics

In the remainder, we consider the following equality-constrained optimization
problem:

min
(y,u)

f (u,y) s.t. y = G(u,y), (4)

where G is contractive with respect to a norm ‖ · ‖. At least theoretically we may
assume without loss of generality that ‖v‖2 = v�v in the Euclidean norm, and then
we obtain the Lagrangian function

L(u,y,y) = f (y,u)+ y�(G(y,u)− y) (5)

with y denoting the adjoint state vector, or co-state. Then the KKT conditions for a
stationary point (y∗,y∗,u∗) of the problem (4) are

0 = G(y∗,u∗)− y∗

0 = Ly(y∗,y∗,u∗)≡ fy(y∗,u∗)+ y�∗ Gy(y∗,u∗)− y∗

0 = Lu(y∗,y∗,u∗)≡ fu(y∗,u∗)+ y�∗ Gu(y∗,u∗). (6)

This coupled system of equations naturally leads to the fixed point iteration

⎡

⎣

yk+1

ȳk+1

uk+1

⎤

⎦=

⎡

⎣

G(yk,uk)

yk +Ly(yk, ȳk,uk)

uk−B−1
k Lu(yk, ȳk,uk)

⎤

⎦ . (7)

Here Bk is a suitable design space preconditioner that is crucial for the success of
the method and will be analyzed in the remainder. The other essential ingredient for
the efficiency of the approach is the ability to evaluate the full gradient (Ly,Lu) ∈
Rn+m at a fixed multiple of the cost of evaluating ( f ,G) and thus L by itself. This can
always be achieved by automatic differentiation in the reverse mode as described for
example in [6].

First differentiating the new iterate (yk+1, ȳk+1,uk+1) with respect to the
old (yk, ȳk,uk), then dropping the iteration counter k, and finally evaluating at
(y∗, ȳ∗,u∗), we obtain the coupled Jacobian

J∗ = J∣
∣

(y∗,ȳ∗,u∗)
=

⎡

⎣

Gy 0 Gu

Lyy G�y Lyu

−B−1Luy −B−1G�u (I−B−1Luu)

⎤

⎦ ∈R(2n+m)×(2n+m). (8)

The asymptotic rate of convergence will be determined by the spectral radius
ρ∗ = ρ(J∗), the maximal modulus of any eigenvalue λ in the spectrum of J∗. It was
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first observed in [7] that block elimination yields for λ ∈ spect(J∗) \ spect(Gy) the
characterization

det[P(λ )] = 0 with P(λ ) = (λ − 1)B+H(λ ), (9)

where

H(λ ) = Z(λ )�
[

Lyy Lyu

Luy Luu

]

Z(λ ) for Z(λ )≡
[

(λ I−Gy)
−1Gu

I

]

. (10)

We observe that H(λ ) is a projection of the Lagrangian Hessian ∇2L onto the
range of the matrix Z(λ ) ∈ R(n+m)×m. It is easy to see that the columns of Z(1)
span the tangent space on the feasible set {G(y,u∗) = y} and that H(1) is thus the
reduced Hessian of our constrained optimization problem. For a suitable choice of
B we will try to predict and minimize the

Retardation factor : r ≡ (1−ρ(J∗))
(1−ρ(Gy))

≈ ln(ρ(J∗))
ln(ρ(Gy))

.

Naturally this ratio is only a somewhat idealized measure of the slow-down in going
from simulation to optimization. Not only are initial conditions neglected but also
the fact that each execution of the coupled iteration will be some five times as
expensive as that of G by itself is not accounted for. Now we may characterize
the design optimization problem and its one-shot solution in terms of the following
quantities:

• The Jacobian Gy and the Hilbert norm with respect to which it is contractive such
that ‖Gy‖ ≤ ρ . These objects form the linchpin of the whole one-shot framework.
In case of the Newton iteration G(y,u) = y− cy(y,u)−1c(y,u), we obtain Gy = 0
and ρ(Gy) = 0 at all feasible points. This situation will be considered as limiting
scenario for methods that are rapidly converging such as full multigrid.

• The partial Hessian Lyy represents both the nonlinearity of the fixed point solver
and the sensitivity of the dual w.r.t. to the primal. The norm p ≡ ‖Lyy‖ may be
viewed as a measure of the coupling between the two.

• The Jacobian Gu represents the sensitivity of the primal state equation w.r.t.
design changes. We may assume that Gu has full rank and then reparameterize
the design space such that G�u Gu = I, at least theoretically.

• The mixed derivative Lyu represents the sensitivity of adjoint equation with
respect to design. Often one has a separable adjoint in that Lyu = 0. Generally,
we may use the ratio q≡maxv ‖Lyuv‖/‖Guv‖ as measure of (non-) separability.
When Gu is orthogonal we have simply q≡ ‖Lyu‖.

• The positive definiteness condition H(1)! 0 for (y,u) ≈ (y∗,u∗) represents
second-order sufficiency, a mild condition, which is completely independent of
the chosen iteration function G.
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• The global definiteness condition ∇2
y,uL! 0 for (y,u) ≈ (y∗,u∗) on the full

Lagrange Hessian implies H(λ )! 0 for all λ . These matrices are for λ �= 1 very
much dependent on G, and the condition seems unreasonably strong especially
if dim(y)" dim(u) as will typically be the case.

• The partial Hessian Luu ! 0 need not be positive definite for second-order suffi-
ciency H(1) ! 0. However, this property is often guaranteed by a regularization
of the design vector u and when Luu is gradually scaled up to infinity we have
likely u∗ → 0 and r→ 0. Conversely one might have ‖u∗‖→∞ and r→∞ as Luu

becomes small and H(1) nearly singular.

For our analysis of Newton method in the separable case we have to consider
the generalized problem G�u LyyGuv = γ H(1)v assuming of course that H(1) =
G�u LyyGu+Luu is positive definite. If the partial Hessian Luu is positive semidefinite
we see immediately that the eigenvalue γ cannot be larger than 1.

We will denote the diagonalization of G�u LyyGu with respect to H(1) as Γ =
diag(γi)

n
i=1 and use γ ≡ max{|γ1|, |γn|} ≡ ‖Γ ‖ as a measure of irregularity. If

Luu completely dominates G�u LyyGu the parameter γ tends to zero, so that Γ = 0
represents a maximally regularized solution.

At the end of this introductory section, we derive a suitable preconditioner B for
general separable problems. That is the result given by the following proposition:

Proposition 1 (Preconditioner for general separable case). If Lyu = 0 the choice

B≡ αGuG�u +Luu where α = ‖Lyy‖/(1−‖Gy‖)2

ensures that the matrix P(λ ) introduced in (9) cannot be singular for λ ≤ −1 or
λ = 1.

Proof. In view of (10), we get for all v in Cn and λ in C such that |λ | ≥ 1,

v�H(λ )v− v�Luuv = v�Gu(λ I−Gy)
−1Lyy(λ I−Gy)

−1Guv

≤ ‖Lyy‖ ‖(λ I−Gy)
−1Guv‖2 ≤ ‖Lyy‖‖Guv‖2/(1−ρ)2

where ρ = ‖Gy‖. Then the given choice of B ensures

v�H(λ )v≤ v�Bv, for all v ∈ Cn and λ ∈ C with |λ | ≥ 1

Therefore, using (9), we find for all real numbers λ such that λ ≤−1,

P(λ ) = (λ − 1)B+H(λ )# λ B≺ 0

which implies that P(λ ) cannot be singular for λ ≤ −1; thus, it cannot be an
eigenvalue of J∗. Furthermore, since the second-order sufficiency ensures that
P(1) = H(1)! 0, then λ = 1 cannot be also an eigenvalue of J∗. �
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So far the efforts to derive a B that excludes any eigenvalues outside the unit ball
have not been successful. Of course very large positive definite B will do trick, but
the resulting convergence is likely excruciatingly slow. The proposed B need not
be evaluated explicitly but can be approximated by BFGS updates [9]. Note that in
the nonseparable case, the preconditioner B must contain a second term β LuyLyu,
where β is a suitable penalty parameter as discussed in [8]. Loosely speaking the
term αGuG�u cautions against rapid changes in the design variable components that
have a strong effect on the primal equations, and β LuyLyu would do the same with
respect to Ly = 0, the adjoint equation. All this is relative to the convergence rate
ρ which quantifies the ability of the given fixed point solver to recover feasibility.
Before applying this kind of preconditioner, we will first examine the use of what
most people would consider a more natural choice, namely B = H(1).

3 The Newton Scenario for Separable Adjoints

In this section, we analyze the very nice situation when we have not only Gy = 0
and thus Gu = dy/du but also Lyu = 0. We expect the resulting observations also to
apply when G represents an inner iteration like several multigrid cycles that resolve
the state equation up to higher-order terms before the design variables are changed
once more. One can easily check that separability implies H(−1) = H(1) and that
the eigenvalues λ ∈ spect(J∗) \ spect(Gy) are characterized now by singularity of
the matrix

P(λ ) = (λ − 1)B+G�u LyyGu/λ 2 +Luu

= (λ − 1)B+G�u LyyGu(1/λ 2− 1)+H(1)

which is a special case of (9). Under the second-order sufficiency condition
H(1)! 0, we may transform P(λ ) as discussed above to

P̃(λ ) = (λ − 1)B̃+(1/λ 2− 1)Γ + I.

Since B can be selected freely, we will assume that it is given by B = H(1)/η , i.e.,
the projected Hessian itself scaled by the reciprocal of a step multiplier η > 0. For
this seemingly ideal choice, we obtain B̃ = I/η and thus the completely diagonal
matrix

P̃(λ ) =
[

(λ − 1)/η + 1
]

I +(1/λ 2− 1)Γ .

It is singular if one of its diagonal elements vanishes, which leads to the set of
rational equations

(λ − 1)/η + 1
1− 1/λ 2 = γi ∈R for some i ∈ {1, . . . ,n}. (11)
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Fig. 1 Dependence of the
convergence rate ρ∗ and the
logarithm of the retardation
factor r on the cross-term
size γ

Proposition 2 (Full step convergence). For η = 1 the maximal modulus ρ∗ of any
solution to (11) is less than 1 if and only if γ = ‖Γ ‖ < 1/

√
2, and we have then

ρ∗ < 3
√

2γ.

Proof. Taking the reciprocals, we find for λ̂ = 1/λ the cubic equation
1/γi = λ̂ − λ̂ 3. The elementary examination of its graph shows that this equation
has more than one real root exactly if |γi| ≥ 3

2
3
√

3≈ 2.6. Then one or two of the three

roots lie in the interval (−1,1) so that the reciprocal λ̂ = 1/λ will be larger than 1
in modulus, and we must have ρ > 1. If λ̂ = (cosϕ + isinϕ)/ρ is a complex root
with sinϕ �= 0, one obtains after some elementary manipulations that |λ |= 1/|λ̂ |=
ρ = 1+ 2cos(2ϕ). Hence ρ < 1 can only happen if ϕ ∈ (π

4 ,
3π
4

)∪ ( 5π
4 , 7π

4

)

. In fact

we have for ϕ =± π
4 exactly λ̂ = 1√

2
(1± i) = 1√

2
(1∓ i)−1 = λ−1 with

λ 3

λ 2− 1
=

(−1∓ i)
1√
2

−1∓ i
=

1√
2
=
−(−λ )3

(−λ )2− 1
.

Thus, we need γ < 1/
√

2 in order to obtain convergence. The final assertion follows
from

|λ |3
2
≤ |λ |3

1+ |λ |2 ≤
∣

∣

∣

∣

λ 3

λ 2− 1

∣

∣

∣

∣
= |γi| ≤ γ. �

According to the proposition, the problem must be regular enough such that γ is
less than 1/

√
2. The actual retardation factor is given by r = 1/(1−ρ∗(γ)), which is

plotted in Fig. 1 together with ρ∗. Note that the numerator is simply 1 since we apply
Newton’s method. Only for rather small γ do we obtain rapid convergence, which is
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a little surprising. When the generalized eigenvalues γi lie outside
(

−1/
√

2,1/
√

2
)

but are bounded above by 1 then convergence can be ensured with the help of a step
multiplier of size 1/(γ + 1).

Proposition 3 (Convergence with step size control). If B = H(1)/(1+ γ) with
γ = ‖Γ ‖ and Luu ! 0, then the spectral radius ρ∗ is always contained in the interval
[

γ/(γ + 1),1
)

. Moreover, we conjecture that exactly

ρ∗ = 3

√

γ
1+ γ

≈ 1− 1
3γ

.

Proof. Substituting η = 1+ γ into (11), we obtain the family of equations

Qi(λ ) = λ +
γi

(1+ γ)λ 2 −
γi + γ
1+ γ

= 0 for some i = 1, ..,n.

Let us add an equation Q0(λ ) with γ0 ≡ −γ if max{|γi|} is attained for γi > 0.
Hence, we may order the γi as −γ = γ0 ≤ γ1 ≤ γi ≤ . . . ≤ γn ≤ γ . We have for all
i≥ 0,

Qi(−1) =−1− γ
1+ γ

=
−(1+ 2γ)

1+ γ
< 0 < Qi(1) = 1− γ

1+ γ
=

1
1+ γ

L.

Let us denote by Pi(λ ) = λ 2Qi(λ ) the corresponding cubic polynomial. If γi = 0,
we have a double root at λ = 0 and a nontrivial root at λi = γ/(1+ γ) ∈ (0,1). For
all γi �= 0, we find Qi(0) = ∞sign(γi). So that by the mean value theorem and our
observation regarding Qi(±1), there exist real roots

λi ∈ (−1,0), if γi > 0 and λi ∈ (0,1), if γi < 0.

In particular, we have Q0(λ0) = λ0 − γ/(1 + γ)λ 2
0 and thus, λ0 = 3

√

γ/(1+ γ).
Furthermore, if γi > 0, then we have

Qi

( −γi

1+ γ

)

=
−(2γi + γ)

1+ γ
+

1+ γ
γi

=
1+ γ2+ 2γ− 2γ2

i − γiγ
(1+ γ)γi

≥ 1+ 2γ(1− γ)
(1+ γ)γi

> 0.

Besides, we have

Qi(−λ0) =−λ0 +
γi

(1+ γ)λ 2
0

− γi + γ
1+ γ

=
γi− γ

(1+ γ)λ 2
0

− γi + γ
1+ γ

≤ 0.

Hence, we conclude that

λi ∈ [−λ0,−γi/(1+ γ)), if γi > 0.
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Similarly, we derive for γi < 0 that

Qi

(

γ
1+ γ

)

=
γi(1+ γ)

γ2 − γi

1+ γ
=

γi(1+ 2γ)
γ2(1+ γ)

< 0

and

Qi(λ0) = λ0 +
γi

(1+ γ)λ 2
0

− γi + γ
1+ γ

=
γ + γi

(1+ γ)λ 2
0

− γi + γ
1+ γ

=
γi + γ
1+ γ

(

1

λ 2
0

− 1

)

≥ 0

when we have used λ0 ∈ (0,1) for the last inequality. Therefore, we obtain

λi ∈ (γ/(1+ γ),λ0] , if γi < 0.

Thus the modulus |λi| of the real roots λi is bounded above by λ0 = 3
√

γ/(1+ γ),
which motivates our conjecture. However, each cubic polynomial Pi(λ ) has another
pair of roots λ± which must satisfy

|λ+
i ||λ−i ||λi|= |Pi(0)|= |γi|/(1+ γ)≤ γ/(1+ γ)

and hence using the common lower-bound |γi|/(1 + γ) on |λi|, we find
min(|λ−i ||λ+

i |) < 1. Finally, we observe from our sign conditions that if one of
the two is real, the other must be too, and both must be smaller than 1 in size. The
same follows if they form a complex conjugate pair so that also |λ−i |= |λ+

i |< 1. �

Even when our conjecture is valid the convergence rate 3
√

γ/(1+ γ) is obviously
not very good unless γ ≈ 0, which indicates a rather large Luu. If the Hessian
H(1) = G�u LyyGu + Luu is only just positive definite with the negative curvature
of the first term being just balanced by the second, then γ = −λ1 can be arbitrarily
large and the same holds for the retardation factor

r = 1/(1−ρ∗) = 1/(1− 3
√

γ/(1+ γ))≈ γ/3.

This means that the effort in resolving the state equation rather accurately at each
inner loop of the optimization calculation does not pay off, unless we have strong
regularization. We conclude that, contrary to what one might have expected, the
seemingly natural optimization step −H(1)−1Lu will be too large and lead to blow
up unless the cross-term γ is quite small. As we have shown, one can remedy the
situation by cutting the step size back by a factor of order 1/(1+γ), but the resulting
retardation factor grows proportional to γ . Hence, solving the state equation quite
accurately at each optimization step does not really pay off even if the projected
Hessian H(1) is evaluated or approximated at a reasonable cost. It is also remarkable
that we need the condition that Luu is positive semi-definite so that the elements of
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Γ are no greater than 1. Hence, in this sense the results apply only to regularized
problems. For the full step method, our convergence conditions are of course sharp,
but probably and even more conservative step-size control would still work when
there are generalized eigenvalues greater than 1.

4 Jacobi Method on an Elliptic Problem

Now let us consider a much slower iterative solver, namely the Jacobi method ap-
plied to the standard elliptic regulator problem. Here, we find that the preconditioner
should be a multiple of the identity and its optimal scaling can be found by solving a
system of three cubic polynomials, which can be reduced to a single polynomial in
the convergence factor ρ∗. We use the 1D model optimization problem of tracking
type:

f (y,u) =
1
2

∫ 1

0
(y(t)− z(t))2(t)dt +

μ
2

∫ 1

0
u2(t)dt,

where the state y and the control u are linked by the state equation

−y′′(t) = u(t), for t ∈ [0,1] with y(0) = 0, y(1) = 0.

Here μ is the regularization parameter that is a strictly positive, and z denotes the
desired target state. We discretize the Laplacian term using central finite differences
on an equidistant mesh with mesh size h = 1/(n+ 1) where n ∈N. Given z ∈ Rn

we obtain as for example in [5] the following discretized optimization problem:

min
(y,u)∈R2n

f (y,u) =
h
2
‖y− z‖2 +

μh
2
‖u‖2 s.t. Cy = u.

Here C is the tridiagonal matrix defined by C = − tridiag(1,−2,1)/h2. For solving
Cy = u, we obtain the Jacobi iteration

y = G(y,u)≡ Jy+
h2

2
u.

It is well known that the eigenvalues of the matrix J are given by

ci ≡−cos(iπh), for i = 1, ..,n. (12)

Hence, the spectral radius of the symmetric matrix J is, given by ρ(J) = cos(πh)≈
1− 1

2 h2π2 < 1. The Lagrangian defined in (5) becomes

L(y,y,u) =
h
2
‖y− z‖2+ ȳT Jy+

h2

2
ȳT u+

μh
2
‖u‖2− y�y.
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Therefore, the fixed point iteration (7) takes the form

yk+1 = Jyk + 0.5h2uk

ȳk+1 = hyk + Jȳk

uk+1 = uk−B−1
k (μhuk + 0.5h2ȳk).

Hence the characteristic quantities discussed in Sect. 2 are given by

Gu = 0.5h2I, Gy = J, Lyy = hI, Luu = μhI, Lyu = 0, q = 0 (13)

and the projected Hessian takes the form

H(λ ) = μhI+(λ I− J)−1h5/4

It should be noted that as a discretization effect, H(1) stays positive definite even
when μ tends to zero. This numerical regularization will also be observed for the
retardation factor. Since both Gu and Luu are multipliers of the identity the same
is true for the B introduced in Proposition 1. Rather than using the conservative
scaling by p/(1−ρ) suggested there, we set B = Ih/η and determine the scaling η
that yields the optimal convergence rate. The extended iteration now takes the form

yk+1 = Jyk + 0.5h2uk

ȳk+1 = h(yk− z)+ Jȳk

uk+1 = −0.5ηhȳk +(1−ημ)uk

And the extended Jacobian is given by

J∗ =

⎡

⎢

⎣

J 0 h2

2 I
hI J 0
0 −ηh

2 I (1−ημ)I

⎤

⎥

⎦ . (14)

Now, P(λ ) = (λ −1)B+H(λ ) from (9) can be diagonalized by the eigenvectors of
J yielding the matrix

P̃(λ ) = (λ − 1)h/ηI+ 0.25h5diag(1/(λ − ci)
2)n

i=1 + μhI.

Hence, the eigenvalues of J∗ satisfy one of the equations

Pi(λ ) = (λ +ημ− 1)(λ − ci)
2 + h4η/4 = 0, for i = 1, ..,n,

where the ci are the eigenvalues of J as given in (12). This equation can be
rewritten as
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1
(λ − ci)2 =

λ +ημ− 1
−h4η/4

(15)

The left-hand sides have a quadratic pole at λ = ci, and the common right-hand side
is linear with respect to λ . For n = 4 and η = 0.1 the situation is depicted in Figs. 2
and 3 with the latter being scaled logarithmically.

ρ∗ ≡ max
1≤i≤n

{|λi|, |λ−i |, |λ+
i |} (16)

Proposition 4 (Algebraic characterization of optimal step size). The optimal
step size η , the resulting minimal convergence factor ρ∗, and an auxiliary eigen-
value λ can be computed by solving the following system of three cubic polynomials:

(−ρ∗+ 1−Δc)2(−ρ∗ − 1+ημ)+
1
4

h4η = 0

(λ − 1+Δc)2(λ − 1+ημ)+
1
4

h4η = 0

−(1−Δc)2 +λ ρ2
∗ +η(

1
4

h4− μ(1−Δc)2) = 0 (17)

where Δc = 1− cn = 1+ c1 ≤ 0.5π2h2.
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Proof. For η = 0, we have ρ∗ = 1, and for η → ∞ the products λiλ−i λ+
i = −Pi(0)

go to infinity so that ρ∗ becomes very large. Hence, by continuity a minimizer
η∗≥0 must exist. Furthermore, the optimum can only be attained where there is
a tie between at least two moduli. When all roots are real, then they are contained in
the interval formed by the smallest and largest root of P1. However, one can easily
check that these cannot have the same modulus so that we must have a tie between
a real eigenvalue of P1 and the complex pair λ±n of Pn. Rather than computing λ±n
directly, we impose the following conditions:

−Pn(0) = λnλ−n λ+
n = λ ρ2 and Pn(λn) = 0.

This, together with the equation P1(−ρ∗) = 0, gives the system of three cubic
equations listed above. ��
Due to the linearity with respect to η , we may rewrite the system of three cubic
polynomials introduced in Proposition 4 as follows:

a11 +ηa12 = 0 ,a21 +ηa22 = 0 , a31 +ηa32 = 0

The existence of a solution η ∈ R requires that the three vectors (a1 j,a2 j) for
j = 1,2,3 are pairwise linearly dependent so that we obtain equivalently the system
of two equations a11a32 = a12a31 and a11a22 = a12a21 in λ and ρ∗. Since the first
determinant equation is linear in λ , we can use it to express λ in terms of ρ∗ and
then substitute it into the second equation that yields a polynomial ρ that can be
solved by standard software. In Fig. 4 we have plotted the resulting retardation
factors as a function of the reciprocal 1/μ of the regularization parameter μ and
for n = 32,64,128. As one can see, the retardation factor is very small until 1/μ
is about 102, then grows quite rapidly until it becomes a linear function of 1/μ ,
and finally for very large 1/μ , it becomes constant. The plots in Fig. 4 were verified
by computing and optimizing the spectral radius of J∗ directly as a function of the
scaling η . To understand better what is going on we can perform an asymptotic
analysis. The optimal configuration obtained from the cubic system introduced in
Proposition 4 always contains exactly one pair of complex conjugate eigenvalues
as roots of Pn. Since their argument was observed to be rather small we probably
do not lose much by picking η as the value for which Pn has λ = λ+

n = λ−n as real
root so that all 3n eigenvalues are in fact real. Moreover, by inspection of Figs. 1
and 2, we see that all of them must be contained in the interval

[−λ+
1 ,λ+

1

]

where
P1(λ+

1 ) = 0. Hence, it follows that we must have contraction with ρ∗ = λ+
1 . More

specifically we find

Proposition 5 (Upper retardation bound). Pn has a double root at

λ =
2
3
(1− μη)+

1
3

cn
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when η̃ = η/Δc satisfies the cubic equation:

(1− μη̃)3 = η̃
27h4

16(Δc)2 ≥ η̃
27

4π4

which yields the retardation bound

r =
Δc

(1−ρ∗)
≤ 1

η̃(μ + h4/16)
≤ r ≡ 1

η̃μ

Proof. By differentiating Pn(λ ), we obtain

P′n(λ ) = 2(λ − cn)(λ − 1+ μη)+ (λ− cn)
2

Hence, a double root λ �= cn of Pn(λ ) must satisfy

0 = 2(λ − 1+ημ)+λ− cn = 3λ − 2+ 2ημ− cn

which yields immediately the first assertion. Substituting this value into Pn(λ ), we
find after some elementary manipulation

Pn(λ ) =
−4
27

(Δc− μη)3 +
h4

4
η = 0.
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Division by Δc then yields the second assertion. Since Δc/h2 = π2/2−O(h2) the
relation between μ and η̃ is essentially independent of h for all sufficiently small h.
Moreover, we find for the resulting ρ∗= λ+

1 ∈ (cn,1) that 0=(ρ−c1)
2(ρ+ημ−1)

+h4/4 and hence with ρ− c1 ≤ 2

1−ρ∗ = μη +
h4η/4

(ρ∗ − c1)2 ≥ ημ +
h4η
16

.

Multiplication of the reciprocal by Δc yields the last assertion. �
The last inequality in the preposition will be almost an equality as long as
μ " h4/16 as we would normally assume. By solving for μ the cubic equation
introduced in Proposition 5, we obtain the expression

μ(η̃)≡
(

1− 3
3
√

4π4
3
√

η̃
)

/η̃ for η̃ ∈ (0,4π4/27). (18)

The bold top line in Fig. 4 was obtained by plotting the curve (1/μ(η̃),r(η̃))
parameterized by η̃ . As one can see r is indeed an upper bound on the retardation
and almost proportional to 1/μ in a medium range where the fully optimized step
parameter η yields a similar slope. However, the optimized version is always faster
by a factor of a little more than 10. And depending on the mesh with h = 1/(n+ 1)
there is an extra gain when the regularization parameter μ is comparatively large.

When h4/4 dominates μ the retardation factor reaches the constant given by
Δc/(1− ρ∗) with η̃ = 4π4/27 and the ρ∗ the largest root of (ρ∗ − 1)(ρ − c1)

2 +
h4η̃/(4Δc). This contraction ratio is of size 1−O(h2) as one would expect for
Jacobi method.

5 Multigrid Method

In this final section, we employ a standard V-cycle multigrid algorithm, see [1–4], to
perform primal and dual iterations. Here, we aim to study the behavior of the already
established retardation factor when we solve the same optimization problem using
the multigrid algorithm with Jacobi smoother. By employing a standard V-cycle
multigrid algorithm, the primal iterations take the form

yk+1 = G(yk,uk)≡CMGyk +Kuk (19)

when CMG and K are two matrices. Then, the corresponding adjoint iteration is

ȳk+1 = hyk +C�MGȳk. (20)

Since the state equation is linear all second derivatives of the Jacobian depend
only on the objective and are therefore exactly the same as in Jacobian method,
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see (13). As preconditioner we use the one proposed in Proposition 1 scaled by step
multiplier η .

B =
1
η

(α
2

K�K + μh
)

where K = Gu and α = h/(1−ρ(CMG))

The Jacobian associated to the coupled full step iteration takes the form:

J∗ =

⎡

⎣

CGM 0 K
hI C�GM 0
0 −B−1K 1−B−1μh

⎤

⎦ . (21)

The spectral radius of this matrix can be computed for small-scale problems easily
with computer packages.

On the same problem considered in the previous section, we computed the
matrices CMG and K for the coarse grid and fine grid pairs (1/32,1/64) and
(1/64,1/128). Then, we computed the spectral radius of the coupled Jacobian for
a range of choices of η to determine the minimal ρ∗ approximately. The resulting
retardation factors are also plotted in Fig. 4. As one can see, the dependence on the
regularization coefficient μ is almost identical to the one observed for the Jacobi
method. Of course the multigrid solver and the resulting optimization solver are
much faster, but the ratio between their contraction factors seems to be pretty much
the same and is of course again largely independent of the mesh size.

6 Summary and Conclusion

For several comparatively simple model scenarios we have examined the retardation
factor in the transition from simulation to optimization by a one-shot method. For
Jacobi and V-cycle multigrid on an elliptic model problem we observed a reasonable
retardation that is proportional to the reciprocal of a regularization parameter but
largely mesh independent. The results on a variant of Newton method is a little
troubling. The simple-minded one-shot approach does not seem to make good use
of a fast corrector and an accurate projected Hessian. We are currently looking for
a modification that does not require the accurate solution of the linearized KKT
system. Also one needs to extend the methodology to the nonseparable case.
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Evolutionary Algorithm for Generalized Nash
Equilibrium Problems

Mend-Amar Majig, Rentsen Enkhbat, and Masao Fukushima

Abstract This paper considers a method for finding multiple, hopefully all,
solutions of the generalized Nash equilibrium problem (GNEP). Based on a
merit function of the quasi-variational inequality (QVI) problem to GNEP, we
reformulated GNEP as an unconstrained global optimization problem. To deal with
the latter problem, we employ the evolutionary algorithm with adaptive fitness
functions which help to search multiple global solutions. Numerical experiments
for some test problems show the practical effectiveness of the method.

Key words Heuristics • Evolutionary algorithm • Generalized Nash equilibrium
problem

1 Introduction

The generalized Nash equilibrium problem (GNEP) is an extension of the classical
Nash equilibrium problem, in which each players’s strategy set depends on the
other players’ strategies. Up to date, there are only a handful practical and effective
algorithms for solving GNEP.

In this chapter, we adopt the idea of reformulating GNEP as a quasi-variational
inequality (QVI) [4]. We are particularly interested in finding solutions of the
problem as many as possible. To achieve this task we will design a special
evolutionary algorithm.
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The organization of the chapter is as follows. In Sect. 2, we give a brief
description of GNEP. Section 3 considers reformulations of GNEP as a QVI and
a global optimization problem. An evolutionary algorithm for solving the resulting
unconstrained global optimization problem is given in Sect. 4. In Sect. 5, we put
some numerical results of the proposed method for some test problems, and Sect. 6
concludes this chapter.

2 Generalized Nash Equilibrium Problem

Let N be the number of players. Each player ν ∈ {1,2, . . . ,N} controls the variables
xν ∈ ℜnν , and let x = (x1, . . . ,xN) ∈ Rn be the vector formed by all these decision

variables, where n =
N
∑

ν=1
nν . To separate the νth player’s variables within the vector

x, we sometimes write x = (xν ,x−ν) and n−ν = n− nν , where x−ν represents all
other players’ variables.

Let θν : ℜn →ℜ be the νth player’s cost function. We assume that for each ν , θν
is continuous, and the functions θν(x) = θν (xν ,x−ν) are convex in xν . In the GNEP,
each player’s strategy xν belongs to a nonempty, closed and convex set Xν(x−ν)
which depends on other players’ strategies. We assume that Xν are given by

Xν(x
−ν ) = {xν ∈ℜnν |(xν ,x−ν ) ∈ X},

where X ⊂ ℜn is a nonempty, closed, and convex set which represents the joint
constraints of all players ν = 1, . . . ,N.

The generalized Nash game is to find a vector x∗ = (x∗,ν )N
ν=1 ∈ Rn, called a

generalized Nash equilibrium (GNE), such that for each ν = 1, . . . ,N, x∗,−ν is an
optimal solution of the convex optimization problem in the variable xν with x−ν

fixed at x∗,ν :

minimize θν (x
∗,−ν ,xν),

subject to xν ∈ Xν(x
∗,−ν). (1)

The existence of generalized Nash equilibria under some mild conditions has been
guaranteed by the following theorem.

Theorem 2.1 ([5]). Let a GNEP be given and suppose that

(a) There exist N nonempty, convex, and compact sets Kν ⊂ ℜnν such that for
every x ∈ ℜn with xν ∈ Kν for every ν , Xν(x−ν) is nonempty, closed, and
convex, Xν(x−ν) ∈ Kν , and Xν , as a point-to-set map, is both upper and lower
semicontinuous.

(b) For every player ν , the function θν (·,x−ν) is quasi-convex on Xν(x−ν ). Then a
GNE exists.
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3 Equivalent Reformulations

There are several ways to reformulate GNEP as a global optimization problem
[1, 3, 4, 6], and we use the one proposed in [4]. If we define the set-valued function
Ω : ℜn → 2ℜn

by

Ω(x) =
N

∏
ν=1

Xν(x
−ν)⊆ℜn

and the function F : ℜn →ℜn by

F(x) = (∇xν θν (x))
N
ν=1 ∈ Rn,

then we can see [9] that x∗ is a GNE if and only if x∗ ∈Ω(x∗) and

(y− x∗)T F(x∗)≥ 0, ∀y ∈Ω(x∗). (2)

The latter problem (3) is known as a QVI, and through its merit function the problem
can be reformulated as a global optimization problem with zero global minimum
value.

Theorem 3.2 ([5]). Let a GNEP be given, and for ∀ν , Xν(x−ν) is closed convex
and θν(·,x−ν ) is convex and continuously differentiable. Then, a point x̄ is a GNE if
and only if it is a solution of the QVI (Ω(x),F(x)), i.e., to find x∗ ∈Ω(x∗) and

〈F(x∗),x− x∗〉 ≥ 0, ∀x ∈Ω(x∗), (3)

where F(x) := (∇xν θν(x))N
ν=1. From now on we assume that the set Ω is given as

follows:

Ω(x) = {y ∈ Rn| gi(x,y)≤ 0, i = 1, . . . ,m},
where gi : Rn×Rn → R, i = 1, . . . ,m, are functions such that gi(x, ·) are convex and
differentiable for each fixed x. Define a set

S := {x ∈ Rn| x ∈Ω(x)}.
This set is called a feasible set of QVIP (3). Then by definition, we have

S = {x ∈ Rn|gi(x,x) ≤ 0, i = 1, . . . ,m}.
To reformulate QVIP as a global optimization problem, we use a so-called gap
function. Below we enlist some merit functions for QVI.

• Gap function

θc(x) := sup
y∈Ω(x)

〈F(x),x− y〉− c
2
〈x− y,G(x− y)〉,

where G is a positive definite matrix, c > 0 a scalar.
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• Linearized gap function

θ lin
c (x) = sup

y∈Γ (x)
〈F(x),x− y〉− c

2
〈x− y,G(x− y)〉,

where Γ (x) is a polyhedral of Ω(x) at x

Γ (x) := {y ∈ Rn|gi(x,x)+ 〈∇ygi(x,x),y− x〉 ≤ 0, i = 1, . . . ,m}.

The following theorem shows that the linearized gap function is indeed a merit
function for QVIP.

Theorem 3.3 ([4]). For each x ∈ S, we have f lin
c (x) ≥ 0. Moreover, x solves QVI

(3) if and only if f lin
c (x) = 0 and x ∈ S.

Calculation of gap function requires solving convex minimization problem while
that of D-gap function requires solving convex quadratic programming problem.
With these merit functions we can reformulate QVI as the following constrained
global optimization problem:

minθ (x),

subject to x ∈ S. (4)

These approaches enables us to consider a constrained global optimization problem
instead of the original quasi variational inequality problem. We also can consider
some unconstrained optimization reformulations.

• D-gap function

θab := θa(x)−θb(x), a < b, a,b > 0

• Linearized D-gap function

θ lin
ab := θ lin

a (x)−θ lin
b (x), a < b, a,b > 0

Theorem 3.4 ([4]). For each x ∈ℜn, we have f lin
ab (x) ≥ 0. Moreover, x solves QVI

(3) if and only if f lin
ab (x) = 0.

Global minimum value of the problem is known to be zero if GNE exists.
The latter two gap functions we have reformulated the QVIP as the following
unconstrained global optimization problem:

min θab(x), x ∈ Rn. (5)

In our approach, we use the linearized D-gap function for the reformulation and an
evolutionary algorithm to find global optimal solutions. Since the global minimum
value of the equivalent optimization problem is known, we will directly have the
stopping condition for our evolutionary algorithm which is not available for general
evolutionary algorithm.
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4 Evolutionary Algorithm

Since we are searching for multiple solutions, our evolutionary algorithm is different
from ordinary ones in some aspects. First of all, we use an adaptive fitness function
procedure which helps searching process to avoid returning back to already detected
solutions and gives it opportunity to explore other regions. Secondly, since we
know the global minimum value of the problem, termination conditions used in
the algorithm are different from those used in ordinary evolutionary algorithms.

Adaptive Fitness Function. The purpose of this procedure is to help the searching
process avoid lingering around already detected solutions. So once a global solution,
or local solution, or some unpromising trial solution is detected during the search,
the fitness function will be modified around this point. Depending on the type of the
point, we use different modifications.

Suppose we have a point x̄ on which adaptation is to be made. Let fc be the
current fitness function.

1. If x̄ is a non-global local optimal solution, then the fitness function will be
modified by means of the so-called tunneling function and the new fitness
function will be given by:

f̄t (x, x̄) := fc(x) · exp

⎛

⎝

1

εt +
1

ρ2
t
‖x− x̄‖2

⎞

⎠ , (6)

where εt , ρt are parameters that control the degree and the range of modification.
2. If x̄ is a global optimal solution, then the fitness function will be modified by

means of the so-called hump-tunneling function, and the new fitness function
will be given by:

f̄ht(x, x̄) := fh(x, x̄) · exp

⎛

⎝

1

εt +
1

ρ2
t
‖x− x̄‖2

⎞

⎠

=

(

fc(x)+αhmax
{

0,1− 1

ρ̄2
h

‖x− x̄‖2
}
)

· exp

⎛

⎝

1

εt +
1

ρ2
t
‖x− x̄‖2

⎞

⎠ ,

(7)

where εt , ρt , εh,andρh are parameters that control the degree and the range of
modification. The idea underlying the tunneling and the hump-tunneling function
modifications is explained in detail in the recent work [7]. Denote the adapting
procedure on x̄ with fc as AFF( fc, x̄).

Termination. To terminate our EA, we use the following three different criteria:

– The number of function evaluations exceeds the pre-defined limit.
– The number of detected global solutions exceeds the pre-defined number.
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– Let Ns be a pre-specified positive integer. If among the most recent Ns points of
modification, there were not new global solutions, then we terminate the main
algorithm.

The main loop of the proposed algorithm is stated as follows:

Algorithm

1. Initialization. Choose parameters M,m, ls, N̄ and β ∈ (0,1),ε > 0. Generate the
population set P := x1,x2, . . . ,xM by using some Diversity Generation Method.
Let the set of modification points S := /0. Define the current fitness function as

fc(x) := f (x).

Sort the elements in P in ascending order of their current fitness function
values, i.e.,

fc(x
1)≤ fc(x

2)≤ ·· · ≤ fc(x
M).

Set the generation counters t := 1 and s := 1.
2. Parents Selection. Generate a parents pool

P′ := {(xi,x j)|xi,x j ∈ P, xi �= x j}.

3. Crossover and Mutation. Select a pair (p1, p2)∈ P′ and generate a new pair by

(c1,c2)←− Crossover[(p1, p2)]+Mutation.

4. Survival Selection. If the child c1 or c2 has a lower fitness function value than
some element in the population set P, then let it survive in the population set and
discard the worst member of P. If P′ = /0, then let N := min{s, N̄} and

B := {b1,b2, . . . ,bN}← {x1,b1, . . . ,b(N−1)}, s := s+ 1

and go to step 5; otherwise go to step 3.
5. Intensification. If, during the last N̄ generations of evolution, the fitness function

has not been modified and the best point in the population set has not been
improved enough, i.e.,

s≥ N̄ and
∣

∣

∣ fc(b
N̄)− fc(b

1)
∣

∣

∣≤ β (1+ | fc(b
1)|),

then choose x1,x2, ...,xm ∈P and for each xi, i= 1,2, ...,m, perform the following
procedure:

x̄i ←− Local Search ( f (x),xi, ls).
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If xi is an unpromising trial point, then construct a new fitness function by

fc(x) := AFF( fc,x
i).

Otherwise, P := {P∪ x̄i}\{xi}. If the fitness function is modified at least once
during the above procedure, then set s := 1. Go to step 6.

6. Solutions and Adaptations. If x1 ∈ P is a global solution, i.e.,

fc(x
1)< ε

or, it is regarded as a local solution, i.e.,

s≥ N̄ and
∣

∣

∣ fc(b
N̄)− fc(x

1)
∣

∣

∣≤ β (1+ | fc(x
1)|),

then construct a new fitness function by

fc(x) := AFF( fc,x
1)

and set s := 1. Otherwise, let B := {b1,b2, . . . ,bN̄} ← {x1,b1, . . . ,b(N̄−1)}.
Proceed to step 7 with ( fc(x),P).

7. Stopping Condition. If one of the stopping conditions holds, then terminate
the algorithm and refine the global solutions in S by some local search method.
Otherwise, set t := t + 1 and go to step 2.

5 Numerical Experiments

To show the practical effectiveness of our approach, we have chosen the five test
problems from literatures for the numerical experiments. Programming code was
developed in MATLAB, and MATLAB command “fmincon” is used for local search
in the evolutionary algorithm. Parameters’ choice used in the algorithm is shown in
Table 1.

For one of the stopping condition, the maximum number of global solutions
to be detected, we have chosen ten. In other words, when the number of detected
global solutions reaches ten, we stopped the algorithm assuming that the problem
has infinitely many solutions. The numerical results for the evolutionary algorithm
for solving GNEP are presented in Table 2.

In this table, the columns represent: n, dimension of the problem; Kmin,Kmax,Kav,
the minimum, maximum, average numbers of detected global solutions; Ngen, the
number of generation in the evolutionary search; Nloc, the number of the local search
steps used; and NF, the number of function evolutions. As we can see in Table 2,
our approach finds multiple generalized Nash equilibria in acceptable numbers of
function evaluations, and all five test problems have at least ten solutions.
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Table 1 Parameter settings

Parameters Definition Value

M Number of elements in the population 10
a,b Parameters defining the linearized D gap function 0.5, 1.0
lN Number of best points for which local search is used 1
ls Maximum number of steps per local search 8
Nk,η Parameters controlling local search in EA 4, 0.995
εt ,ρt Tunneling parameters 0.1, 2
εEA Tolerance for the objective 10−8

Ng The maximum number of global solutions to be detected 10
NFmax Maximum number of function evaluations 10,000

Table 2 Numerical experiments for the evolutionary algorithm with
adaptive fitness functions

Problem n Kmin Kav Kmax Ngen Nloc NF

Facchinei 2 10 10 10 53 6 3,517
Harker 2 10 10 10 53 58 4,249
Nabetani1 2 10 10 10 48 8 3,269
Nabetani2 2 10 10 10 46 6 3,032
RBP 3 10 10 10 54 18 3,782

6 Conclusion

In this chapter, we have considered the possible heuristic global optimization
approach for finding generalized Nash equilibria. With help of adaptive fitness
function, our evolutionary algorithm searches multiple solutions of the problem
at the same time. Numerical experiments show the practical effectiveness of our
method. In future study, it will be interesting to consider parallel computing for
multiple solutions of the problem and adaptive fitness function techniques connected
solutions of the problem.

Test Problems

• Test problem 1 (Facchinei). This test problem is taken from [2] and has infinitely
many solutions given by (α,1−α), ∀α ∈ [ 1

2 ;1]. In this problem, the players
solve the following optimization problems for a GNE:

P1(x2) : minimize (x1− 1)2

subject to x1 + x2 ≤ 1.

P2(x1) : minimize

(

x2− 1
2

)2

subject to x1 + x2 ≤ 1.
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• Test problem 2 (Harker). This problem is taken from [5]. There are two players
and they solve the following problems:

P1(x2) : minimize x2
1 +

8
3

x1x2− 34x1

subject to x1 + x2 ≤ 15, 0≤ x1 ≤ 10.

P2(x1) : minimize x2
2 +

5
4

x1x2− 97
4

x2

subject to x1 + x2 ≤ 15, 0≤ x2 ≤ 10.

It has infinitely many solutions given by (α,15−α), ∀α ∈ [9;10].
• Test problem 3 (Nabetani1). This problem is taken from [8] and has infinitely

many solutions given by (α,1−α), ∀α ∈ [0; 2
3 ].

P1(x2) : minimize x2
1− x1x2− x1

subject to x1 + x2 ≤ 1, x1 ≥ 0.

P2(x1) : minimize x2
2−

1
2

x1x2− 2x2

subject to x1 + x2 ≤ 1, x2 ≥ 0.

• Test problem 4 (Nabetani2). This problem is taken from [8] and has infinitely
many solutions given by (α,

√
1−α2), ∀α ∈ [0; 4

5 ].

P1(x2) : minimize x2
1− x1x2− x1

subject to x2
1 + x2

2 ≤ 1, x1 ≥ 0.

P2(x1) : minimize x2
2−

1
2

x1x2− 2x2

subject to x2
1 + x2

2 ≤ 1, x2 ≥ 0.

• Test problem 5 (River Basin Pollution—RBP). In this problem [5], we consider
the 3-person river basin pollution game, where the problem of player ν ∈ {1,2,3}
is defined by

Pν(xν) : minimize αν xν +β (x1 + x2 + x3)− γν)xν

subject to xν ≥ 0

3.25x1+ 1.25x2+4.125x3≤ 100,

2.2915x1+ 1.5625x2+2.8125x3≤ 100

with the parameters α1 = 0.01, α2 = 0.05, α3 = 0.01, β = 0.01, γ1 = 2.9,
γ2 = 2.88, and γ3 = 2.85. It is also known that the problem has infinitely many
solutions.
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Scalar and Vector Optimization with Composed
Objective Functions and Constraints

Nicole Lorenz and Gert Wanka

Abstract In this chapter we consider scalar and vector optimization problems
with objective functions being the composition of a convex function and a linear
mapping and cone and geometric constraints. By means of duality theory we derive
dual problems and formulate weak, strong, and converse duality theorems for the
scalar and vector optimization problems with the help of some generalized interior
point regularity conditions and consider optimality conditions for a certain scalar
problem.

Key words Duality • Interior point regularity condition • Optimality conditions

1 Introduction

To a certain multiobjective optimization problem one can attach a scalar one whose
optimal solution leads to solutions of the original problem. Different scalarization
methods, especially linear scalarization, can be used to this purpose. Weak and
strong duality results and required regularity conditions of the scalar and vector
problem are associated with them. In the book of Boţ, Grad, and Wanka (cf. [1]),
a broad variety of scalar and vector optimization problems is considered. Related
to the investigations within that book we consider here some different scalar and
vector optimization problems associated with each other and show how the duals,
weak and strong duality, and some regularity conditions can be derived.
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We assume X ,Y,V , and Z to be Hausdorff locally convex spaces, whereas
in order to guarantee strong duality some of the regularity conditions contain the
assumption that we have Fréchet spaces.

We consider the scalar optimization problem

(PSΣ) inf
x∈A

{

m

∑
i=1

λi fi(Ax)

}

, A= {x ∈ S : gi(x)≤ 0, i = 1, . . . ,k},

taking proper and convex functions fi : Y →R :=R∪{±∞}, i = 1, . . . ,m, weighted
by positive constants λi, i = 1, . . . ,m, further g = (g1, . . . ,gk)

T : X → R
k, where

gi, i = 1, . . . ,k, is assumed to be convex, S ⊆ X is a non-empty convex set and A ∈
L(X ,Y), i.e., a linear continuous operator mapping from X to Y . Another problem
is the scalar one

(PS) inf
x∈A f (Ax), A= {x ∈ S : g(x) ∈ −C},

which is related to the first one. Here we use the proper and convex function f :Y →
R and the C-convex function g : X →Z and a nontrivial convex cone C ⊆Z .

Further we consider two vector optimization problems to which scalar ones
may be attached, whose dual problems are used to formulate duals to the vector
optimization problems. This can be seen in the following sections.

For the space X partially ordered by the convex cone K we denote by X• the
space to which a greatest element +∞K is attached (cf. [1]).

We consider the following vector optimization problem:

(PV m) Min
x∈A

( f1(Ax), . . . , fm(Ax))T , A= {x ∈ S : gi(x)≤ 0, i = 1, . . . ,k}.

Here we assume f = ( f1, . . . , fm)
T : Y → R

m• to be a proper function with convex
functions fi, i = 1, . . . ,m, and gi : X → R, i = 1, . . . ,k, to be convex. Further we
have S⊆X . The problem (PSΣ) arises by linear scalarization of (PV m). Further we
consider the following vector optimization problem related to the above one:

(PV ) Min
x∈A

f (Ax), A= {x ∈ S : g(x) ∈−C}.

Here f : Y → V• is a proper and K-convex function and g : X → Z is a C-convex
function, using the nontrivial pointed convex cone K ⊆ V and the nontrivial convex
cone C ⊆Z .

The conjugate dual problems to the scalar and vector optimization problem arise
as a combination of the classical Fenchel and Lagrange duality. It is the so-called
Fenchel-Lagrange duality introduced by Boţ and Wanka (cf. [2, 3, 10]).

For the primal-dual pair one has weak duality, where the values of the dual
objective function at its feasible set do not surpass the values of the primal
objective function at its feasible set. Further, for scalar optimization problems,
we have strong duality if there exists a solution of the dual problem such that
the objective values coincide, whereas for vectorial ones in case of strong duality,
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we assume the existence of solutions of the primal and dual problem such that the
objective values coincide, and for converse duality we start with a solution of the
dual and prove the existence of a primal solution such that the objective values
coincide.

In order to have strong and converse duality we have to formulate regularity
conditions. Since the classical Slater constraint qualifications (cf. [5,9]) are often not
fulfilled, we will present generalized interior point regularity conditions. Conditions
for some dual problems were given by Boţ, Grad, and Wanka (cf. [1]). Thus we
modify these conditions and resulting theorems to adopt them to the problems we
study in this chapter. Further, in [11] also some vector optimization problems and
their duals having a composition in the objective function and the constraints were
considered.

The central aim of this chapter is to give an overview of special scalar and vector
optimization problems. In addition, we point out the connections between them as
well as the arising interior point regularity conditions.

This chapter is organized as follows. In the following section we introduce some
definitions and notations from the convex analysis we use within this chapter.
In Sect. 3 we consider two general scalar optimization problems, calculate the
dual ones, give regularity conditions, further formulate weak and strong duality
theorems, and give optimality conditions for one of them. Moreover, we consider
two vector optimization problems and also calculate the dual ones and formulate
weak, strong, and converse duality theorems, respectively.

2 Notations and Preliminaries

Let X be a Hausdorff locally convex space and X∗ its topological dual space which
we endow with the weak∗ topology w(X∗,X ). We denote by 〈x∗,x〉 := x∗(x) the
value of the linear continuous functional x∗ ∈ X∗ at x ∈ X . For X = R

n we have
X = X∗ and for x = (x1, . . . ,xn)

T ∈ R
n,x∗ = (x∗1, . . . ,x

∗
n)

T ∈ R
n it holds 〈x∗,x〉 =

(x∗)T x = ∑n
i=1 x∗i xi.

For f : X → V and v∗ ∈ V∗ we define the function v∗ f : X → R by v∗ f (x) :=
〈v∗, f (x)〉 for x ∈ X , where V is another Hausdorff locally convex space and V∗ its
topological dual space.

The zero vector will be denoted by 0, whereas the space we talk about will be
clear from the context. By e we denote the vector (1, . . . ,1)T .

For a set D⊆X the indicator function δD : X →R is defined by

δD(x) :=

{

0, x ∈ D,

+∞, otherwise.

When D⊆X is non-empty and f : X →R we denote by f ∗D : X∗ →R the function
defined by

f ∗D(x
∗) = ( f + δD)

∗(x∗) = sup
x∈D
{〈x∗,x〉− f (x)}.
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One can see that for D=X , f ∗D becomes the (Fenchel-Moreau) conjugate function of
f which we denote by f ∗. We have the so-called Young or Young-Fenchel inequality:

f (x)+ f ∗(x∗)≥ 〈x∗,x〉 , ∀x ∈ X ,∀x∗ ∈ X∗. (1)

The support function σD :X∗ →R is defined by σD(x∗) = supx∈D 〈x∗,x〉 and it holds
σD = δ ∗D.

Let K ⊆ X be a nontrivial convex cone. The cone K induces on X a partial
ordering �K defined for x,y ∈ X by x �K y ⇔ y− x ∈ K. Moreover, let us define
x≤K y if and only if x�K y and x �= y. The dual cone K∗ ⊆X∗ and the quasi interior
of the dual cone of K∗, respectively, are defined by

K∗ := {x∗ ∈ X∗ : 〈x∗,x〉 ≥ 0, ∀x ∈ K},
K∗0 := {x∗ ∈ K∗ : 〈x∗,x〉> 0, ∀x ∈ K \ {0}}.

A convex cone K is said to be pointed if its linearity space l(K) = K∩ (−K) is the
set {0}. For a set U ⊆X the conic hull is

cone(U) =
⋃

λ≥0

λU = {λ u : u ∈U,λ ≥ 0}.

If we assume that X is partially ordered by the convex cone K, we denote by +∞K

the greatest element with respect to �K and by X• the set X ∪{+∞K}. For any
x ∈ X• it holds x �K +∞K and x ≤K +∞K for any x ∈ X . On X• we consider
the following operations and conventions (cf. [1]): x + (+∞K) = (+∞K) + x :=
+∞K ,∀x ∈X ∪{+∞K},λ · (+∞K) :=+∞K ,∀λ ∈ (0,+∞],0 · (+∞K) :=+∞K . Note
that we define +∞R+ =: +∞ and further �R+=:≤ and ≤R+=:<.

By BX (x,r) we denote the open ball with radius r > 0 and center x in X defined
by BX (x,r) = {y ∈ X : d(x,y)< r}, where d : X ×X →R is the metric induced by
the topology in X if X is metrizable.

The prefixes int, ri, icr, sqri, and core are used for the interior, the relative
interior, the relative algebraic interior (or intrinsic core), the strong quasi relative
interior and the algebraic interior or core of a set U ⊆X , respectively, where

core(U) = {x ∈ X : ∀y ∈ X , ∃δ > 0 such that ∀λ ∈ [0,δ ] : x+λ y∈U},
ri(U) = {x ∈ aff(U) : ∃ε > 0 : BX (x,ε)∩ aff(U)⊆U},

icr(U) = {x ∈ X : ∀y ∈ aff(U−U), ∃δ > 0 s.t. ∀λ ∈ [0,δ ] : x+λ y ∈U},

sqri(U) =

{

icr(U), if aff(U) is a closed set,
/0, otherwise,
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and in case of having a convex set U ⊆X we have

core(U) = {x ∈U : cone(U − x) = X},
sqri(U) = {x ∈U : cone(U − x) is a closed linear subspace}.

It holds core(U)⊆ sqri(U) and aff(U) is the affine hull of the set U ,

aff(U) =

{

n

∑
i=1

λixi : n ∈ N,xi ∈U,λi ∈ R,
n

∑
i=1

λi = 1, i = 1, . . . ,n

}

.

We assume V to be a Hausdorff locally convex space partially ordered by the
nontrivial convex cone C ⊆ V .

The effective domain of a function f : X → R is dom( f ) = {x ∈ X : f (x) <
+∞}, and we will say that f is proper if dom( f ) �= /0 and f (x) >−∞, ∀x ∈ X . The
domain of a vector function f :X →V• is dom( f ) = {x∈X : f (x) �=+∞C}. When
dom( f ) �= /0, the vector function f is called proper.

While a proper function f : X →R is called convex if for all x,y ∈X and all λ ∈
[0,1] it holds f (λ x+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), a vector function f :X →V•
is said to be C-convex if for all x,y∈X and all λ ∈ [0,1] it holds f (λ x+(1−λ )y)�C

λ f (x)+ (1−λ ) f (y) (cf. [1]).
A function f : X → R is called lower semicontinuous at x ∈ X if liminf

x→x
f (x) ≥

f (x), while a function f :X →V• is star C-lower semicontinuous at x ∈ X if (v∗ f )
is lower semicontinuous at x for all v∗ ∈C∗. The latter notion was first given in [6].

For f : X → R and a ∈ R we call leva( f ) := {x ∈ X : f (x) ≤ a} the level set of
f at a.

By L(X ,Y) we denote the set of linear continuous operators mapping from X
into Y . For A ∈ L(X ,Y) one can define the adjoint operator, A∗ : Y∗ → X∗ by

〈A∗y∗,x〉= 〈y∗,Ax〉 , ∀y∗ ∈ Y∗,x ∈ X .

In the following we write min and max instead of inf and sup if we want to
express that the infimum/supremum of a scalar optimization problem is attained.

Definition 1 (Infimal convolution). For the proper functions f1, . . . , fk : X → R,
the function f1� · · ·� fk : X →R defined by

( f1� · · ·� fk)(p) = inf

{ k

∑
i=1

fi(pi) :
k

∑
i=1

pi = p

}

is called the infimal convolution of fi, i = 1, . . . ,k.
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In order to state a theorem for the infimal convolution of conjugate functions,
we introduce additionally to a classical condition (RCΣ

1 ) the following generalized
interior point regularity conditions (RCΣ

i ), i ∈ {2,3,4}:

(RCΣ
1 )

∃x′ ∈ ∩k
i=1dom( fi) such that a number of k− 1 functions

of the functions fi, i = 1, . . . ,k, are continuous at x′,
(2)

(RCΣ
2 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . ,k,
and 0 ∈ sqri

(

Πk
i=1dom( fi)−ΔX k

)

,

(RCΣ
3 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . ,k, and
0 ∈ core

(

Πk
i=1dom( fi)−ΔX k

)

,

(RCΣ
4 )

X is Fréchet space, fi is lower semicontinuous, i = 1, . . . ,k, and
0 ∈ int

(

Πk
i=1dom( fi)−ΔX k

)

,
(3)

where for a set M ⊆ X we define ΔMk := {(x, . . . ,x) ∈ X k : x ∈M}. The following
theorem holds (cf. [1, Theorem 3.5.8]):

Theorem 1. Let f1, . . . , fk : X → R be proper and convex functions. If one of the
regularity conditions (RCΣ

i ), i ∈ {1,2,3,4}, is fulfilled, then it holds for all p ∈ X∗

(

k

∑
i=1

fi

)∗
(p) = ( f ∗1 � · · ·� f ∗k )(p) = min

{ k

∑
i=1

f ∗i (pi) :
k

∑
i=1

pi = p

}

. (4)

Remark 1. ForX =R
n formula (4) holds if fi, i= 1, . . . ,k, is proper and convex and

∩k
i=1ri(dom( fi)) �= /0, i.e., we do not need one of the conditions (RCΣ

i ), i∈ {1,2,3,4}
(cf. [8, Theorem 20.1]).

The function f : X → V• is called C-epi closed if its C-epigraph, namely epiC f =
{(x,y) ∈ X ×V : f (x) �C y}, is a closed set (cf. [7]). For a real valued function
f : X →R and C =R+ we have epi f = epiC f and the following theorem holds (cf.
[1, Theorem 2.2.9]):

Theorem 2. Let the function f : X → R be given. Then the following statements
are equivalent:

(i) f is lower semicontinuous.
(ii) epi f is closed.

(iii) The level set leva( f ) = {x ∈ X : f (x) ≤ a} is closed for all a ∈R.
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3 Some Dual Optimization Problems

In this section we consider the optimization problems (PS) and (PV ). These are
related problems, the first one a scalar, the latter one a vectorial, having as objective
function a composition of a convex (vector) function and a linear continuous
operator and cone and geometric constraints. For these we formulate dual problems
and state weak, strong, and converse duality theorems under some classical and
generalized interior point regularity conditions. Further, we consider two problems
(PSΣ) and (PV m) related to the above ones and derive the same things.

For the whole section we assume that X ,Y,Z , and V are Hausdorff locally
convex spaces;Z and V are assumed to be partially ordered by the nontrivial convex
cone C⊆Z and the nontrivial pointed convex cone K ⊆V , respectively. Further, let
S⊆X be a nonempty convex set and A ∈ L(X ,Y).

3.1 The Scalar Optimization Problem (PS)

In this first section we consider a general scalar optimization problem. Therefore
we assume the function f : Y → R to be proper and convex and the vector function
g :X →Z to be C-convex, fulfilling A−1(dom( f ))∩g−1(−C)∩S �= /0. Consider the
following primal scalar optimization problem:

(PS) inf
x∈A

f (Ax), A= {x ∈ S : g(x) ∈−C}.

We derive here a dual problem which is called the Fenchel-Lagrange dual problem to
(PS). For this purpose we consider the perturbation function ΦFL :X ×Y×Z →R,
given by

ΦFL(x,y,z) =

{

f (Ax+ y), x ∈ S,g(x) ∈ z−C,
+∞, otherwise,

(5)

whereX is the space of feasible variables andY andZ are the spaces of perturbation
variables. First we calculate to ΦFL the conjugate function (ΦFL)

∗ : X∗ ×Y∗ ×
Z∗ →R:

(ΦFL)
∗(x∗,y∗,z∗)

= sup
(x,y,z)∈S×Y×Z

g(x)−z∈−C

{〈x∗,x〉+ 〈y∗,y〉+ 〈z∗,z〉− f (Ax+ y)} (6)

= sup
(x,r,s)∈S×Y×−C

{〈x∗,x〉+ 〈y∗,r−Ax〉+ 〈z∗,g(x)− s〉− f (r)}

= δ−C∗(z
∗)+ sup

(x,r)∈S×Y
{〈x∗ −A∗y∗,x〉+ 〈y∗,r〉+(z∗g)(x)− f (r)}

= δ−C∗(z
∗)+ sup

x∈S
{〈x∗ −A∗y∗,x〉+(z∗g)(x)}+ sup

r∈Y
{〈y∗,r〉− f (r)}. (7)
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It follows

−(ΦFL)
∗(0,y∗,z∗) =−δ−C∗(z

∗)− (−z∗g)∗S(−A∗y∗)− f ∗(y∗).

The dual problem becomes (cf. [1] and take z∗ :=−z∗):

(DSFL) sup
(y∗,z∗)∈Y∗×Z∗

(−(ΦFL)
∗(0,y∗,z∗))

= sup
(y∗,z∗)∈Y∗×Z∗

(−δ−C∗(z
∗)− (−z∗g)∗S(−A∗y∗)− f ∗(y∗))

= sup
(y∗,z∗)∈Y∗×C∗

(−(z∗g)∗S(−A∗y∗)− f ∗(y∗)). (8)

We denote by v(PS) and v(DSFL) the optimal objective value of (PS) and (DSFL),
respectively. Then weak duality holds by construction (cf. [1]), i.e., v(PS) ≥
v(DSFL). In order to have strong duality we introduce some regularity conditions.

For a general optimization problem given by

(P) inf
x∈X

Φ(x,0),

depending on the perturbation function Φ :X ×Y →R, we introduce the following
so-called generalized interior point regularity conditions, where we assume that Φ
is a proper and convex function fulfilling 0 ∈ PrY(dom(Φ)) and PrY : X ×Y → Y ,
defined for (x,y) ∈X ×Y by PrY(x,y) = y, is the projection operator on Y . Further,
X is the space of feasible variables, and Y is the space of perturbation variables (cf.
[1]). The conditions have the following form:

(RCΦ
1 ) ∃x′ ∈ X such that (x′,0) ∈ dom(Φ) and Φ(x′, ·) is continuous at 0,

(RCΦ
2 )

X and Y are Fréchet spaces, Φ is lower semicontinuous,
and 0 ∈ sqri(PrY(dom(Φ))),

(RCΦ
3 )

X and Y are Fréchet spaces, Φ is lower semicontinuous, and
0 ∈ core(PrY(dom(Φ))),

(RCΦ
4 )

X and Y are Fréchet spaces, Φ is lower semicontinuous, and
0 ∈ int(PrY(dom(Φ))).

(9)

If X and Y are Fréchet spaces and Φ is lower semicontinuous, it holds

(RCΦ
1 )⇒ (RCΦ

4 )⇔ (RCΦ
3 )⇒ (RCΦ

2 ), (10)

i.e., the second is the weakest one (see also [1]).
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If (RCΦ
1 ) is fulfilled, the condition 0 ∈ PrY(dom(Φ)) holds since it is equivalent

with ∃x′ ∈ X : (x′,0) ∈ dom(Φ). If (RCΦ
i ), i ∈ {2,3,4}, is fulfilled, this obviously

also holds since the sqri,core and int of PrY(dom(Φ)) are subsets of the set
PrY(dom(Φ)).

We have to ensure that the perturbation function ΦFL is proper and convex. The
convexity follows by the convexity of f ,g, and S. Further, ΦFL is proper since f is
proper and A−1(dom( f ))∩ S∩ g−1(−C) �= /0. These properties will be maintained
in the following (sub)sections.

For the given perturbation function ΦFL it holds

(y,z) ∈ PrY×Z(dom(ΦFL))

⇔ ∃x ∈ X : ΦFL(x,y,z) <+∞

⇔ ∃x ∈ S : Ax+ y ∈ dom( f ),g(x) ∈ z−C

⇔ ∃x ∈ S : (y,z) ∈ (dom( f )−Ax)× (C+ g(x))

⇔ (y,z) ∈ (dom( f )×C)−
⋃

x∈S

(Ax,−g(x))

⇔ (y,z) ∈ (dom( f )×C)− (A×−g)(ΔS2).

The lower semicontinuity of ΦFL is equivalent with the closeness of epiΦFL

(see Theorem 2), and it holds

epiΦFL = {(x,y,z,r) ∈ X ×Y×Z×R : (Ax+ y,r) ∈ epi f}
∩{S×Y×Z×R}∩{(x,y,z,r) ∈ X ×Y×Z×R : (x,z) ∈ epiCg}.

The closeness of this set is guaranteed if X ,Y , and Z are Fréchet spaces, f is lower
semicontinuous, S is closed, and g is C-epi closed. The regularity condition (RCΦ

2 )
becomes

(RC2,FL)

X ,Y, and Z are Fréchet spaces, f is lower semi-
continuous, S is closed, g is C-epi closed, and
0 ∈ sqri((dom( f )×C)− (A×−g)(ΔS2).

(11)

Analogously, one can rewrite the stronger conditions (RCΦ
3 ) and (RCΦ

4 ) using core
and int, respectively, instead of sqri and get (RC3,FL) and (RC4,FL).

The regularity condition (RCΦ
1 ) becomes under usage of the perturbation

function ΦFL in formula (5):

(RC1,FL)
∃x′ ∈ A−1(dom( f ))∩S such that f is continuous at
Ax′ and g(x′) ∈ −int(C).

(12)
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We state now the following strong duality theorem:

Theorem 3 (Strong Duality). Let the spaces X ,Y , and Z , the cone C, the
functions f and g, the set S, and the linear mapping A be assumed as at the beginning
of the (sub)section and further A−1(dom( f ))∩g−1(−C)∩S �= /0.

If one of the regularity conditions (RCi,FL), i ∈ {1,2,3,4}, is fulfilled, then
v(PS) = v(DSFL) and the dual has an optimal solution.

Remark 2. If the function f is continuous and the primal problem (PS) has a
compact feasible set A, then there exists an optimal solution x to (PS).

3.2 The Scalar Optimization Problem (PSΣ )

A multiobjective optimization problem with objective functions fi, i = 1, . . . ,m, can
be handled by weighting the functions and considering the sum of it, which is
a linear scalarization. The arising problem is the subject of this section. Similar
perturbations of the primal problem can be found in [4], where the authors consider
an optimization problem having also cone constraints but still a weighted sum of
convex functions without the composition with a linear continuous mapping.

Assume the functions fi : Y → R, i = 1, . . . ,m, to be proper and convex and
g = (g1, . . . ,gk)

T : X → R
k to be C-convex, C = R

k
+. Further, let λ be the fixed

vector λ = (λ1, . . . ,λm)
T ∈ int(Rm

+). Let A ∈ L(X ,Y) and A−1(
⋂m

i=1 dom( fi))∩
g−1(−Rk

+)∩S �= /0. We consider the scalar optimization problem

(PSΣ ) inf
x∈A

{

m

∑
i=1

λi fi(Ax)

}

, A= {x ∈ S : gi(x)≤ 0, i = 1, . . . ,k},

and the following perturbation function ΦΣ
FL : X ×Y ×·· ·×Y ×X ×·· ·×X → R

in order to separate the conjugate functions of fi, i = 1, . . . ,m, and the conjugate
functions of gi, i = 1, . . . ,k, in the dual:

ΦΣ
FL(x,y

1, . . . ,ym,z1, . . . ,zk)

=

⎧

⎨

⎩

m
∑

i=1
λi fi(Ax+ yi), x ∈ S,gi(x+ zi)≤ 0, i = 1, . . . ,k,

+∞, otherwise.

The conjugate function (ΦΣ
FL)

∗ : X∗ × Y∗ × ·· · × Y∗ × X∗ × ·· · × X∗ → R is
given by
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(ΦΣ
FL)

∗(x∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗)

= sup
x∈S,

yi∈Y,i=1,...,m,
zi∈X ,i=1,...,k,

gi(x+zi)≤0,
i=1,...,k

{

〈x∗,x〉+
m

∑
i=1

〈

yi∗,yi〉+
k

∑
i=1

〈

zi∗,zi〉−
m

∑
i=1

λi fi(Ax+ yi)

}

.

By setting Ax+ yi =: ri ∈ Y, i = 1, . . . ,m, and x+ zi =: si ∈ X , i = 1, . . . ,k, we get:

−(ΦΣ
FL)

∗(0,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗)

=− sup
x∈S,

ri∈Y,i=1,...,m,
si∈X ,i=1,...,k,

gi(si)≤0,i=1,...,k

{

m

∑
i=1

〈

yi∗,ri−Ax
〉

+
k

∑
i=1

〈

zi∗,si− x
〉−

m

∑
i=1

λi fi(r
i)

}

=−sup
x∈S

{

−
m

∑
i=1

〈

yi∗,Ax
〉−

k

∑
i=1

〈

zi∗,x
〉

}

−
m

∑
i=1

sup
ri∈Y

{〈

yi∗,ri〉−λi fi(r
i)
}

−
k

∑
i=1

sup
si∈X ,

gi(si)≤0

〈

zi∗,si〉

=−δ ∗S

(

−A∗
m

∑
i=1

yi∗ −
k

∑
i=1

zi∗
)

−
m

∑
i=1

(λi fi)
∗ (yi∗)−

k

∑
i=1

sup
si∈X ,

gi(si)≤0

〈

zi∗,si〉 .

We have (λi fi)
∗(yi∗) = λi f ∗i

(

yi∗
λi

)

since λi > 0 for all i = 1, . . . ,k, and by setting

yi∗ := yi∗
λi
, i = 1, . . . ,k, we get the following dual problem to (PSΣ):

(DSΣ
FL) sup

(y1∗,...,ym∗,z1∗,...,zk∗)
∈Y∗×...×Y∗×
X ∗×...×X ∗

{

−(ΦΣ
FL)

∗(0,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗)
}

= sup
(y1∗,...,ym∗,z1∗,...,zk∗)
∈Y∗×...×Y∗×
X ∗×...×X ∗

{

− δ ∗S

(

−A∗
m

∑
i=1

yi∗ −
k

∑
i=1

zi∗
)

−
m

∑
i=1

(λi fi)
∗ (yi∗)−

k

∑
i=1

sup
si∈X ,

gi(s
i)≤0

〈

zi∗,si〉
}
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= sup
(y1∗,...,ym∗,
z1∗,...,zk∗)

∈Y∗×...×Y∗×
X ∗×...×X ∗

{

− δ ∗S

(

−A∗
m

∑
i=1

λiy
i∗ −

k

∑
i=1

zi∗
)

−
m

∑
i=1

λi f ∗i (y
i∗)−

k

∑
i=1

sup
si∈X ,

gi(s
i)≤0

〈

zi∗,si〉
}

. (13)

The following theorem holds according to the general approach described in
Sect. 3.1 and because of the previous calculations.

Theorem 4 (Weak Duality). Between (PSΣ ) and (DSΣ
FL), weak duality holds, i.e.,

v(PSΣ)≥ v(DSΣ
FL).

In order to formulate a strong duality theorem we consider the regularity conditions
given in Sect. 3.1. The continuity of ΦΣ

FL(x
′, ·, . . . , ·) at 0 is equivalent with the

continuity of fi at Ax′, i = 1, . . . ,k, further g(x′) ∈ −int(Rk
+) and the continuity of

g at x′ (which is equivalent with the continuity of gi, i = 1, . . . ,k, at x′). So the first
regularity condition becomes:

(RCΣ
1,FL)

∃x′ ∈ A−1

(

m
⋂

i=1
dom( fi)

)

∩S such that fi is

continuous at Ax′, i = 1, . . . ,m, gi is continuous at x′,
i = 1, . . . ,k, and g(x′) ∈ −int(Rk

+).

(14)

We further have, using the definition of the level set:

(y1, . . . ,ym,z1, . . . ,zk) ∈ PrY×···×Y×X×···×X (dom(ΦΣ
FL))

⇔ ∃x ∈ X : ΦΣ
FL(x,y

1, . . . ,ym,z1, . . . ,zk)<+∞,

⇔ ∃x ∈ S : Ax+ yi ∈ dom( fi), i = 1, . . . ,m, gi(x+ zi)≤ 0, i = 1, . . . ,k,

⇔ ∃x ∈ S : yi ∈ dom( fi)−Ax, i = 1, . . . ,m, x+ zi ∈ lev0(gi), i = 1, . . . ,k,

⇔ ∃x ∈ S : (y1, . . . ,ym,z1, . . . ,zk)

∈ m
Π

i=1
(dom( fi)−Ax)× k

Π
i=1

(lev0(gi)− x) ,

⇔ ∃x ∈ S : (y1, . . . ,ym,z1, . . . ,zk)

∈ m
Π

i=1
dom( fi)×

k
Π
i=1

lev0(gi)− (Ax, . . . ,Ax,x, . . . ,x),

⇔ (y1, . . . ,ym,z1, . . . ,zk)
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∈ m
Π

i=1
dom( fi)×

k
Π
i=1

lev0(gi)−
(

m
Π

i=1
A× k

Π
i=1

idX

)

(ΔSm+k ). (15)

The lower semicontinuity of ΦΣ
FL, we need for the further regularity conditions, is

equivalent with the closeness of epiΦΣ
FL (see Theorem 2) and it holds:

Lemma 1. The set

epiΦΣ
FL =

{

(x,y1, . . . ,ym,z1, . . . ,zk,r) ∈ X ×Y×·· ·×Y ×X ×·· ·×X ×R :

m

∑
i=1

λi fi(Ax+ yi)≤ r

}

∩ {S×Y×·· ·×Y ×X ×·· ·×X ×R}

k
⋂

i=1

{(x,y1, . . . ,ym,z1, . . . ,zk,r) ∈ X ×Y×·· ·×Y ×X ×·· ·×X ×R :

x+ zi ∈ lev0(gi)}

is closed if X and Y are Fréchet spaces, fi is lower semicontinuous, i = 1, . . . ,m, S
is closed, and lev0(gi) is closed, i = 1, . . . ,k.

Proof. Let the sequence (xn,y1
n, . . . ,y

m
n ,z

1
n, . . . ,z

k
n,rn) ∈ epi(ΦΣ

FL) converge to
(x,y1, . . . ,ym,z1, . . . ,zk,r) ∈ X × Y × ·· · × Y ×X × ·· · × X ×R. We show that
it holds (x,y1, . . . ,ym,z1, . . . ,zk,r) ∈ epi(ΦΣ

FL) in order to get the closeness of
epi(ΦΣ

FL).
We have ∑m

i=1 λi fi(Axn + yi
n) ≤ rn. Further it holds xn ∈ S and xn + zi

n ∈ lev0(gi)
and we get by the lower semicontinuity of fi, i = 1, . . . ,m,

m

∑
i=1

λi fi(Ax+ yi)≤ liminf
n→∞

m

∑
i=1

λi fi(Axn + yi
n)≤ liminf

n→∞
rn = r.

Since x ∈ S, which follows by the closeness of S, and lim
n→∞

(xn + zi
n) = x + zi ∈

lev0(gi), which follows by the closeness of lev0(gi), the assertion follows. ��
Remark 3. The fact that lev0(gi), i = 1, . . . ,k, is closed is implied by the lower
semicontinuity of gi, i = 1, . . . ,k.

With this lemma we get [cf. formula (9)]

(RCΣ
2,FL)

X and Y are Fréchet spaces, fi is lower semicontinuous,
i = 1, . . . ,m,S is closed, lev0(gi) is closed, i = 1, . . . ,k, and
0 ∈ sqri

(

Πm
i=1 dom( fi)×Πk

i=1 lev0(gi)−
(

Πm
i=1 A×Πk

i=1 idX
)

(ΔSm+k)
)

.

(16)
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The conditions (RCΣ
3,FL) and (RCΣ

4,FL) can be formulated analogously using core
and int instead of sqri. Then the following theorem holds:

Theorem 5 (Strong Duality). Let the spaces X ,Y , and Z = R
k, the cone C =

R
k
+, the functions fi, i = 1, . . . ,m, and gi, i = 1, . . . ,k, and the linear mapping A be

assumed as at the beginning of the (sub)section and further A−1(
⋂m

i=1 dom( fi))∩
g−1(−C)∩S �= /0.

If one of the regularity conditions (RCΣ
i,FL), i ∈ {1,2,3,4}, is fulfilled, then

v(PSΣ) = v(DSΣ
FL) and the dual has an optimal solution.

Here Remark 2 also holds.

Remark 4. The dual problem (DSΣ
FL) given in formula (13) contains terms of the

form

− sup
si∈X ,gi(si)≤0

〈

zi∗,si〉= inf
si∈X ,gi(si)≤0

〈−zi∗,si〉 .

We use now Lagrange duality. In case of having strong duality it holds

inf
si∈X ,gi(si)≤0

〈−zi∗,si〉= sup
μ i∗≥0

inf
si∈X

{−〈zi∗,si〉+ μ i∗gi(s
i)
}

= sup
μ i∗≥0

(−(μ i∗gi)
∗(zi∗)

)

. (17)

In order to have strong duality the following regularity condition has to be fulfilled
for i = 1, . . . ,k (cf. [1, Section 3.2.3]):

(RCi
L) ∃x′ ∈ X : gi(x′)< 0.

Assuming that (RCΣ
i,FL), i ∈ {1,2,3,4}, is fulfilled, we additionally only have to ask

(RCi
L), i = 1, . . . ,k, to be fulfilled in order to get the following dual problem [cf.

formula (13)] and strong duality between (PSΣ) and (DSΣ ′
FL):

(DSΣ ′
FL)

sup
(y1∗,...,ym∗,
z1∗,...,zk∗)

∈Y∗×···×Y∗×
X ∗×···×X ∗

{

− δ ∗S

(

−A∗
m

∑
i=1

λiy
i∗ −

k

∑
i=1

zi∗
)

−
m

∑
i=1

λi f ∗i (y
i∗)

+
k

∑
i=1

sup
μ i∗≥0

(−(μ i∗gi)
∗(zi∗)

)

}
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= sup
(y1∗,...,ym∗,

z1∗,...,zk∗,μ1∗,...,μk∗)
∈Y∗×···×Y∗×

X ∗×···×X ∗×R+×···×R+

{

− δ ∗S

(

−A∗
m

∑
i=1

λiy
i∗ −

k

∑
i=1

μ i∗zi∗
)

−
m

∑
i=1

λi f ∗i (y
i∗)

−
k

∑
i=1

μ i∗g∗i (z
i∗)
}

. (18)

The last equality holds by the following consideration. In case of μ i∗ > 0 we

have (μ i∗gi)
∗(zi∗) = μ i∗g∗i

(

zi∗
μ i∗

)

and take zi∗ := zi∗
μ i∗ such that the term becomes

μ i∗g∗i (zi∗) for i = 1, . . . ,k. For μ i∗ = 0 it holds

(0 ·gi)
∗(zi∗) =

{

0, zi∗ = 0,
+∞, otherwise.

Consequently we can always use μ i∗g∗i (zi∗) (notice the conventions 0 · (+∞) :=+∞
and 0 · (−∞) :=−∞ (cf. [1])).

In analogy with Theorem 4 between (PSΣ ) and (DSΣ ′
FL) weak duality holds, i.e.,

v(PSΣ)≥ v(DSΣ ′
FL). Further we have:

Theorem 6 (Strong Duality). Let the spaces X ,Y , and Z = R
k, the cone C =

R
k
+, the functions fi, i = 1, . . . ,m, and gi, i = 1, . . . ,k, and the linear mapping A be

assumed as at the beginning of the (sub)section and further A−1(
⋂m

i=1 dom( fi))∩
g−1(−C)∩S �= /0.

If one of the regularity conditions (RCΣ
i,FL), i ∈ {1,2,3,4}, is fulfilled and (RCi

L)

is fulfilled for i = 1, . . . ,k, then v(PSΣ ) = v(DSΣ ′
FL) and the dual has an optimal

solution.

With respect to the fact mentioned in the above remark, the following theorem
providing optimality conditions holds.

Theorem 7. (a) If one of the regularity conditions (RCΣ
i,FL), i ∈ {1,2,3,4}, is

fulfilled, (RCi
L) is fulfilled for i = 1, . . . ,k, and (PSΣ) has an optimal solution x,

then (DSΣ ′
FL) has an optimal solution (y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,μ1∗, . . . ,μk∗) ∈

Y∗ × ·· · × Y∗ × X∗ × ·· · × X∗ × R+ × ·· · × R+ such that the following
optimality conditions are fulfilled:

(i) fi(Ax)+ f ∗i (y
i∗)− 〈yi∗,Ax

〉

= 0, i = 1, . . . ,m,

(ii) μ i∗gi(x) = 0, i = 1, . . . ,k,
(iii) μ i∗(g∗i (z

i∗)− 〈zi∗,x
〉

) = 0, i = 1, . . . ,k,
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(iv)
m
∑

i=1
λi
〈

yi∗,Ax
〉

+
k
∑

i=1
μ i∗ 〈zi∗,x

〉

= inf
x∈S

{

m
∑

i=1
λi
〈

yi∗,Ax
〉

+
k
∑

i=1
μ i∗ 〈zi∗,x

〉

}

.

(b) Let x be feasible to (PSΣ ) and (y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,μ1∗, . . . ,μk∗) ∈ Y∗ ×
·· · × Y∗ × X∗ × ·· · × X∗ × R+ × ·· · ×R+ be feasible to (DSΣ ′

FL) fulfilling
the optimality conditions (i)–(iv). Then x is an optimal solution for (PSΣ ),
(y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,μ1∗, . . . ,μk∗) is an optimal solution for (DSΣ ′

FL), and
v(PSΣ ) = v(DSΣ ′

FL).

Proof. (a) Since (PSΣ ) has an optimal solution x ∈ S, one of the conditions
(RCΣ

i,FL), i ∈ {1,2,3,4}, is fulfilled and (RCi
L) is fulfilled for i = 1, . . . ,k,

Theorem 6 guarantees the existence of an optimal solution for (DSΣ ′
FL), namely

(y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,μ1∗, . . . ,μk∗), such that

v(PSΣ) = v(DSΣ ′
FL)

⇔
m

∑
i=1

λi fi(Ax) =−
m

∑
i=1

λi f ∗i (y
i∗)−

k

∑
i=1

μ i∗g∗i (z
i∗)

− δ ∗S

(

−A∗
m

∑
i=1

λiy
i∗ −

k

∑
i=1

μ i∗zi∗
)

⇔
m

∑
i=1

λi
[

fi(Ax)+ f ∗i (y
i∗)− 〈yi∗,Ax

〉]

+
m

∑
i=1

λi
〈

yi∗,Ax
〉

+
k

∑
i=1

μ i∗ [g∗i (z
i∗)+ gi(x)−

〈

zi∗,x
〉]−

k

∑
i=1

μ i∗gi(x)

+
k

∑
i=1

μ i∗ 〈zi∗,x
〉

+ δ ∗S

(

−A∗
m

∑
i=1

λiy
i∗ −

k

∑
i=1

μ i∗zi∗
)

= 0.

By applying Young’s inequality [cf. formula (1)] and having μ i∗ ≥ 0 and
gi(x)≤ 0, this sum which is equal to zero consists of m+ 2k+ 1 nonnegative
terms. Thus the inequalities have to be fulfilled with equality and we get the
following equivalent formulation:
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⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(i) fi(Ax)+ f ∗i (yi∗)− 〈yi∗,Ax
〉

= 0, i = 1, . . . ,m,

(ii) μ i∗gi(x) = 0, i = 1, . . . ,k,
(iii) μ i∗(g∗i (zi∗)+ gi(x)−

〈

zi∗,x
〉

) = 0, i = 1, . . . ,k,

(iv)
m
∑

i=1
λi
〈

yi∗,Ax
〉

+
k
∑

i=1
μ i∗ 〈zi∗,x

〉

+δ ∗S

(

−A∗
m
∑

i=1
λiyi∗ −

k
∑

i=1
μ i∗zi∗

)

= 0,

⇔

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(i) fi(Ax)+ f ∗i (yi∗)− 〈yi∗,Ax
〉

= 0, i = 1, . . . ,m,

(ii) μ i∗gi(x) = 0, i = 1, . . . ,k,
(iii) μ i∗(g∗i (zi∗)− 〈zi∗,x

〉

) = 0, i = 1, . . . ,k,

(iv)
m
∑

i=1
λi
〈

yi∗,Ax
〉

+
k
∑

i=1
μ i∗ 〈zi∗,x

〉

= inf
x∈S

{

m
∑

i=1
λi
〈

yi∗,Ax
〉

+
k
∑

i=1
μ i∗ 〈zi∗,x

〉

}

.

(b) All calculations in part (a) can be carried out in reverse direction. ��

3.3 The Vector Optimization Problem (PV )

In this section we consider a vector optimization problem with an objective function
being the composition of a convex function f and a linear continuous operator A and
cone and geometric constraints in analogy with the scalar problem in Sect. 3.1.

The properties of the spaces and sets were defined at the beginning of the section.
Assume the function f : Y → V• to be proper and K-convex and g : X → Z to be
C-convex, fulfilling A−1(dom( f ))∩g−1(−C)∩S �= /0.

By Min(V,K) we denote the set of minimal points of V , where y ∈V ⊆ V is said
to be a minimal point of the set V if y ∈ V and there exists no y′ ∈ V such that
y′ ≤K y. The set Max(V,K) of maximal points of V is defined analogously.

We consider the following vector optimization problem:

(PV ) Min
x∈A f (Ax), A= {x ∈ S : g(x) ∈−C}.

We investigate a duality approach with respect to properly efficient solutions in the
sense of linear scalarization (cf. [1]), that are defined as follows:

Definition 2 (Properly Efficient Solution). An element x ∈ A is said to be a
properly efficient solution to (PV ) if x ∈ A−1(dom( f )) and ∃v∗ ∈ K∗0 such that
〈v∗, f (Ax)〉 ≤ 〈v∗, f (Ax)〉 , ∀x ∈ A.
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Further, we define efficient solutions:

Definition 3 (Efficient Solution). An element x ∈ A is said to be an efficient
solution to (PV ) if x ∈ A−1(dom( f )) and f (Ax) ∈ Min(( f ◦ A)(A−1(dom( f )) ∩
A),K). This means that if x ∈ A−1(dom( f ))∩A then for all x ∈ A−1(dom( f ))∩A
from f (Ax)�K f (Ax) follows f (Ax) = f (Ax).

Depending on the perturbation function ΦFL, the dual problem to (PV ) can be
given by (cf. [1, Section 4.3.1]):

(DVFL) Max
(v∗,y∗,z∗,v)∈BFL

v,

where

BFL = {(v∗,y∗,z∗,v) ∈ K∗0×Y∗×Z∗×V :

〈v∗,v〉 ≤ −(v∗ΦFL)
∗(0,−y∗,−z∗)}.

Here we consider the perturbation function ΦFL : X ×Y×Z →V•, analogously as
given in the scalar case in Sect. 3.1:

ΦFL(x,y,z) =

{

f (Ax+ y), x ∈ S,g(x) ∈ z−C,
+∞K , otherwise.

(19)

The formula for the conjugate function of v∗ΦFL :X∗×Y∗×Z∗ →R follows from
the calculations above (cf. formulas (6) and (7)):

− (v∗ΦFL)
∗(x∗,y∗,z∗) =−(−z∗g)∗S(x

∗ −A∗y∗)− (v∗ f )∗(y∗)− δ−C∗(z
∗).

From this formula, the dual problem of (PV ) can be deduced. It is given by

(DVFL) Max
(v∗,y∗,z∗,v)∈BFL

v, (20)

where

BFL = {(v∗,y∗,z∗,v) ∈ K∗0×Y∗×Z∗ ×V :

〈v∗,v〉 ≤ −(v∗ΦFL)
∗(0,−y∗,−z∗)}

= {(v∗,y∗,z∗,v) ∈ K∗0×Y∗×C∗ ×V :

〈v∗,v〉 ≤ −(v∗ f )∗(−y∗)− (z∗g)∗S(A
∗y∗)}.

Weak duality follows from [1, Theorem 4.3.1]:

Theorem 8 (Weak Duality). There is no x ∈ A and no (v∗,y∗,z∗,v) ∈ BFL such
that f (Ax)≤K v.

To formulate a strong and converse duality theorem we have to state a regularity
condition. The conditions (RC1,FL) and (RC2,FL) from above [cf. formulas (11) and
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(12)] (as well as (RC3,FL) and (RC4,FL)) can, under some small modifications, be
applied for the vectorial case. It holds (see [1, Remark 4.3.1]):

Remark 5. For having strong duality we only have to assume that for all v∗ ∈ K∗0
the scalar optimization problem infx∈X (v∗ΦFL)(x,0,0) is stable.

This can be guaranteed by assuming that X and the spaces of perturbation
variables, Y and Z , are Fréchet spaces, f is star K-lower semicontinuous, S is
closed, g is C-epi closed, and 0 ∈ sqri((dom( f ) ×C) − (A× −g)(ΔS2)) since
dom( f ) = dom(v∗ f ). This follows by Theorem 3.

Further, this fact can be seen in the proof of the strong and converse duality
Theorem 9. We have:

(RCV1,FL)
∃x′ ∈ A−1(dom( f ))∩S such that f is continuous at Ax′

and g(x′) ∈−int(C),

which is identical with (RC1,FL) [cf. formula (12)] and

(RCV2,FL)

X ,Y, and Z are Fréchet spaces, f is star K-lower
semicontinuous, S is closed, g is C-epi closed, and
0 ∈ sqri((dom( f )×C)− (A×−g)(ΔS2)).

Analogously we formulate (RCV3,FL) and (RCV4,FL) by using core and int instead
of sqri.

Before we prove a strong and converse duality theorem we want to formulate the
following preliminary result (in analogy with [1, Theorem 4.3.3], to which we also
refer for the proof):

Lemma 2. Assume that BFL is nonempty and that one of the regularity conditions
(RCVi,FL), i ∈ {1,2,3,4}, is fulfilled. Then

V \ cl
(

( f ◦A)(A−1(dom( f ))∩A)+K
)⊆ core(h(BFL)),

where h : K∗0×Y∗×C∗×V → V is defined by h(v∗,y∗,z∗,v) = v.

Now we get the following theorem (in analogy with [1, Theorem 4.3.7]):

Theorem 9 (Strong and Converse Duality). (a) If one of the conditions
(RCVi,FL), i ∈ {1,2,3,4}, is fulfilled and x ∈ A is a properly efficient solution
to (PV ), then there exists (v∗,y∗,z∗,v) ∈ BFL, an efficient solution to (DVFL), such
that f (Ax) = v.
(b) If one of the conditions (RCVi,FL), i ∈ {1,2,3,4}, is fulfilled, ( f ◦ A)

(A−1(dom( f )) ∩ A) + K is closed and (v∗,y∗,z∗,v) is an efficient solution
to (DVFL), then there exists x ∈ A, a properly efficient solution to (PV ), such
that f (Ax) = v.

The following proof of the theorem will be done in analogy with the one of
[1, Theorem 4.3.2 and 4.3.4]:
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Proof. (a) Since x ∈ A is a properly efficient solution, there exists v∗ ∈ K∗0 such
that x is an optimal solution to the scalarized problem

inf
x∈A 〈v

∗, f (Ax)〉 .

Using that one of the regularity conditions (RCVi,FL), i ∈ {1,2,3,4}, is fulfilled
we can apply Theorem 3. Therefore we have to show that the problem
infx∈A 〈v∗, f (Ax)〉 with the assumptions given by (RCVi,FL) fulfills the regu-
larity condition (RCi,FL) for fixed i ∈ {1,2,3,4}.

Let us consider (RCVi,FL), i ∈ {2,3,4}. Since f is assumed to be star K-
lower semicontinuous, v∗ f is lower semicontinuous by definition. The assumptions
regardingX ,Y,Z,S and g hold analogously. Further, we have dom(v∗ f ) = dom( f )
and therefore

sqri((dom(v∗ f )×C)− (A×−g)(ΔS2)) = sqri((dom( f )×C)− (A×−g)(ΔS2))

and analogously for core and int. Thus the conditions (RCi,FL), i ∈ {2,3,4}, hold.
The continuity of v∗ f follows by the continuity of f and since dom(v∗ f ) =

dom( f ) the fulfillment of (RC1,FL) follows by assuming (RCV1,FL).
From the mentioned theorem it follows that there exist z∗ ∈C∗ and y∗ ∈ Y∗ such

that 〈v∗, f (Ax)〉 = −(v∗ f )∗(−y∗)− (z∗g)∗S(A
∗y∗). It follows that for v = f (Ax) the

element (v∗,y∗,z∗,v) is feasible to the dual problem (DVFL). By weak duality, which
was given in Theorem 8, it follows that (v∗,y∗,z∗,v) is an efficient solution.

(b) Assume that v /∈ ( f ◦A)
(

A−1(dom( f ))∩A))+K. From Lemma 2 it follows
that v ∈ core(h(BFL)). By definition of the core for k ∈ K \ {0} there exists
λ > 0 such that vλ := v+λ k ≥K v and vλ ∈ h(BFL). This contradicts the fact
that (v∗,y∗,z∗,v) is an efficient solution for (DVFL) since vλ is in the image set
of (DVFL) and vλ ≥K v.

Thus we have v ∈ ( f ◦A)
(

A−1(dom( f ))∩A)+K, which means that there exists
x ∈ A−1(dom( f ))∩A and k ∈ K such that v = f (Ax)+ k. By Theorem 8 there is no
x ∈ A and no (v∗,y∗,z∗,v) ∈ BFL such that f (Ax) ≤K v and hence it holds k = 0.
Consequently we have f (Ax) = v and x is a properly efficient solution to (PV ) which
follows by the following calculation. It holds

〈v∗, f (Ax)〉= 〈v∗,v〉 ≤ −(v∗ f )∗(−y∗)− (z∗g)∗S(A
∗y∗)

=−(v∗ΦFL)
∗(0,−y∗,−z∗)≤ inf

x∈A 〈v
∗, f (Ax)〉 .

Here the last inequality follows by weak duality for the scalarized problem
(cf. Sect. 3.1) and thus x turns out to be a properly efficient solution to (PV ) by
Definition 2 fulfilling v = f (Ax). ��
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3.4 The Vector Optimization Problem (PV m)

We assume that the spaces V and Z are finite dimensional, especially V = R
m,

K = R
m
+,Z = R

k, and C = R
k
+. Further, let the functions fi : Y → R, i = 1, . . . ,m,

be proper and convex and g = (g1, . . . ,gk)
T : X → R

k be R
k
+-convex, fulfilling

A−1(
⋂m

i=1 dom( fi))∩ g−1(−Rk
+)∩ S �= /0. We consider the following vector opti-

mization problem:

(PV m) Min
x∈A

⎛

⎜

⎝

f1(Ax)
...

fm(Ax)

⎞

⎟

⎠ , A= {x ∈ S : gi(x)≤ 0, i = 1, . . . ,k}.

The perturbation function Φm
FL :X ×Y×·· ·×Y ×X ×·· ·×X →R

m• is similar to
the one in Sect. 3.2 in order to separate the conjugate functions of fi, i = 1, . . . ,m,
and the conjugate functions of gi, i = 1, . . . ,k, in the dual problem:

Φm
FL(x,y

1, . . . ,ym,z1, . . . ,zk)

=

{

( f1(Ax+ y1), . . . , fm(Ax+ ym))T , x ∈ S,gi(x+ zi)≤ 0, i = 1, . . . ,k,
+∞, otherwise.

Thus the dual problem becomes by taking v := (v1, . . . ,vm)
T ∈ R

m and v∗ =
(v∗1, . . . ,v

∗
m)

T ∈ int(Rm
+) [cf. formula (20)]:

(DV m
FL) Max

(v∗,y∗,z∗,v)∈Bm
FL

v,

where

Bm
FL =

{

(v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,v)

∈ int(Rm
+)×Y∗× ·· ·×Y∗×X∗× ·· ·×X∗×R

m :

vT v∗ ≤ −(v∗Φm
FL)

∗(0,−y1∗, . . . ,−ym∗,−z1∗, . . . ,−zk∗)
}

.

Especially it holds

− (v∗Φm
FL)

∗(0,−y1∗, . . . ,−ym∗,−z1∗, . . . ,−zk∗)

=− sup
x∈S,

yi∈Y,i=1,...,m,
zi∈X ,i=1,...,k,

gi(x+zi)≤0,i=1,...,k

{

−
m

∑
i=1

v∗i fi(Ax+ yi)−
m

∑
i=1

〈

yi∗,yi〉−
k

∑
i=1

〈

zi∗,zi〉
}
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=−δ ∗S

(

A∗
m

∑
i=1

v∗i yi∗+
k

∑
i=1

zi∗
)

−
m

∑
i=1

v∗i f ∗i (−yi∗)−
k

∑
i=1

sup
si∈X ,

gi(s
i)≤0

〈−zi∗,si〉 ,

which arises from formula (13). The dual becomes:

(DV m
FL) Max

(v∗,y1∗,...,yk∗,z1∗,...,zk∗,v)∈Bm
FL

v, (21)

where

Bm
FL =

{

(v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,v)

∈ int(Rm
+)×Y∗× ·· ·×Y∗×X∗× ·· ·×X∗×R

m :

vT v∗ ≤ −δ ∗S

(

A∗
m

∑
i=1

v∗i yi∗+
k

∑
i=1

zi∗
)

−
m

∑
i=1

v∗i f ∗i (−yi∗)

−
k

∑
i=1

sup
si∈X ,

gi(si)≤0

〈−zi∗,si〉
}

.

The following weak duality theorem holds:

Theorem 10 (Weak Duality). Between (PV m) and (DV m
FL) weak duality holds, i.e.,

there is no x∈A and no (v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,v)∈Bm
FL such that f (Ax) ≤K v.

In order to formulate a strong and converse duality theorem, we have to state
some regularity conditions. Therefore let us first consider the following lemma:

Lemma 3. Let be f = ( f1, . . . , fm)
T : Y → R

m•. If fi, i = 1, . . . ,m, is lower
semicontinuous, then f is star K-lower semicontinuous, where K = R

m
+.

Proof. Let be v∗ = (v∗1, . . . ,v
∗
m)

T ∈ K = R
m
+. If we assume that fi, i = 1, . . . ,m, is

lower semicontinuous, then 〈v∗, f 〉 = ∑m
i=1 v∗i fi is lower semicontinuous since it

is a sum of lower semicontinuous functions and v∗i ≥ 0, i = 1, . . . ,m (cf. [1, Prop.
2.2.11]). This means by definition that f is star K-lower semicontinuous. ��

As mentioned in the last section it is possible to apply the regularity conditions
given in the scalar case under some modifications. So formulas (14) and (16) become

(RCV m
1,FL)

∃x′ ∈ A−1

(

m
⋂

i=1
dom( fi)

)

∩S such that

fi is continuous at Ax′, i = 1, . . . ,m,

gi is continuous at x′, i = 1, . . . ,k,
and g(x′) ∈−int(Rk

+),

(22)
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(RCV m
2,FL)

X and Y are Fréchet spaces, fi is lower semicontinuous,
i = 1, . . . ,m,S is closed, lev0(gi) is closed, i = 1, . . . ,k,and 0 ∈
sqri
(

Πm
i=1 dom( fi)×Πk

i=1 lev0(gi)−
(

Πm
i=1 A×Πk

i=1 idX
)

(ΔSm+k)
)

.

(23)

The conditions (RCV m
3,FL) and (RCV m

4,FL) can be formulated analogously using core
and int instead of sqri. The following theorem holds:

Theorem 11. (a) If one of the conditions (RCV m
i,FL), i ∈ {1,2,3,4}, is fulfilled

and x ∈ A is a properly efficient solution to (PV m), then there exists
(v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,v) ∈ Bm

FL, an efficient solution to (DV m
FL), such

that f (Ax) = v.
(b) If one of the conditions (RCV m

i,FL), i ∈ {1,2,3,4}, is fulfilled, ( f ◦
A)(A−1(

⋂m
i=1 dom( fi))∩A) + K is closed and (v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,v)

is an efficient solution to (DV m
FL), then there exists x ∈ A, a properly efficient

solution to (PV m), such that f (Ax) = v.

Remark 6. Remark 4 can be applied here which leads to the dual problem [cf.
formula (18)]

(DV m′
FL) Max

(v∗,y1∗,...,yk∗,z1∗,...,zk∗,μ1∗,...,μk∗,v)∈Bm
FL

v, (24)

where

Bm
FL =

{

(v∗,y1∗, . . . ,ym∗,z1∗, . . . ,zk∗,μ1∗, . . . ,μk∗,v)

∈ int(Rm
+)×Y∗× ·· ·×Y∗×X∗× ·· ·×X∗×R+×·· ·×R+×R

m :

vT v∗ ≤ −δ ∗S

(

A∗
m

∑
i=1

viy
i∗ −

k

∑
i=1

μ i∗zi∗
)

−
m

∑
i=1

vi f ∗i (−yi∗)

+
k

∑
i=1

μ i∗g∗i (−zi∗)
}

.

Further, weak duality holds by construction and Theorem 11 holds analogously
under the assumption that one of the regularity conditions (RCV m

i,FL), i ∈ {1,2,3,4},
is fulfilled and (RCi

L) is fulfilled for i = 1, . . . ,k.



130 N. Lorenz and G. Wanka

References
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A PTAS for Weak Minimum Routing Cost
Connected Dominating Set of Unit Disk Graph

Qinghai Liu, Zhao Zhang, Yanmei Hong, Weili Wu, and Ding-Zhu Du

Abstract Considering the virtual backbone problem of wireless sensor networks
with the shortest path constraint, the problem can be modeled as finding a minimum
routing cost connected dominating set (MOC-CDS) in the graph. In this chapter, we
study a variation of the MOC-CDS problem. Let k be a fixed positive integer. For
any two vertices u,v of G and a vertex subset S ⊆ V (G), denote �S(u,v) the length
of the shortest (u,v)-path in G all whose intermediate vertices are in S and define

g(u,v) =

{

d(u,v)+ 4, if d(u,v)≤ k+ 1;

(1+ 4
k )d(u,v)+ 6, if d(u,v)> k+ 1.

The g-MOC-CDS problem asks for a subset S with the minimum cardinality such
that S is a connected dominating set of G and �S(u,v) ≤ g(u,v) for any pair of
vertices (u,v) of G. Clearly, g-MOC-CDS can serve as a virtual backbone of the
network such that the routing cost is not increased too much. In this chapter, we
give a PTAS for the g-MOC-CDS problem on unit disk graphs.
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1 Introduction

Dominating set and connected dominating set have a wide range of applications in
wireless sensor networks to make the system hierarchial and efficient. A dominating
set (DS) of a graph G is a vertex subset D such that every vertex in V (G) \D has
at least a neighbor in D. A connected dominating set (CDS) is a dominating set D
such that G[D] is connected, where G[D] is the subgraph induced by D. In general,
we expect cardinality of a CDS to be as small as possible. Thus the minimum
connected dominating set (MCDS) problem has been proposed and been studied
extensively, especially on the unit disk graph, which is a widely adopted model
for the homogeneous wireless sensor network. In a unit disk graph G, every vertex
corresponds to a point in the plane; there is an edge between two vertices in G if and
only if the Euclidean distance between the two points is not greater than one. For
more details on the study of algorithms for CDS, see, e.g., [1–5, 10–17, 19–21].

Although CDS is an efficient virtual backbone for routing protocols, the routing
path between some pairs of vertices might increase greatly than the shortest path. In
order to surmount this, Ding et al. [6] and Willson et al. [18] proposed a special CDS
problem—minimum routing cost connected dominating set (MOC-CDS). Besides
the constraints of CDS, MOC-CDS has an additional constraint that between any
two nodes, the routing cost does not increase if messages are relayed only through
the MOC-CDS. The formal definition is:

Definition 1 (MOC-CDS [6]). Given a connected graph G = (V,E), the minimum
routing cost connected dominating set (MOC-CDS) problem is to find a minimum
size node set D⊆V such that for every pair of nodes u,v ∈V , there exists a shortest
path between u and v all of whose intermediate nodes belong to D.

Ding et al. [6] showed that MOC-CDS has no polynomial time approximation
with performance ratio ρ lnΔ for 0 < ρ < 1 unless NP ⊆ DTIME(nO(log logn)),
where Δ is the maximum node degree of the input graph G. They also gave
a polynomial time distributed approximation algorithm with performance ratio
H( δ (δ−1)

2 ), where H is the harmonic function, i.e., H(k) = ∑k
i=1

1
i .

However, in some networks, the MOC-CDS may be very large. In some cases, it
may even be as large as the whole node set. Motivated by this situation, Du et al. [7]
relaxed the requirement of shortest path and proposed the following problem.

Definition 2 (αMOC-CDS [7]). Given a graph G, compute the minimum CDS D
such that for any two nodes u and v in V (G), mD(u,v)≤α ·mG(u,v), where mD(u,v)
is the number of intermediate nodes for a path to connect u and v through D.

Du et al. [7] showed that for any α ≥ 1, αMOC-CDS in general graphs is APX-
hard and hence has no PTAS unless NP=P. When restricted to unit disk graphs,
the αMOC-CDS problem remains to be NP-hard. In [8], Du et al. transformed a
minimum non-submodular cover problem into a problem of minimum submodular
cover with submodular cost, and as an application, they provided a constant-
approximation algorithm for the αMOC-CDS problem in unit disk graphs for α ≥ 5.
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In [9], Du et al. gave a PTAS for αMOC-CDS in unit disk graphs when α ≥ 5, i.e.,
for any ε > 0, there is a (1+ ε)-approximation algorithm for this problem which
runs in time nO(1/ε4).

A natural question is: how about α < 5? In this chapter, we consider a variation
of the αMOC-CDS problem as described in the following.

For two vertices u,v ∈ V (G), we use d(u,v) to denote the length of the shortest
(u,v)-path in G, i.e., the number of edges on the path. It should be noted that d(u,v)
differs from mG(u,v) in Definition 2 by exactly one.

Let S be a vertex subset of G. A path P of G is called to be fully intersecting with
S if all the inner vertices of P lie in S. If the vertex set S in clear from the context,
then P is also called a fully intersecting path. We use the notion PS(u,v) to represent
a shortest fully intersecting (u,v)-path and �S(u,v) is the length of PS(u,v). In this
chapter, we consider a relaxed version of MOC-CDS, called g-minimum routing
cost dominating set (g-MOC-CDS) problem. Let k be a fixed positive integer. For
any two vertices u,v, we define

g(u,v) =

{

d(u,v)+ 4, if d(u,v)≤ k+ 1;

(1+ 4
k )d(u,v)+ 6, if d(u,v)> k+ 1.

Definition 3 (g-MOC-CDS). Let G be a graph. The g-MOC-CDS problem asks for
a subset S with the minimum cardinality such that S is a CDS and �S(u,v)≤ g(u,v)
for any pair of vertices (u,v) of G.

In this chapter, we give a PTAS for the g-MOC-CDS problem of unit disk graphs.

2 Problem Transformation

In order to solve g-MOC-CDS problem, we do some transformation on this problem
and propose another similar problem as follows.

Definition 4 (k-MOC-CDS). Let G be a graph. The k-MOC-CDS problem asks
for a subset S with the minimum cardinality such that S is a CDS and �S(u,v) ≤
d(u,v)+ 4 for any pair of vertices (u,v) of G with d(u,v)≤ k+ 1.

Clearly, k-MOC-CDS is a relaxation of g-MOC-CDS, which seems to be easier
than g-MOC-CDS. However, we can prove that these two problems are in fact
equivalent with each other. For the simplicity of statement, we call the set S in
Definition 3 g-MOC-CDS and call the set S in Definition 4 k-MOC-CDS.

Lemma 1. Let G be a graph and k be a positive integer. Then S is a k-MOC-CDS
of G if and only if S is a g-MOC-CDS of G.

Proof. The sufficiency is clear. Next we show the necessity. Let S be a k-MOC-CDS.
For any pair of vertices (u,v), it suffices to show that �S(u,v)≤ (1+ 4

k )d(u,v)+6 if
d(u,v)> k+1. Let d(u,v) = d = qk+r, where 0≤ r≤ k−1. Given a shortest (u,v)-
path P, we can find out q vertices u1, . . . ,uq, which divide P into q+1 segments such
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u u1 u2 uq v

u ′u ′ P1
P2

Pq+1

......

......
1 u ′

2 u ′

v ′
q

Fig. 1 An illustration of PS(u,v)

that the segments (u,u1),(u1,u2), . . . (uq−1,uq) have length k and (uq,v) has length
r. By noting that S is a dominating set, there exists a neighbor of u in S, say u′. Then
d(u′,u1)≤ k+1. According to our assumption that S is a k-MOC-CDS, there exists
a fully intersecting (u′,u1)-path with length at most d(u′,u1)+ 4≤ k+ 5. Let u′1 be
the neighbor of u1 on this path. Denote the (u′,u′1)-segment of the path as P1. Then
P1 has length at most k+4 and all of the vertices are in S. Then consider the pair of
vertices (u′1,u2). Since d(u′1,u2)≤ k+1, the above procedure can be continued (see
Fig. 1). By this way, we find q+ 1 paths P1, . . . ,Pq,Pq+1 such that Pi has length at
most k+4 for i = 1, . . . ,q, and Pq+1 has length at most r+4. Furthermore each path
has all its vertices in S. By noting that the initial vertex of P1 is adjacent with u and
the end vertex of Pq+1 is adjacent with v, we see that the combination of P1, . . . ,Pq+1

yields a fully intersecting (u,v)-path with length at most q(k + 4) + r + 4+ 2 =
qk+ r+ 4q+ 6≤ (1+ 4

k )d(u,v)+ 6. ��
As a consequence of Lemma 1, in order to find a PTAS for g-MOC-CDS

problem, we only need to find a PTAS for k-MOC-CDS problem. In the next section,
we first give a constant approximation for k-MOC-CDS.

3 A Constant Approximation

In this section, we give an algorithm to compute a k-MOC-CDS for a given unit disk
graph. The algorithm makes use of maximal independent set. A vertex set I is called
an independent set if there is no edge between any two vertices in I. A maximal
independent set (MIS) is an independent set which cannot be properly contained in
any other independent set. It is easy to verify that an MIS is also a DS.

The next lemma shows the correctness of Algorithm 1.

Lemma 2. The set S output by Algorithm 1 is a k-MOC-CDS of G.

Proof. First we show that

�S(u,v)≤ d(u,v)+ 4 for any u,v ∈V (G) with d(u,v)≤ k+ 1. (1)

In fact, for any two vertices u,v ∈ V (G), by noting that an MIS is also a DS of
G, we see that both u and v have neighbors in I, say u′ and v′, respectively. Then
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Algorithm 1 A CONSTANT APPROXIMATION OF A k-MOC-CDS PROBLEM ON

UDG
Input: The geometric representation of a connected unit disk graph G and an integer k.
Output: A k-MOC-CDS S of G.
1: Let I be an MIS of G and C = /0.
2: for all u,v ∈ I do
3: if d(u,v) ≤ k+3 then
4: Add all the inner vertices of a shortest (u,v)-path into C.
5: end if
6: end for
7: Return S = I∪C.

d(u′,v′) ≤ d(u,v)+ 2 ≤ k + 3. By the construction of C, we see that �S(u′,v′) =
d(u′,v′)≤ d(u,v)+ 2. Thus �S(u,v)≤ �S(u′,v′)+ 2≤ d(u,v)+ 4 and (1) holds.

Next, we show that S is a CDS of G. In fact, since I is a DS of G, so is S = I∪C.
Suppose that G[S] is not connected. Let C1 and C2 be two components of G[S]. Let
u∈V (C1) and v∈V (C2) such that dG(u,v) = min{dG(x,y) | x ∈V (C1),y ∈V (C2)}.
By noting that u,v lie in different components of G[S], we see that the path PS(u,v)
does not exist and neither does �S(u,v). From (1), we have dG(u,v) > k+ 1. Let w
be the vertex on a shortest (u,v)-path such that d(u,w) = k+ 1. Consider the path
PS(u,w). Let w′ be the neighbor of w on PS(u,w). Then w′ ∈ V (C1) since PS(u,w)
connects w′ to vertex u in C1. However, d(w′,v)≤ d(u,v)− d(u,w)+ 1 = d(u,v)−
k < d(u,v), contradicting the selection of the pair (u,v). Thus we have shown that S
is a CDS and the lemma is proved. ��

In order to show the performance ratio of Algorithm 1, we prove the following
result first.

Lemma 3. Let αk = 2(k+ 2)(k+ 3.5)2+ 1. Then |S| ≤ αk · |I|.
Proof. For each vertex v in I, we draw a disk Dv with center v and radius 0.5. Then
any two of these disks are disjoint since I is an independent set. Furthermore, if v
has hop-distance at most k+ 3 from u, then v has Euclidean distance at most k+ 3
from u. Thus Dv is contained in a disk with center u and radius k+ 3+ 0.5. Thus
the number of vertices having hop-distance at most k + 3 from u is no more than
(k+3.5)2π

0.52π = 4(k+ 3.5)2.
Construct an auxiliary graph H with vertex set I, uv ∈ E(H) if and only if u and

v are at most k + 3 hops away from each other in G. Then each vertex in H has
degree at most 4(k+ 3.5)2 by the analysis in the previous paragraph. It follows that
|E(H)| ≤ 1

2 · 4(k+ 3.5)2|I| = 2(k+ 3.5)2. Since for each edge uv in E(H), we add
at most k+2 vertices into C to connect u and v, we have |C| ≤ 2(k+2)(k+3.5)2|I|.
Thus |S|= |C|+ |I| ≤ [1+ 2(k+ 2)(k+ 3.5)2]|I|= αk|I|. ��

It is well known that every vertex has at most five neighbors in any MIS. Thus
the vertex in A has also at most five neighbors in I, where A is a minimum CDS
of G and I is as the IS in Algorithm 1. Combining this with that every vertex in I
either lies in A or has at least one neighbor in A, we see that |I| ≤ 5|A|. By noting
that the k-MOC-CDS is a special CDS of G, we see that the minimum k-MOC-CDS
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has cardinality at least |A|. Combining this with Lemma 3, we have the following
theorem.

Theorem 1. Algorithm 1 is a 5αk-approximation for k-MOC-CDS of unit
disk graph.

4 A PTAS

In this section, we combine the constant approximation algorithm in Section 3 with
the partition and shifting technique to build a PTAS for the k-MOC-CDS problem
on unit disk graph.

Let W,U be two subsets of vertices of G with W ⊆U . A vertex set S⊆U is called
a k-MOC W-DS of U if S ⊆U is a DS of W and for any pair of vertices (u,v) of W
with dG[W ](u,v) ≤ k+ 1, there exists a fully intersecting (u,v)-path with length at
most dG[W ](u,v)+ 4, where G[W ] is the subgraph of G induced by W . Specially, if
W =U , then k-MOC W -DS is k-MOC-CDS.

Let Q = {(x,y) | 0 ≤ x ≤ q,0 ≤ y ≤ q} be a minimal square containing all the

nodes. For a given real number ε > 0, let m be an integer with m = ' 10αk(3k+14)
ε (.

Set p = )q/m*+ 1, and Q̃ = {(x,y) | −m≤ x≤ mp,−m≤ y≤ mp}. Divide Q̃ into
(p+1)×(p+1) grid such that each cell is an m×m square. Denote this partition as
P(0). For i = 0,1, . . . ,m−1, P(i) is the partition obtained by shifting P(0) such that
the left-bottom corner of P(i) is at the coordinate (i−m, i−m). For each cell e, the
central region Ce of e is the region of e such that each point is at least distance ' k

2(+
3 away from the boundary of e. The inside region Ie of Ce is the region contained
in e such that each point in this region is at least k+ 3 away from the boundary of
Ce. Let Be = e− Ie. Then Be and Ce have an overlap. For simplicity of statement, we
write V I

e =Ve∩ Ie, VC
e =Ve∩Ce, V B

e =Ve∩Be (see Fig. 2).
Denote β (m) = αk · '

√
2m(2. We have the following lemma.

Lemma 4. Let e be a square with width m. There exists a k-MOC VC
e -DS of Ve with

order at most β (m).

� k
2
�+3

k+3

e

Ce

Ie
Be

Fig. 2 An illustration
of Ce, Ie,Be
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Proof. The proof can be done by constructing such a k-MOC VC
e -DS of Ve by using

Algorithm 1.
Note that the graph G[Ve] may not be connected. Assume that there are t

components of G[Ve] and C1,C2, . . . ,Ct are the t components. Applying Algorithm 1
to Ci, let SCi be the output. By Lemma 2 and Lemma 3, we see that SCi is a k-
MOC-CDS of Ci, and |SCi | ≤ αk|ICi | where ICi is an MIS of Ci. Let S =

⋃t
i=1 SCi

and I =
⋃t

i=1 ICi . Then S is a DS of G[Ve], I is an MIS of G[Ve], and |S| ≤ αk|I|.
Furthermore, by noting that any pair (u,v) with dG[Ve](u,v)≤ k+ 1 lie in a same Ci

and dCi(u,v) = dG[Ve](u,v), we see that S is a k-MOC Ve-DS of Ve, and thus a k-MOC
VC

e -DS of Ve.
Next, we show that |S| ≤ β (m). We partition e into small squares, each of which

has width at most
√

2/2. Then there are at most ' m√
2/2
(2 = '√2m(2 small squares.

Since each such small square may contain at most one vertex from I, we see that
|I| ≤ '√2m(2. Hence |S| ≤ αk|I| ≤ β (m). ��
Corollary 1. Let e be a square with width m. The minimum k-MOC VC

e -DS of Ve

can be found in |Ve|O(m2) time.

Proof. Let Se be a minimum k-MOC VC
e -DS of Ve. By Lemma 4, |Se| ≤ β (m).

Thus to find a k-MOC VC
e -DS of Ve by exhaust search, it suffices to check all the

subsets of Ve with order no more than β (m). Then the running time is bounded by

O
(
(|Ve|

1

)

+
(|Ve|

2

)

+ · · ·+ ( |Ve|
β (m)

)
)

= |Ve|O(m2). ��
The PTAS is described in Algorithm 2. It first finds a k-MOC-CDS S0 by the

constant approximation in Algorithm 1. For each i = 0,1, . . . ,m− 1, let B(i) be
the boundary region of the partition P(i), i.e., B(i) =

⋃

e∈P(i) Be. The first loop of
Algorithm 2 finds out a partition i∗ such that |B(i∗)∩S0|= min0≤i≤m−1 |B(i)∩S0|.
In the second loop, a minimum k-MOC VC

e -DS of Ve is found for each cell e, using
exhaust search in Corollary 1. The final output S of the algorithm is the union of
these local optimal solutions and the vertices of S0 which fall into B(i∗).

The next lemma shows the correctness and the running time of Algorithm 2.

Lemma 5. The output S of Algorithm 2 is a k-MOC-CDS of V (G) and the running

time is nO(ε−2).

Proof. First, we show that S is a k-MOC-CDS of V (G).

Claim 1. For any two vertices u,v of G with d(u,v) ≤ k+ 1, we have �S(u,v) ≤
dG(u,v)+ 4.
Assume that u ∈Ve and v ∈Ve′ .
First we consider the case e �= e′. By d(u,v)≤ k+ 1, we see that u ∈V B

e and v ∈
V B

e′ . Consider the path PS0(u,v). Since S0 is a k-MOC-CDS, we see that PS0(u,v)
has length �S0(u,v)≤ dG(u,v)+4≤ k+5. Furthermore, PS0(u,v) cannot contain
any vertices in Ie′′ for any cell e′′ ∈ P(i∗), since otherwise there would exist a
segment of PS0(u,v) with length at least k+3+ ' k

2(+3 > k+5, a contradiction.
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Algorithm 2 A PTAS OF A k-MOC-CDS PROBLEM ON UDG
Input: The geometric representation of a connected unit disk graph G, an integer k and a positive
real number ε > 0.
Output: A k-MOC-CDS S of V .

1: Let m = 10αk(3k+14)
ε .

2: Use the 5αk-approximation algorithm to compute a k-MOC-CDS S0.
3: Let S =V .
4: for i = 0 to m−1 do
5: Let Sb = /0.
6: for all e ∈ P(i) do
7: Let Sb = Sb∪ (V B

e ∩S0).
8: end for
9: if |Sb|< |S| then

10: Let S = Sb and i∗ = i.
11: end if
12: end for
13: for all e ∈ P(i∗) and Ve �= /0 do
14: Compute Se which is a minimum k-MOC VC

e -DS of Ve by exhaust search.
15: Let S = S∪Se.
16: end for
17: Return S.

Thus all the inner vertices of PS0(u,v) lie in the boundary region B(i∗). By the
construction of S in Algorithm 2, we see that all the inner vertices of PS0(u,v) lie
in S. Thus �S(u,v)≤ �S0(u,v)≤ d(u,v)+ 4.
Next, we consider the case e = e′. If u ∈VC

e and v ∈VC
e simultaneously, then the

path PSe(u,v) has length �Se(u,v) ≤ dG[Ve](u,v)+ 4 since Se is a k-MOC VC
e -DS

of Ve. Furthermore, we claim that

dG[Ve](u,v) = dG(u,v). (2)

Suppose that this is not true, then there exists a shortest (u,v)-path in G
containing at least one vertex outside of e, say w. Then d(u,w) ≥ ' k

2(+ 3 and
d(w,v) ≥ ' k

2(+ 3. Thus d(u,v)≥ k+ 6, contradicting that d(u,v)≤ k+ 1. Thus
(2) is proved. It follows that �Se(u,v)≤ dG[Ve](u,v)+4 = dG(u,v)+4. Moreover,
by noting that Se ⊆ S, we see that �S(u,v) ≤ �Se(u,v) ≤ dG(u,v) + 4. Next,
assume, without loss of generality, that u ∈ e−Ce. In this case, v cannot lie in
Ie since otherwise d(u,v) ≥ k + 3 > k + 1. Thus v ∈ Be. It can be proved that
PS0(u,v) cannot contain any vertex in Ie. Suppose this is not true. Then there
exists a vertex w ∈ V (PS0(u,v))∩ Ie. Since ρ(u,w) > k+ 3 and ρ(u,v) ≤ k+ 1
we have ρ(v,w) ≥ ρ(u,w)− ρ(u,v) > 2 and thus d(v,w) ≥ 3. It follows that
�S0 ≥ d(u,w) + d(w,v) ≥ k + 4+ 3 > dG(u,v) + 4, a contradiction. Similarly,
a contradiction can be obtained if PS0(u,v) contains some vertex in Ie′′ for
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any e′′ ∈ P(i∗). Thus we have proved that all the inner vertices of PS0(u,v) lie in
B(i∗). By the construction of S in Algorithm 2, we see that �S(u,v)≤ �S0(u,v)≤
d(u,v)+ 4. Claim 1 is proved.

Claim 2. S is a CDS of G.
By the construction of S, we see that S is a DS of G, since the vertices in Ce are
dominated by Se and the vertices in e−Ce are dominated by S0∩B(i∗). Similar
to the proof of Lemma 2, we can prove that S is a CDS of G.

Next, we consider the time complexity. It is clear that the most time-consuming
step of Algorithm 2 is to compute Se. By Corollary 1, we see that it takes |Ve|O(m2)-
time to compute Se for each cell e. Thus the complexity of Algorithm 2 is bounded
by ∑e∈P(i∗) |Ve|O(m2) = |V |O(m2) = |V |O(ε−2). ��

Next, we analyze the performance ratio of Algorithm 2.

Lemma 6. Algorithm 2 is a (1+ ε)-approximation for k-MOC-CDS problem of a
UDG.

Proof. Let A be a minimum k-MOC-CDS of G and S be the output of Algorithm 2.
It suffices to show that |S| ≤ (1 + ε)|A|. For each cell e ∈ P(i∗), let Ae = A∩ e.
Then A =

⋃

e∈P(i∗) Ae, where i∗ is the integer as in Algorithm 2. First we have the
following claim.

Claim 1. Ae is a k-MOC VC
e -DS of Ve.

First we see that Ae is a DS of VC
e , since each vertex in VC

e has a neighbor in A
and this neighbor must lie in Ve.
Suppose there exists a pair of vertices (u,v) in VC

e with dG[Ve](u,v) ≤ k+ 1 such
that �Ae(u,v)≥ dG[Ve](u,v)+5≥ dG(u,v)+5. By noting that A is a k-MOC-CDS,
we see that �A(u,v)≤ dG(u,v)+4 ≤ k+5. Then PA(u,v) has to use some vertex
not in Ae, say w. The vertex w divides PA(u,v) into two segments, (u,w)-segment
and (w,v)-segment. By noting that u,v ∈Ce and w �∈Ve, we see that both the two
segments have length at least ' k

2(+3. Thus �A(u,v)≥ 2(' k
2(+3)≥ k+6> k+5,

a contradiction. Claim 1 is proved.
Claim 2. Each vertex of S0 lies in at most 6k+ 28 V b

e ’s among all cells of the m
partitions.

From the definition, we see that each point in Be has Euclidian distance at most
k+ 3+ ' k

2(+ 3≤ 3k
2 + 7 from the boundary of e. Then this claim can be seen from

Fig. 3.
By Claim 1, we see that |Ae| ≥ |Se|, where Se is the local optimal solution for cell

e in Algorithm 2. Let SB
i = B(i)∩S0. Then SB

i∗ = argmin{|SB
i | | 0 ≤ i≤ m− 1} and

S = SB
i∗ ∪
(
⋃

e∈P(i∗) Se

)

. Thus
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Fig. 3 When the partition
shifts, each vertex falls into at
most 6k+28 boundary
regions

m|S| ≤ m
∣

∣

∣

⋃

e∈P(i∗)
Se

∣

∣

∣+
m−1

∑
i=0
|SB

i |

≤ m ∑
e∈P(i)

|Se|+
m−1

∑
i=0
|
⋃

e∈P(i)

V B
e ∩S0|

≤ m ∑
e∈P(i)

|Ae|+(6k+ 28)|S0|

≤ m|A|+(6k+ 28)5αk|A|
= (m+ 10(3k+ 14)αk)|A|.

The fourth inequality holds because S0 is a 5αk-approximation. It follows that |S| ≤
(1+ 10(3k+14)αk

m )|A|= (1+ ε)|A| and the performance ratio follows. ��
By Lemma 1, we see that k-MOC-CDS problem is equivalent to the g-MOC-CDS

problem. Thus we have the following theorem.

Theorem 2. Algorithm 2 is a (1+ ε)-approximation for g-MOC-CDS of UDG.
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Power Control in Wireless Ad Hoc Networks:
Stability and Convergence Under Uncertainties

Themistoklis Charalambous

Abstract A successful distributed power control algorithm requires only local
measurements for updating the power level of a transmitting node, so that eventually
all transmitters meet their QoS requirements, i.e. the solution converges to the global
optimum. There are numerous algorithm which claim to work under ideal conditions
in which there exist no uncertainties and the model is identical to the real-world
implementation. Nevertheless, the problem arises when real-world phenomena are
introduced into the problem, such as uncertainties (such as changing environment
and time delays) or the QoS requirements cannot be achieved for all the users in
the network. In this chapter, we study some distributed power control algorithms
for wireless ad hoc networks and discuss their robustness to real-world phenomena.
Simulations illustrate the validity of the existing results and suggest directions for
future research.

1 Introduction

Wireless communication is used as a term for transmission of information from
one place to another without using cables. This may be one-way communication
as in broadcasting systems (such as radio and TV), or two-way communication
(e.g. cellular phones). Wireless communication may be via radio frequency (RF)
communication, microwave communication or infrared. In wireless networking, in
general, radio waves carry the signal over the communication path.

Applications of the wireless technology encompass cellular phones, satellite
television, personal digital assistants (PDAs), global positioning systems (GPS)
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Fig. 1 An example of a cellular topology

units, garage doors, wireless computer equipments (mice, keyboards, printers) and
wireless networking.

Even though wireless communication has some disadvantages over the wired
communication (security issues and lower data rates), there are plenty of advantages
that make them desirable. The advantages of wireless compared to wired commu-
nication are: (a) mobility, (b) faster speed of deployment, (c) accessibility of areas
that are difficult to reach, and (d) lower cost and effort in adding or removing a
subscriber compared to the cost required to install cables for a wired connection.

At the moment, two general types of wireless communication systems have
been realised. The first type is cellular systems (e.g. GSM, GPRS, UMTS), based
on the fixed infrastructure of base stations. They consist of a number of mobile
nodes, and a number of strategically placed immobile base stations that do not have
communication needs of their own and exist to serve the communication needs of
the mobile nodes. They communicate with each other through high-speed wired
or wireless connections to form a cellular network of base stations, which is in
turn interconnected to the public switched telephone network (PSTN) (as shown in
Fig. 1). A mobile node typically only communicates with the base station that lies
in its cell, and will have to use that base station to send data both to other networks,
such as the PSTN, and to other mobile users that belong to the same network, no
matter how close these users are.

The second type is the peer-to-peer (P2P) radio communication systems (e.g.
Bluetooth, UWB, ZigBee), where there is no fixed infrastructure. Networks based
on P2P radio communication are called mobile ad hoc networks. The simplest
ad hoc network is a P2P network formed by a set of two nodes within range of
each other that dynamically configure themselves to set up a temporary single-hop
network. Due to the ease of deployment and a foreseeable wide range of commercial
applications, there has been an explosive growth of interest in MANETs. In such
networks, nodes communicate with each other without the support of a fixed
infrastructure, and each node can act as a source, a destination, or as a relay for
the traffic of other nodes (see Fig. 2).

An advantage of MANETs over cellular networks is their flexibility. If a node
runs out of battery, or malfunctions, or disappears for some reason, the nodes in its
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Fig. 2 An example of an ad hoc topology

vicinity will take over its routing responsibilities. On the contrary, if a base station
becomes unavailable, then all the nodes in its cell will lose their connection to the
network, unless a handoff occurs to another base station, if one happens to be nearby.
Another advantage is that MANETs achieve higher resource utilisation; in cellular
networks, users that do not have a good wireless link with any base station are
either denied service, or the system consumes a lot of resources (bandwidth and
energy) to support their operation. On the other hand, in MANETs there are many
different paths with which a packet can reach its destination. If the channel link
quality between two nodes is not good—provided there are other nodes around to
handle the traffic—another route will be utilised. Of course, MANETs cannot be
used for far away communication, since that would require a huge number of hops
and probably a drop of the signal. A combination of the two types of networks could
combine the benefits of each system.

The potential of deployment of wireless ad hoc networks, where infrastructure
is either undesirable or infeasible, exists in many scenarios, which among others
include battlefield communications [1], disaster recovery efforts [2], interactive
information sharing, wireless traffic sensor networks [3], ecological habitat mon-
itoring [4] and industrial process control. In addition, MANETs provide the ability
to enhance new applications, alleviate inevitable accidents, anticipate destructive
events, as well as observe and understand real-world phenomena. This opportu-
nity for autonomous communication between wireless devices also provides the
potential to burgeon new breakthrough scientific advances. Examples of networks
deployed that rely on wireless ad hoc networks in order to extend the Internet
and/or support well-defined application requirements are mesh, sensor, vehicular
and opportunistic networks.

Traditionally, network protocols have a strictly layered structure and imple-
ment congestion control, routing and scheduling independently at different layers.
However, the wireless channel is a shared medium and interference-limited. In
order to use the wireless channel more efficiently the interference and contention
among links should be exploited. Thus, in wireless networks, there exist issues that
naturally span many layers.

Our focus is mainly on the power control algorithm that specifies the power
with which signals are transmitted. The problem is more complicated than a simple
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tuning problem, since the choice of the power affects many aspects of the operation
of the network. In particular, the transmission power [5]:

• Determines the received signal quality, thus affecting the physical layer.
• Determines the range of the transmission, affecting the network layer since the

transmission range affects routing.
• Determines the magnitude of the interference, which causes congestion; thus, it

affects the transport layer.

Cross-layer design in communication networks, especially in wireless networks, has
attracted great attention recently (for an overview, see, e.g. [6,7]). This characteristic
of the wireless network should be viewed as an opportunity for a cross-layer design
in order to optimise the performance of the network.

In this chapter, we study the stability of some power control algorithms and
their robustness to time delays and channel variations, important aspects that are
encountered in real-world situations and affect the stability and performance of
algorithms. More specifically, we study the conditions for stability of the well-
known Foschini–Miljanic algorithm [8] when the topology changes or there exist
time-varying delays during the implementation of the algorithm. In addition, the
general framework presented by Yates is also presented drawing the parallels to the
Foschini–Miljanic algorithm. Furthermore, we show for the first time the similarity
of the linear positive systems and the linear power control algorithm presented in
this chapter. Thus, we can easily use new results on positive systems in order to
study the properties of the FM algorithm.

The remainder of this chapter is organised as follows: In the next section,
we present related work in the field, and next, the notation used throughout the
chapter is introduced. Then, in Sect. 4, the system model, which comprises the
network topology and the channel conditions, is presented. Next, centralised and
distributed approaches to the power control problem are presented. In Sect. 7, we
show the similarities between linear positive systems and the FM algorithm For
this algorithm, conditions for stability with delays (Sect. 8) and changing topology
(Sect. 10) are explained. Illustrative examples in Sect. 10 show the validity of the
results, and in Sect. 11 useful conclusions about the results presented are drawn.
Finally, in Sect. 12, future directions and open problems in the area of power control
in wireless ad hoc networks are discussed.

2 Related Work

Since wireless channel is a shared medium, it is limited by interference. Distributed
algorithms preferably require no or minimal explicit message passing; since each
wireless node has no knowledge of the number of nodes in the network, it is not
aware of the action of others a priori and can only get limited information about the
channel (interference experienced by its intended receiver). The conventional power
control has as objective to meet fixed pre-defined QoS requirements of individual
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communication links. This is accomplished by increasing the transmitter power
when the link condition is poor. Power is a valuable resource in wireless networks,
since the batteries of the wireless nodes have limited lifetime. As a result, power
control has been a prominent research area for all kinds of wireless communication
networks (e.g. [8–13]). Increased power ensures longer transmission distance and
higher data transfer rate. However, power minimisation not only increases battery
lifetime, but also the effective interference mitigation that increases the overall
network capacity by allowing higher frequency reuse. Adaptive power control
in wireless networks allows devices to setup and maintain wireless links with
minimum power while satisfying constraints on QoS. Such power control approach
is very suitable for services with strict QoS requirements, such as voice and video
telephony, with prescribed fixed transmission and bit error rates.

The initial work on power control schemes based on signal-to-interference-
and-noise ratio (SINR) has been done by Zander, where a centralised [14] and
distributed [9] power control algorithms are presented. It is assumed that the thermal
noise is negligible and the power levels of the M transmitters consisting the network
are updated to obtain the greatest signal-to-interference-ratio (SIR) that they are
capable of jointly achieving. In [14] the algorithm is maximizing the minimum SIR,
whereas in [9] Zander proposes the distributed balancing algorithm (DBA) in which
the system approaches the target SIR with probability one in a distributed way, if
a solution to the system exists. However, Zander’s model assumes that there is no
thermal noise in the network and finds the maximum SIR for all users. In [8], a
power control algorithm is derived (Foschini–Miljanic algorithm) that accounts for
the thermal noise and provides power control of wireless ad hoc networks with
user-specific SINR requirements. This algorithm converges to the optimal power
allocation, if there exists one, by use of local information only; namely, the power
and interference measurements of each communication pair are utilised for the
update of the power level on that link. If there does not exist a solution to the
system, then the algorithm fails and the power levels diverge, i.e. the algorithm
converges if there exists a feasible solution to the system and diverges otherwise
because of the hard constraint on SIR requirements. Using this algorithm, every user
tries to achieve its required SIR value, no matter how high the power consumption
is, ignoring the basic fact that power is itself a limited and valuable commodity.

The seminal work of [8] triggered off for numerous publications (e.g. [10, 11,
13, 15–18]) by various authors that extended the original algorithm to account for
additional issues, such as constrained power [10] and admission control [16].

An elegant axiomatic framework for studying more general power control
iterations was proposed by [11]. The so-called standard interference functions
include the linear iterations, and several important nonlinear power control laws.
Various extensions of the basic framework have been proposed in the literature with
the most prominent those by [19, 20].

Recently, Feyzmahdavian et al. [21] explored the connections between the
standard interference function framework and the theory for fixed-point iterations.
It is shown that interference functions do not define contraction mappings and intro-
duced contractive interference functions, that guarantee existence and uniqueness
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of fixed-point along with linear convergence of iterates. It is demonstrated that
several important distributed power control algorithms proposed in the literature
are contractive and derived the associated convergence rates. In some cases, such
as linear iterations [8], the convergence rate coincides with known results from the
literature that has been obtained using a detailed and tailored analysis. In other cases,
such as the utility-based power control [22], the convergence rate is estimated for the
first time in the literature. Feyzmahdavian et al. [21] also provided a link between
standard interference functions and para-contractions. This result is related to the
work by [47], who demonstrated that in logarithmic variables, two-sided scalability
implies global Lipschitz continuity of the interference function, and an alternative
restriction allows to establish linear convergence rates and uniqueness of fixed-
points.

The literature presented in this chapter is by no means exhaustive on the subject.
However, the papers cited are representative of the work done in the area of power
control under uncertainties in wireless ad-hoc networks.

3 Notation

The sets of complex, real and natural numbers are denoted by C, R and N,
respectively; their positive orthant is denoted by the subscript + (e.g. C+). Vectors
are denoted by bold letters whereas matrices are denoted by capital letters. AT and
A−1 denote the transpose and inverse of matrix A, respectively. For two symmetric
matrices A and B, A ! (+)B means that A−B is (semi-)positive definite. By I we
denote the identity of a squared matrix. |A| is the elementwise absolute value of
the matrix (i.e. |A| � [|Ai j|]), and A(<) ≤ B is the (strict) elementwise inequality
between matrices A and B. A matrix whose elements are nonnegative, called
nonnegative matrix, is denoted by A≥ 0, and a matrix whose elements are positive,
called positive matrix, is denoted by A > 0. σ(A) denotes the spectrum of matrix A,
λ (A) denotes an eigenvalue of matrix A, and ρ(A) denotes its spectral radius. det(A)
denotes the determinant of a squared matrix A and diag(xi) the matrix with elements
x1, x2 , . . . on the leading diagonal and zeros elsewhere.

4 Model

The system model can be divided into two levels: the network as a whole and the
channel. Thus, we have the network model and the channel model. The network
model concerns the general topology of the nodes and their characteristics. The
channel model describes the assessment of the link quality between communication
pairs and the interaction between the nodes in the network.
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4.1 Network Model

In this study, we consider a network where the links are assumed to be unidirectional
and each node is supported by an omnidirectional antenna. For a planar network
(easier to visualise without loss of generality), this can be represented by a graph
G = (N ,L ), where N is the set of all nodes and L is the set of the active links in
the network. Each node can be a receiver or a transmitter only at each time instant
due to the half-duplex nature of the wireless transceiver. Each transmitter aims to
communicate with a single node (receiver) only, which cannot receive from more
than one node simultaneously. We denote by T the set of transmitters and R the set
of receivers in the network.

4.2 Channel Model

A transmitted radio signal is an electromagnetic (EM) wave. As with sound waves,
electromagnetic waves can be reflected, diffracted and attenuated depending upon
the medium and the size (and number) of the obstacles the wave encounters. There
exist many phenomena that deteriorate the signal at the receiver, such as noise,
interference, multi-path fading, shadowing and attenuation with distance.

The link quality is measured by the SINR. The channel gain on the link between
transmitter i and receiver j is denoted by gi j and incorporates the mean path-loss as
a function of distance, shadowing and fading, as well as cross-correlations between
signature sequences. All the gi j’s are positive and can take values in the range (0,1].
Without loss of generality, we assume that the intended receiver of transmitter i
is also indexed by i. The power level chosen by transmitter i is denoted by pi.
νi denotes the variance of thermal noise at the receiver i, which is assumed to be
additive Gaussian noise. The interference power at the ith node, Ii, includes the
interference from all the transmitters in the network and the thermal noise, and is
given by

Ii = ∑
j �=i, j∈T

g ji p j +νi. (1)

Note that it is implicitly assumed that the interference is a linear combination
of all transmitting powers with some given nonnegative coefficients. Thus, the
power of all interfering wireless nodes at the receiver is equal to a weighted sum
of all transmit power levels with nonnegative weights plus the noise power. The
interference is called an affine interference function since it is affine in the power
vector. Therefore, the SINR at the receiver i is given by

Γi =
giipi

∑ j �=i, j∈T g jip j +νi
. (2)
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Fig. 3 An example of a
network consisting of two
communication pairs only.
Each pair i consists of a
transmitter Si and a receiver
Ri connected with a solid line
while the grey dotted arrows
indicate the interference that
transmitters cause to the
neighbouring receivers

Due to the unreliability of the wireless links, it is necessary to ensure quality of
service (QoS) in terms of SINR in wireless networks. Hence, independently of nodal
distribution and traffic pattern, a transmission from transmitter i to its corresponding
receiver is successful (error-free) if the SINR of the receiver is greater or equal to
the capture ratio γi (Γi ≥ γi) (Fig. 3). The value of γi depends on the modulation and
coding characteristics of the radio. Therefore,

giipi

∑ j �=i, j∈T g ji p j +νi
≥ γi. (3)

Inequality (3) depicts the QoS requirement of a communication pair i while
transmission takes place. After manipulation it becomes equivalent to the following:

pi ≥ γi

(

∑
j �=i, j∈T

g ji

gii
p j +

νi

gii

)

. (4)

In matrix form, for a network consisting of n communication pairs, this can be
written as

p≥ Γ Gp+η, (5)

where Γ = diag(γi), p =
(

p1 p2 . . . pn
)T

, ηi =
γiνi
gii

and

Gi j =

{

0 , if i = j,
g ji
gii

, if i �= j.
(6)

Let

C = Γ G, (7)

so that (5) can be written as

(I−C)p≥ η , (8)
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The matrix C has nonnegative elements and it is reasonable to assume that is
irreducible, since we are not considering totally isolated groups of links that do
not interact with each other. By the Perron–Frobenius Theorem [23], we have that
the spectral radius of the matrix C is a simple eigenvalue, while the corresponding
eigenvector is positive componentwise. The necessary and sufficient condition for
the existence of a nonnegative solution to inequality (8) for every positive vector η
is that (I−C)−1 exists and is nonnegative. However, (I−C)−1 ≥ 0 if and only if
ρ(C)< 1 [24] (Theorem 2.5.3), [25], where ρ(C) denotes the spectral radius of C.

Remark 1. A sufficient condition to establish stability to the system without
requiring the knowledge of the whole matrix C, could be ‖C ‖∞< 1, i.e.

gii

∑ j �=i, j∈T g ji
> γi ∀ i. (9)

Since ρ(C) ≤‖C ‖∞, this condition is more conservative. This condition is equiv-
alent to H being a diagonally dominant matrix with all main diagonal entries
being positive. Hence, this guarantees that all the eigenvalues of matrix H have
positive real part, [23]. It, therefore, provides an upper bound on the achievable
target SINR levels in a given network, and hence, leads to a soft capacity constraint
for the underlying system. The return for this conservatism is that the only extra
information required at each transmitter is a measure of the sum of the channel
gains at its receiver by all other transmitters. Hence, we are able to use a distributed
way of updating the desired SINR levels and keep the network functioning. In case
a communication pair cannot reach its desired SINR and cannot be compromised by
a lower SINR level, then the transmitter may wish to either back-off until condition
(9) is satisfied for a reasonable SINR level, or go closer to the receiver, if possible
(i.e. increase gii).

Definition 1 ((Feasibility)[26]). A set of target SINRs Γi is said to be feasible
with respect to a network, if it is possible to assign transmitter powers pi ≥ 0
so that the requirement in inequality (3) is met for all nodes transmitting in the
network. Analogously, the power control problem is said to be feasible under the
same conditions. Otherwise, the target SINRs and the power control problem are
said to be infeasible.

Remark 2. We have not specified any model for determining the positions of the
nodes, since we investigate the general case of a network that any position could
be possible. We have also not specified any model related to the propagation of
signals. In our context, these two models will ultimately specify the channel gains,
gi j. Nevertheless, they are of secondary importance in this study since it is focused
on how the QoS is improved given the channel gains and it only depends on the
power of the received signals.
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Remark 3. Note that the effect of nodes’ mobility is not considered in this study.
However, this could be relaxed to the case of low mobility, where the link structure
is expected to change slowly with respect to the packet rates and network updates.

5 Centralised Power Control

When considering centralised power control, it is assumed that all channel gains
are available to a central station and a power control optimisation is conducted
centrally. One example is provided in this section. The aim is to minimise the overall
transmitted power under the constraint that each wireless node maintains its SINR
above the desired SINR. Hence, the optimisation problem is given by the following:

Model 1 Mathematical formulation: power minimisation
Minimise

∑
i∈T

pi (10)

subject to:

p≥Cp+η (11)

p > 0. (12)

If the spectral radius of matrix C is less than unity, then (I−C) is invertible and
positive [23]. Therefore, the network is feasible, and the optimal solution is given by

p∗ = (I−C)−1η . (13)

As aforementioned, in order to find the optimal solution in a centralised manner,
all the channel gains are known to a central station. However, this is impossible
in wireless ad hoc networks due to the nature of their deployment and operation.
Furthermore, even if it was possible to gather this information, the network changes
continuously due to mobility, and in large networks it would be impossible to collect
all the information centrally continuously and calculate the optimal power in real
time, since the computational complexity and channel estimation overheads increase
rapidly with the number of nodes in the network.

In the next section, some algorithms are presented in which the defined cen-
tralised optimisation problem (5) is solved in a distributed fashion. Indeed, not only
the power control algorithm is able to find a feasible solution, but it converges to the
optimal solution.
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6 Distributed Power Control

In this section, the most prominent power control algorithms are reviewed; namely,
the Foschini–Miljanic (FM) algorithm and later a general framework in which the
FM algorithm belongs.

6.1 Review of the Foschini–Miljanic Algorithm

The Foschini–Miljanic algorithm [8] is a distributed algorithm where a transmitter
uses only information about the interference the intended receiver experiences. It
succeeds in attaining the required SINRs for all nodes in the network if a solution
exists and fails if there does not exist a solution.

6.1.1 The Continuous-Time Algorithm

The following differential equation is defined in [8] in order to model the
continuous-time power dynamics:

dpi(t)
dt

= ki

(

−pi(t)+ γi

(

∑
j �=i, j∈T

g ji

gii
p j(t)+

ν
gii

))

, (14)

where ki ∈ R, ki > 0, denotes the proportionality constant, g ji denotes the channel
gain on the link between transmitter j and receiver i and γi denotes the desired SINR.
It is assumed that each transmitter i has knowledge of the interference at its receiver
only,

Ii(t) = ∑
j �=i, j∈T

g ji

gii
p j(t)+

ν
gii

.

In matrix form this is written as

ṗ(t) =−KHp(t)+Kη, (15)

where K = diag(ki) and

Hi j =

{

1 , if i = j,

−γi
g ji
gii

, if i �= j.
(16)

For this differential equation, it is proved that the system will converge to the optimal
set of solutions, p∗ > 0, for any initial power vector, p(0) > 0. Therefore, the
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distributed algorithm (14) for each communication pair leads to global stability of
the distributed system. Note that, at pi(t) = 0, from (14), dpi(t)/dt > 0 restricting
the power to be nonnegative, thus fulfilling the physical constraint that the power
pi ≥ 0. Hence, we should not worry about saturation issues in the system.

Remark 4. Since H is an M-matrix, the system is D-stable, and therefore there
exists diagonal matrix D with positive entries such that DH + HT D ! 0. Pre-
multiplying by MT and post-multiplying by M, where M is a diagonal matrix with
positive entries, then

MT (DH +HT D)M ! 0.

Therefore,

MDHM+(HM)T DM ! 0⇒ EHM+(HM)T E ! 0.

Thus, matrix H is scaled and its stability is not affected, as a consequence of the
diagonal stability property of matrix H. That is why, in the power update formula
(14), any positive gain guarantees stability of the system. More details on D-stability
can be found in the Appendix.

6.1.2 The Discrete-Time Algorithm

As in [8], in the discrete time, we define the time coordinate so that unity is the time
between consecutive power vector iterations. In correspondence with the differential
equation (15), the discrete-time Foschini–Miljanic algorithm is written as in [8],

p(n+ 1)−p(n) =−KHp(n)+Kη. (17)

The distributed power control algorithm is then given by

pi(n+ 1) = (1− ki)pi(n)+ kiγi

(

∑
j �=i, j∈T

g ji

gii
p j(n)+

ν
gii

)

. (18)

It has been shown that whenever a centralised “genie” [8, 27] can find a power
vector, p∗, meeting the desired criterion, then so long as the proportionality constant
(ki) is appropriately chosen (ki ∈ (0,1]), then the iterative algorithm (18) converges
from any initial values for the power levels of the individuals transmitters. Note that,
since ki ≤ 1, from (17) it is obvious that pi(n+ 1) is always nonnegative. Thus, the
physical constraint that the power pi ≥ 0 is fulfilled.
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Theorem 1. If the spectral radius of matrix C in (7) is less than 1, then the
continuous-time Foschini–Miljanic power control algorithm

dpi(t)
dt

= ki

(

−pi(t)+ γi

(

∑
j �=i, j∈T

g ji

gii
p j(t)+

v
gii

))

, i ∈ T ,

and the discrete-time Foschini–Miljanic algorithm

pi(n+ 1) = (1− ki)pi(n)+ kiγi

(

∑
j �=i, j∈T

g ji

gii
p j(n)+

ν
gii

)

,

for γi, g ji, ν > 0, are asymptotically stable for any initial state pi(0)> 0 and
for any proportionality constant, ki > 0 in the continuous-time FM algorithm,
and 0 < ki < 1 in the discrete-time FM algorithm.

6.2 Review of Yates’ Framework

Although affine interference functions are the most common ones, they are not the
only ones that can be encountered in real-world networks. Hence, a more general
framework of interference functions is introduced here.

Now the interference function for node i ∈ R, Ii : Rn → R is any standard
interference function that fulfills the following axioms:

Definition 2 (Standard Interference Function [11]). We say that Ii : Rn → R is
a standard interference function if each of the following holds:

1. Ii(p)> 0 for all p≥ 0 (positivity).
2. Ii(αp) < αI(p) for any p≥ 0 and α > 1 (scalability).
3. Ii(p(1))≥ I(p(2)) if p(1) ≥ p(2) (monotonicity).

The SINR is hence given by

SINRi(p) = pi/Ii(p)≥ 0 .

It may be verified that the affine interference function assumed in [8] and given by

Ri(p) = ∑
j �=i, j∈T

g ji

gii
p j +

νi

gii
(19)

satisfies the axioms.
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Now the power control problem is reduced to finding a power vector p satisfying
p ≥ I(p), which expresses the fact that the transmitted power must overcome the
interference.

6.2.1 The Continuous-Time Algorithm

In the continuous-time algorithm, by replacing γiRi(p) in the FM algorithm with the
general form of interference function Ii(p), the differential equation becomes

dpi(t)
dt

= ki (−pi(t)+ Ii(p(t))) . (20)

6.2.2 The Discrete-Time Algorithm

The iteration function in the general form is called the standard power-control
algorithm, and it is given by

Pi(n+ 1) = Ii(p(n)). (21)

The general nonlinear representation of the interference function allows for con-
straints on the power levels of the wireless devices, as it holds in real world. For
example, if there exists a maximum power only then IM(p) = min{pmax, I(p)}, or
a minimum power only, then Im(p) = max{pmin, I(p)}. If there exist constraints on
both maximum and minimum power, then Ic(p) = max{pmin, IM(p)} (equivalently
Ic(p) = min{pmax, Im(p)}).

It should be noted that if the power vector is positive at the initial state,p(t0)> 0,
then it remains positive for all times t > 0, p(t) > 0, for both the continuous-and
discrete-time algorithms even in the presence of delays.

Theorem 2. If the algorithm (continuous or discrete) has a fixed convergent
point, then that fixed point is unique. The continuous-time algorithm

dpi(t)
dt

= ki (−pi(t)+ Ii(p(t))) ,

and discrete-time algorithm
(continued)
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(continued)
Pi(n+ 1) = Ii(p(n)),

converge to that fixed point p∗ for any initial power vector p when operating
in both synchronous and asynchronous modes.

7 Power Control in Wireless Networks and Positive Systems

Firstly, the concept of positive systems is introduced, and then we show the relation
between positive systems and power control algorithms.

Definition 3. A system is called positive if, for a positive initial condition, all its
states remain in the positive orthant throughout the time.

It means that the states and outputs of positive systems are nonnegative whenever
the initial conditions and inputs are nonnegative. The states of positive systems are
confined within a cone located in the positive orthant rather than on the whole space
Rn [28]. In general, a continuous system,

ẋ(t) = f (x(t)), x(0) = x0,

is positive, if Rn
+ is forward invariant (x0 ≥ 0 implies x(t,x0)≥ 0 for all t ≥ 0).

For example, the linear time-invariant (LTI) system ẋ = Ax is said to be positive
if x(0) = x0 ≥ 0 implies that x(t)≥ 0 for all t ≥ 0. An LTI system is positive, if and
only if, matrix A is an M-matrix [29]. By means of a linear co-positive Lyapunov
function that captures the properties of positive systems, [30] proposed necessary
and sufficient conditions for stability of such systems, triggering off for further
research in positive systems, such as [31, 32]. The linear function

V (x) = vT x

defines a linear co-positive Lyapunov function for the positive LTI system ẋ = Ax,
if and only if the vector v ∈Rn satisfies v > 0 and AT v < 0.

By the definition of positive systems, we can easily deduce that both the FM
algorithm (both continuous and discrete) and Yates’ framework constitute a positive
system, since the power levels remain positive throughout the operation of the
network. The FM algorithm constitutes a linear positive system. Hence, we are
able to use existing results and properties to study the stability and performance
of the FM algorithm. Similarly, the general framework introduced also fulfils the
conditions for a positive system.
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8 On the Stability of Power Control Algorithms with Delays

In [33] by using the multivariate Nyquist criterion [34] and by determining the
set in which the spectrum of the multivariate system lies, we prove that both the
continuous-and discrete-time FM algorithms are GAS for arbitrarily large constant
time delays. Note that stability of the discrete-time algorithm in the presence
of delays (constant or time-varying) is stated in [15], where he proves that the
system converges under asynchronous operation. These results indicate that the
FM algorithm, compared to other power control algorithms (e.g. example [35]),
is suitable to be used in any network without requiring any bound on constant time
delays. Making the connection with positive systems, stability of the continuous-
time Foschini–Miljanic algorithm with constant time delays is guaranteed by a
linear co-positive Lyapunov function, as proposed in [36].

The robustness of the algorithm in the case where there exist time-varying
delays was also studied. Firstly in [37], a dependent of delays (DoD) approach
was adopted and derived the stability conditions for which the system is stable
by proposing a Lyapunov-Krasovskii functional in the form of a linear matrix
inequality (LMI) [38]. It is an effective and practical methodology providing LMI
conditions which can be solved efficiently with semi-definite optimisation solvers in
a polynomial time ensuring the global stability of the wireless network. Numerical
examples though showed that the Foschini–Miljanic power control algorithm is able
to converge to the optimal vector of powers even in cases of time-varying delays,
when the nodes adjust their proportionality constants (ki) accordingly. Next, in [39],
an independent of delays (IoD) stability condition for the FM algorithm under
time-varying delays is presented. The functional proposed is the classical Lyapunov-
Krasovskii which provides IoD condition. It is proven that the continuous-time FM
algorithm is asymptotically stable whatever the delay introduced into the network,
provided that the delay derivative is less than one. Hence, the nodes can arbitrarily
choose the positive proportionality gains, ki, they wish throughout the operation of
the network, and no communication is required in the network, maintaining the fully
distributed nature of the FM algorithm. Again, making the connection with positive
systems, stability of the FM algorithm for Lebesgue measurable, time-varying but
bounded delays can be deducted by [40] in which the authors find the stability
conditions for continuous-time linear positive systems with time-varying delays and
changing topologies. For the discrete-time FM algorithm, many approaches prove
the algorithm’s stability in the presence of time-varying delays; for example, [11,28]
prove asymptotic stability, whereas [15, 21, 41] prove convergence with linear
convergence rates.

The following theorem summarises the results on the stability of the FM
algorithm with delays:
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Theorem 3. If the spectral radius of matrix C in (7) is less than 1 and
the delay is Lebesgue measurable and bounded, then the continuous-time
Foschini–Miljanic power control algorithm with time-varying delays

dpi(t)
dt

= ki

(

−pi(t)+ γi

(

∑
j �=i, j∈T

g ji

gii
p j(t−Ti(t))+

v
gii

))

, i ∈ T ,

and the discrete-time Foschini–Miljanic algorithm with time-varying delays

pi(n+ 1) = (1− ki)pi(n)+ kiγi

(

∑
j �=i, j∈T

g ji

gii
p j(n−Ti(n))+

ν
gii

)

,

for γi, g ji, ν > 0, are asymptotically stable for arbitrarily large time-
varying delays, Ti(t),Ti(n) > 0, for any initial state pi(0) > 0 and for any
proportionality constant, ki > 0 in the continuous-time FM algorithm, and
0 < ki < 1 in the discrete-time FM algorithm.

Yates [11] showed that if an iteration involving standard interference function
converges synchronously, it also converges when executed totally asynchronously.
A similar result holds for contracting interference functions [21].

9 On Topology Changes in Wireless Networks and Stability

Due to mobility and the dynamic environmental changes, there exist cases for which
channel variability time and network updates scales are similar. In addition, the
network links may change even for stationary users depending on the network
demands. For these reasons, it is important to find the conditions for which the
network is feasible, and hence the power control algorithm is stable throughout the
changes.

Proposition 1 ([42]). If the network as a system is feasible for the worst case where
the link assignment causes maximum interference in all wireless receivers, then the
FM algorithm is stable for all time-variations as well.

For the proof of the proposition, we need the following result [23](Theorem
8.1.18):
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Theorem 4. Let A ∈ CN×N and B ∈RN×N, with B≥ 0. If |A| ≤ B, then

ρ(A)≤ ρ(|A|)≤ ρ(B).

Proof. For the worst-case scenario, matrix Cworst that characterises the network is a
non-negative matrix that satisfies

C ≤Cworst,

for all possible network configurations. That is, since the off-diagonal entries of
the matrix depict the interference a node experiences from all other nodes in the
network, then in the worst case scenario, matrix Cworst is bigger entry-wise than any
other matrix C. Since the system is stable for the worst-case, then ρ(Cworst) < 1.
Therefore, from Theorem 4,

ρ(C)≤ ρ(Cworst)< 1.

As proven in [43], as long as the spectral radius of matrix C remains less than 1 in
changing topology, then the FM power control algorithm is stable. ��

Secondly, we demonstrate the condition for which a network is stable under
channel-varying conditions. The spectral radius of a real matrix A is defined by

ρ(A) := max{|λ | : λ is an eigenvalue of A}.

Using the identity (see, e.g. [23])

ρ(A) = lim
k→∞

‖Ak‖1/k,

the spectral radius to a set of matrices is generalised. Hence, for a set of matrices
Σ = {A1, . . . ,As} ∈Rn×n, the joint spectral radius ρ̄(Σ) is defined by [44]

ρ̄(Σ) = limsup
k→∞

ρ̄i(Σ),

where ρ̄i(Σ) = sup{‖Ai1Ai2 . . .Aik‖1/k ∀Ai ∈ Σ} for k ≥ 1.
In the case of changing topology the convergence condition is that the joint

spectral radius ρ̄(Σ) is smaller than 1, i.e.,

ρ̄(Σ) = lim
k→∞

‖A1A2 . . .Ak−1Ak‖1/k.
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Since the logarithm of the joint spectral radius coincides with the Lyapunov
exponent, this is equivalent to requiring the Lyapunov exponent λF to be negative,
where

λF = lim
k→∞

1
k

log‖A1A2 . . .Ak−1Ak‖,

In [45] it is proven that the condition of stability is that the Lyapunov exponent
is negative, if and only if Σ is a stationary ergodic sequence of random matrices.
In [46], they lift this assumption, and they show that the stability condition is purely
deterministic and is equivalent to ρ̄(Σ)< 1.

Summarising the existing results on changing topology in wireless ad-hoc
networks we can state the following theorem:

Theorem 5. If the network as a system is feasible for the worst case where
the link assignment causes maximum interference in all wireless receivers,
then the FM power control algorithm is stable for all time variations of the
network as well. Otherwise, for switching network topologies, if the joint
spectral radius ρ̄(Σ) is smaller than 1, i.e.,

ρ̄(Σ) = lim
k→∞

‖A1A2 . . .Ak−1Ak‖1/k,

then the FM power control algorithm is stable.

In [40], the authors consider both the effects of time-varying delays and changing
network topologies. They provide a new theoretical result concerning the stability of
such positive systems, which they use to show that the Foschini–Miljanic algorithm
is globally asymptotically stable even under those harder, more realistic conditions.
These results are of practical importance when designing wireless networks in
changing environments with communication delays, as is typically the case for
CDMA networks.

10 Illustrative Examples

In this section, the stability of the Foschini–Miljanic algorithm is studied via
illustrative examples.
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Fig. 4 Example of a wireless
ad-hoc network of n = 8
nodes, consisting of four
communication pairs
{Si → Ri}. The grey dotted
arrows are included to
indicatively show the
interference caused to the
receivers by S1

10.1 Power Control with Constant Delays

Consider an ad-hoc network consisting of four communicating pairs, i.e. eight
mobile devices in total. For this example we have that γi = 3 and ν = 0.04 W. The
initial power pi(0) for each transmitter is 1 W. The network is described by matrix
C and it is schematically shown in Fig. 4.

C =

⎛

⎜

⎜

⎝

0 0.5405 0.3880 0.1131
0.2143 0 0.0101 0.0323
0.0522 0.0070 0 0.0271
0.0084 0.0016 0.0385 0

⎞

⎟

⎟

⎠
.

For this setup, the Perron–Frobenius eigenvalue of C is 0.3759, so the power
control algorithm is stable, even though ‖ C ‖∞> 1. This is illustrated in the top
figure (Fig. 5) for the continuous-time FM algorithm. For the same network, utilising
the discrete-time FM algorithm, the system is asymptotically stable, provided
the proportionality constant is appropriately chosen such that ki ∈ (0,1]. This is
demonstrated in the bottom figure (Fig. 5) for a proportionality constant ki = 1 and
different time delays for each communication pair.

In a distributed implementation of the algorithm where all transmitters satisfy
ρ(C) < 1, assuming that the nodes acquire the information required for updating
their desired SINRs, the first communicating pair has to reduce the data rate, and
hence require smaller SINR, such that

∑
j

C(i, j) < 1, i.e., γ1 < 2.8802.
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Fig. 5 Continuous and discrete time FM algorithm with delays (T = {15,2,17,14}). The
algorithm asymptotically converges to the desired SINR in a distributed manner
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Fig. 6 Example of a wireless ad-hoc network of n = 12 nodes, consisting of six communication
pairs {Si → Ri}. Interference caused is not depicted in the figure

10.2 Power Control with Time-Varying Delays

We consider a wireless network with six communicating pairs (shown in Fig. 6)
characterised by matrix (22):

C2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.0414 0.2074 0.2925 0.3998 0.1345
0.0159 0 0.0506 0.0043 0.0422 1.164
0.7335 0.0626 0 0.0364 0.0477 0.4231
0.6359 0.0222 0.0644 0 0.3283 0.0447
0.0227 0.0536 0.0155 0.0215 0 0.0407
0.0228 0.1114 0.2458 0.0030 0.011 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (22)
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Fig. 7 Simulation of the network represented in Fig. 6. Power levels converge to the desired SINR
and to the minimal power vector for different signal generators (sine, sawtooth and steps with
different frequencies)

For this example, the SINR threshold and the thermal noise for each node are
again set to γi = 3 and v = 0.04 mW, respectively. The initial power pi(0) for all
transmitters is set to 1 mW. In this case, the time-varying delays are bounded. For
comparison again, we set the maximum delay to 10 s for all users (Fig. 7).

As proven earlier, the FM algorithm is asymptotically stable for arbitrarily large
time-varying delays and delay derivatives. In this example, the maximum delay is
10 s and the proportionality gain is equal to 3, for all users in the network. The time-
varying delays between the different pairs have been simulated with different signal
generators (sine, sawtooth and steps with different frequencies).

10.3 Quantitative Analysis on the Relation Between the
Convergence Rate and Delays

In this section, we provide a quantitative analysis on how the convergence rate of
the system changes with delays. We divide the study into two subsections. In the
first one, we consider constant delays only, whereas in the second one, we consider
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time-varying delays. For convenience, we use the same maximum delay for all the
users in the network, and we observe how the convergence rate changes with the
maximum delay.

10.3.1 Constant Time-Delays

We again use the network shown in Fig. 6 and we vary the delay of all the users in
the network. We use the same delay for all users in the network since we want to
study the worst rate of convergence for the whole system, and hence, it is the same
as all having the maximum delay in the network. We vary the delay from 1 to 20 s
and we observe the convergence rate. The proportionality gain is kept constant and
equal to 0.1. For larger gains the rate of convergence is higher, but more oscillatory.
The results from the simulations are shown in Fig. 8, where the rate of convergence
seems to approximately follow a linear relationship with time delays. Therefore, in
practice the convergence time does not grow much faster than the communication
delays, as expected, supporting the significance of the results derived.

10.3.2 Time-Varying Delays

For the same network we observe the convergence for time-varying delay. The
maximum delay is the same for all users and the proportionality constant is again
equal to 0.1. The results of our simulations are shown in Fig. 9, and it is evident that
the convergence rate decreases approximately linearly with the time-varying delay.
Further, an analytical approach could reveal the exact relationship or, at least, lower
bounds on the convergence rate of the system.

10.4 Power Control with Switching Topologies

We consider three network configurations described by the following matrices:

C1 =

⎡

⎣

0 0.35 0.45
0.12 0 0.05
0.04 0.23 0

⎤

⎦ , C2 =

⎡

⎣

0 0.15 0.15
0.40 0 0.20
0.70 0.12 0

⎤

⎦

C3 =Cw =

⎡

⎣

0 0.37 0.45
0.40 0 0.27
0.70 0.23 0

⎤

⎦ , ρ(Cw) = 0.8136 < 1.

For this example, the SINR threshold and the thermal noise for each node are
again set to γi = 3 and νi = 4×10−5 W, respectively. The initial power pi(0) for all
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Fig. 8 In this figure, we observe the convergence rate of the FM algorithm in the presence of
constant time delays for each of the users in the network shown in Fig. 6. The delay varies from 1
to 20

transmitters is set to 1 mW. The switching sequence between the different network
configurations is arbitrary, and it is shown at the top in Fig. 10.

The fact that there exist oscillations is due to the switching between different
equilibria, since each topology requires convergence to a different equilibrium point.
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Fig. 9 In this figure we observe the convergence rate of the FM algorithm in the presence of
time-varying delays for each of the users in the network shown in Fig. 6. The delay varies from 1
to 20
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Fig. 10 Simulation of the switching networks represented by matrices C1, C2 and C3, each
consisting of three communication pairs. The switching between the matrices is arbitrary. σ (t)
shows the switching between the matrices. At the lowest level (250) is at C1, at the middle (275) is
at C2 and at the top (300) is at C3

11 Conclusions

In this chapter, we focused on power control in an environment where there exist
time-varying delays within the communicating pairs or changing topologies. We
find the stability condition for the FM algorithm under no, constant and time-varying
delays. We illustrate that the FM algorithm is asymptotically stable whatever the
delay introduced into the network, provided that the system is stable when no delays
are present in the network. Hence, the nodes can arbitrarily choose the positive
proportionality gains, ki, they wish throughout the operation of the network, and no
communication is required in the network, maintaining the fully distributed nature
of the FM algorithm. From the simulations, the validity of the theoretical results
are demonstrated. We also refer to the corresponding results regarding the power
control algorithm under Yates’ framework.
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12 Current Problems and Research Directions

In this work, we have not considered delays on the current value of a node’s state,
which is not always the case since filtering and control signalling introduce delays
to wireless nodes’ state. However, stability and convergence properties of the power
control algorithms are affected. Power control laws of higher order to include
models with delays and delay compensation have been studied in [47, 48] for the
discrete time only, in which more structure of the interference feedback is exploited
in order to find conditions for stability and convergence. Towards this direction,
other methods should be found to resolve the conservativeness of the current results.

Even though stability has been studied for networks with delays and for
changing/switching topology nobody studied the effect of those to effects combined.
That is, what are the stability conditions when there exist both time-varying delays
and the network’s topology is changing?

In view of the proliferation of wireless data though, it is essential to inves-
tigate further transmission schemes, i.e., techniques that facilitate elastic and/or
opportunistic traffic should be considered, where time-varying rates are allowed
and larger time delays can be tolerated. Some schemes tried to deal with the case
where the desired SINR could be adaptive, depending on the channel conditions.
The fluctuation of wireless channels can be exploited using power control in order
to meet QoS requirements, i.e., a node can increase its transmit power whenever
the interference at its receiver is low and decrease it when the interference is
high. In that way, more information is transmitted when the channel conditions are
favourable by adjusting the transmission rate accordingly. This approach enables
the improvement of the system convergence and the satisfaction of heterogeneous
service requirements. Xiao et al. and Abbas-Turki et al. [22, 49] designed some
adaptive power control algorithms that change their QoS requirements depending
on the channel conditions. However, they only consider a single channel and studied
the effects on a single communication pair, ignoring its impact on the stability and
convergence of the whole network as a system. In [50] an opportunistic power
control algorithm is proposed that provides tunable parameters to have trade-off
between throughput and power consumption. The algorithm is proven to converge
to a unique fixed point. However, it does not consider a QoS requirement, but rather
tries to maximise the throughput for individual users. Consequently, none of the
approaches associate the QoS requirement with a cost or utility function that leads
to a solvable power control problem. As a result there is no way to guarantee that
on average their QoS targets are fulfilled.

Appendix: Mathematical Preliminaries

Some notions that are used in this chapter are more thoroughly described in the
appendix, just for completeness.
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Lyapunov Stability

Consider a differential equation

ẋ(t) = f (x(t)), x(0) = x0 (23)

that has a unique solution xe, i.e. f (xe) = 0 has a unique solution given by x = xe.
Let z(t) = x(t)− xe. Then, the differential equation (23) becomes

ż(t) = g(z(t)), z(0) = z0 = x0− xe (24)

that has a unique solution ze = 0, i.e. g(0) = 0 has a unique solution given by z = 0.

Theorem 6 ([51]). Consider a continuously differentiable function V (z) such that

V (z)> 0, ∀z �= 0 (25)

and V (0) = 0. If V̇ (z) ≤ 0 ∀z, then the equilibrium point is stable. If in addition,
V̇ (z) < 0 ∀z �= 0, then the equilibrium point is asymptotically stable. If in addition
to these, V is radially unbounded, i.e., V (z)→ ∞ when z→ ∞, then the equilibrium
point is globally asymptotically stable.

D-Stability

The notion of D-stability was initially introduced in the field of mathematical
economics, but its properties are very useful for the study of dynamic equilibria
and many important classes of matrices are linked with D-stability. The following
summary is adopted from [52].

Definition 4 ([52]). Matrix A ∈ Cn×n is D-stable if DA is stable for all diagonal
matrix D with positive entries.

Remark 5. If A ∈Cn×n is D-stable, then:

1. AD is similar to DA (DA = D(AD)D−1), so it is irrelevant in defining D-stability
whether D is multiplied by the left or the right side of A.

2. A is nonsingular.
3. A−1 and A∗ are D-stable.
4. DAE is D-stable, D, E positive diagonal matrices.
5. PT AP is D-stable, where P is any permutation matrix.
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The following are some of the sufficient conditions for D-stability:

1. There exists a diagonal matrix D with positive entries, such that DA+A∗D is
positive definite.

2. A ∈Rn×n is an M-matrix.
3. There exists a positive diagonal matrix D, such that DA = B = {bi j} satisfies

ℜ(bii)>
n

∑
j=1, j �=

|bi j|, ∀i = 1,2, . . . ,n.

4. A = {ai j} is triangular and ℜ(aii)> 0, i = 1,2, . . . ,n.
5. For each 0 �= x ∈ Cn×n, there is a diagonal matrix D with positive entries such

that ℜ(x∗DAx)> 0.
6. A ∈Rn×n is oscillatory.

Fixed-Points, Contractions and Para-Contractions

We consider iterative algorithms on the form

x(n+ 1) = T
(

x(n)
)

, n = 0,1,2, . . . , (26)

where T is a mapping from a subset X of RK into itself. A vector x� is called a fixed
point of T if T (x�) = x�. If T is continuous at x� and the sequence {x(n)} converges
to x�, then x� is a fixed point of T [53, Chapter 3]. Therefore, the iteration (26) can
be viewed as an algorithm for finding such a fixed point. T is called a contraction
mapping, if it has the following property

‖T (x)−T(y)‖ ≤ c ‖x− y‖ ,∀x,y ∈ X ,

where ‖ ·‖ is some norm on X , and c ∈ [0,1). The following proposition shows that
contraction mappings have unique fixed points and linear convergence rates.

Proposition 2 (Convergence of Contracting Iterations [53, Chapter 3]). If T :
X → X is a contraction mapping and that X is a closed subset of RK, then:

• (Existence and uniqueness of fixed points) The mapping T has a unique fixed
point x� ∈ X.

• (Linear convergence) For every initial vector x(0) ∈ X, the sequence {x(n)}
generated by x(n+ 1) = T

(

x(n)
)

converges to x� linearly. In particular,

‖x(n)− x�‖ ≤ cn‖x(0)− x�‖ .

An operator T on X is called para-contraction if

‖T (x)−T(y)‖< ‖x− y‖ , for all x �= y .
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Para-contractions have at most one fixed point and, in contrast to contractions, may
not have a fixed point. As an example, consider the para-contracting function T (x) =
x+ e−x in [0,∞). It is easily seen that T has no fixed point. The following theorem
summarises properties of para-contractions.

Proposition 3 ([54]). If T : X → X is a para-contraction, then:

• If T has a fixed point x�, then that fixed point is unique; moreover
• If X is a finite-dimensional space, for every initial vector x(0) ∈ X, the sequence
{x(n)} generated by x(n+ 1) = T

(

x(n)
)

converges to x� .

As can be seen from Proposition 3, para-contractivity does not yield any estimate of
the rate of convergence to the fixed point.
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The Changing Role of Optimization in Urban
Planning
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Abstract Most world cities are now planned in one way or another. Through
the deliberate positioning of activity and transportation facilities, urban authorities
hope to ensure the success of their cities in economic, social and environmental
terms. Urban planning models are an important tool to help them in this task,
and in this chapter, we examine the use of optimization techniques in urban
planning modelling. Through a broad review of the field, we highlight the distinction
between single-goal urban-environment models and multi-objective land use and
transportation models. While it is shown that optimization no longer plays a
stand-alone role in land use and transportation modelling, it does contribute to
the overall modelling workflow. Furthermore, optimization forms the basis of two
niche applications: excess commuting and sketch modelling. This last field holds
the most promise for the future, enabling planners to establish minimum resource
consumption benchmarks for their city as a means of comparison with other cities
and to evaluate the ambition and feasibility of new plans.
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1 Introduction

A city’s character is greatly shaped by the organization of space and activities within
its boundaries. This sense of place is partly an aesthetic attribute: by invoking the
name of major world cities, we can quickly picture their structure and form such
as the grid-iron streets and high-rises of New York or the hillside favelas of Rio
de Janeiro. However, the city’s social, economic and environmental performance is
arguably the more important consequence of urban form.

For much of human history, cities evolved in an organic fashion “without
preconceived planned intervention” [39, p. 10]. Natural determinants such as
topography, climate and the availability of construction materials were major driving
forces, shaping both architectural styles and activity location. The requirements of
religion, politics, defence and logistics also played a role [39]. While the resultant
forms may look random and uncoordinated, research has demonstrated a number
of possible organic growth mechanisms including “preferential attachment” to
existing settlements and transport networks [1, 14], economic processes (such as
von Thünen’s 1826 model of land rents) or analogies with physical processes such
as diffusion-limited aggregation and dielectric breakdown [5].

The shift towards a more active form of urban planning often arose in response
to the limitations imposed by haphazard urban growth. In Renaissance Rome for
example, the tightly woven medieval structure of the city began to place significant
constraints on the health and mobility of citizens and visitors. One of a number of
planning popes, Sixtus V (1585–1590) located four major obelisks throughout the
city to guide future planners in the construction of major thoroughfares that could
connect prominent piazzas and churches. Similarly Haussmann’s boulevards were
an intentional effort to reshape Paris in response to changing defence requirements,
inadequate sanitation and other factors [39]. While the specific constraints may vary
over time and by location, the planning departments of modern cities essentially
fulfil the same function: to create vibrant thriving urban areas subject to limitations
of land, resources, finance and time. It is worth noting however that planned urban
forms cannot be divorced from organic growth processes. Planned activity and
transportation developments create opportunities for new patterns of urban living,
which in turn need to be accommodated by new plans and construction. This cycle
can be seen as the feedback loop which drives the growth of urban systems [52].

For the purpose of this chapter, we can broadly define urban planning as the
policies that configure patterns of land use, associated activities and transportation.
Urban planning is an interdisciplinary field, incorporating the expertise of architects,
engineers, economists, sociologists and others. The planning process is necessarily a
compromise between competing interests and multiple stakeholders, each of which
may hold very different views about what constitutes a liveable neighbourhood or an
effective strategic plan. In this context, it may seem that a technique as deterministic
as optimization (or mathematical programming) has little to offer. However, this
chapter will demonstrate that optimization techniques have been widely used in
urban planning, although their precise contributions have shifted as other modelling
techniques and the needs of analysts have changed.
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This chapter is organized as follows. In Sect. 2, we provide an overview of
the major uses of optimization modelling in urban planning over the past 50
years. The aim is not to provide a comprehensive review but to illustrate the
range of applications, the specific techniques used, and to identify the reasons
why mainstream urban planning analyses tend not to use these techniques now
(or rather, do so indirectly). Section 3 then considers two current urban planning
applications where optimization models are more commonly used, the fields of
“excess commuting” and sketch planning. We review the structure of these models
and offer comment on their formulation and applicability in various circumstances.
Section 4 concludes by considering how optimization techniques for urban planning
might evolve in future, concentrating on their use in the design of eco-cities.

2 Past Applications of Optimization in Urban Planning

The modern history of optimization might be said to begin with Dantzig’s 1947
simplex algorithm for linear programming. Since then, advances in algorithms
and computing technology have helped the field to expand, and mathematical
programming models are now used in a variety of disciplines and formulations. This
section provides an overview of the use of optimization in urban planning. First, we
present a top-down review to identify major categories of practice and the types of
optimization techniques employed. We then narrow the scope and work from key
review articles to describe the major trends in the specific area of urban land use
and transportation (LUT) planning.

2.1 Top-Down Review

We began our review by considering which general urban planning fields employ
optimization techniques. To do this, we searched the ISI Web of Knowledge
index1 for the terms “(optimization OR optimisation) AND (urban
OR cities OR city) AND (planning)” in both the topic and title fields.
This led to 581 results, broken down into the subject areas shown in Table 1. While
there is clearly a bias towards the more numerate subjects, the list of disciplines
is very diverse. As noted in the introduction, the urban context attracts researchers
from a wide variety of fields, and it is interesting to see that optimization offers at
least some insight within all of these disciplines.

After inspecting the results, the query was further limited by adding “AND land
use” to the search terms. This avoids a large number of papers that focus on topics
not directly related to the question of urban land use. This includes work on the

1www.isiknowledge.com.

www.isiknowledge.com
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Table 1 Top ten subject areas for urban planning and optimization
papers, as found by an ISI Web of Knowledge query

Subject area Number of papers

Engineering 229
Environmental sciences and ecology 222
Computer science 123
Business and economics 110
Water resources 105
Mathematics 101
Public administration 69
Transportation 56
Public, environmental and occupational health 52
Agriculture 46

Total 581

See text for query phrasing

Table 2 Cross-tabulated categorization of selected urban planning
and optimization papers; values indicate number of papers

Optimization method
Topic LP NLP MOO Other Unknown Total

Land use 4 2 13 4 6 29
Transport 2 0 2 1 2 7
Ecology 4 2 1 0 4 11
Water 0 2 3 2 1 8

Total 10 6 19 7 13 55

LP linear programming (including mixed-integer variants), NLP
non-linear programming (including mixed-integer variants), MOO
multi-objective optimization, Other hybrid methods such as cellular
automata or agent-based simulation with an optimization compo-
nent, as well as random and grey optimization, Unknown studies
which do not specify the technique used

planning of large infrastructure systems without an explicit land use component
(e.g. ant colony optimization applied to electricity networks, [16] or long-term water
supply portfolio planning, [26]) and detailed operational optimization and control
problems (e.g. for traffic light timing, [44]). The narrower search terms resulted in a
more manageable 61 unique records. These papers were then categorized according
to the optimization techniques used and the field of application. The cross-tabulated
results shown in Table 2 therefore provide an indication of practice in this area.
Six studies from the original sample were removed as they did not actually apply
mathematical programming techniques, but rather referred to “optimization” in a
non-technical manner (often as a synonym for improvement). From a method-
ological perspective, the table shows a mix of linear and non-linear, single and
multi-objective formulations. The formulations are often, but not always, of mixed-
integer form where integer variables are typically used to represent the classification
of a discrete land use parcel [e.g. 10,15]. Multi-objective approaches are commonly
used as well and are typically solved by genetic algorithm [e.g. 3, 43], simulated
annealing [e.g. 11] and to a lesser extent single aggregate objectives [e.g. 29].
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Although the data set is diverse, a rough split in problem type can be seen.
First, there are those studies which apply optimization techniques to examine the
ecological impacts of urban development (the “ecology” and “water” categories
above). In these cases, the natural environment imposes constraints on a city’s
growth and so might be called urban-environment planning models. For example,
[10] describe how the growth of urban areas and pressures from agriculture can
lead to fragmentation and degradation of nearby habitats, with negative impacts
on biodiversity. They therefore use spatial optimization, based on an mixed-integer
linear programming formulation, to allocate land function so that the minimum
number of locations need to be actively restored after development. Constraints on
the problem include overall areal targets for intact habitats and restrictions imposed
by the local geography (e.g. soil types, vegetation). A similar approach is adopted
by [38], who use non-linear programming to minimize impacts on water resources
from urban growth policies.

The second set of problems focuses on urban planning in a more traditional
economic or social context (the “land use” and “transportation” (LUT) categories);
[2] is a typical example. Here a genetic algorithm is applied to determine future
land-use and transportation provision for a growing city, subject to constraints on
housing provision. The problem is one with multiple objectives such as minimizing
cost, disruption, and traffic congestion. Multi-objective frameworks are significantly
more common in this category, compared to urban-environment models that may
have a narrower focus (42% of LUT models, 21% of urban-environment models,
χ2 = 5.55, p = 0.018).

Two final points from this brief survey. First, researchers often combine optimiza-
tion with other techniques, particularly for spatial analyses with cellular automata
(e.g. for forestry planning, [37]) or agent-based models (e.g. for biodiversity
planning involving multiple stakeholders, [27]). In these cases, the optimization
routines can be embedded within heterogeneous agents to simulate the behaviour
of individuals within a more complex interactive system. The second issue is that
the selected papers span from 1979 to 2010 (a limitation of the ISI data set) and are
therefore likely to be missing some of the early applications of these techniques to
urban planning. The second part of this review will therefore provide more detailed
perspective on the evolution of the field.

2.2 Optimization in LUT Models

For this second review, we limit our definition of urban planning to incorporate only
the LUT sectors. Although environmental motivations are increasingly important,
urban planning is still primarily concerned with creating economic and social
opportunities [for an overview, see 41]. Quantitative work on the relationship
between urban form and function typically falls under the general title of LUT
modelling.
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Review studies identify four major urban modelling approaches—regression,
optimization, aggregate spatial models, and disaggregate individual models
(including both random utility frameworks and activity-based models) [9, 20, 35].
Over time, the field has trended towards increasing behavioural realism and
disaggregation. That is, whereas earlier studies could only simulate a few districts
and had to aggregate all activity supply and demand within that zone, advances in
computing power and model formulations mean that behaviours at the level of the
individual or household can now be simulated (e.g. by modelling individual choices
within an econometric random utility choice framework). The motivation for this
shift can be explained by the operational use of these models, i.e. their deployment
in real cities to answer policy questions such as how a city might expand over time
[51], where people choose to live and work within cities [50], and which modes
of transportation will be used to facilitate urban travel [20]. Greater behavioural
fidelity allows these models to test sophisticated policy interventions and increases
confidence that the salient processes have been effectively represented: “the
value of more complex, behaviourally valid, microscopic models is not that one
obtains microscopic forecasts, but that one obtains macroscopic forecasts based on
microscopic principles” [48, p. 239].

However, this trend has meant that optimization has, over time, taken on a
secondary role within urban LUT modelling. Several early studies used optimization
as the primary technique to determine activity location and traffic flows within
a city. For example, the earliest operational LUT optimization model appears to
be TOPAZ from Australia [12, 46]. This model sought to allocate activities to
discrete zones minimizing total cost from construction and travel. However, even
in its early stages, limitations on data inputs and computational ability made
these models impractical for everyday use [18, 32, 35]. Yet while optimization
models have “all but disappeared” as stand-alone tools [52, p. 7], the techniques
are still used in conjunction with more mainstream LUT modelling approaches,
as so-called “combined” models [e.g. 9, 33, 42]. These tools use optimization to
determine transportation costs endogenously, capturing spatial interactions and user
behaviour in a more realistic fashion. More generally, optimization remains a useful
technique within LUT models, for example to perform mean square error fitting of
econometric models as a preliminary step in random utility choice modelling or to
calculate market clearing equilibrium prices for land and transportation [52].

3 Present Applications: Excess Commuting and Sketch
Planning

There are urban modelling niches within which optimization remains a valuable
primary modelling methodology. It has been acknowledged that optimization
techniques have the potential to find “extreme solutions” and to meet a specific
objective during the “preparation of plans” (i.e. to be used in a normative fashion)
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rather than forecasting detailed descriptive behavioural patterns over time [35,
p. 330-331]. The use of optimization models for designing hypothetical optimal
configurations, but not necessarily in assessments of existing cities, is also supported
by [20]. Two such applications which will be discussed here are excess commuting
and sketch layout modelling.

3.1 Excess Commuting

Excess commuting can be defined as commuting longer or further than suggested
by the actual spatial layout of a city and assumptions about rational commuter be-
haviour [19]. Metrics based on this concept help analysts to compare the efficiency
of urban layouts and suggest strategies for re-development and rationalization of
spatial activity patterns. To estimate the level of excess commuting, original work
in this field assumed a stylized monocentric city and found that, for a range of US
and Japanese cities, average commuting journey distances were approximately 8
times greater than might be expected if commuters tried to minimize their average
commute [17]. However, [53] reinterpreted this issue as a linear programming
problem showing the level of excess commuting to be on the order of 11%.
Research since 2000 has resulted in average estimates of excess commuting in
the range of 50–70%, and the optimization framework is now the most common
method of calculating benchmark minimum and maximum commutes for a given
spatial layout [34].

The basic formulation of the problem, based on White’s paper [53], is as follows:

Minimize 1
N ∑

i
∑
j

ci, jn∗i, j

subject to ∑
i

ni, j = ∑
i

n∗i, j = D j

∑
j

ni, j = ∑
j

n∗i, j = Oi,

where ci, j is the cost of commuting from zone i to j (e.g. distance or time), ni, j is
the existing (exogenous) number of commuters travelling between zones i and j,
n∗i, j is the optimized (endogenous) number of commuters, N is the total number of
commuters, Oi is the number of workers living at zone i, and D j is the number
of workers employed in zone j. Readers familiar with operations research will
recognize this as an example of the transportation problem, wherein the goal is
to connect suppliers and customers with a network at minimum cost, subject to
constraints on customer demand and supplier capacity [see 55]. It assumed that
network capacities and transport requirements are specified at the outset. In the
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urban context, this is analogous to knowing where people live and work and trying
to determine the lowest cost routing for customers, i.e. the minimum flow of visits
from home to each activity over the course of a year. This therefore results in an
idealized measure of commuting flows that can be compared with observed flows
and normalized to calculate the excess commuting statistic.

Optimization-based excess commuting has been applied in a variety of locations,
but [34] highlight some common themes and outstanding questions. First there are
methodological questions regarding biases in the calculation of the excess commute
statistic. For example, measured data may need to be aggregated at different scales
depending on availability and tractability. However the value of excess commute
statistic depends on the chosen scale, with more aggregated spatial data resulting in
a smaller estimate of excess commuting. This suggests that for accurate estimates,
highly disaggregated data is preferred; however, this may create computational
difficulties. A second issue is contextual, i.e. is the estimate a meaningful indicator
of possible commuter flows? The technique described here relies upon an aggregate
approach, i.e. considering travel to and from given urban areas for a particular
activity class as a single homogeneous flow. However, more recent studies have
looked to disaggregate individuals and households within these calculations, for
example, to account for households with two working persons who need to live
together but work in separate locations [7, 40]. Finally there are questions about the
suitability of the measure for policy decisions, for example, on zoning regulations,
housing policy, and road pricing.

The use of optimization modelling for the calculation of excess commuting is
therefore an important application of the technique, even if theoretical and practical
questions remain about its validity. However, a key point is that excess commuting
measures are focused primarily on explaining observed behaviour in existing cities,
where the locations of work, residence and other activities are exogenous inputs to
the benchmark calculation. When considering new cities, these activity locations
can be endogenous to the model so that transportation requirements are jointly
determined with the location of individuals and activities. For this problem, we turn
to a second current application of optimization: sketch models.

3.2 Sketch Models

Sketch models assess both activity location and transportation flows within an
optimization framework; Fig. 1 provides a schematic overview of the technique.
Clearly when compared with most operational urban planning models, sketch
models provide an incomplete representation of LUT dynamics. When used in the
context of master planning and benchmarking processes however, their reduced data
requirements enables models to be tested quickly against multiple scenarios. The
results can be then tested within a more rigorous LUT modelling framework as
required.
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Fig. 1 A schematic description of a sketch model, based on [30]. The various combinations of
land uses and transportation flows are assessed within an optimization framework according to
objective functions which vary with the chosen application

Although [4] was not the first to use these techniques, his paper provides an
excellent overview of the approach and illustrates a typical application wherein
three goals are pursued in a multi-objective framework: minimization of land
development costs, maximization of residential accessibility, and minimization of
transportation energy costs. This work has been extended and revised by others,
most notably in the sketch layout model [13, 30]. In its various incarnations,
this model seeks to generate alternative master plan sketches as an input to
participatory planning processes. Again a multi-objective approach is adopted and
the model considers “harmony” (the similarity of adjacent land uses), “relevance”
(the compatibility of adjacent land uses), and “traffic accessibility” (the shortest
path between two cells). Related work in this area has examined the positioning of
individual facilities within a city [e.g. shopping malls, 56], layout of space within
buildings [47], the planning of development densities around transit stations [31],
and the use of multi-objective optimization to generate a range of Pareto optimal
layouts for discussion with planners [22].

The general formulation for sketch models is essentially a hybrid of two
canonical operations research problems [see 55]. The first is the transportation
problem discussed above. The second problem is the assignment problem, i.e.
finding an optimal combination of tasks and agents where each pairing incurs a
given cost. This problem can be formulated as follows:

Minimize ∑
i, j

ti, jxi, j

subject to ∑
i

xi, j = 1 ∀ j

∑
j

xi, j = 1 ∀ i,
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where xi, j equals 1 if person i is assigned to job j, else 0, and ti, j is the cost of
the assignment. Although it appears to be a mixed-integer problem, it can in fact
be solved as an LP owing to the “integer-in-integer-out” properties of a network
model [55]. In an urban context, the assignment problem can be seen as the task
of allocating activity provision to different land areas, where “activity” might be
interpreted variously as work, schools, residential housing and so on. The model
can also be split so that building and activity types are assigned separately. In the
case below for example, which focuses on minimizing urban energy consumption,
there might be two building types that can support a single activity category.

The hybrid formulation is known as the facility layout problem, and while there
are multiple forms of the problem’s definition, the general aim is to determine the
position of processes within a factory so that the combined costs of performing a
task at a given work station and moving materials between each work station are
minimized. Recent examples of this literature include [8, 28, 49]. As noted above,
when planning a new city, there is no a priori reason for taking the location of
housing and activities as fixed. Therefore a joint problem can be constructed which
seeks to minimize the cost of assignment both function to land plots, and the travel
required to move between those two locations.

The general formulation can be adapted with many application specific con-
straints. For example, in a factory layout problem, each piece of equipment might
have a certain footprint and therefore require a certain amount of space. An
analogous situation exists in the sketch planning case, where certain activities might
require a minimum site area (e.g. for a school with a playground) or minimum total
area (e.g. sufficient green space is provided for the whole city). An optimization-
based sketch model can also handle constraints such as the capacity of transportation
network links, housing requirements for the population, or prohibiting certain kinds
of development on particular land plots.

3.3 An Example: Calculating a Minimum Energy
Urban Layout

In our own work we have applied sketch models to the question of eco-cities, focus-
ing particularly on urban energy consumption. Cities are major energy consumers,
accounting for an estimated 67 % of global primary energy demand and 71 % of
energy-related greenhouse gas emissions [21]. While there is some dispute about
the precise allocation [45], it is clear that urban energy efficiency must be improved
if economic and cultural opportunities are to be maintained while avoiding the worst
environmental effects.

Urban energy consumption is the consequence of decisions taken at a variety of
spatial and temporal scales. Using domestic energy consumption as an example, the
temporal scale spans from short-term decisions such as when to use appliances (sec-
onds to days), medium-term choices about which appliances to purchase (months
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to years), and long-term decisions about the built fabric of the home (decades to
centuries). For example, [6] note that, at current rates, the UK’s housing stock could
take approximately 1,300 years to be replaced completely. Variations in spatial scale
also have a strong influence on energy consumption. End-use energy conversion
technologies such as household gas boilers may be relatively easy to reposition or
replace for improved efficiency but large infrastructure systems, such as resource
distribution and transportation networks or the location of buildings and activities,
are more persistent [e.g. 39]. Consequently the layout of urban environments is
perhaps the most difficult aspect of improving urban energy efficiency.

For existing cities, urban expansion and retrofit projects can lead to improve-
ments in energy consumption as seen in London’s Canary Wharf and La Défense
in Paris [54]. However, working within the constraints of existing infrastructures is
expensive and difficult and so new construction arguably offers the greatest oppor-
tunities to create energy-efficient cities. In recent years, the eco-cities movement,
both in the UK and abroad, has created visions of new sustainable urban areas [23],
such as Masdar, the world’s first “carbon-neutral zero-waste city” near Abu Dhabi
in the United Arab Emirates [36]. However, these ambitions raise serious questions
about the limits of low-energy urban forms, boundaries which must be identified if
new developments are to set realistic goals and existing cities are to understand their
improvement potential.

Not all of the energy issues listed above can be dealt with in an optimization
model, or if they can be addressed, they may impose significant computational costs.
However, a sketch model can be used to examine some key trade-offs such as the
balance between transport capacity (i.e. the maximum number of trips that can occur
on a route) and the maximum capacity of an activity site (i.e. the number of visitors
that can be satisfied at a given location).

Our sketch model is described in full in [24] and contains both the core elements
of an optimization-based sketch model, as described above, as well as some energy-
specific features. As input, users provide information about:

• The population of the city
• The generic housing and transportation types that are available
• The spatial layout of the city (i.e. the location and size of the empty zones to be

populated)
• The activities to be performed by the population

With the objective of minimizing “cost” (in this case, annual energy consumption),
the model will then determine:

• The location of buildings and activities
• The location of network connections
• The number of daily trips from zone z to z′ by mode m
• Other summary information (e.g. passenger km by mode)

Constraints on the problem generally fall into two categories: feasibility constraints
(i.e. those that are necessary to obtain a valid solution, for example, that all
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a b

Fig. 2 Minimum energy layouts for the provision of work and housing under different assump-
tions. Light grey cells represent domestic housing, blue work locations. Transport links are
shown in black arrows, with width proportional to the flows. Population of 100,000 in all cases.
(a) Residential housing 60 dw/ha, each work site offers 3,200 jobs (b) Residential housing 130
dw/ha, each work site offers 48,000 jobs

citizens must be housed) and context constraints (i.e. additional restrictions to reflect
planning laws or other user-specified concerns).

In this particular problem, the goal is to house 100,000 citizens and provide them
with sufficient work. Each cell is 16 hectares and from UK statistics, it is assumed
that 48 % of the population works. Figure 2a shows the results when we assume
that the housing density is low (approximately 60 dwellings per hectare) and each
work site can provide only 3,200 jobs (equivalent to a small office). However, in
Figure 2b, higher-density housing is used (130 dwellings per hectare), and a single
work site can employ 48,000 people (roughly equivalent to a dense central business
district). In both cases, we have not added any binding constraints on transportation
flows. The high-density case delivers an energy saving of approximately 15 %,
accounting for both building and transport demands.

A closer inspection of these figures reveals the stylized nature of the analysis. In
the low-density case, each work cluster is completely isolated; there are no traffic
flows between centres as the model is able to satisfy work demand through these
local “village” offices. Even in the high-density case, a clear divide between the two
halves of the city can be seen. However, if one adds further activities besides work,
the structure begins to change. In Fig. 3, a shopping activity is added and, when a
single site is large enough to satisfy the city’s resultant demand (e.g. a shopping
mall), it is centrally located by the model so that all citizens can access it with
minimal travel requirements.

The distributed structure of these results matches well with the predictions of
Christaller’s 1933 central place theory, which suggests that, for an unobstructed
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Fig. 3 A low-density layout
for a hypothetical city with a
central shop

landscape with an evenly distributed population, activity clusters should emerge at
the centre of population areas subject to constraints on minimum market (threshold)
and maximum distance (range) [41]. However, central place theory also predicts
that individual local activity clusters feed into the demands for similar clusters
at larger scales, in a hierarchical fashion. For example, a city may have distinct
entertainment and business districts, but within each of these larger clusters, there
will also be smaller local provision of these activities. Such a comparison therefore
highlights the lack of multiple spatial scales within a simplified sketch model. To
date, sketch models have tended to focus on a single spatial scale as the initial
problem specification is built around discrete plots with an intended homogeneous
purpose. This limitation is one reason why the results of such models are best
used to inform planning discussion of smaller developments, where each zone
contains a discrete activity, rather than to provide definitive plans or for the
analysis of larger systems. Finally, a note about the optimization process itself. As
a combinatorial optimization, the tractability of a sketch layout model is limited
by the number of cells and activities to be positioned. Table 3 compares the
capabilities of historic sketch models but note that these figures do not represent
the limits of performance but the application size used for each study. While
the table does show improvements over time, the problem remains fundamentally
difficult. Looking at the solution in Fig. 2a for example, it can clearly be seen
that a number of rotational and translational symmetries exist within the resulting
structure. Therefore to improve performance and reduce degeneracy, it is useful for
the user to provide some sensible constraints on the problem. This may include
fixing an “anchor” activity at a given location within the model, in addition to
using standard termination criteria for mixed-integer models such as a timeout or
optimality gap.
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Table 3 Comparison of previous urban layout optimization studies

Study Case study Computer set-up Formulation nc na

[4] Germantown,
WI, USA
(7,000
people)

– LP 9 11

[13] Tanhai, Taiwan
(300k people)

IBM/PC 486–33
with Turbo
Pascal 6.0

MINLP 13 10

[30] – IBM Pentium II
300 MHz
with Turbo
Pascal 6.0

MINLP 13 7

[31] Taipei central
business
district

– LP – –

[56] Dalian, China
(2.23 million)

8 CPU cluster
with C++

NLP 300 2

This paper Generic UK 500 CPU cluster
with
GAMS/CPLEX
9.0 (though
run on one
core)

MILP 400 3

Other variables are used in these models, but only the core assignment problem variables, i.e. the
number of cells (i.e. discrete zones within the model, nc) and number of activities (i.e. land use
categories, na) are shown here for an indicative comparison
Model formulations: LP linear programming, NLP non-linear programming, MILP mixed-integer
linear programming, MINLP mixed-integer non-linear programming

4 Future Applications and Conclusions

This chapter has shown that optimization is a widely used technique in the urban
modelling community. While in the past it was used on its own to determine LUT
patterns, it has now fallen out of favour as a stand-alone technique with more
behaviourally realistic models based on a disaggregated view of urban activities
dominating current practice. As [9, p. 345] notes in his review, mathematical
programming models have the advantage of “a simple mathematical form linked
to system efficiency; however, the aggregate nature of the model means that there
are inherent difficulties in representing the systematic properties of locations and
the behavioural context of decision-makers.” However, even in these problems,
optimization is used to fit statistical models and in hybrid modelling applications,
e.g. in conjunction with agent-based modelling.

Chang also observes that LUT modellers have focused “too much detail of the
issues rather than the refinement of the foundational relationship.” (p. 346). This
suggests that a new look at the role of optimization modelling in urban planning
might be in order. In Sect. 3, we showed that optimization remains a popular
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technique in two niche applications: the determination of minimum commuting
configurations and the rapid creation of sketch layouts early in the planning process.
With the excess commuting literature pushing towards increased disaggregation
and behavioural realism, sketch modelling seems like the most promising area for
continued work on a purely optimization-based form of aggregate urban planning.

Early sketch modelling applications sought to contribute to the planning process
by generating alternative plan ideas early in the planning process. This is still the
general goal of such models, but the specific objective should be reworked slightly.
Instead of focusing on realistic looking alternative plans that “rationally” balance
multi-objectives, we would argue that there is significant scope for using sketch
models to develop extreme scenarios with a specific goal in mind. In particular,
the eco-cities movement has grand visions of low-impact urban settlements, driven
by concerns over specific issues like carbon emissions. A resource-based sketch
model could therefore be used to establish minimum benchmark values, i.e. patterns
of development that meet basic goals of activity provision and housing with the
lowest possible resource consumption. It is not envisioned that such plans would be
built directly, but that by establishing a minimum benchmark, stakeholders could
evaluate the ambition and difficulty of their actual designs in a more quantitative
manner. In many ways, this application is similar to the urban-environment models
highlighted in the review above. The emphasis is not on necessarily on multi-
objective optimization, but on the pursuit of a single goal with the aim of identifying
the limits of practice (although multi-objective optimization might still have a role
as a goal like a “low-energy” city might have multiple energy-specific objectives
such as carbon emissions and security of supply).

However, there appears to be at least three major obstacles or challenges in this
field. First there is a question of scale, both spatial and temporal. Our analysis
to date has focused on snapshot optimizations, as would be required to inform a
single planning decision. However, resource infrastructure systems take decades
to develop and must continually adapt to the needs of an evolving city. Multi-
period optimization to look at minimum resource development pathways over time
is therefore a promising area of research. The appropriate spatial scale, is also
an issue. As identified above, most sketch models have tended to focus on a
single spatial scale whereas the structure of cities consists of nested spatial scales.
Hierarchical optimization methods might offer valuable insights here. This could
offer performance improvements as well, for example, by solving a simplified
relaxed version of the problem at a coarse spatial scale and then introducing integer
variables to allocate homogeneous land functions at a local level.

The second major question is model fidelity. If sketch modelling is to be used
to estimate the minimum resource consumption layouts for a city, what level of
detail is needed by decision makers and can the models provide this? Taking the
decision-makers perspective first of all, we can imagine a scenario where the goal
is to establish a minimum energy baseline for a city. In such a scenario, building
energy demands might be parameterized by means of normalized benchmarks (e.g.
in kWh per square metre). However, the decision-maker may want to know if these
demands can be reduced through demand side measures, such as flexible pricing,
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or if higher per square demands are even relevant if the primary fuel source is
low carbon. Clearly the more factors that become endogenous to the model, the
more difficult it will be to construct and validate. The corollary to this problem
is one of computational ability. Ideally, because sketch models represent a single
optimized solution, they should be run multiple times to capture the uncertainty
of input parameters and the range of possible outcomes; the goal should be to
deliver a distribution of minimum resource benchmarks, not a single value [as in
29]. However, such a goal is in conflict with the use of a sketch model as a tool
to quickly inform planning at an early stage. Multiple model runs will need to
be solved and the mixed-integer formulation used here can result in slow solve
times if not properly formulated. This can be partly resolved by parallel computing,
but improved knowledge of the problem description and relevant heuristics will be
valuable.

The third question is whether optimization is indeed the most effective technique
for identifying the limits of feasible urban performance. Certainly its use in excess
commuting and the simple examples shown here demonstrate that the basic idea
is feasible, but it is uncertain what other techniques might be used to the same
purpose. A specific question is whether or not the method works for existing cities.
In new cities, a relatively unconstrained optimization makes sense; however in a city
with substantial existing infrastructure, it is not clear whether the city has sufficient
degrees of freedom to make a sketch model optimization meaningful. A more
sensible approach in this case might be data envelopment analysis (which of course
is also based on optimization) to identify the relative efficiency and performance of
other cities.

Future research in this area should develop the concept of resource-based mini-
mum benchmark urban plans and critically assess them in a variety of contexts (both
locations and resource categories). One example is to combine these benchmark
models with optimization-based models of resource supply systems. In [25], we
examined the design of an eco-town by considering the layout and energy supply
systems as separate optimization problems; however, the models could be combined
to offer minimum energy benchmarks that consider both the supply and demand
sides. While ultimately it may be found that a pure optimization-based approach
is insufficient to capture the complexities of the urban environment, the history of
the field suggests that optimization will continue to have an important role to play
within the implementation of other techniques.
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Parametric Optimization Approach to the Solow
Growth Theory

Rentsen Enkhbat and Darkhijav Bayanjargal

Abstract We extend the classical growth theory model assuming that production
function is an arbitrary continuously differentiable function on its domain and
the saving rate and depreciation rate of capital depend on time. Then the per
capita consumption maximization problem reduces to one dimensional parametric
maximization problem. We propose a new finite method for solving the problem
using Lipschitz condition. Some test problems have been solved numerically.

Key words Growth theory • Nonconvex • Parametric optimization problem

1 Introduction

The production function model was applied to the study of growth problems by
Solow [6]. Solow developed a growth theory model within a neoclassical economic
framework. The Solow growth model assumes the maximization of per capita
consumption under economic equilibria or steady state [1,4]. This model from view
point of optimization problem was considered in [3]. In paper [3], we proposed some
global optimization methods and algorithms for solving the per capita consumption
maximization problem using quasiconcave production functions [2, 5].

This chapter is organized as follows. In Sect. 1 we introduced general Solow
growth model and classical assumptions. In Sect. 2 we consider the Solow growth
model for nonconvex production function and population growth function with
variable rates. The per capita consumption maximization problem is formulated as
a parametric optimization problem. Section 3 is devoted to numerical results.
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Now consider briefly Solow growth model. The production function relating
output Y to capital K and labor L is

Y (t) = f (K(t),L(t)). (1)

We assume a fraction s of income is saved and invested. Then the standard capital
accumulation equation is

{

K′(t) = s f (K(t),L(t))− μK(t)
K(t0) = K0,

(2)

where s the savings (saving rate), 0 ≤ s ≤ 1, and μ depreciation rate of capital and
the consumption C is

C(t) = (1− s) f (K(t),L(t)). (3)

Let f (K,L) be a concave, differentiable homogeneous production function.
Assume that the labor grows at exponential rate η which means that

L = L0eηt . (4)

Define k as per capita capital function:

k(t) =
K(t)
L(t)

.

Then

k′(t) =
(

K(t)
L(t)

)′
=

K′L−L′K
L2 =

1
L

(

K′ − L′

L
K

)

=
1
L

(

K′ −ηK

)

.

If we substitute f (K,L) into this equation, we have

k′ =
1
L

(

s(t) f (K,L)− μK−ηK

)

= s(t) f

(

K
L
,1

)

− μ
K(t)
L(t)

−η
K(t)
L(t)

= s(t)ϕ(k)− (μ +η)k,

where ϕ(k) is the Solow per capita production function. Then per capita capital
accumulation equation is

{

k′ = s(t)ϕ(k)− (μ +η)k
k(0) = k0.

(5)
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Economic equilibria condition is:

k′ = s(t)ϕ(k)− (μ +η)k = 0. (6)

Now we consider per capita consumption function

c(t) =
C(t)
L(t)

=
(1− s) f (K,L)

L
= (1− s)ϕ(k). (7)

Assume that s is a constant function.
Let us consider the per capita consumption maximization problem subject to

economic equilibria. That is

c = (1− s)ϕ(k)→max, (8)

sϕ(k)− (μ +η)k = 0. (9)

Then problems (8) and (9) are equivalent to the following one-dimensional problem:

max
k

[

ϕ(k)− (μ +η)k
]

.

The solution k∗ satisfies the equation

ϕ ′(k∗) = (μ +η). (10)

So-called the golden rule of level of accumulation is determined from (9) as in [6]:

s∗ =
ϕ ′(k∗)k∗

ϕ(k∗)
. (11)

2 Economic Growth with Nonconvex Production Functions

In general, we can consider a capital accumulation equation

{

K′(t) = s(t) f (K(t),L(t), t)− μK(t)
K(tA) = KA,

(12)

when f (K,L, t) and L(t) are arbitrary continuously differentiable given functions on
their domains and s = s(t),μ = μ(t) are functions of t, t ∈ [tA, tB].

Then a per capita consumption function is

c(t) =
C(t)
L(t)

=
(1− s(t)) f (K(t),L(t), t)

L(t)
. (13)
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Also, a per capita capital function is

k(t) =
K(t)
L(t)

. (14)

Economic equilibria condition is written as

k′(t) =
(

K(t)
L(t)

)′
=

K′(t)L(t)−L′(t)K(t)
L2 = 0 (15)

or
K′

K
=

L′

L
,

which means that capital and labor growth rate must be equal.
Taking into account (12), we can write (15) as follows:

K′(t)L(t)−L′(t)K(t) =
(

s(t) f (K,L, t)− μ(t)K(t)
)

L(t)−L′(t)K(t) = 0.

From this equation we find s(t):

s(t) =
μKL+L′K)

L f (K,L, t)
. (16)

Denote by KB the maximum of function K(t) defined by (12), i.e.,

KB = max
tA≤t≤tB

K(t), (17)

and introduce the function φ(K,L, t) as follows:

φ(K,L, t) = f (K,L, t)− μKL+L′K
L

. (18)

Definition 1. If the following condition

φ(K,L, t) ≥ 0, ∀t ∈ [tA, tB],

holds, then the interval [KA,KB] is called an economic efficient interval.

From Definition 1 and (16), we can easily notice that 0≤ s(t)≤ 1.
Now we consider per capita consumption maximization problem on a given

interval [tA, tB]:

c(t) =
(1− s(t)) f (K,L, t)

L
→max, t ∈ [tA, tB],
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subject to

s(t) =
μKL+L′K
L f (K,L, t)

.

This problem is equivalent to the following one dimensional parametric maximiza-
tion problem:

F(K, t) =
f (K,L, t)

L
− μKL+L′K

L2 →max
K

, t ∈ [tA, tB]. (19)

We can write function f (K,L, t) as

f (K,L, t) =
μKL+L′K

L
+φ(K,L, t).

Further, we assume that [KA,KB] is an efficient interval.
Then the problem (19) can be rewritten as

F(K, t) =
f (K,L, t)

L
− μKL+L′K

L2 =
φ(K,L, t)

L
→max

K
, t ∈ [tA, tB]. (20)

Problem (20) is a hard parametric optimization problem.

Lemma 1. The function F(K, t) satisfies the Lipschitz condition with respect to t
with constant M for each K ∈ [KA,KB], i.e.,

∣

∣F(K, t̂)−F(K, t)
∣

∣≤M
∣

∣t̂− t
∣

∣, ∀t ∈ [tA, tB].

Proof. Since f (K,L, t) is a continuously differentiable function with respect to t,
using Taylor expansion formula, we can write down:

f (K,L, t +Δt)− f (K,L, t) =
∂ f (K,L, t +θΔt)

∂ t
Δt,

where 0 < θ < 1, t +θΔt ∈ [tA, tB].
Now we have the following estimation:

∣

∣ f (K,L, t +Δt)− f (K,L, t)
∣

∣ =

∣

∣

∣

∣

∂ f (K,L, t +θΔt)
∂ t

∣

∣

∣

∣

∣

∣Δt
∣

∣

≤ max
KA≤K≤KB

tA≤t≤tB

∣

∣

∣

∣

∂ f (K,L, t)
∂ t

∣

∣

∣

∣

∣

∣Δt
∣

∣.
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By setting M = maxKA≤K≤KB
tA≤t≤tB

∣

∣

∣

∣

∂ f (K,L,t)
∂ t

∣

∣

∣

∣
, we obtain

∣

∣F(K, t̂)−F(K, t)
∣

∣≤M
∣

∣t̂− t
∣

∣

which proves the lemma. ��
Lemma 2. Assume that the production function f (K,L, t) is a continuously dif-
ferentiable function with respect to t. Then for a given ε > 0, there exists a
discretization

tA = t0 < t1 < · · ·< ti < ti+1 < · · ·< tN = tB

such that

|F(K∗(t), t)−F(K∗(ti), ti)|< ε for all t ∈ [tA, tB] and certain ti,

where
F(K∗(t), t) = max

K∈[KA,KB]
F(K, t), t ∈ [tA, tB].

Proof. We discretize [tA, tB] in the following way:

tA = t0, ti = t0 + i
tB− tA

N
, i = 1,2, . . . ,N.

Clearly, for any t ∈ [tA, tB], there exists j ∈ {1,2, . . . ,N} such that t ∈ [t j, t j+1].
Consequently,

|t− t j|< tB− tA
N

. (21)

Due to Lemma 1, there exists M > 0 such that

| f (K(t̂),L(t̂), t̂)− f (K(t),L(t), t)|< M|t̂− t|, ∀t, t̂ ∈ [tA, tB].

Define ε > 0 as follows:

ε = M
tB− tA

N
. (22)

Now take any t ∈ [tA, tB] and compute

|F(K∗(t), t)−F(K∗(t j), t j)| ≤M|t− t j| ≤M
tB− tA

N
= ε

which proves the lemma. ��
The above lemma allows us to find ε− approximate solution of problem (20) by
solving a finite number of nonlinear optimization problems.
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3 Numerical Results

To reinforce the theoretical results, we solve the following problems numerically on
t ∈ [1,5] for the given parameters of η = 0.012,L0 = 2,N = 40,ε = 0.001.

Example 1.

F(K(t),L(t)) =
φ(K(t),L(t))

L(t)
→max

K
, t ∈ [1,5],

where
φ(K,L) =−L2K4 + 8LK3− 9K2+ 5, K ∈ [1;4],

and the labor grows at exponential rate η . The numerical results of the example are
shown in Table 1.

Example 2.

F(K(t),L(t)) =
φ(K(t),L(t))

L(t)
→max

K
, t ∈ [1,5],

where

φ(K,L) = 0.000108K5− 0.00596LK4+ 0.11365K3

−0.889572K2+ 2.986324K, K ∈ [0;6],

and the labor grows at exponential rate η . The numerical results of example 2 are
given in Table 2.

Table 1 Example 1

t L K∗ t L K∗ t L K∗

1.0 2.0404 2.5100 2.4 2.0983 2.4407 3.8 2.1579 2.3732
1.1 2.0445 2.5049 2.5 2.1025 2.4358 3.9 2.1622 2.3686
1.2 2.0486 2.4999 2.6 2.1068 2.4309 4.0 2.1666 2.3638
1.3 2.0527 2.4949 2.7 2.111 2.4260 4.1 2.1709 2.3591
1.4 2.0568 2.4899 2.8 2.1152 2.4242 4.2 2.1753 2.3543
1.5 2.0609 2.4850 2.9 2.1194 2.4164 4.3 2.1796 2.3497
1.6 2.065 2.4801 3.0 2.1237 2.4115 4.4 2.184 2.3449
1.7 2.0692 2.4750 3.1 2.1279 2.4067 4.5 2.1883 2.3403
1.8 2.0733 2.4701 3.2 2.1322 2.4019 4.6 2.1927 2.335
1.9 2.0775 2.4651 3.3 2.1365 2.3971 4.7 2.1971 2.3310
2.0 2.0816 2.4603 3.4 2.1407 2.3924 4.8 2.2015 2.3263
2.1 2.0858 2.4554 3.5 2.145 2.3876 4.9 2.2059 2.3217
2.2 2.09 2.4504 3.6 2.1493 2.3828 5.0 2.2103 2.3355
2.3 2.0941 2.4456 3.7 2.1536 2.3780
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Table 2 Example 2

t L K∗ t L K∗ t L K∗

1.0 2.0404 2.4270 2.4 2.0983 2.4068 3.8 2.1579 2.3870
1.1 2.0445 2.4256 2.5 2.1025 2.4054 3.9 2.1622 2.3857
1.2 2.0486 2.4241 2.6 2.1068 2.4039 4.0 2.1666 2.3842
1.3 2.0527 2.4227 2.7 2.111 2.4025 4.1 2.1709 2.3828
1.4 2.0568 2.4212 2.8 2.1152 2.4011 4.2 2.1753 2.3814
1.5 2.0609 2.4198 2.9 2.1194 2.3997 4.3 2.1796 2.3800
1.6 2.065 2.4183 3.0 2.1237 2.3982 4.4 2.184 2.3786
1.7 2.0692 2.4168 3.1 2.1279 2.3969 4.5 2.1883 2.3773
1.8 2.0733 2.4154 3.2 2.1322 2.3954 4.6 2.1927 2.3759
1.9 2.0775 2.4139 3.3 2.1365 2.3940 4.7 2.1971 2.3745
2.0 2.0816 2.4125 3.4 2.1407 2.3927 4.8 2.2015 2.3732
2.1 2.0858 2.4110 3.5 2.145 2.3912 4.9 2.2059 2.3718
2.2 2.09 2.4097 3.6 2.1493 2.3898 5.0 2.2103 2.3704
2.3 2.0941 2.4082 3.7 2.1536 2.3884

Table 3 Example 3

t L K∗ t L K∗ t L K∗

1.0 2.0404 1.2131 2.4 2.0983 1.1874 3.8 2.1579 1.1619
1.1 2.0445 1.2112 2.5 2.1025 1.1856 3.9 2.1622 1.1602
1.2 2.0486 1.2097 2.6 2.1068 1.1838 4.0 2.1666 1.1583
1.3 2.0527 1.2075 2.7 2.111 1.1819 4.1 2.1709 1.1564
1.4 2.0568 1.2057 2.8 2.1152 1.1801 4.2 2.1753 1.1547
1.5 2.0609 1.2039 2.9 2.1194 1.1783 4.3 2.1796 1.1528
1.6 2.065 1.2021 3.0 2.1237 1.1765 4.4 2.184 1.1510
1.7 2.0692 1.2002 3.1 2.1279 1.1747 4.5 2.1883 1.1492
1.8 2.0733 1.1984 3.2 2.1322 1.1729 4.6 2.1927 1.1472
1.9 2.0775 1.1966 3.3 2.1365 1.1710 4.7 2.1971 1.1456
2.0 2.0816 1.1947 3.4 2.1407 1.1692 4.8 2.2015 1.1438
2.1 2.0858 1.1929 3.5 2.145 1.1674 4.9 2.2059 1.1420
2.2 2.09 1.1910 3.6 2.1493 1.1655 5.0 2.2103 1.1402
2.3 2.0941 1.1893 3.7 2.1536 1.1638

Example 3.

F(K(t),L(t)) =
φ(K(t),L(t))

L(t)
→max

K
, t ∈ [1,4],

where
φ(K,L) = log(K2 +LK)/K, K ∈ [1;3],

and the labor grows at exponential rate η .

The numerical results of example 3 are shown in Table 3.
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Cyclical Fluctuations in Continuous Time
Dynamic Optimization Models: Survey
of General Theory and an Application
to Dynamic Limit Pricing

Toichiro Asada

Abstract In this chapter, we reconsider the analytical results on the existence of
cyclical fluctuations in continuous time dynamic optimization models with two state
variables and their applications to dynamic economic theory. In the first part, we
survey the useful analytical results which were obtained by Dockner and Feichtinger
(J Econom 53–1:31–50, 1991), Liu (J Math Anal Appl 182:250–256, 1994) and
Asada and Yoshida (Chaos, Solitons and Fractals 18:525–536, 2003) on the general
theory of cyclical fluctuations in continuous time dynamic optimizing and non-
optimizing models. In the second part, we provide an application of these analytical
results to a particular continuous time dynamic optimizing economic model, that is,
a model of dynamic limit pricing with two state variables, which is an extension of
Gaskins (J Econom Theor 3:306–322, 1971) prototype model.

Key words Cyclical fluctuations • Continuous time • Dynamic optimization
models • Hopf Bifurcation • Dynamic limit pricing

1 Introduction

It is well known that the typical continuous time dynamic optimization model
with only one state variable, which is very popular in economics, does not
produce the cyclical fluctuations but it produces the monotonic convergence to the
equilibrium point. On the other hand, some economic theorists provided various
types of continuous time dynamic optimization models with two state variables
which entail cyclical fluctuations. Some examples of such works are [3, 4, 7, 8].
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The above-mentioned works showed the existence of closed orbits as the optimal
trajectories analytically as well as numerically by applying the Hopf Bifurcation
theorem.1

All of the above-mentioned works are the studies of particular economic models
rather than the systematic investigations of the general continuous time dynamic
optimization models with two state variables. On the other hand, [11] provided
an exhaustive classification of the nature of the solution of such a general model
including the conditions for the occurrence of the Hopf Bifurcation. [13, 14] are
examples of the applications of [11] theorem to the economic models. Asada and
Yoshida [6] discussed on the analytical results of [11] from a particular point of
view.

In this chapter, we reconsider the analytical results on the existence of cyclical
fluctuations in continuous time dynamic optimization models with two state vari-
ables and their applications to dynamic economic theory. Our strategy is to take up
a particular economic model from the viewpoint of an application of the general
theory of dynamic optimization. In Sect. 2, we survey the useful analytical results
which were obtained by [6, 11, 18] on the general theory of cyclical fluctuations
in continuous time dynamic optimizing and non-optimizing models. In Sect. 3, we
provide an application of these analytical results to a particular continuous time
dynamic optimization model, that is, a model of dynamic limit pricing with two
state variables, which is an extension of [16] prototype model. Section 4 is devoted
to an interpretation of the analytical results obtained in Sect. 3.

2 Survey of General Theory

In this section, we survey some useful analytical results on the existence of cyclical
fluctuations in continuous time dynamic optimization and non-optimization models.
First, let us quote the following “Hopf Bifurcation theorem” that describes a set of
sufficient conditions for the existence of the closed orbits in a general n-dimensional
system of nonlinear differential equations (cf. [15] Chap. 24 and [2] Mathematical
Appendix).

Theorem 1 (Hopf Bifurcation theorem). Let ẋ = f (x;ε),x ∈ Rn, ε ∈ R be an
n-dimensional system of differential equations depending upon a parameter ε.
Suppose that the following conditions (H1)–(H3) are satisfied:

(H1) The system has a smooth curve of equilibria given by f (x∗ (ε);ε) = 0.

1This does not necessarily mean that every continuous time dynamic optimization model with
two state variables produces cyclical fluctuations. For example, [5] proved analytically that [19]
continuous time dynamic optimization model of endogenous growth with two state variables entails
only the monotonic convergence to the equilibrium point.
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(H2) The characteristic equation |λ I−D f (x∗ (ε0);ε0)| = 0 has a pair of pure
imaginary rootsλ (ε0), λ̄ (ε0) and no other roots with zero real parts, where
D f (x ∗ (ε0);ε0) is the Jacobian matrix of the above system at (x ∗ (ε0),ε0)
with the parameter value ε0.

(H3) d{Reλ (ε)}
dε

∣

∣

∣

ε=ε0
�= 0, where Reλ (ε) is the real part of λ (ε).

Then, there exists a continuous function ε(γ) with ε(0) = ε0, and for all
sufficiently small values of γ �= 0, there exists a continuous family of non-constant
periodic solution x(t,γ) for the above dynamical system, which collapses to the
equilibrium point x∗ (ε0) as γ → 0. The period of the cycle is close to 2π/ Imλ (ε0),
where Imλ (ε0) is the imaginary part of λ (ε0).

The point ε = ε0 that satisfies all of the above conditions (H1)–(H3) is called
the “Hopf Bifurcation point.” An important necessary condition for the occurrence
of Hopf Bifurcation is that the characteristic equation of the above system has a
pair of pure imaginary roots at ε = ε0. It is well known that the typical continuous
time dynamic optimization model with single state variable has two characteristic
roots and at least one of which has positive real part, so that the Hopf Bifurcation
cannot occur in such a model. But, [6, 11] proved analytically that the existence of
Hopf Bifurcation is at least potentially possible if we consider the continuous time
dynamic optimization model with two state variables.

Following [6, 11], let us consider the following typical continuous time dynamic
optimization problem with two state variables.

Maximize
∫ ∞

0
F(k1,k2,u1,u2, . . . ,un)e−rtdt (1)

subject to

k̇1 = f (k1,k2,u1,u2, . . . ,un), k̇2 = g(k1,k2,u1,u2, . . . ,un;ε), (2)

k1(0) = k10 = given, k2(0) = k20 = given, (3)

where ki(i = 1,2) are two state variables, u j( j = 1,2, . . . ,n) are control variables, r
is the rate of discount that is a positive parameter, and ε is another parameter.2 We
assume that the functions F, f , and g are at least twice continuously differentiable.

We can solve this problem by means of Pontryagin’s maximum principle (cf.
[9, 12]). First, let us define the current value Hamiltonian as

H = F(k1,k2,u1,u2, . . . ,un)+ μ1 f (k1,k2,u1,u2, . . . ,un)

+ μ2g(k1,k2,u1,u2, . . . ,un;ε), (4)

2We can introduce other parameters which affect functions F and f , but the formulation in the text
is sufficient for our purpose.
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where μ1 and μ2 are two costate variables which correspond to two state variables k1

and k2, respectively. Then, a set of necessary conditions of the optimality becomes
as follows.

(i) k̇i = ∂H/∂ μi (i = 1,2)

(ii) μ̇i = rμi− ∂H/∂ki (i = 1,2)

(iii) Max
(u1,u2,...,un)

H

(iv) lim
t→∞

kiμie−rt = 0 (i = 1,2).

(5)

The conditions (5)(i) are equivalent to the dynamic constraints (2). The conditions
(5)(ii) are a set of differential equations which describe the dynamics of the costate
variables. We suppose that the conditions (5)(iii) are equivalent to the following
first-order conditions3:

∂H/∂u j = 0 ( j = 1,2, . . . ,n). (6)

This is a set of simultaneous equations with respect to the control variables. We
assume that its solution is uniquely determined, and it can be expressed by the
following continuously differentiable functions:

u j = u j(k1,k2,μ1,μ2;ε) ( j = 1,2, . . . ,n). (7)

The conditions (5)(iv) are called the “Transversality conditions.”
Substituting the relationships (7) into (5)(i) and (5)(ii), we obtain the following

four-dimensional system of linear or nonlinear differential equations:

(i) k̇1 = G1(k1,k2,μ1,μ2;ε)

(ii) k̇2 = G2(k1,k2,μ1,μ2;ε)

(iii) μ̇1 = G3(k1,k2,μ1,μ2;r,ε)

(iv) μ̇2 = G4(k1,k2,μ1,μ2;r,ε). (8)

We shall consider the dynamics of this system around the equilibrium point by
assuming that there exists a meaningful equilibrium solution (k∗1,k

∗
2,μ

∗
1 ,μ

∗
2 ) of this

system such that k̇1 = k̇2 = μ̇1 = μ̇2 = 0.

3We assume that the second-order conditions are also satisfied.
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Let us write the (4×4) Jacobian matrix of this system at the equilibrium point
as J. Then, we can write the characteristic equation of this system as

Δ(λ )≡ |λ I− J|= λ 4 + a1λ 3 + a2λ 2 + a3λ + a4 = 0, (9)

a1 =−traceJ, a2 = M2, a3 =−M3, a4 = detJ, (10)

where Mj is the sum of all principal j-th order minors of J( j = 2,3). 4

Dockner and Feichtinger [11] proved that the following relationships are satisfied
in case of this particular Jacobian matrix J.

traceJ = 2r, −M3 + rM2− r3 = 0. (11)

Following [11], let us write

K ≡M2− r2. (12)

Then, we can rewrite Eq. (11) as

traceJ = 2r, −M3 + rK = 0. (13)

Then, we have the following expression substituting Eqs. (12) and (13) into a set
of relationships (10).

a1 =−traceJ =−2r< 0, a2 = r2 +K, a3 =−rK, a4 = detJ. (14)

It is worth to note that we have

traceJ =
4

∑
j=1

λ j = 2r > 0, (15)

where λ j( j = 1,2,3,4) are the characteristic roots of Eq. (9). Therefore, this system
has at least one root with positive real part.

Furthermore, [11] proved that the following set of conditions (DF) is equivalent
to the condition (H2) in Theorem 1 in this chapter.

detJ>(K/2)2,(K/2)2 + r2(K/2)− detJ = 0. (DF)

More accurately, they proved the following quite useful theorem.

4See mathematical appendix of [2].
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Theorem 2 ([11]). The characteristic equation Δ(λ ) ≡ |λ I− J|= 0 of the partic-
ular Jacobian matrix J of the system (8) has the following properties (i)–(iv).

(i) The characteristic equation has two positive real roots and two negative real
roots if and only if

K < 0, 0 < detJ � (K/2)2. (16)

(ii) The characteristic equation has a pair of complex roots with positive real part
and a pair of complex roots with negative real part if and only if

detJ > (K/2)2, detJ− (K/2)2− r2(K/2)> 0. (17)

(iii) The characteristic equation has three roots with positive real parts and one
negative real root if and only if

detJ < 0. (18)

(iv) The characteristic equation has a pair of complex roots with positive real part
and a pair of pure imaginary roots if and only if the condition (DF) is satisfied.

Dockner and Feichtinger [11] expressed the result of this theorem visually by
using Fig. 1.

Next, let us turn to the investigation of the conditions for the occurrence of the
Hopf Bifurcation in a general system of nonlinear differential equations without
restricting to the particular dynamic optimization model. It is worth noting that the
following “Liu’s theorem” provides us very powerful result that is applicable to
general n-dimensional system of differential equations.

Theorem 3 ([18]). Consider the following characteristic equation with n �3 :

λ n + b1λ n−1 + b2λ n−2 + · · ·+ bn−1λ + bn = 0. (19)

This characteristic equation has a pair of pure imaginary roots and (n− 2) roots
with negative real parts if and only if the following set of conditions are satisfied :

A j > 0 for all j ∈ {1,2, . . . ,n− 2}, An−1 = 0, bn > 0, (20)

where A j( j = 1,2, . . . ,n− 1) are Routh-Hurwitz terms defined as

A1 = b1, A2 =

∣

∣

∣

∣

b1 b3

1 b2

∣

∣

∣

∣
, A3 =

∣

∣

∣

∣

∣

∣

b1 b3 b5

1 b2 b4

0 b1 b3

∣

∣

∣

∣

∣

∣

, . . . ,
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Fig. 1 Classification of the nature of the roots of characteristic equation (9). (A) Two Positive real
roots and two negative real roots (real roots type saddle point). (B) A pair of complex roots with
positive real part and a pair of complex roots with negative real part (complex roots type saddle
point). (C) A pair of complex roots with positive real part and a pair of pure imaginary roots (Hopf
Bifurcation curve). (D) Four roots with positive real parts(totally unstable). (E) Three parts with
positive real parts and one negative real root. (Source: Dockner and Feichtinger (1991), p. 36;
Feichtinger et al. (1994), p. 356)

An−1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

b1 b3 b5 b7 · · · 0 0
1 b2 b4 b6 · · · 0 0
0 b1 b3 b5 · · · 0 0
0 1 b2 b4 · · · 0 0
0 0 b1 b3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · bn 0
0 0 0 0 · · · bn−1 0
0 0 0 0 · · · bn−2 bn

0 0 0 0 · · · bn−3 bn−1

∣

∣
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣
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∣

. (21)
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Although this “Liu’s theorem” is quite useful in the sense that it can be applicable
to the general n-dimensional system of differential equations, it has the following
deficiency. The Hopf Bifurcation in which all the characteristic roots except a
pair of purely imaginary ones have negative real parts is called the “simple”
Hopf Bifurcation. Liu’s theorem is applicable only to the case of “simple” Hopf
Bifurcation. But, in the typical dynamic optimization model, usually there exists at
least one characteristic root that has positive real part. This means that Liu’s theorem
is inapplicable to the typical dynamic optimization model. On the other hand, [6]
provided the following complete mathematical characterization of the criteria for
the occurrence of the Hopf Bifurcation including the “non simple” as well as the
“simple” case, although their analysis is restricted to four-dimensional system.5

Theorem 4 ([6]). (1) Consider the characteristic equation

λ 4 + b1λ 3 + b2λ 2 + b3λ + b4 = 0. (22)

(i) The characteristic equation (22) has a pair of pure imaginary roots and
two roots with nonzero real parts if and only if either of the following set of
conditions (A) or (B) is satisfied

b1b3 > 0, b4 �= 0, Φ≡ b1b2b3− b2
1b4− b2

3 = 0. (A)

b1=b3=0, b4 < 0. (B)

(ii) The characteristic equation (22) has a pair of pure imaginary roots and
two roots with negative real parts if and only if the following condition (C)
is satisfied.

b1 > 0, b3 > 0, b4 > 0, Φ≡ b1b2b3− b2
1b4− b2

3 = 0. (C)

(2) Consider the characteristic equation

λ 4 + b1(ε)λ 3 + b2(ε)λ 2 + b3(ε)λ + b4(ε) = 0, (23)

where it is assumed that the coefficients b j( j = 1,2,3,4) are the continuously
differentiable functions of a parameter ε. Then, we have the following properties
(i) and (ii).

(i) Suppose that we have b1(ε0)b3(ε0)> 0,b4(ε0) �= 0, and

Φ(ε0)≡ b1(ε0)b2(ε0)b3(ε0)−b1(ε0)
2b4(ε0)−b3(ε0)

2=0 at the point ε=ε0.

5Theorem 4(1) was referred to by ([15], p. 483) as “Asada-Yoshida Theorem”.
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Then, the condition (H3) in Theorem 1 is equivalent to the following
condition (D).

dΦ(ε)

dε

∣

∣

∣

∣

ε=ε0

�= 0 (D)

(ii) Suppose that we have b1(ε0) = 0, b3(ε0) = 0, and b4(ε0) < 0 at the point
ε= ε0. Then, the condition (H3) in Theorem 1 is equivalent to the following
condition (E).

[

b2(ε0)+
√

b2(ε0)2− 4b4(ε0)

]

b′1(ε0)− 2b′3(ε0) �= 0. (E)

Asada and Yoshida [6] proved the following proposition by applying Theo-
rem 4(1)(i) to the particular characteristic equation (9).6

Proposition 1 ([6]). (i) The characteristic equation (9) of the particular system of
differential equations (8) has a set of pure imaginary roots and two roots with
nonzero real parts if and only if the following set of conditions (AY) is satisfied:

K > 0, (K/2)2 + r2(K/2)− detJ = 0. (AY)

(ii) A set of conditions (AY) is equivalent to a set of conditions (DF) by [11].

Proof. (i) First, it follows from the relationships (14) that

Φ≡ a1a2a3− a2
1a4− a2

3 = 4r2[(K/2)2 + r2(K/2)− detJ]. (24)

Second, a set of conditions (A) in Theorem 4(1)(i) is equivalent to the following
set of conditions in case of the particular characteristic equation (9).

a3<0, a4 �= 0, Φ = 0. (25)

We can see from the relationships (14) that the condition a3 < 0 is equivalent
to the condition K > 0. Furthermore, the condition Φ = 0 is equivalent to the
condition (K/2)2 + r2(K/2)− detJ = 0. If these two conditions are satisfied,
we also have a4 �= 0 because of the fact that a4 = detJ = (K/2)2+r2(K/2)> 0.

(ii) First, let us suppose that a set of conditions (DF) is satisfied. In this case, we
have

detJ = (K/2)2 + r2(K/2)> (K/2)2, (26)

which means that K > 0. This proves the causality (DF) =⇒(AY).

6We reproduce the proof here. The method of proof is quite simple and straightforward.
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Next, let us suppose that a set of conditions (AY) is satisfied. Also in this case,
we have the relationship (26), which means that a set of conditions (DF) is satisfied.
This proves the causality (AY)=⇒(DF). ��
Remark 1. Comparing Theorem 2(iv) and Proposition 1, we can see that the
particular characteristic equation (9) has a pair of pure imaginary roots and two
complex roots with positive real parts if a set of conditions (AY) is satisfied. In this
case, the condition (D) in Theorem 4(2)(i) is equivalent to the condition

d
dε

[(K/2)2 + r2(K/2)− detJ]

∣

∣

∣

∣

ε=ε0

�= 0. (27)

In the next section, we shall apply the analytical results which were surveyed in
this section to an extended version of [16] model of dynamic limit pricing.

3 An Application to Dynamic Limit Pricing

3.1 Gaskins’ Prototype Model of Dynamic Limit Pricing

First, let us summarize the prototype model of dynamic limit pricing that was
originated by [16]. We consider a partial equilibrium model of an industry in which
one dominant large firm and many small fringe firms exist. The demand function is
expressed by the following linear decreasing function:

q = a− bp ; a > 0, b > 0, (28)

where q is the demand for the product of this industry, p is the price of this product.,
and a,b are two parameters of the demand function.7

The dominant large firm acts as the price leader (the price setter) subject to the
threat of entry by the fringe firms. Fringe firms behave as price takers and the entry
dynamics of the fringe firms are expressed by the differential equation

ẋ = α(p− p̄) ; α>0, p̄ > 0, (29)

where x is the total output of fringe firms and α, p̄ are parameters of the entry
dynamics. It is assumed that the dominant large firm selects its output level
corresponding to (q− x) and the average cost of the dominant large firm (c) is
constant such that 0 < c < p̄. Then, the discounted present value of the dominant
large firm becomes

7Gaskins [16] used more general demand function that is not necessarily linear, but we use the
linear demand function for simplicity of the analysis following [10] Chap. 10.
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W =

∫ ∞

0
(p− c)(a− bp− x)e−rtdt, (30)

where r is the rate of discount, which is a positive parameter.
The dominant large firm is supposed to select the dynamic path (p) of price

that maximizes W subject to the dynamic constraint (29) and given initial value
x(0). Although this is a typical dynamic optimization problem of single agent with
one state variable (x), we can interpret that this is implicitly a kind of Stackerberg
differential game in which the dominant large firm acts as the leader and fringe firms
act as followers (cf. [4]).8

The current value Hamiltonian of this dynamic optimization problem can be
written as

H = (p− c)(a− bp− x)+ μα(p− p̄), (31)

where μ is the costate variable corresponding to the dynamic constraint (29). A set
of necessary conditions for optimality becomes as

(i) ẋ = ∂H/∂ μ ,

(ii) μ̇ = rμ− ∂H/∂x,

(iii) Max
p

H,

(iv) lim
t→∞

xμe−rt = 0. (32)

Solving Eq. (32)(iii) with respect to μ , we have μ = μ(p). Substituting this
relationship into equations (i) and (ii) in (32), we obtain the following two
dimensional system of differential equations with single transversality condition,
where the initial value of the state variable x(0) is predetermined, but the initial
value of the control variable p(0) is not predetermined.

(i) ẋ = F1(p)

(ii) ṗ = F2(x, p)

(iii) lim
t→∞

xμ(p)e−rt = 0. (33)

8As for the exhaustive exposition of the theory of differential game, see [12].
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Gaskins [16] proved that the economically meaningful equilibrium point such
that ẋ = ṗ = 0 exists under some reasonable conditions, and it becomes a saddle
point, namely, the (2×2) Jacobian matrix of this system at the equilibrium point
has one positive real root and one negative real root. This means that there exists
only one initial value p(0) that ensures the convergence to the equilibrium point
corresponding to the given initial value x(0). Only the convergent path satisfies the
transversality condition (33)(iii).

In sum, in Gaskins’ prototype model, cyclical fluctuations do not occur, but only
the monotonic convergence to the equilibrium point occurs.

3.2 Cyclical Fluctuations in an Extended Gaskins Model
of Dynamic Limit Pricing

It is possible to extend and develop Gaskins’ prototype model in several ways. For
example, [4, 17] extended Gaskins model by introducing the investment behaviors
of firms. In particular, [4] provided an example of the occurrence of cyclical
fluctuations in such an extended model by means of numerical simulations. In this
subsection, we shall present another simple extension of Gaskins model that can
produce cyclical fluctuations, which is an example of the direct application of the
analytical results summarized in Sect. 2 of this chapter.

Instead of the dynamic constraint (29), let us adopt the following new
formulation.

ẋ = α(pe− p̄) ; α>0, p̄ > 0, (34)

ṗe = β (p− pe) ; β > 0, (35)

where pe is the expected price, which is the price expected by fringe firms. Equation
(35) means that the dynamic of expected price is governed by a formula of adaptive
expectation hypothesis, and β is the speed of adaptation that can be interpreted as
the reciprocal of the average time lag of expectation adaptation.9

The dynamic optimization problem of the dominant large firm is to select the
dynamic path of price (p) that maximizes W in Eq. (30) subject to two dynamic
constraints (34), (35) with given initial values of two state variables x(0) and pe(0).
In this case, the current value Hamiltonian becomes

H = (p− c)(a− bp− x)+ μ1α(pe− p̄)+ μ2β (p− pe), (36)

9In the appendix, we reinterpret this equation by means of a continuously distributed lag model of
expectation formation.
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where μ1 and μ2 are two costate variables which correspond to two state variables x
and pe , respectively.

A set of necessary conditions for optimality becomes

(i) ẋ = ∂H/∂ μ1 = α(pe− p̄),

(ii) ṗe = ∂H/∂ μ2 = β (p− pe),

(iii) μ̇1 = rμ1− ∂H/∂x = rμ1 + p− c,

(iv) μ̇2 = rμ2− ∂H/∂ pe = (r+β )μ2− μ1α,

(v) Max
p

H,

(vi) lim
t→∞

xμ1e−rt = 0, lim
t→∞

peμ2e−rt = 0. (37)

Now, let us turn to the condition (37)(v). The first-order condition for the maximiza-
tion of H with respect to p becomes10

∂H/∂ p =−2bp+ a− x+bc+μ2β = 0. (38)

Solving this equation with respect to p, we have

p =
1

2b
(a− x+ bc+ μ2β ). (39)

Substituting Eq. (39) into Eq. (37)(i)–(iv), we obtain the following four-
dimensional system of linear differential equations:

(i) ẋ = α(pe− p̄)≡ G1(pe;α)

(ii) ṗe = β{ 1
2b

(a− x− bc+ μ2β )− pe} ≡ G2(x, pe,μ2;β )

(iii) μ̇1 = rμ1 +
1

2b
(a− x+ bc+ μ2β )− c≡ G3(x,μ1,μ2;r,β )

(iv) μ̇2 = (r+β )μ2− μ1α ≡ G4(μ1,μ2;r,α,β ). (40)

Next, we shall consider the nature of the equilibrium solution (x∗, pe∗, p∗,μ∗1 ,μ
∗
2 )

that satisfies ẋ = ṗe = μ̇1 = μ̇2 = 0. It is easy to see that we have

pe∗ = p∗ = p̄ > 0. (41)

10Since ∂ 2H/∂ p2 =−2b < 0, the second-order condition is always satisfied.
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Other three equilibrium values are determined by the following linear system of
equations.

⎡

⎣

−1 0 β
−1 2br β
0 −α r+β

⎤

⎦

⎡

⎣

x
μ1

μ2

⎤

⎦=

⎡

⎣

2bp̄+ bc− a
bc− a

0

⎤

⎦ . (42)

It is easy to see that the solution of this system of equations becomes

x∗ =
(a− 2bp̄− bc)r(r+β )− p̄αβ

r(r+β )
= (a− 2bp̄− bc)− p̄αβ

r(r+β )

< a− 2bp̄− bc, (43)

μ∗1 =
− p̄
r

< 0, (44)

μ∗2 =
−α p̄

r(r+β )
=

αμ∗1
r+β

< 0. (45)

Proposition 2. We have x∗ > 0 for all β > 0 if the parameter a (upper limit of
demand) is fixed at sufficiently large positive value and the parameter α (adjustment
speed of entry) is fixed at sufficiently small positive value.

Proof. It is easy to see that we have x∗ > 0 if and only if the inequality

Z(β )≡ (a− 2bp̄− bc)r(r+β )− p̄αβ > 0 (46)

is satisfied. Incidentally, we have

Z(0) = (a− 2bp̄− bc)r2, (47)

Z′(β ) = (a− 2bp̄− bc)r− p̄α. (48)

Therefore, we have Z(0) > 0 and Z′(β ) > 0 if a is sufficiently large and α is
sufficiently small. In this case, we obtain Z(β ) > 0 for all β > 0, which means
that we have x∗ > 0 for all β > 0. ��

Now, let us study the dynamic property of this model by assuming as follows.

Assumption 1. The combination of the parameter values (a,α) is at the level such
that x∗ > 0 for all β > 0.

The Jacobian matrix of this system becomes

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 α 0 0

− β
2b −β 0 β 2

2b

− 1
2b 0 r β

2b

0 0 −α r+β

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (49)

We can write the characteristic equation of this system as
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Δ(λ )≡ |λ I− J|= λ 4 + a1λ 3 + a2λ 2 + a3λ + a4 = 0, (50)

where

a1 =−traceJ =−2r < 0, (51)

a2 = M2 = sum of all principal second-order minors of J

=

∣

∣

∣

∣

∣

0 α
− β

2b −β

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

0 0
− 1

2b r

∣

∣

∣

∣
+

∣

∣

∣

∣

0 0
0 r+β

∣

∣

∣

∣

+

∣

∣

∣

∣

−β 0
0 r

∣

∣

∣

∣
+

∣

∣

∣

∣

∣

−β β 2

2b
0 r+β

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

r β
2b

−α r+β

∣

∣

∣

∣

∣

= r2 +β
(α

b
− r−β

)

, (52)

a3 =−M3 =−(sum of all principal third-order minors of J), (53)

a4 = detJ =
αβ r(r+β )

2b
≡ detJ(β )> 0. (54)

Since this dynamic optimization model with two state variables is only a
particular case of the model that was explained in Sect. 2, we can apply Theorem 2
in Sect. 2 to this model. To this purpose, let us consider the following three
relationships.

K ≡M2− r2 =−β 2 +(
α
b
− r)β ≡ K(β ), (55)

Ω(β )≡ (K/2)2− detJ

=
β
2

[

1
2

β 3 +
(

r− α
b

)

β 2 +

{

1
2

(

r− α
b

)2
− αr

b

}

β − αr2

b

]

, (56)

Ψ(β )≡ (K/2)2 + r2(K/2)− detJ

= β
[

β 3 +
1
2

(

r− α
b

)

β 2 +
α
b

(α
b
− 4r

)

β − r3
]

. (57)

Now, we can prove the following important results by applying Dockner and
Feichtinger’s theorem (Theorem 2 in Sect. 2).

Proposition 3. Suppose that 0 < r < α
b .

Then, we have the following properties (i)–(ii).

(i) The characteristic equation (50) has a pair of complex roots with positive real
part and a pair of complex roots with negative real part for all sufficiently small
values of β > 0.

(ii) Equation (50) has two positive real roots and two negative real roots for all
sufficiently large values of β > 0.
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Proof. Suppose that 0 < r < α
b . Then, the function K(β ) becomes a differentiable

function that has the following property (P1) because of Eq. (55).

K(0) = 0, K′(β )>0 for all β ∈
[

0,
α/b− r

2

)

,

K′
(

α/b− r
2

)

= 0, K′(β )< 0 for all β ∈
(

α/b− r
2

,∞
)

,

K
(α

b
− r
)

= 0, lim
β→∞

K(β ) =−∞. (P1)

On the other hand, the functions detJ(β ), Ω(β ) and Ψ(β ) become the differen-
tial functions which have the following properties (P2)–(P4) because of the Eqs. (54),
(56), and (57):

detJ(0) = 0, detJ′(β )> 0 for all β ∈ [0,∞), lim
β→∞

detJ(β ) = ∞. (P2)

Ω(0) = 0, Ω′(0) =−αr2

2b
< 0, lim

β→∞

Ω(β )
β 4 =

1
4
> 0. (P3)

Ψ(0) = 0, Ψ′(0) =−r3 < 0. (P4)

These properties (P1)–(P4) imply the following results.
The combination (K, detJ) is located at the origin of Fig. 1 when β = 0.

As β increases from β = 0, this combination moves to the north-east direction
continuously until it reaches the point β = α/b−r

2 , and the property (P4) implies
that this combination is located at the region B of Fig. 1 for all sufficiently small
values of β > 0. After the point β = α/b−r

2 this combination moves to the north-
west direction continuously and indefinitely according as the further increase of β .
At the point β = α

b − r this combination is located at the vertical axis of Fig. 1. On

the other hand, lim
β→∞

Ω(β )
β 4 > 0 implies that Ω(β ) becomes positive for all sufficiently

large values of β > 0. This means that the combination is located at the region A of
Fig. 1 for all sufficiently large values of β > 0. ��
Proposition 4. Suppose that 0 < r < α

b and r is sufficiently small. Then, there exist

the parameter values B j( j = 1,2,3,4) such that 0 < β1 < α/b−r
2 < β2 < α

b − r <
β3 � β4 < ∞ which satisfy the following properties (i)–(iv).

(i) The characteristic equation (50) has a pair of complex roots with positive real
part and a pair of complex roots with negative real part for all β ∈ (0,β1) �
(β2,β3).

(ii) Equation (50) has four roots with positive real parts for all β ∈ (β1,β2).
(iii) Equation (50) has a pair of complex roots with positive real part and a pair of

pure imaginary roots at two points β = β1 and β = β2.
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(iv) Equation (50) has two positive real roots and two negative real roots for all
β ∈ [β4,∞).

Proof. Suppose that 0 < r < α
b . In this case, it follows from the method of the

proof of Proposition 3 that there exist the parameter values β j( j = 1,2,3) such that

0 < β1 < α/b−r
2 < β2 < α

b − r < β3 with the properties that (i) the trajectory of
the combination (K, detJ) is located at the region B in Fig. 1 for all β ∈ (0,β1) �
(β2,β3), (ii) it is located at the region D in Fig. 1 for all β ∈ (β1,β2), and (iii) it
crosses the curve C at two points β = β1 and β = β2, if and only if the inequality
Ψ(α/b−r

2 )> 0 is satisfied, where we have

Ψ
(

α/b− r
2

)

=

(

α/b− r
2

)
[
(

α/b− r
2

)3

− 1
2

(α
b
− r
)
(

α/b− r
2

)2

+
(α

b

)(α
b
− 4r

)
(

α/b− r
2

)

− r32

]

(58)

from Eq. (57). It follows from Eq. (58) that

lim
r→0

Ψ
(

α/b− r
2

)

=
9
2

( α
2b

)4
> 0, (59)

which means that we have Ψ(α/b−r
2 )> 0 for all sufficiently small values of r > 0 by

continuity. This proves (i)–(iii) of Proposition 4. Proposition 4 (iv) directly follows
from Proposition 3. ��
Proposition 5. Suppose that r � α

b . Then, there exists a parameter value β0 ∈
(0,∞) that satisfy the following properties (i)–(ii).

(i) The characteristic equation (50) has a pair of complex roots with positive real
part and a pair of complex roots with negative real part for all β ∈ (0,β0).

(ii) Equation (50) has two positive real roots and two negative real roots for all
β ∈ [β0,∞).

Proof. Suppose that r � α
b . Then, the differentiable function K(β ) has the following

property (P1
′).

K(0) = 0, K′(0) = 0, K′(β )<0 for all β>0,

lim
β→∞

K(β ) =−∞ if r =
α
b
, and,

K(0) = 0, K′(β )<0 for all β�0,

lim
β→∞

K(β ) =−∞ if r >
α
b
. (P1

′)
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On the other hand, the properties (P2) and (P3) in the proof of Proposition 3 apply
also in this case.

The properties (P1
′) and (P2) mean that the combination (K, detJ) is located

at the origin of Fig. 1 when β = 0, and this combination moves to the north-west
direction continuously and indefinitely as β increases. The property (P3) implies that
this combination is located at the region B of Fig. 1 for all sufficiently small values
of β > 0, and it is located at the region A of Fig. 1 for all sufficiently large values
of β > 0. This means that there exists a parameter value β0 ∈ (0,∞) that satisfy the
property (i) of Proposition 5, and we have

Ω(β0) = 0, Ω′(β0) =
β0

2

[

3
2

β 2
0 + 2

(

r− α
b

)

β0 +
1
2

(

r− α
b

)2
− αr

b

]

> 0. (60)

In other words, the switching of the regions B −→ A (we call it “forward
switching”) occurs at the point β = β0. Next, let us consider whether the “backward
switching” (the switching of the regions A −→ B) occurs according as the further
increase of the parameter value β . For this purpose, let us suppose tentatively that
there exists another switching point β ∗ ∈ (β0,∞) such that

Ω(β ∗) = 0, Ω′(β∗) = β∗
2

[

3
2

β ∗2 +2
(

r− α
b

)

β ∗+1
2

(

r− α
b

)2
− αr

b

]

. (61)

Comparing Eqs. (60) and (61), we can see that β ∗ > β0 > 0 and r � α
b imply

Ω′(β ∗)> Ω′(β0)> 0, (62)

which contradicts that the point β = β ∗ is a “backward” switching point, because at
the “backward” switching point the inequality Ω′(β ) < 0 must be satisfied. This
proves that the “backward switching” cannot occur so that the property (ii) of
Proposition 5 is satisfied in case of r � α

b . ��
Figure 2 summarizes the results of Propositions 3–5. In the regions (B) and at the

points (C) in this figure, the cyclical fluctuations occur. In the next section, we shall
try to provide an interpretation of the analytical results obtained in this section.

4 An Interpretation of the Analytical Results

Figure 2 provides us a convenient characterization of the solution of the extended
dynamic limit pricing model that was presented in Sect. 3.2. This figure shows that
the characteristic equation of this system has two positive real roots and two negative
real roots (regions (A) in this figure) irrespective of the value of the rate of discount
r > 0 if the adjustment speed of adaptive expectation β > 0 is sufficiently large (if
the time lag of the expectation adaptation τ = 1/β is sufficiently small). In this case,
the equilibrium point of the system becomes a real roots type saddle point, and the
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Fig. 2 Classification of the nature of the roots of characteristic equation (50)

number of the positive roots is equal to the number of the not-pre-determined costate
variables in a system of four-dimensional linear differential equations (40). This
means that the dominant firm can select the initial values of the costate variables
which ensure the monotonic convergence to the equilibrium point. If and only if the
convergent path is selected, the transversality conditions (37) (vi) are satisfied. This
situation is illustrated in Fig. 3.11 It is worth noting that the solution path in Fig. 3
is qualitatively the same as that of [16] original model of dynamic limit pricing that
was explained in Sect. 3.1, which can be considered to be the limit case of β → ∞
(τ → 0).

Figure 2 also shows that the characteristic equation of this system has a pair
of complex roots with positive real part and a pair of complex roots with negative
real part (regions (B) in this figure) irrespective of the value of r > 0 if β > 0 is
sufficiently small (if τ = 1/β is sufficiently large). In this case, the equilibrium
point becomes a complex roots type saddle point, and also in this case the number
of the roots with positive real parts is equal to the number of the not-pre-determined
costate variables. Therefore, also in this situation the dominant firm can select the

11Note that Eq. (39) means that the initial value of price p(0) is determined if the initial value of a
state variable x(0) is given and the initial value of a costate variable μ2(0) is selected.
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Fig. 3 Monotonic
convergence (region (A) in
Fig. 2)

convergent path, which satisfies the transversality conditions. In this case, however,
the cyclical fluctuations occur even if the dominant firm selects the convergent path.
This situation is illustrated in Fig. 4.

Case 1b of Fig. 2 provides us an additional important information in case of the
sufficiently small values of the rate of discount r > 0. In this case, the region of
cyclical convergence (B) is interrupted by the region (D) at which the characteristic
equation has four roots with positive real parts. If the parameter values are located
at the region (D), it is impossible to satisfy the transversality conditions unless the
initial values of two state variables are given at the equilibrium levels. In this case,
a system of four-dimensional linear differential equations (40) fails to characterize
the optimal solution.

Next, let us pay attention to two boundary points between the regions (B)
and (D) in Case 1b of Fig. 2, namely, the points β1and β2. At these points, the
characteristic equation has a pair of complex roots with positive real parts and a
pair of pure imaginary roots. These points correspond to the (degenerated) Hopf
Bifurcation points in a system of linear differential equations. Also in this case, the
number of the roots with positive real parts is equal to the number of the not-pre-
determined costate variables. Hence, the dominant firm can select the non-divergent
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Fig. 4 Cyclical convergence
(region (B) in Fig. 2)

dynamic path. In this case, however, the non-divergent path does not converge to
the equilibrium point, but it becomes a closed orbit around the equilibrium point.
The combination (p,x) continues to move along the closed orbit without becoming
nonpositive if the initial values of the state variables are not extremely far from
the equilibrium point, and the dynamic path along the closed orbit satisfies the
transversality conditions (37)(vi). This means that the closed orbit becomes the
optimal path in this case. This situation is illustrated in Fig. 5.

It must be noted that the Hopf Bifurcations in this model are “degenerated” types
because of the linearity of the dynamic system. This means that the probability of
the occurrence of the closed orbit becomes “measure zero” in the half line β in Case
1b of Fig. 2. Nevertheless, the (converging) cyclical fluctuations occur at the wide
range of the parameter value β > 0 in this extended dynamic limit pricing model.
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Fig. 5 Closed orbit (Points
β1 and β2 in Fig. 2)
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Appendix

In this appendix, we reinterpret Eq. (35) in the text by means of a continuously
distributed lag model of expectation formation following the procedure that was
adopted by [20, 21]. Let us assume that the expected price is the weighted average
of actual past prices, that is,

pe(t) =
∫ t

−∞
p(s)ω(s)ds, (A1)

where ω(s) is a weighting function such that
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ω(s)� 0,
∫ t

−∞
ω(s)ds = 1. (A2)

In particular, we assume that our model is described by means of the following
“simple exponential distributed lag” (cf. [20] Chap. 6 and [21]).12

ω(s) = (1/τ)e−(1/τ)(t−s) � 0 ; τ > 0. (A3)

Substituting (A3) into (A1), we obtain

pe(t)e(1/τ)t = (1/τ)
∫ t

−∞
p(s)e(1/τ)sds. (A4)

Differentiating (A4) with respect to t we obtain

ṗe(t) = (1/τ){p(t)− pe(t)},

which is equivalent to Eq. (35) in the text if we write β = 1/τ. We can interpret τ
as the average time lag of expectation adaptation.
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Controlling of Processes by Optimized
Expertsystems

Wolfram-M. Lippe

Abstract Expertsystems are characterised by storing knowledge, normally in
if-then-rules. The human Intelligence implies the ability to comprehend, reason,
memorise, learn, adapt and create. The attribute of certainty or precision does
not exist in human perception and cognition. Perception and cognition through
biological sensors, pain reception and other similar biological events are char-
acterised by many uncertainties. A person can linguistically express perceptions
experienced through the senses, but these perceptions cannot be described using
conventional statistic theory. The perception and cognition activity of the brain is
based on relative grades of information acquired by the human sensory systems.
These are the reasons that fuzzy logic has been applied very successfully in many
areas where conventional model–based approaches are difficult or not cost-effective
to implement. Therefore fuzzy-rule based Expertsystems have many advantages
over classical expertsystems. Hybrid neuro-fuzzy-Expertsystems combine the ad-
vantages of fuzzy systems, which deal with explicit knowledge which can be
explained and understood, and neural networks which deal with implicit knowledge
which can be acquired by learning. Different methods are known for combining
fuzzy-rule-based-systems with neural networks. But all these methods have some
disadvantages and restrictions. We suggest a new model enabling the user to
represent a given fuzzy-rule-base by a neural network and to adapt its components
as desired.
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1 Introduction

Hybrid neuro-fuzzy-Expertsystems combine the advantages of fuzzy systems,
which deal with explicit knowledge which can be explained and understood, and
neural networks which deal with implicit knowledge which can be acquired by
learning. Neural network learning provides a good way to adjust the expert’s
knowledge and automatically generate additional fuzzy-rules and membership
functions, to meet certain specifications and reduce design time and costs.

Fuzzy reasoning can be applied in many areas, e.g. for fuzzy control, fuzzy
diagnosis, and fuzzy modelling. Essentially fuzzy Expertsystems consist of four
components: the fuzzification unit, the rule-base to store the knowledge, the
inference-engine and (if needed) the defuzzyfication unit. The fuzzy-rules of the
rule-base are of the following general type:

R : IF x1 = A1 AND . . .xn = An THEN y j = B j

premise conclusion

Fuzzy-rule-based systems differ in the form of the conclusion (fuzzyfied
(Mamdani-like) or crisp (Sugeno-like)) and in different calculation methods. These
can be divided into methods used for fuzzification, defuzzification and evaluation
of the rules.

The final output is calculated by the following steps:

1. Fuzzyfication of the incoming data
2. Calculating the degree of acceptance of the premise
3. Calculating the results of the rules (evaluating the conclusions)
4. Calculating the output values rsp. output-fuzzy-sets
5. Defuzzification of the output-fuzzy-sets (if necessary)

There are two methods to create the fuzzy-rules:
In data-driven methods the rules are constructed through analysing given

examples by the help of mathematical methods. In expert-driven methods the rules
are specified by exploring the knowledge of a human expert.

The advantage of fuzzy-rule-based systems lies in the simple understanding
of the stored knowledge and the similarity to the human-like reasoning. One
disadvantage is that these systems are not adaptive. Therefore before using these
systems, all rules, fuzzy sets and methods have to be specified completely. The
quality of a system depends on the quality of this specification. Furthermore, due to
the dynamic nature of economic and financial applications, rules and membership
functions must be adaptive to the changing environment in order to continue to be
useful.

Artificial neural networks (ANN) are adaptive systems. The advantage of ANNs
lies in the processing of training examples for the construction, no explicit algorithm
is necessary. So they can be synthesised without making use of the detailed, explicit
knowledge of the underlying process.
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A disadvantage of ANNs is the lack of verification; they are “black boxes”.
The I/O behaviour is known for the training and test data but not for other data.
Furthermore an adequate training set is required. Normally it is not possible to use
well-known information for the construction of an ANN. The late 1990s witnessed
the development of hybrid systems, which combine the advantages of two or
more SoftComputing techniques. Evolutionary algorithms were used to optimize
fuzzy-rule-based systems as well as combinations of ANNs and Fuzzy systems.
These neuro-fuzzy-systems have many advantages over other combinations because
they combine the power of adaptivity and learning with clearness and simple
understanding. So systems with neuro-fuzzy components may be found in many
fields such as stock market prediction, intelligent information systems, and data
mining and s.o.

Expertsystems are characterised by storing knowledge, normally in if-then-
rules. The human intelligence implies the ability to comprehend, reason, memorise,
learn, adapt and create. The attribute of certainty or precision does not exist
in human perception and cognition. Perception and cognition through biological
sensors, pain reception and other similar biological events are characterised by
many uncertainties. A person can linguistically express perceptions experienced
through the senses, but these perceptions cannot be described using conventional
statistic theory. The perception and cognition activity of the brain is based on
relative grades of information acquired by the human sensory systems. These are
the reasons that fuzzy logic has been applied very successfully in many areas
where conventional model-based approaches are difficult or not cost-effective to
implement. Therefore fuzzy-rule-based Expertsystems have many advantages over
classical Expertsystems.

In this chapter we discuss the existing tools and present a new tool for modelling
an existing fuzzy-rule-based system by an ANN which can be improved by special
learning rules in a training phase and which is able to handle all the possibilities
to optimise the given rule-base. The tool is based on the simulation of a given and
nonoptimal fuzzy-rule-based-system by an equivalent neural network to optimise
this neural network in a training phase (can be done on the job) and recreating
the (optimised) rules from the improved neural network, if wanted. The possible
improvements of a given rule-base can be a modification or deletion of existing
fuzzy sets, creation of new fuzzy sets, modification or deletion of existing fuzzy-
rules or the creation of new rules. Some examples for well-known models working
in this way are e.g. NEFCON, Lin/Lee, NARA and ANFIS. Unfortunately none of
the existing models can handle all the possibilities listed above. This new tool exists
in two versions: one for Mamdani-like systems and one for Sugeno-like systems.

2 Existing Neuro-Fuzzy-Expertsystems

In this chapter we will discuss the construction and properties of the existing
systems. NARA (introduced by H. Takagi 1991/92) and ANFIS (adaptive-network-
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based-fuzzy-inference-system, introduced by J.S.R. Jang 1992/93) are the oldest
ones, and their restrictions and disadvantages are well known. So we will focus on
Lin/Lee-systems and NEFCON systems.

2.1 Lin/Lee System

At the beginning of the 1990s C.T. Lin and C.S. Lee developed a procedure by which
Mamdani controllers can be optimised. For this purpose at first a given controller
is transformed into a functional equivalent five-layered ANN. Therefore, fuzzy
sets are used for weights in the generated network instead of usual real numbers.
In the subsequent training period, the weights (and therefore the fuzzy sets) are
adapted by means of a special learning rule based on the backpropagation procedure.
Furthermore, it is possible to generate new output partition sets and to change the
conclusions of rules.

The generated five-layered network is constructed as follows:
The input layer contains one neuron for every input value. In layer 2 there is one

neuron for every available linguistic term of the input partitions. This is connected
in each case with the input neuron which is assigned to the same input dimension.
As a weight the input partitions set, which represents the respective linguistic term,
is used. The used fuzzy sets are Gaussian or triangular sets. Layer 3 contains one
neuron for every rule. This is connected exactly with the neurons from layer 2,
which stand for the linguistic terms of the premise of this rule. Here, no weights
are used. In layer 4 there is, analogously to layer 2, exactly one neuron for every
available linguistic term of the output partitions. This is connected in each case
with all neurons from layer 3. Its associated rule has this term as a conclusion. In
this process no weights are used. In the output layer there is one neuron for every
output dimension. This is connected with all neurons from layer 4. Its linguistic
term belongs to this output dimension. In each case the output partition set, that is
assigned to the linguistic term, is used as a weight.

The calculation of the network output corresponds to the calculation of the output
of the given fuzzy controller. In layer 1 every neuron transmits its input unmodified.
Every neuron from layer 2 calculates the membership grade of its input value to
the fuzzy set, which is used as a weight of the connection with layer 1. In layer 3,
every neuron calculates the minimum of its input values. This gives the “fulfillment
grade” of the premise of the rule that it represents. In layer 4 every neuron calculates
the minimum between 1 and the sum of its input values.

Thereby an inclusive OR operation is realised to determine the cut height of the
corresponding fuzzy set. In layer 5 every neuron j calculates its output as follows:

Oj =
∑i∈S4

m5,i, jw5,i, jz4,i

∑i∈S4
w5,i, jz4,i
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whereby the sum runs in each case only through the neurons i from layer 4 with
which the current output neuron is connected, z4,i is the respective output and m5,i, j

the modal value and w5,i, j is the range of the fuzzy set of the connections with layer
4. In this way a centroid defuzzification is approximated.

In the procedure of Lin and Lee a hybrid learning rule is used which is based on
backpropagation procedure, i.e. the weights of the network (and with it the fuzzy
sets) are trained with a backpropagation procedure. In addition, if required new
neurons are generated in layer 4, where at the same time suitable connections with
layer 3 and layer 5 are generated. This structural change of the network corresponds
to the production of new output partitions sets, as well as to the formation of new
conclusions for some rules.

A disadvantage of this procedure is that no fuzzy sets can be deleted. As the new
generated fuzzy sets are compared only to the fuzzy sets already available in the
network, but not among each other, the number of the sets in one single step often
increases dramatically. During this process fuzzy sets are perhaps generated, which
are not actually necessary for a correct fuzzy feedback control.

Another disadvantage is that there is no possibility to generate also new input-
fuzzy-sets either or to provide new rules. If at the initialisation of the network less
input-fuzzy-sets or rules than absolutely necessary are used, then the system is not
able to provide an optimally functioning fuzzy controller.

2.2 NEFCON System

The NEFCON model was developed in the middle of the 1990s at the University of
Technology of Brunswick by D. Nauck, F. Klawonn and R. Kruse. As with the Lin
and Lee method it is able to optimise a given Mamdani controller by the fact that
this controller is transformed at first in a functionally equivalent ANN which is then
trained and optimised afterwards with special learning procedures.

A NEFCON system is a three-layered neural network which can represent a
fuzzy controller. The essential difference to a traditional neural network lies in the
fact that fuzzy sets are used as weights for the connections instead of real numbers
(similar to Lin and Lee method).

The input layer exists of n neurons which only pass its input value. In layer
2, the rule layer, there is one neuron for every rule. The connections of layer 1
are named in each case with a linguistic term. Thereby for the connections of the
neurons E1, . . . ,En of layer 1 to neuron Rk of layer 2 those linguistic terms used in
the premise of rule Rk are used.

For the input and output exclusively special fuzzy sets are used; triangular sets
are only provided as inputs and prong sets as outputs (“bisected triangle”). A prong
set is shown in Fig. 1.

The calculation of the network output corresponds to the calculation of the output
of a fuzzy controller. In layer 1 every neuron outputs its (real) input again. In layer
2 every neuron Rk calculates the grade of fulfillment of the premise of rule Rk.
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Fig. 1 Prong sets

The modification of fuzzy sets is realised in six steps. If there is no suitable
control base then a corresponding rule-base can automatically be created within
the NEFCON model with the help of another learning method. A condition for
the application of this method is that at least more or less suitable fuzzy sets are
defined for the input and output spaces. Here, the number of the defined fuzzy sets
in particular must be correct. A more precise adaptation of the fuzzy sets (i.e. fine
adjustment) occurs subsequent to the rule-base learning with the method described
above. In addition, as with the learning method for the adaptation of the fuzzy sets,
the right algebraic sign of the control variable must be known.

The idea behind the used procedure is, first of all, to provide all (!) the rules which
are able to be generated by means of the fuzzy sets previously defined by the user.
For the premise every possible combination of fuzzy sets on the input dimensions is
used; as a conclusion, in addition, every given fuzzy set is used on the output space.
False and superfluous rules are removed iteratively, until an appropriated rule-base
remains. This process is executed in two phases. In the first phase in each case all
rules whose contribution to the result has the false algebraic sign are deleted. In
the second phase, of the rules remaining, those with the same premise are pooled
in each case to a set of rules. Then, for every run from each of these sets, a rule is
chosen, that is used for the calculation of the result. Subsequently the error quotient
of every used rule is stored and added up. Afterwards, the rule with the slightest
error quotient is selected from all sets. The other rules are deleted, also those rules
that are only rarely active.

A disadvantage of the NEFCON system is the condition that the membership
functions of fuzzy sets of the output space have to be monotonous on its porter,
whereby the range of the used fuzzy sets is constrained. This is unfavourable,
because especially non-monotonic triangular sets and Gaussian sets are often used
for fuzzy controllers. Fuzzy controllers, that use sets of these types are basically
not appropriate for optimisation with the NEFCON system. Being able to determine
just one output value is another disadvantage. Therefore, it is not easy to assign and
optimise an arbitrary created fuzzy controller to the NEFCON system.



Controlling of Processes by Optimized Expertsystems 235

Furthermore there is no possibility to check available rules and to correct
if necessary, without creating missing fuzzy sets. Therefore, the application is
only reasonable for those fuzzy controllers that fulfil the mentioned conditions
(monotony, one output value), whereas at least the number of required fuzzy sets
must be known. In case of a fuzzy set that is necessary for the correct control, being
forgotten, the NEFCON system cannot generate it and therefore by the presented
procedures cannot provide fuzzy controllers that function in every situation.

3 An Example

The algorithm for modelling a given fuzzy-rule-based Expertsystem to control a
process by our approach, which is able to optimise an Expertsystem without any
restrictions and without the disadvantages of the other systems, is demonstrated by
a well-known example, the overturned pendulum, shown in Fig. 2.

The input space consists of the position Θ(X1) and the speed λ (X2), the output
is the power F(Y1). The partition of the input space and the output space is given by

-90° 90°

0°

-45 ≤ λ ≤ 0

0 ≤ λ ≤ 45

-90 ≤ θ ≤ 90

-10 ≤ F ≤ 10Fig. 2 Overturned pendulum
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The fuzzy-rule-base is given by

IF (x1 IS neg.) AND (x2 IS zero) THEN (y1 IS neg.)
IF (x1 IS neg.) AND (x2 IS pos.) THEN (y1 IS zero)
IF (x1 IS zero) AND (x2 IS neg.) THEN (y1 IS neg.)
IF (x1 IS zero) AND (x2 IS zero) THEN (y1 IS zero)
IF (x1 IS zero) AND (x2 IS pos.) THEN (y1 IS pos.)
IF (x1 IS pos.) AND (x2 IS neg.) THEN (y1 IS zero)
IF (x1 IS pos.) AND (x2 IS zero) THEN (y1 IS pos.)

4 The Optimization Process

In a first step the fuzzy-rules of a given Expertsystem is transformed into a
functionally equivalent neural network. The network is a simple feedforward
network and consists of four layers. The first hidden layer calculates the premises.
The weights between the input layer and the first hidden layer are the fuzzy sets of
the premises. The second hidden layer calculates the conclusions, and the last step
calculates the output-fuzzy-set. The correctness of the transformation can be shown
by a formal proof. After this step a training phase can be started to improve the given
net resp. the given rules.

The corresponding equivalent neural network for the rule-base of the example is
given in Fig. 3.

5 The Training Rules

There are two different techniques for an improvement of the rule-base rsp.
the corresponding neural network: A fine tuning of the fuzzy sets can be done
by classical backpropagation techniques. A “rough” tuning can be done by the
following learning rules:

5.1 Training the Rules

5.1.1 Surplus Rules

For all training inputs we inspect all rules with the same conclusion to find
surplus rules: If a rule has—for each training example—the minimum degree of
acceptance, it has no influence on the result, so it can be removed. If a rule has—
for each training example—the maximum degree of acceptance, it determines the
intersection-altitude alone, so all other inspected rules can be removed.
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Fig. 3 Neural network for the rule–base

5.1.2 Faulty Rules

Case 1. If a rule, which includes every input space in its premise, has a large degree
of acceptance, the system is exactly in the situation, which the rule describes. If in
that case the result calculated solely with this rule has a large error, this rule is
incorrect and gets a new conclusion. The new conclusion is the output-fuzzy-set of
the corresponding output dimension which leads to the minimum distance between
the result calculated solely with this rule and correct output.

Case 2. The case 1 method can not be used for rules, which do not use every input
space in their premise, because the correct output depends on the entire condition of
the system. In this case we proceed as follows:

• Examine—for each rule—all training examples which cause a degree of accep-
tance above a threshold S1.
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• Calculate for each of these training-examples solely with this rule the result and
its error.

• If a rule has—for each training example which causes a degree of acceptance
above S1—an error above a threshold S2, the conclusion-fuzzy-set of this rule
lies in a wrong area.

• Incorrect rules get corrected by supplying them with a new conclusion (either an
existing fuzzy set, or a new one is created).

5.1.3 New Rules

If the degree of acceptance of each rule for given input values (s1, . . . ,sn) is below
a threshold, there is no rule for this situation. Therefore, one has to be created. The
premise is defined by choosing for each input value si the fuzzy set of the input
dimension Xi, which causes the maximum membership degree of si. The conclusion
is found in the same way with the correct output values.

5.2 Training the Fuzzy Sets

(Cannot be done separately but during part I methods)

5.2.1 Correcting Rules: Creating Sets

Case 1. • When correcting a rule, which uses all inputs in its premise, the output-
fuzzy-set, which leads to the minimum distance between the result calculated
solely with this rule and the correct result, is chosen as conclusion.

• If the minimum distance to the correct output is above a threshold, there is no
correct output-fuzzy-set for the current situation. Therefore one has to be created.
Mean is the correct output, width is e.g. the distance to the mean of the next
fuzzy set.

Case 2. • When correcting a rule, which does not use all inputs in its premise, the
output-fuzzy-set is chosen, which yields the minimum error most of the times.

• If the minimum error is not once below a threshold S2, there is no correct fuzzy
set for this rule. Therefore one has to be created. Mean is the intersection from
the correct output of all training examples, which cause a degree of acceptance
above S2, width is e.g. the distance to the mean of the next fuzzy set.

5.2.2 Creating Rules: Creating Sets

When creating new rules the input-fuzzy-set is chosen, which leads to the maximum
membership degree. If one input si causes—for each fuzzy-set of Xi— a membership
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degree below a threshold, there is no correct fuzzy set. Therefore one has to be
created. Mean is si width is e.g. the distance to the mean of the next fuzzy set. If
necessary, for the conclusion, a new fuzzy set is created analogously.

5.2.3 Removing Sets

• Fuzzy sets, on which no rules apply, can be removed.
• If two neighboring fuzzy sets lead to the same conclusion every time, they can

be combined.

5.2.4 Tuning Sets

• The error of the neurons in layer 2 can be calculated directly: In layer 2 each
neuron calculates the degree of acceptance E of the premise from the rule, which
it presents. By that it holds that the more the conclusion is correct, the larger the
degree of acceptance has to be.

• If the correct output is exactly the mean of the conclusion-fuzzy-set, the degree
of acceptance has to be 1; if the correct output is outside of the conclusion-fuzzy-
set, the degree of acceptance has to be 0. Therefore it is advisable, to define the
correct degree of acceptance by the membership degree g of the correct output in
the conclusion-fuzzy-set. Then the error is calculated by F = gE .

• If the degree of acceptance is too large, each input value has too large a member-
ship degree in its corresponding fuzzy set, because the membership-degrees are
combined by means of fuzzy-t-norm. Therefore all applied input-fuzzy-sets get
shifted away from the input values and are curtailed.

• If the degree of acceptance is too low, only the applied fuzzy sets which cause
too low membership degrees get shifted in the direction of the input values.

5.2.5 Output

• The output-fuzzy-sets are adapted as follows: the squared error of an output value
is defined by F = (s− t)2, s is the output and t the correct output.

• Because the influence of an output-fuzzy-set on the results depends on its
intersection-altitude M, the intersection-altitude is considered when adapting the
output-fuzzy-sets. The correct output yields the “correct” output-fuzzy-set to
be the one, whose mean has the minimum distance to the correct output. The
“correct” output-fuzzy-set gets shifted in the direction of the correct output value.
The “wrong” output-fuzzy-sets get curtailed.

Because of some interconnections between the different learning steps an
application should be done in the following order:
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6 Conclusion

In this Chapter we focussed on modelling and optimising fuzzy-rule-based
Expertsystems. The if-then-rules of the rule-base are transformed into a functionally
equivalent neural network. After that connectionist methods for modifications and
optimisations are used. In contrast to existing systems, the user may specify which
components are to be adapted. The user may choose to adjust all components of
the rule-base separately or simultaneously. There are no restrictions concerning the
types of fuzzy sets or the defuzzification method. The systems can handle all the
possibilities to optimise a fuzzy-rule-base. The system was tested in many concrete
applications. The results were extremely positive.
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Using Homotopy Method to Solve Bang–Bang
Optimal Control Problems

Zhijie Gao and Hexi Baoyin

Abstract According to the Pontryagin maximum principle, some optimal control
problem can result in a bang-bang control law. In despite of what method is used
in the optimization procedure for the bang-bang control, fixing switching points of
the bang-bang control is very intractable. In this chapter, the smoothing technique
presented by Bertrand et al. for solving bang-bang optimal control problems is
introduced, but its convergence is quite slow. To overcome this flaw, based upon
a method termed homotopy method, this chapter presents an integration switching
method which can converge very fast. Finally, two numerical examples are solved
illustrating the interest of our method, and the simulation results are provided to
demonstrate the effectiveness of our method.

Key words Homotopy method • Maximum principle • Bang–bang control

1 Introduction

There are three types of method to optimize continuous thrust spacecraft
trajectories: direct method, indirect method, and hybrid method. The direct method
discretizes an optimal control problem into a parameter optimization problem
and then uses nonlinear programming method[1, 2] to solve the original problem.
The indirect method uses Pontryagin maximum principle[3] to convert an optimal
control problem into a two-point boundary value problem (TPBVP)[4, 5]. For most
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of engineering problems, however, the TPBVP is too sensitive to initial value of
the costate to guess properly. Meanwhile the hybrid method combines the previous
two methods, uses maximum principle to depict out some properties of the optimal
control law, and then discretizes the problem to solve a nonlinear programming
instead of solving a TPBVP[6]. According to maximum principle, some optimal
control problem result in a bang–bang control law. In despite of what method is used
in the optimization procedure for the bang–bang control, fixing switching points
of the bang–bang control is very intractable. To handle this difficulty, Bertrand et
al.[7] present a smoothing technique to fix the switching points by shooting methods
but a drawback there is its convergence is quite slow, usually need thousands of
steps. To overcome this flaw, this chapter presents an integration switching method
which can converge very fast, usually need only few steps. Finally, two numerical
examples are solved illustrating the interest of our method.

2 Two-Point Boundary Value Problem

Consider a continuous thrust spacecraft moves in a centric gravitation field. Its
dynamic equations can be written as

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

ṙ = v

v̇ =− μ
r3 r+ T

m α

ṁ =− T
Ispg0

,

(1)

where T is the thrust magnitude with constraint 0≤ T ≤ Tmax and α is the unit vector
of the thrust. At fixed initial time t0, it has fixed initial position vector r0, velocity
vector v0, and mass m0, and at fixed final time t f , it must arrive at a fixed final
position vector r f and velocity vector v f .The objective function to be minimized is

∫ t f

t0
T dt. (2)

It is equivalent to fuel consumption. According to the calculus of variations, the
corresponding Hamiltonian can be formed as

H = T +λ T
r v+λ T

v

(

− μ
r3 r+

T
m

α
)

−λm
T

Ispg0
, (3)

where λr, λv, and λm are costates associated with the states r, v, and m, respectively.
The Pontryagin maximum principle tells that the optimal control should satisfy

α∗ =− λv

‖λv‖ ,T
∗ = Tmaxu, (4)
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where u is decided by switch function ρ as

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

u = 0, ifρ > 0

u = 1, ifρ < 0

0 < u < 1, ifρ = 0

(5)

ρ = 1− ‖λv‖
m

− λm

Ispg0
. (6)

That is to say, the optimal thrust magnitude is either zero or the maximum, which is
termed bang–bang control. Then the dynamic equations of both states and costates
can be formed as
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⎪
⎪
⎪
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⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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ṙ = v

v̇ =− μ
r3 r− λv

‖λv‖
Tmax

m u

ṁ =− Tmaxu
Ispg0

λ̇r =
μ
r3 λv− 3μr·λv

r5 r

λ̇v =−λr

λ̇m =−‖λv‖ Tmax
m2 u.

(7)

The boundary conditions are

r (t0) = r0,v(t0) = v0,m(t0) = m0, (8)

r
(

t f
)

= r f ,v
(

t f
)

= v f ,λm
(

t f
)

= 0. (9)

Denote the column vector [λr; λv ;λm] by λ , which has seven components. Then the
goal is to find a certain λ0 that when combining with conditions (8) and governed
by Eq. (7), the moment it propagates from t0 to t f , conditions (9) are satisfied. It can
be summarized as a column vector of shooting function

S (λ0) =

⎡

⎢

⎢

⎣

r
(

t f ,λ0
)− r f

v
(

t f ,λ0
)− v f

λm
(

t f ,λ0
)

⎤

⎥

⎥

⎦
= 0 (10)

which has seven components to determine a column vector with seven unknowns.
In principle, if the initial guess values are given properly, and Eq. (7) are

integrated accurately enough, solving Eq. (10) through some classic nonlinear
equation solvers such as Newton–Raphson method is not difficult. However, on the
one hand, the initial guess values are usually not easy to be given in convergence
field. On the other hand, integrating Eq. (7) with high-enough accuracy is very
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difficult because when acted by bang–bang control, the right sides of Eq. (7) are
discontinuous but burst at the moment the switch function takes the value zero.

3 Homotopy Method

In this section, the smoothing technique presented by Bertrand et al. for solving
bang–bang optimal control problems will be introduced. And the performance index
is modified based on a method termed homotopy method. The optimal thrust then
becomes continuous, so that it is not too difficult to integrate the dynamic equations.
Especially, the initial guess values can be updated from a series of cases easier
to solve.

Instead of the purely fuel consumption expressed by Eq. (2), the performance
index is modified to be

Tmax

∫ t f

t0

[

T
Tmax

− ε
T

Tmax

(

1− T
Tmax

)]

dt, (11)

where 0 ≤ ε ≤ 1.0. For ε = 0, it is equal to Eq. (2); while for ε = 1.0, it
becomes quadratic, which corresponds to continuous optimal thrust that has wider
convergence domain. The Hamiltonian becomes

H = T − εT

(

1− T
Tmax

)

+λ T
v v+λ T

r

(

− μ
r3 r+

T
m

α
)

−λm
T

Ispg0
. (12)

Then, Eq. (5) should be formed as

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

u = 0, ifρ > ε

u = 1, ifρ <−ε

u = 1
2 − ρ

2ε , if |ρ | ≤ ε.
(13)

The normalized thrust magnitude u expressed by Eq. (5) is discontinuous with
respect to switch function, while it becomes continuous right now. Since switch
functions are always continuous with respect to time, u is also continuous with
respect to time.

Note that it is still indifferent at the moment when ρ takes the value zero and±ε ,
which still brings trouble to integrate dynamic equations through classic integrators
such as fourth-order Runge–Kutta method. Nevertheless, it is easier to solve the
nonlinear equations (10) for the cases with ε near to 1, meaning that ρ > ε and
ρ < −ε both never happen. Importantly, the solution to εk can be used as initial
guess value to solve the case with εk+1, where 1.0 ≥ εk > εk+1 ≥ 0.0. In practice,
we find that when ε nears to zero that corresponds to the initial problem of minimal
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fuel consumption, directly using integrators with adaptive step such as ode45 in
Matlab is hard to converge. The thrust u is still continuous, but it varies rapidly
between the maximum and zero at the moment ε nears to zero. Thus, Bertrand et al.
[7] did not use quadratic penalty but use logarithmic barrier to solve their examples.
The performance index is modified to be

Tmax

∫ t f

t0

{

T
Tmax

− ε ln

[

T
Tmax

(

1− T
Tmax

)]}

dt, (14)

where the normalized thrust magnitude u is determined by

u =
2ε

ρ + 2ε +
√

ρ2 + 4ε2
(15)

which is not only continuous but also differentiable with respect to switch function ρ
and time. But at the commutation points, its derivative is still large so as to influence
computation efficiency. Thus, they decrease ε with very small step to guarantee
convergence.

4 Fourth-Order Runge–Kutta Integrator with Switch
Function Detection

To avoid the deficiency of logarithmic barrier in computation efficiency, we keep
the quadratic penalty but add a special integration process when the value of switch
function passes through the range [−ε,ε]. To solve the initial value problem of
ordinary differential equation

ẋ = f (t,x) , t0 ≤ t ≤ t f ,x(t0) = x0 (16)

the fourth-order Runge–Kutta algorithm is well known as

xk+1 = xk +
h
6
(k1 + 2k2 + 2k3 + k4) ,

k1 = f (tk,xk) ,

k2 = f
(

tk + h
/

2,xk + h
/

2k1
)

,

k3 = f
(

tk + h
/

2,xk + h
/

2k2
)

,

k4 = f (tk + h,xk + hk3) . (17)



248 Z. Gao and H. Baoyin

Here denote them by a formula

xk+1 = RK4(@ f , tk,xk,h) , (18)

where x denote the vector [x;v;m;λr;λv;λm] with 14 dimensions. Since in Eq. (13)
the value of the normalized thrust magnitude u has three possibilities, the right-hand
side function of Eq. (7)

f =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

v

− μ
r3 r− λv

‖λv‖
Tmax

m u

− Tmax
Ispg0

u

μ
r3 λv− 3μr·λv

r5 r

−λr

−‖λv‖ Tmax
m2 u

(19)

can be formed to three types, denoted by f1, f2, and f3, corresponding to u=0,
1/

2− ρ/(2ε), and 1, i.e. ρ > ε , |ρ | ≤ ε , and ρ < −ε , respectively. Though the
thrust magnitude becomes continuous, the derivative does not exist at the point
ρ = ±ε . Since switch function as well as its derivative is generally continuous,
the computation from xk to xk+ can be classed into three cases: ρk > ε , |ρk| ≤ ε , and
ρk <−ε , their flow charts are sketched as Figs. 1–3, respectively, where ρ = SF(x)
denotes the switch function with respect to states and costates. For the step h small
enough, the switch function is always assumed to be linear with respect to time
during the interval.

5 Numerical Example

To solve nonlinear Eq. (10), among which the integrator RK4 with switch function
detection is used, a set of good initial guess values for the costates are necessary.
Although the convergence domain of the optimal control problem modified by
adding a quadratic penalty is enlarged much, the initial guess values are still
important. On the one hand, if the guess values are not in the convergence domain,
converged results cannot be obtained. On the other hand, if the guess values are
given on a convergence domain of local minimal, what obtained is local optimal,
but not global optimal. Therefore, the PSODE is used to find a set of good initial
values for the costates, while the fuel consumption needs to be minimized, and the
constraints on final states are added to the performance index by multiplying a set
of penalty factors:

obj =−m
(

t f
)

+ μr
∥

∥r
(

t f
)− r f

∥

∥
2
+ μv

∥

∥v
(

t f
)− v f

∥

∥
2
, (20)
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Fig. 1 Flow chart for ρk > ε

where μr and μv are the penalty factors on final position and velocity, respectively.
The optimization variables, i.e. initial costates, are searched on large domain, for
example, [−50,000,50,000]. It is very difficult to obtain the solution that exactly
satisfies the constraints on final states. Therefore, we set penalty factors to be very
small to pay more attention to the fuel consumption than to the constraints on final
states. When scaling the length quantity by AU and the time by Julian years, the
factors μr and μv are both set to be 0.0001. After getting the initial costates that
violate the constraints not too seriously, Matlab’s fsolve is used to solve nonlinear
equation, and the terms “TolFun” and “TolX” are both set to be 1.0e− 8. The fixed
step is set to be 0.0005 Julian years.

5.1 Example 1

From the Earth to rendezvous with Venus. Depart at 2005-10-7 0:0:0.0 (UTC), and
the flight time is 1,000 Julian days. Isp=3,800 s, Tmax = 0.33 N, and m0=1,500 kg.
The costate initial values for ε = 1 obtained from PSODE is [1,1276, 981.99, 5,000,
−479.2, 2,193.3, −475.14, −9.5438], which is very rough because the position
error is 0.008AU and the velocity error is 1.47 km/s. While it can be used as initial
guess values for the method presented.



250 Z. Gao and H. Baoyin

Fig. 2 Flow chart for
|ρk| ≤ ε

The value of ε is decreased from 1.0 to 0.000001 through only eight steps, of
which the solution to ε = 0.001 is accurate enough. The series of results are listed
in Table 1, and the thrust profiles are depicted in Fig. 4. So, the final result for
ε = 0.000001 is accurate enough to be regarded as an optimal solution, of which
the thrust profile and corresponding switch function are depicted in Fig. 5. The value
of switch function less than zero maps the maximal thrust magnitude, while the
value more than zero maps null thrust. The pitch and yaw angles are depicted in
Fig. 6. Here, the minimal fuel consumption is 209.422 kg, and that obtained by
Bertrand et al. is 210 kg. For comparison, the thrust profiles obtained by Bertrand
et al. are shown by Fig. 7. The middle results are different from our solutions
because the logarithmic barrier was used there, while the quadratic penalty is used
here. Nevertheless, the final results are the same. The result of ε = 0.001, which
is decreased from 1.0 through only six steps, is accurate enough. In every step,
the required iteration number is small. However, the final result, corresponding to
ε = 0.00001, obtained by Bertrand et al. was decreased from 0.1 through 1,000
steps. Therefore, our method is more effective in computations.
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Fig. 3 Flow chart for
ρk <−ε

Table 1 Iteration results

n ε Iter. Δm (kg) Costate Initial Values

1 1.0 53 225.02 256.5 −1,122.8 2,268.2 −50.618 76.744 −177.68 0.7779
2 0.5 14 217.8 3,021.4 −821.32 3,585.6 −141.23 526.63 −87.968 0.9717
3 0.3 14 215.95 4,622.9 −483.92 3,929.1 −197.44 776.91 3.0777 1.0419
4 0.1 22 212.9 6,353.7 58.851 3,886.3 −258.89 1,033.4 135.46 1.1034
5 10−2 27 209.57 7,117.9 497.46 3,435.6 −284.65 1,132.2 228.65 1.1123
6 10−3 9 209.42 7,123.7 512.47 3,411.6 −284.47 1,132.4 230.86 1.1117
7 10−5 4 209.42 7,123.8 512.60 3,411.3 −284.47 1,132.4 230.88 1.1117
8 10−6 2 209.42 7,123.8 512.60 3,411.3 −284.47 1,132.4 230.88 1.1117

5.2 Example 2

The third segment of our GTOC3 (Third Global Trajectory Optimization Com-
petition) results, where the spacecraft departures from asteroid 2006 JY26 at
59806.8411 (MJD) to rendezvous with asteroid 2000 SG344 at 60470.0672 (MJD).
Isp = 3,000 s, Tmax = 0.15 N, and m0 = 1,807.546 kg.

The costate initial values for ε = 1 obtained from PSODE is [−22,625, 3,538.7,
3,381.6, 4,215.7, 639.59, −499.99, −11.744], which is very rough because the
position error is 0.00034 AU and the velocity error is 3.62 km/s. While it can be
used as initial guess values for the method presented.

The value of ε is decreased from 1.0 to 0.000001 through only nine steps, of
which the solution to ε = 0.001 is accurate enough. The series of results are listed
in Table 2, and the thrust profiles are depicted in Fig. 8. So, the final result for ε =
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Fig. 4 Thrust profiles of iteration results

Fig. 5 Thrust profile and switch function of optimal result

0.000001 is accurate enough to be regarded as an optimal solution, of which the
thrust profile and corresponding switch function are depicted in Fig. 9. The value of
switch function less than zero maps the maximal thrust magnitude, while the value
more than zero maps null thrust. The pitch and yaw angles are depicted in Fig. 10.
Here, the minimal fuel consumption is 167.48 kg, and that obtained through direct
method is 182.76 kg. For comparison, the thrust profiles obtained through direct
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Fig. 6 Steering angles of optimal result

Fig. 7 Thrust profiles of Bertrand’s results
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Table 2 Iteration results

n ε Iter. Δm (kg) Costate Initial Values

1 1.0 19 173.99 −8,963.8 −559.18 −1,139.9 1,649.2 0.1788 −1,128.1 0.7384
2 0.5 16 171.81 −7,360.6 525.51 −1,297.9 1,331.7 146.87 −1,120.3 0.6674
3 0.3 11 170.41 −6,552.2 1,109.0 −1,484.6 1,169.9 226.96 −1,165.5 0.6379
4 0.2 10 169.61 −6,115.2 1,401.4 −1,639.7 1,082.1 267.32 −1,213.9 0.6233
5 0.1 13 168.71 −5,589.4 1,719.0 −1,873.3 977.36 310.58 −1,295.4 0.6066
6 10−2 20 167.56 −5,066.5 1,971.5 −2,101.0 882.35 338.57 −1,387.9 0.5888
7 10−3 33 167.48 −5,044.7 1,970.5 −2,126.4 878.77 337.85 −1,393.7 0.5877
8 10−4 2 167.48 −5,044.2 1,970.5 −2,127.0 878.69 337.85 −1,393.8 0.5877
9 10−6 1 167.48 −5,044.2 1,970.5 −2,127.0 878.69 337.85 −1,393.8 0.5877

Fig. 8 Thrust profiles of iteration results

method are shown by Fig. 11, which is different from the optimal results somewhat
largely.

Acknowledgments The authors are supported by the National Natural Science Foundation of
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Fig. 9 Thrust profile and switch function of optimal result

Fig. 10 Steering angles of optimal result
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Fig. 11 Thrust profile obtained through direct method
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A Collection of Test Multiextremal Optimal
Control Problems

Alexander Yu. Gornov, Tatiana S. Zarodnyuk, Taras I. Madzhara,
Anna V. Daneeva, and Irina A. Veyalko

Abstract This chapter considers a collection of test optimal control problems
that have been applied to test the efficiency of algorithms for many years. The
techniques of comparative testing, statistical testing, and stress testing are used
for creating problems of this set. The tests are designed in the same format:
there is information about the known local extrema, optimal control and trajectory,
attainable set approximation, and the number of Cauchy problems required to obtain
the optimal value of an objective functional in each test. Currently the implemented
collection includes about 100 test cases.

Key words Test collection • Optimal control problem • Attainability set

1 Introduction

Testing is the basic method to experimentally estimate the efficiency of optimization
algorithms and programs. There is a great number of publications on the
mathematical programming problems that are devoted to this issue; we cannot but
mention [3, 11, 12, 19, 21, 23, 28]. The Mathematical Programming Society
has developed recommendations that represent a methodological approach
to preparation of software testing results [6]. Considerable part of these
recommendations can be modified for optimal control problems (OCP).
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All testing methods are based on the collections (libraries) of test problems.
A series of test collections have been designed and used for different optimization
problems. The present approach has received recognition among many experts
working in this area. The quality of individual problems or the entire set only can
be disputable but not the approach itself [5, 8, 12, 19, 24, 30, 35]. In order to achieve
the goals of testing, to obtain objective information on method behavior, to find
classes of problem types for which the method is most efficient, and to create the
method versions that are most independent of computers, test problems should meet
the following requirements [25]:

1. Tests should be standardized and universally recognized.
2. Tests should model typical difficulties for a specified class of problems.
3. A solution to test problem should be known.
4. Problems should be sufficiently compact.
5. The problems making one method more advantageous than the others cannot be

used for tests.

In most cases the requirement of known solution to OCP is unconstructive.
Normally analytical methods of the problem analysis turn out to be inapplicable to
nonlinear OCP with terminal or phase constraints. Even the auxiliary problems of
integrating the system of differential equations or the problems of one-dimensional
search of function extremum in the descent direction can be impossible to solve
without numerical approaches. The principle of “the best of known solutions” [12] is
suggested for solving this problem. This principle is popular in global optimization,
where common methods of analytical research for practically significant problems
have not been found yet either. The reference solution to an OCP which is used to
compare all the other solutions to is obtained by solving the problem with highly
overestimated accuracy of each algorithm, which may require long computations
but is done once when a test problem is designed.

There are many works devoted to creation of test OCP. First of all it is
necessary to mention the collection developed by the group of scientists under
the guidance of professor K. Schittkowski. The big collection (A Collection of
1,300 Dynamical Systems for Testing Data Fitting, Optimal Control, Experimental
Design, Identification, Simulation or Similar Software [26, 27]) includes about 40
OCP of dynamic systems. Unfortunately, the examples considered in this source
were studied only on the basis of local algorithms that have been developed by the
mentioned group of specialists. There are test collections designed by the group
of specialists headed by professor Betts [4] and collection of professor Teo [31].
However, according to our information, for the time being, there are no generally
recognized and widely known test collections of multiextremal problems similar to
collections of tests for mathematical programming problems and for OCP.

In this chapter consideration is given to the collection of test problems that have
been applied by the authors for many years to test the efficiency of algorithms.
The collection contains both the OCP statements known from literature and new
problems either constructed on the basis of special techniques or resulting from
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implementation of applied projects. The number of Cauchy problems required for
operation of all algorithm components is taken as a criterion of algorithm labor
intensity. This characteristic is the least dependent on the technical features of the
applied computer systems. Besides, in the majority of cases, the Cauchy problem
solving takes most of the algorithm operation time.

2 Testing Methods

The methods of testing the optimization algorithms should take into account specific
features of the software products intended for solving multiextremal problems.
At the same time the following factors should be considered [25]: (1) we do not
compare algorithms or methods but their software implementations, (2) testing
results can very much depend on how the criteria of problem solving laboriousness
are chosen, and (3) behavior of algorithm characteristics is not monotonic at
different stages of the problem solving process. The methods applied to create
the test problem collection are comparative testing, statistical testing, and stress
testing [15].

The comparative testing suggests solving test problems by various algorithms
and comparing the results in order to choose the best software implementations of
the algorithms. The comparison of calculation results for one problem by different
methods is obviously the simplest and, nevertheless, a very efficient way to obtain
empirical information about the studied algorithm. Specialists have always believed
that the number of successful applications of a method in comparison with other
methods is a reliable criterion of the method quality.

The technique of statistical testing is based on specialized parameterized tests
with a random selection of their parameters and makes it possible to judge that
the algorithm behavior is nonlocal. The method of statistical testing (“stochastic
testing”) is widely used for other optimization problems, but it is very seldom
applied to OCP so far. For OCP the methods of generating test cases for statistical
testing should take into consideration the following traditional factors: the possible
test sensitivity to variations in its parameters, the possible existence of “abnormal
end zones” in generated test cases, and the possible deterioration of differential
properties of the test case which leads to troubles when auxiliary problems are
solved.

The testing methods can give good information about the speed of the algorithm
convergence, but they do not help much if its limiting properties should be studied.
It is obvious that with the rarest exception, the problem solution can be obtained
only approximately, since it is inevitably affected by rounding and discretization
errors. In addition, the establishment of precise boundaries for reliable results of the
algorithm is still a complex task which requires special approaches to be used. The
stress testing aims to obtain information about the limiting properties of a software
system and represents a kind of “proving ground” for the algorithms. The technique
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is based on a special set of test cases, which are oriented to typical features of
optimization problems.

The stage of operation testing can be considered to be the most important step
of algorithm completion, since at this stage the most subtle errors are detected.
Duration of this stage depends on the algorithm life cycle and can vary for
its different versions. However, only long-term use of the algorithm software
implementation and the number of solved problems can make the developer be sure
of its reliability.

3 Algorithms

A set of algorithms were used to find a local extremum. The algorithms are based
on the optimal control theory and the theory of finite-dimensional optimization.
The basic set of methods includes conventional and reduced gradient methods
based on the Pontryagin maximum principle, the conjugate gradient method, a one-
parameter combination of quasi-Newton methods BFGS and DFP, spectral projected
gradient of Birgin-Yevtushenko, Nesterov’s ravine methods, and Powell-Brent’s
search methods [19]. The algorithms from the basic set were applied to design
multi-method numerical schemes that allow one to take advantages of different
methods at different stages of problem solving process. Search of global extremum
is provided by the multi-start method, the curvilinear search method, the net-point
method, and the tunneling method [14, 16–18, 33, 34]. To construct the attainability
set we employed the stochastic approximation method and the method based on the
necessary optimization conditions [13].

4 Uni-extremum Optimal Control Problem

A great amount of the studied nonlinear problems, to our surprise, had only one
local extremum. Probably this is related to the fact that in the process of modeling
the model constraints were found under which the problem developer could interpret
the solutions to be obtained. The “effect of one extremum” as a rule disappeared
with significant expansion of the studied area of problem parameters, for example,
with increase in time interval.

Problem 1. In the first test the linear functional should be minimized on the
nonconvex set described by a bilinear system of differential equations. In the initial
formulation the objective functional to be minimized is of integral type [29] and is
brought to the terminal form by standard transformations (Table 1).
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Table 1 Numerical solutions
to test problem 1

N Functional value Extreme points

1 −1.33330 (0.66900,−1.33330)
The number of Cauchy problems: 395

Table 2 Numerical solutions
to test problem 2

N Functional value Extreme points

1 2.64816 (−0.21602, −0.99348)
The number of Cauchy problems: 65

Statement of
test problem 1

ẋ1 = u
ẋ2 = x1(u− 1)

t ∈ [0, 1]
x0 = (1,0)
u ∈ [−1,1]

I(u) = x2(t1)→min

Optimal trajectories and control;
attainability set and extreme points

Problem 2. The process of control by Duffing oscillator is described by the
nonlinear differential equation ẍ+ω2x+εx3 = u [9]. For this test case the following
values of parameters used in the initial statement were selected: ω = ε= 1 (Table 2).

Statement of
test problem 2

ẋ1 = x2

ẋ2 =−ω2x1− εx3
1 + u

t ∈ [0, 1]
x0 = (1.5,−1.5)

u ∈ [−10,10]
I(u) = 0.5

∫ 1.5
0 u2(t)dt+

+x2
1(t1)+ x2

2(t1)→min

Optimal trajectories and control;
attainability set and extreme points
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Table 3 Numerical solutions
to test problem 3

N Functional value Extreme points

1 1.56317 (−0.44590, 0.54705)
The number of Cauchy problems: 427

Problem 3. A well-known Van der Pol problem in different statements is used for
testing software implementation of algorithms. We propose a modification of the
problem presented in [10] (Table 3).

Statement of
test problem 3

ẋ1 = x2

ẋ2 =−(x2
1− 1)2x2− x1 + u
t ∈ [0, 5]

x0 = (−1,0)
u ∈ [−10,10]

I(u) = 0.5
∫ 5

0 (x
2
1(t)+ x2

2(t)+ u2(t))dt+
+100(x2

1(t1)− x2(t1)+ 1)2 →min

Optimal trajectories and control;
attainability set and extreme points

5 Multiextremal Optimal Control Problems

The sets of problems of different computational complexity are easily identified
among multiextremal problems. Usually this is due to the size of the domain
of attraction of the global extremum. In some cases the problem complexity is
determined by substantially different properties of the dynamic system in different
regions of the time interval. As a rule the problems with long time intervals are more
complicated than the problems with smaller time intervals with the same dynamic
equations.

Problem 4. The classical example of test dynamic problem is the OCP of nonlinear
pendulum (e.g., [1, 32]). The oscillation process is described by the system of
nonlinear differential equations (Table 4).

Statement of
test problem 4

ẋ1 = x2

ẋ2 = u− sinx1

t ∈ [0, 5]
x0 = (5,0)
u ∈ [−1,1]

I(u) = x2
1(t1)+ x2

2(t1)→min

Optimal trajectories and control;
attainability set and extreme points
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Table 4 Numerical solutions
to test problem 4

N Functional value Extreme points

1 11.90876 (3.17863,−1.34354)
2 21.82921 (4.67180,−0.05900)
The number of Cauchy problems: 228

Table 5 Numerical solutions
to test problem 5

N Functional value Extreme points

1 −16.45670 (1.44528,−17.90198)
2 −6.06870 (−2.83105,− 3.23765)
The number of Cauchy problems: 433

Problem 5. The following test problem was generated on the basis of a developed
method of test construction. It is necessary to find a control, which minimizes the
terminal functional (Table 5).

Statement of
test problem 5

ẋ1 = sinx2

ẋ2 = u− ex1

t ∈ [0, 5]
x0 = (1,1)
u ∈ [−1,1]

I(u) = x1(t1)+ x2(t1)→min

Optimal trajectories and control;
attainability set and extreme points

Problem 6. In this test the objective functional is nonconvex and the system of
differential equations is nonlinear. The solution to problem 6 is four extrema: a
global extremum and three local extrema (Table 6).

Statement of
test problem 6

ẋ1 = 1− x2
2 + 0.5x2

ẋ2 = x1u
t ∈ [0, 1.7]

x0 = (0.5,−0.2)
u ∈ [−2,2]

I(u) = x1(t1)− x2(t1)+
+x1(t1)x2(t1)→min

Optimal trajectories and control;
attainability set and extreme points
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Table 6 Numerical solutions
to test problem 6

N Functional value Extreme points

1 −5.06255 (−0.75065, 2.46304)
2 0.57058 (1.70119,−1.61242)
3 0.70637 (0.48686,−0.42777)
4 0.92837 (−0.69837,−0.95782)
The number of Cauchy problems: 1,342

Table 7 Numerical solutions
to test problem 7

N Functional value Extreme points

1 4.25969 (3.25969, 1.00000)
2 5.24298 (1.55558, 3.68740)
The number of Cauchy problems: 91

Problem 7. Optimal control in this test problem is monotonically decreasing over
the entire time interval (Table 7).

Statement of
test problem 7

ẋ1 = sinx2 + cost
ẋ2 = (u+ t)2

t ∈ [0, 1.5]
x0 = (1,1)
u ∈ [−3,3]

I(u) = x1(t1)+ x2(t1)→min

Optimal trajectories and control;
attainability set and extreme points

Problem 8. OCP of stirred-tank reactor [7,22] is included in the Handbook of Test
Problems in Local and Global Optimization (Floudas and Pardalos, 1999) (Table 8).

Statement of
test problem 8

ẋ1 =−(2+ u)(x1+ 0.25)+

+(x2 + 0.5)e
25x1
x1+2

ẋ2 = 0.5− x2− (x2 + 0.5)e
25x1
x1+2

t ∈ [0, 0.78], x0 = (0.09,0.09)
u ∈ [0,5]

I(u) =
∫ 0.78

0 (x2
1(t)+

+x2
2(t)+ 0.1u2(t))dt→min

Optimal trajectories and control;
attainability set and extreme points
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Table 8 Numerical solutions
to test problem 8

N Functional value Extreme points

1 0.13313 (0.05803, −0.10263)
2 0.24445 (0.10844, −0.34219)
The number of Cauchy problems: 1,356

Table 9 Numerical solutions to test problem 9

N Functional value Extreme points N Functional value Extreme points

1 15.91924 (3.97978, 0.00000) 11 52.73182 (6.96442, 1.98991)
2 16.91420 (3.97978, 0.99496) 12 57.70659 (6.96442, 2.98486)
3 22.16332 (3.16550,−0.80595) 13 65.19579 (7.93279, 1.03957)
4 24.70471 (3.30062,−0.05904) 14 67.65549 (7.95923, 1.98991)
5 25.86868 (4.97469, 0.99496) 15 72.63026 (7.95923, 2.98486)
6 28.85355 (4.97469, 1.98991) 16 84.57997 (8.94777, 1.99435)
7 36.81295 (5.96957, 0.99496) 17 89.54350 (8.95400, 2.98486)
8 39.79782 (5.96957, 1.98991) 18 130.76930 (9.65684, 3.78789)
9 45.03334 (5.98533, 2.95192) 19 112.81680 (8.95986, 3.53954)
10 49.74695 (6.96442, 0.99496)
The number of Cauchy problems: 5,584

Problem 9. The Rastrigin function [2] and a well-known system of differential
equations with nonconvex attainable set were used for construction of the following
test problem (Table 9):

Statement of
test problem 9

ẋ1 = x2

ẋ2 = u− sinx1

t ∈ [0, 2.5],
x0 = (3,1)
u ∈ [−1,1]

I(u) = 20+ x2
1(t1)+ x2

2(t1)−
−10∑2

i=1 cos2πxi(t1)→min

Optimal trajectories and control;
attainability set and extreme points

Problem 10. Test problem 10 was generated on the basis of the developed method
of test design (Table 10).
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Table 10 Numerical
solutions to test problem 10

N Functional value Extreme points

1 −2.83027 (2.70933, 2.21407)
2 0.95589 (2.44380, 2.63072)
3 1.06054 (0.61202, 2.09169)
4 1.11165 (0.56613,−0.81035)
5 1.18847 (0.16385,−0.57431)
The number of Cauchy problems: 2,049

Table 11 Numerical
solutions to test problem 11

N Functional value Extreme points

1 −4.81081 (−4.81081,−3.15829)
2 −1.56441 (−1.56441, 3.12855)
3 0.21573 ( 0.21573,−9.44594)
4 0.83683 ( 0.83683, 2.97624)
5 6.17400 ( 6.17400,−0.69621)
The number of Cauchy problems: 2,450

Statement of
test problem 10
ẋ1 = x2u
ẋ2 = x1 +

u
x2

1+x2
2

t ∈ [0, 2]
x0 = (1,−1.2)
u ∈ [−1,1]
I(u) = (

√

2.72− x1(t1)−
− 2.72−x1(t1)

7 · e0.926x1(t1)

−1.481x1(t1)− 0.014x2
2(t1)→min

Optimal trajectories and control;
attainability set and extreme points

Problem 11. This OCP is formulated in the following way (Table 11):

Statement of
test problem 11
ẋ1 = cosx2

ẋ2 = u− sinx1

t ∈ [0, 7]
x0 = (0,0)
u ∈ [−1,1]
I(u) = x1(t1)→min

Optimal trajectories and control;
attainability set and extremum points
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Table 12 Numerical
solutions to test problem 12

N Functional value Extreme points

1 0.18870 (−1.43361, 9.52600)
2 28.39093 ( 0.24631, 4.31949)
3 149.90120 (−1.51735,−2.73248)
The number of Cauchy problems: 32,694

Problem 12. This test problem is one of the most difficult among the presented
problems. The numerical search of the global extremum is quite complicated in this
case (Table 12).

Statement of
test problem 12
ẋ1 = x2

ẋ2 = u− x1+
x3

1
6 −

x5
1

120
t ∈ [0, 7]
x0 = (5,0)
u ∈ [−1,1]
I(u) = (x1(t1)+ 1)2+
+(x2(t1)− 9.5)2 →min

Optimal trajectories and control;
attainability set and extreme points

6 Optimal Control Problems with Specific Features
of Computation

The problems with “abnormal end zones” in the model, the so-called abend
problems, can be very difficult to study numerically. It can be hard for this class
of problems to find an initial approximation for the algorithms to start improving
control. In addition, abends can occur already during the optimization process if too
large variations are generated and disturb the regular states of the process.

The parameter continuation method can be considered a general approach to
successfully solving the OCP with specific features of computation [20]. In our case
this method means adding parameter p∈ [0,1] to the system of differential equations
ẋ = p · f (x,u, t). The parameter makes it possible to construct a set of OCP, in which
the last problem coincides with the initial statement.

Problem 13. The numerical solution to this test problem is presented in Table 13.
Parameter p defines an auxiliary problem on a parametric set. The result of the
software operation is presented in the third column of this table (FAIL—program
crash, OK—regular work). Ip(u) is a best value of aim functional in auxiliary
problem.
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Table 13 Numerical
solutions to test problem 13

p Iterations Status Ip(u)

1.00000 1 FAIL –
0.90000 1 FAIL –
0.50000 1 FAIL –
0.20000 32 OK 1.00787
0.40000 9 OK 0.78160
0.60000 19 OK 0.55372
0.80000 43 OK 0.32616
1.00000 206 OK 0.10627

Statement of
test problem 13
ẋ1 = u+ log10 x2

ẋ2 = (x1 + u) log10 x1 + 0.01u2

t ∈ [0, 3.7]
x0 = (0.5,1)
|u| ≤ 1, u0(t) = 1
I(u) = x2

1(t1)+ x2
2(t1)→min

Optimal trajectories and control;
attainability set

Problem 14. The figure below presents an approximation of the attainable set
which contains an “abnormal end zone” indicated in black and the projection of
trajectory values which were caused by abends (Table 14).

Statement of
test problem 14
ẋ1 = x2 + u

ẋ2 = x1− u−
√

x2
1− 0.5x2

2

t ∈ [0, 4.5]
x0 = (1,1)
|u| ≤ 1,u0(t) = 1
I(u) = x2

1(t1)+ x2
2(t1)→min

Optimal trajectories and control;
attainability set

Problem 15. In this test problem after two abends the value of parameter was
selected to find the minimum value of the objective functional by four steps
(Table 15).
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Table 14 Numerical solutions to test problem 14

p Iterations Status Ip(u) p Iterations Status Ip(u)

1.00000 0 FAIL – 1.00000 0 FAIL –
0.90000 0 FAIL – 0.85000 10 OK 0.77887
0.50000 0 FAIL – 0.90000 15 OK 0.36430
0.20000 0 FAIL – 0.95000 25 OK 0.10023
0.10000 0 FAIL – 1.00000 0 FAIL –
0.05000 288 OK 2.58698 0.82000 57 OK 1.08869
0.06000 190 OK 2.70532 0.84000 22 OK 0.87758
0.08000 170 OK 2.94186 0.86000 0 OK 0.68509
0.10000 56 OK 3.17689 0.88000 3 OK 0.51338
0.20000 99 OK 4.26331 0.90000 11 OK 0.36430
0.30000 25 OK 5.01861 0.92000 7 OK 0.23949
0.40000 24 OK 5.23734 0.94000 26 OK 0.14009
0.60000 25 OK 3.88349 0.96000 8 OK 0.06699
0.80000 20 OK 1.31607 0.98000 20 OK 0.02059
1.00000 0 FAIL – 1.00000 36 OK 0.00083
0.90000 39 OK 0.36430

Table 15 Numerical
solutions to test problem 15

p Iterations Status Ip(u)

1.00000 1 FAIL –
0.90000 1 FAIL –
0.50000 1 OK 11.38532
0.60000 0 OK 19.87570
0.80000 0 OK 60.04049
1.00000 25 OK 237.82170

Statement of
test problem 15

ẋ1 = sin
√

x2
1 + x2

2− 3u
ẋ2 = u+ x1x2

t ∈ [0, 3.1], x0 = (1,1)
|u| ≤ 1, u0(t) = 0
I(u) = x2

1(t1)+ x2
2(t1)→min

Optimal trajectories and control;
attainability set

Problem 16. There are two “abnormal end zones” on the attainable set in test
problem 16 (Table 16).
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Table 16 Numerical solutions to test problem 16.

p Iterations Status Ip(u) p Iterations Status Ip(u)

1.00000 0 FAIL – 0.08000 15 OK 0.01499
0.90000 0 FAIL – 0.10000 23 OK 0.02598
0.50000 0 FAIL – 0.20000 60 OK 0.12548
0.20000 0 FAIL – 0.30000 71 OK 0.27094
0.10000 0 FAIL – 0.40000 52 OK 0.43209
0.05000 1 FAIL – 0.60000 54 OK 0.76138
0.02000 11 OK 0.00057 0.80000 55 OK 1.09105
0.04000 7 OK 0.00269 1.00000 48 OK 1.42072
0.06000 12 OK 0.00730

Statement of
test problem 16
ẋ1 =−3− arcsin(x1 + x2)+ 50u
ẋ2 = 1+ arcsin(x1− x2)− u
t ∈ [0, 5]
x0 = (0,0)
|u| ≤ 1, u0(t) = 0

I(u) =
5
∫

0
(x2

1(t)+ x2
2(t)+

+u2(t))dt →min

Optimal trajectories and control;
attainability set

Problem 17. The numerical results for problem 17 are presented in Table 17 in a
reduced form. When the value of parameter p increases from 0.620 to 0.800 with a
step of 0.02 the functional value varies from 0.17718 to 0.30019.

Statement of
test problem 17
ẋ1 =−1− arcsin(x1 + x2)+
+u+ 5sin(x1 + x2)
ẋ2 = 1+ arcsin(x1− x2)−
−u+ 0.2cos70x1

t ∈ [0, 1.1], x0 = (0,0)
|u| ≤ 1, u0(t) = 0

I(u) =
1.1
∫

0
(x2

1(t)+ x2
2(t)+

+u2(t))dt →min

Optimal trajectories and control;
attainability set

7 Bang–Bang OCP

OCP with bang-bang control (Bang–Bang Control Problems) often arise in many
scientific and applied fields. Solutions to nonsingular optimization problems of
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Table 17 Numerical solutions to problem 17

p Iterations Status Ip(u) p Iterations Status Ip(u)

1.00000 0 FAIL – 0.54000 9 OK 0.12429
0.90000 0 FAIL – 0.56000 0 FAIL –
0.50000 0 FAIL – 0.55000 9 OK 0.13122
0.20000 4 OK 0.00618 0.56000 10 OK 0.13817
0.40000 6 OK 0.04834 0.58000 0 FAIL –
0.60000 0 FAIL – 0.57000 12 OK 0.14508
0.50000 0 FAIL – 0.58000 12 OK 0.15187
0.45000 6 OK 0.07004 0.60000 0 FAIL –
0.50000 9 OK 0.09792 0.59000 13 OK 0.15851
0.55000 0 FAIL – 0.60000 14 OK 0.16495
0.42000 5 OK 0.05632 0.80000 0 FAIL –
0.44000 6 OK 0.06522 0.70000 0 FAIL –
0.46000 6 OK 0.07511 0.65000 0 FAIL –
0.48000 6 OK 0.08602 0.62000 25 OK 0.17718
0.50000 9 OK 0.09792 . . . Δp = 0.02000 . . .
0.52000 9 OK 0.11075 0.80000 23 OK 0.25181
0.54000 0 FAIL – 1.00000 523 OK 0.30019
0.53000 9 OK 0.11745

dynamic systems with linear control and without phase constraints are bang-bang
solutions. The relay characteristic of optimal control can considerably simplify the
problem of search for the functional optimum, since the size of a set of varied
controls is much smaller in this case (Tables 18–20).

Problem 18.
ẋ1 = u− 3cosx2

2
ẋ2 = ex1− tu
t ∈ [0, 2]
x0 = (1,3)
u = {−1,1}
I(u) = x2(t1)→min

Optimal trajectories and control;
attainability set

Problem 19.
ẋ1 = x2 + sint2

ẋ2 = u+ cos(x1x2)
t ∈ [0, 3]
x0 = (0.3,0)
u = {−1,1}
I(u) =−x2

1(t1)+ x2
2(t1)→min

Optimal trajectories and controls;
attainability set
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Table 18 Numerical
solutions to test problem 18

N Functional value Extreme points

1 4.29272 ( 0.61911, 4.29272)
2 4.97189 (−0.51485, 4.97189)
3 5.62896 (−0.27598, 5.62896)
4 6.17173 (−0.17237, 6.17173)
5 6.72009 ( 0.04066, 6.72009)
6 7.19763 ( 0.17311, 7.19763)
7 7.63813 ( 0.20221, 7.63813)
8 8.06943 ( 0.31370, 8.06943)
9 8.46982 ( 0.29069, 8.46982)
10 8.84933 ( 0.34935, 8.84933)
The number of Cauchy problems: 76,835

Table 19 Numerical
solutions to test problem 19

N Functional value Extreme points

1 −33.47855 (6.24783, 2.35729)
2 −32.95061 (5.94775, 1.55729)
The number of Cauchy problems: 155

Table 20 Numerical
solutions to test problem 20

N Functional value Extreme points

1 −1.60657 (1.60657, 3.46381)
2 −1.41458 (1.41458, 2.33631)
3 −1.34505 (1.34505, 4.20458)
4 −1.28311 (1.28311, 0.44614)
5 −1.10476 (1.10476, 4.87465)
The number of Cauchy problems: 11,055

Problem 20.
ẋ1 =−6sinx1 + x2− 3u+ 2cosx2

2
ẋ2 = cos2 x2 + 0.3x1+ 4u+ x2

1
t ∈ [0, 1]
x0 = (2,1)
u = {−1,1}
I(u) =−x1(t1)→min

Optimal trajectories and controls;
attainability set

8 Conclusion

Currently the collection of test problems includes about 100 test cases. The principle
of “the best of known solutions” was applied to all tests. The best of the currently
known solutions is presented. The collection of problems was described in the
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same manner: for each problem its statement was given along with information
about the known local extrema, optimal control and trajectory, and the number of
Cauchy problems required to obtain the optimal functional value. The attainable
set approximations presented can be used for a deeper analysis of the computation
results. The authors hope that the interested specialists can carry out their studies of
these problems and find better solutions.
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of Russian Foundation for Basic Research.
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A Multimethod Technique for Solving Optimal
Control Problem

Alexander I. Tyatyushkin

Abstract A multimethod algorithm for solving optimal control problems is
implemented in the form of parallel optimization processes with the choice of the
best approximation. The multimethod algorithm based on a sequence of different
methods is to provide fast convergence to an optimal solution. Such a technology
allows one to take into account some particularities of the problem at all stages of
its solving and improve the efficiency of optimal control search.

Key words Optimal control • Multimethod algorithms • Parallel computations
• Software packages • Numerical methods

1 Introduction

The technology of finding the numerical solution to the applied optimal control
problems is based on universal software which has a well-developed interface and a
rich arsenal of optimization methods. Such software allows one to take into account
specific features of the problem under consideration by making the use of diverse
algorithms of improvement at different stages of iteration process. Application of
several numerical methods for solving a single optimization problem was suggested
in many publications oriented to the software development [1–3, 6, 7, 11].

Principal difficulty in applying the multimethod algorithm lies in the fact that
at each stage of the problem-solving process one has information about efficiency
of the method applied at the present moment. To determine the efficiency of any
optimization method at some stage of searching for solution to the given problems
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it is necessary to perform one or several iterations. Therefore, to choose the method
which is more appropriate for the given stage of problem solving, the operation of
switching from one method to another is usually repeated.

Also, it is necessary to know about switching times. But this information can be
easily obtained by tracking the current method measuring parameters characterizing
its convergence.

Thus, the principal problem of the multimethod technology is the choice of
method which allows one to continue effectively the optimization process from the
moment when convergence of current method was impaired.

Modern operational systems provide a solution to the given problem by organiz-
ing parallel computational flows for simultaneous computation by several methods.
In each flow, one can realize iterative process of one method from a collection
of methods. Thus, a single problem can be solved by several methods. With the
multiprocessor technology on hand, of course, it is convenient to use individual
processor for accomplishing iteration of each method.

After finding the next approximation, each method is considered, for instance,
evaluating an increment of the functional. More effective method is taken to
continue the optimization. Next, the approximation obtained by this method is
transferred to other methods as initial data to perform next iteration. Starting from
this approximation, one or several iterations are again performed by all methods.
Out of the obtained approximations again we take the one in which the functional
has a smaller value.

Continue iterative process until the optimum criterion is met for the obtained
approximation. After that we find an approximation solution to the problem under
consideration. In this case the solution is found by the multimethod algorithm
consisting of a sequence of steps of different methods attached to optimization
process to accelerate its convergence. The advantage of the multimethod algorithm
in comparison with each method separately lies in its greater adequacy in application
to concrete problem. At each stage of searching for solution, the multimethod
algorithm makes the use of optimization method which is more suitable in terms of
specific features of a given problem (e.g., the ravines of function, specific character,
and the structure of constraints).

In the graphic, the decrease in the functional I(u), in iterations of the multimethod
algorithm, is shown by the broken line which consists of the graphics of separate
methods. Figure 1 shows the multimethod algorithm operation in the case, when
two methods M1 and M2 are used. The graphics given show the decrease in the
functional in the iterations of the methods M1 and M2. The graphic of decrease
in the functional in the iterations of the multimethod algorithm is the curve ABC.
It is constructed by using two graphics corresponding to the methods M1 and
M2. Namely, the region BC is obtained by parallel translation of the region EL.
According to this figure, the zero value of functional is achieved in k1 iterations of
the method M1, while the use of the methods M1 and M2 requires k2 iterations.

The multimethod algorithm works, up to the k̄th iteration, by the method M1
(the curve AB) and then by the method M2 (the curve BC). The reason is that
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Fig. 1 Graphics of decrease of functional on the iterations of the methods M1, M2 and multi-
method algorithm

beginning with the k̄th iteration, the velocity of decrease in the functional during
the use of the method M2 is higher. As a result, zero value of functional is achieved
by the multimethod algorithm using k∗ iterations. This is considerably less than in
the case where the methods M1 and M2 are used individually.

2 Parallel Computations in the First-Order Methods

By different criteria for choosing the closest optimization method and also
organizing in different ways parallel computations on the method’s iterations,
several different combinations of algorithms can be obtained to solve a single
problem. Moreover, it is possible to construct the multimethod algorithms that
do not contain repeated computations in the iterations of different optimization
methods. For example, in the methods of gradient type [4, 13], laborious
computations of the gradient, requiring an integration of the adjoint system, should
be performed only once; then, the obtained gradient should be used in the iterative
formulas of all methods. In this case, computational expenditures at one step of
multi-flow algorithm are considerably reduced. Moreover, realization of the step
by any of the methods is accomplished by using the same approximately obtained
values. Then all optimization algorithms are applied as if to the one and the same
approximate model. Thus, the criterion of new approximation is defined only by
the optimization methods. Otherwise, because of computational errors, the same
parameters used to estimate convergence of the methods may have different values
which can lead to improper choice of the best method.
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Let us consider an optimal control problem provided by the conditions in the
form of equalities at the right trajectory end. The controlled process is described by
the system

ẋ = f (x,u, t), x(t0) = x0, t ∈ T = [t0, t1], x(t) ∈R
n, u(t) ∈R

r (1)

with terminal conditions

I j(u) = ϕ j(x(t1)) = 0, j = 1,m (2)

and with phase constraints

Ji(u, t) = gi(x, t) = 0, i = 1,s, t ∈ T. (3)

The control is constrained through

u(t) ∈U, (4)

where U is a bounded closed set in R
r. Vector functions f (x,u, t) are assumed to be

differentiable w.r.t. to x and u and continuous w.r.t. t; ϕ j(x), j = 1,m are assumed
to be continuously differentiable w.r.t. x functions.

It is required to find the control among controls fulfilled by (3), such that provides
the validity of conditions (2), for controlled process (1) and, on the other hand,
provides the minimum of the functional

I0(u) = ϕ0(x(t1)), (5)

where ϕ0(x) is continuously differentiable function.
The gradients of functionals I j(u), j = 0,m in terms of the functions

H j(ψ j,x,u, t) = ψ ′j(t) f (x,u, t) and adjoint system

ψ̇ j =− fx(x,u, t)
′ψ j(t), ψ j(t1) =−ψ j

x (x(t1))

are given by the formula

∇I j(u) =−H j
u(ψ j,x,u, t), j = 1,m. (6)

For each t ∈T one can calculate in much the same way the gradients Jj(u, t), j = 1,s:

∇Jj(u, t) =−H
j
u(Φ j,x,u, t,τ), t0 ≤ τ ≤ t ≤ t1, (7)

where H
j
u(Φ j,x,u, t,τ) = Φ ′

j(t,τ) f (x,u,τ), Φ j(t,τ), j = 1,s are the solutions of the
conjugate system

∂Φ j(t,τ)
∂τ

=−∂ f (x,u,τ)
∂x

Φ j(t,τ), τ ∈ T,

with the boundary conditions Φ j(t, t) =−∂g j(x(t))
∂x

, j = 1,s.
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2.1 Application of Gradient Methods

Gradient procedure of the minimization of the functional (4) without taking into
account the constraints (2) and (3) is given through relation

uk+1 = uk−αk∇I0(u
k),

where αk are chosen, for example, from condition of fastest decrease of the
functional I0(u). The solution of the problem with terminal conditions (2) without
constraints (3) can be obtained by parallel application of the linearization and
penalization methods given, for example, in [7]. When using penalization method,
penalty functional which consists of the functions (2) and (4) is minimized with the
help of gradient procedure. Making use of the multimethod technology, one can also
simplify each iteration of the linearization method in such a way that its working
time will be close to the one of the penalization method. Then the algorithm will be
as follows:

1. For given uk(t), t ∈ T , system (1) is integrated; in the integration points, the phase
coordinates of trajectory xk(t) are memorized.

2. m + 1 flows are organized, for parallel integration of adjoint system provided
by different initial conditions ψ j(t1) = −ψ j

x (x(t1)), j = 0,m. In the process of
integration, the solutions ψ j(t) are used to construct a linear system of algebraic
equations

m

∑
i=1

⎛

⎝

t1∫

t0

H j
u
′
Hi

u dt

⎞

⎠λi = I j(u
k)−

t1∫

t0

H j
u
′
H0

u dt, j = 1,m.

3. After solving this system, the values of variables λi, i = 1,m are found.
4. A new approximation of the control

uk+1 = uk +αkδu, δu = H0
u +

m

∑
i=1

λiH
i
u,

is constructed, where the parameters αk satisfy inequality

I0(u
k +αkδu)+β I j0(u

k +αkδu)≤ I0(u
k)+β I j0(u

k)− ε
t1∫

t0

δu′δudt,

0 < ε < 1, j0 = argmax
1≤ j≤m

∣

∣

∣I j(u
k)
∣

∣

∣ , β =
m

∑
i=1

|λi| .

From this algorithm, as particular case (for m = 0), we obtain the ordinary gradient
method.
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2.2 The Methods for Solving Problem with Constraints
on Control

Let us focus on the algorithms intended for solving the problems provided by
constraints on control, but with free right end. Suppose that for some uk(t) ∈ U ,
t ∈ T , one finds any solution to the system (1) xk(t), t ∈ T . Setting in (5) j = 0,
integrate adjoint system from t = t1 to t = t0 when u = uk(t), x = xk(t). Calculate on
its solution ψk = ψ0(t) the control using the maximum principle:

ūk(t) = argmax
u∈U

H(ψk,xk,u, t), t ∈ T,

and find the value of scalar function

wk(ū(t), t) = H(ψk,xk, ū, t)−H(ψk,xk,uk, t), t ∈ T.

Let t = τk the maximum point of this function being on T . Then, the necessary
optimum condition of the control uk will be

wk(ū
k(τk),τk) = 0.

In the case when for given uk and obtained xk, ψk, ūk, the maximum principle

wk(ū
k(τk),τk)> 0

does not hold; iteration of the method [12] can be made to improve uk.
Denote the point set, where maximum principle is broken by

Tε =
{

t ∈ T : wk(ū
k(t), t)≥ εwk(ū

k(τk),τk)
}

, ε ∈ [0,1].

Observe that at ε = 0, we have T k
ε = T , while at ε = 1, the set T k

ε consists of the
maximum points of the function wk(u(t), t).

By varying ε , we can find such value for which the control

uk
ε =

{

ūk(t), t ∈ Tε ,

uk(t), t ∈ T \Tε
(8)

provides the least value of the objective functional I0(u), i.e.,

εk = argmin
ε∈[0,1]

I0(u
k
ε).

When searching for εk, several flows can be used for simultaneous integration
of system (1) with controls (8), corresponding to different values of ε ∈ [0,1]. In
addition, at t = t1, we have different phase space points xk

ε (t1) and pertinent values
I0(uk

ε) = ϕ(xk
ε(t1)). After the smallest value of the functional I0(uk

ε) is chosen,
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we verify the inequality I0(uk
ε) < I0(uk), and if it holds, we assume uk+1 = uk

ε .
Otherwise, the subdivision of ε can be continued, and the values of functional for
the following values can be found.

By virtue of structure of the controls generated by the iteration formula (8),
the relaxation of an algorithm can be impaired even before the control satisfying
the maximum principle is obtained. Therefore, to continue optimization process,
it is necessary to apply another algorithm, in iteration of which the controls are
constructed not only with boundary points but also with interior ones w.r.t. the set
U as well. For example, the convergence can be restored by constructing a convex
combination of two controls

uk+1(t) = uk(t)+α
[

ūk(t)− uk(t)
]

, α ∈ [0,1]. (9)

The calculations by the formulas (8) and (9) can be made simultaneously by
choosing from the obtained approximations such uk+1 to which the smallest value
of the functional corresponds. In the case, where the functional values are compared
within several iterations, the values of increase in the functional, obtained in the
neighboring iterations of each method, should be used as a criterion to compare the
efficiency of the methods (8) and (9).

In practice, it is established that the application of the variations of two types,
namely, “horizontal” (8) and “vertical” (9), allows us to avoid the effect of “control
sticking to the boundaries” which is inherent in the algorithms based on the
maximum principle [5, 12].

In the case in the iteration equation (9), the control ūk(t) is derived from the
linearized maximum principle

ūk(t) = argmax
u∈U

Hu(ψk,xk,u, t)′u(t), t ∈ T ; (10)

we obtain the iterations of the conditional gradient method. It is evident that for the
systems which are linear in control, the control function (10) coincides with that
deduced from the maximum principle. Another algorithm of control improvement
can be obtained by substituting, in the iteration formula (8), the interval Tε for the
following one:

T k
ε =

[

τk− ε(τk− tk
0), τk + ε(tk

1− τk)
]

, ε ∈ [0,1], (11)

where tk
0, tk

1 are the nearest left and right discontinuity points of the function
w(ūk(t), t).

In the process of finding the value of parameter εk providing convergence of the
algorithm, we can apply the above procedure along with parallel computations. This
way of constructing the interval provides blowing down of its ends towards the point
τk, in the case, if the function w(ūk(t), t) is constant within some neighborhood of
the point τk, thus maintaining the convergence of the algorithm [12].
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2.3 Linearization Method for Solving Problems
with Phase Constraints

Let uk(t) be a current approximation of the control, and let xk(t) be the phase
trajectory, corresponding to uk(t), t ∈ T . Using the gradients (6) and (7) we linearize
the conditions (2) and (3) in the neighborhood of uk:

IL
i (u

k,u) = Ii(u
k)+

T1∫

T0

∇Ii(u
k, t)′
(

u(t)− uk(t)
)

dt = 0, i = 1,m, (12)

JL
j (u

k,u,τ) = Jj(u
k,τ)+

τ
∫

t0

∇Jj(u
k, t)′
(

u(t)− uk(t)
)

dt = 0, (13)

j = 1,s, τ ∈ T.

Construct a modified Lagrange function for the problem (1)–(5) in the form:

L(u,uk,λ k,μk) = I0(u)−λ k′(I(u)− IL(uk,u)
)

−
t1∫

t0

μk(t)
′(

J(u, t)− JL(uk,u, t)
)

dt

+
ρ
2

(

I(u)− IL(uk,u)
)′(

I(u)− IL(uk,u)
)

+
ρ
2

t1∫

t0

(

J(u, t)− JL(uk,u, t)
)′(

J(u, t)− JL(uk,u, t)
)

dt,

(14)

where I, IL — m-vectors; J, JL — s-vectors; λ k, μk are m- and s-dimensional
Lagrange factors; ρ ≥ 0 is a penalty coefficient.

In the k + 1− st iteration of the considered method we solve the minimization
problem of functional (14) on the solutions of the system (1) with the linear
constraints (12), (13), and (4). By solving the problem, we determine new values
of the Lagrange factors λ k+1

i , i = 1,m, μk+1
i (t), i = 1,s, t ∈ T .

After determining uk+1, λ k+1, and μk+1, we again linearize constraints (2), and
(3) in the neighborhood of uk+1, construct the functional L(u,uk+1,λ k+1,μk+1,ρ),
and repeat the iteration.

Thus, the algorithm for solving the formulated problem consists of the following
main operations:
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Fig. 2 The scheme of realization of (k + 1)-th iteration by multimethod algorithm using three
methods M1, M2, and M3

1. Linearizing the constraints and solving the auxiliary problem (1), (4), and
(12)–(14). Calculating the Jacobian of the linear system (13) is computationally
very expensive.

2. Verifying the optimal conditions for the solution obtained on the kth iteration.

When solving the problems with linear constraints the application of this algo-
rithm is greatly simplified because it is not necessary to calculate the constrained
Jacobian.

2.4 The Block Scheme of Multimethod Algorithm Operation

Summarizing the above said we see that by applying various iteration procedures
and making use of different rules to construct the sets of varying controls, we
obtain the collection of algorithm, each working effectively enough only in a certain
situation. Thus, in the process of finding the optimal control, it is necessary to
include several algorithms.

By organizing parallel computations to realize some collection of algorithms and
applying the selection procedure to take the best approximation after simultaneous
iterations by all methods, we are able to find effectively optimal control by the
multimethod algorithm.

Figure 2 demonstrates how the multimethod algorithm works in the case when
three methods are used. The block of selection of the best approximation finds ui0
from a largest value of increment of the functional obtained in the (k+1)-th iteration

ui0 = argmax
i∈(1,2,3)

(

I(uk)− I(uk+1
i )
)

.

This approximation is passed to all methods uk+1
i = ui0 , i = 1, 2, 3, to perform

the next iteration.
It should be noted that another multimethod algorithm can be generated from

the collection of methods for solving another problem. The algorithm can be more
adequate because of taking into account the specific features of this problem.
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3 Implementation of Multimethod Algorithm

3.1 Solving the Adjoint Problem

The most labor-consuming operation performed at each step of all first-order
algorithms is numerical integration of original and adjoint system of differential
equations provided by some control. The solving of adjoint system in the iterations
is used to find either the value of Hamiltonian or both to perform the calculation
of gradients of functionals. Thus, the numerical integration of this system is
accomplished at each step of any of the first-order methods. Since the multimethod
technology enables the steps to be made simultaneously by all methods, the solution
of adjoint system, which is obtained by single integration, is used in all iteration
formulas simultaneously.

3.2 Computation of the Method Step

Realization of each step of the first-order method needs to find the value of
method’s step α or ε , for which new obtained approximation provides the smallest
value of objective functional. The search for such a value of α requires multiple
integration of initial system (1). By constructing control uα by given iteration
formula at different values of α , and integrating initial system, at u = uα , we
obtain various trajectories xα(t), t ∈ T and find pertinent values of the functional
I(uα). By applying the one-dimensional search method it is possible by several such
recalculations to find the approximate value of α = αksuch that the minimum of
I(uα) w.r.t. parameter α is provided. If, in the process, the inequality I(uαk)< I(uk)
holds, the control uαk is taken as new approximation uk+1. Otherwise, iteration
process, using this method, comes to an end.

To recover the method convergence it is necessary to correct calculations,
namely, diminish the integration step, increase the accuracy of one-dimensional
search, and so on. The multimethod algorithm can be used to continue the process
of control improvement by switching to another method, while the condition for
termination of its work is impossibility to guarantee relaxation by none of the
methods entering in the given collection.

Another scheme of search can also be used to find the value of αk while using
the multimethod algorithm. Its essence consists in the fact that in the process of
subdivision of α , for example, by cutting in two, with each its value, it accomplishes
test step by all methods. Since, in many algorithms, for finding αk, it accomplishes
subsequent subdivision in two until the inequality I(uαk)< I(uk) holds, then, for any
fixed α , the validity of this inequality is checked simultaneously for all methods.
In addition, with given value of α , in correspondence with iteration formula of each
method, it is constructed the control uα integrated the system (1). Its solution is used
to calculate the functional I(uα). If, in the process, for some value of parameter α ,
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for some of the methods, the required inequality holds, then uαk , obtained by this
method, should be taken as a new approximation to be passed to all methods for
continuation of iteration process.

3.3 Choice of Optimization Methods

For parameters to be used to estimate the efficiency of iteration process, one
can take, for instance, the velocity of reduction of the residuals in optimization
conditions, the value of increment of the objective functional, or the extent of
violation of some important, for example, in the physical sense, constraints.
The accuracy of calculations of these parameters provides the proper choice of the
method and opportune transition to another optimization method.

3.4 The Methods of Approximation of Control

The principal error in modeling the control problem arising in the process of
numerical solving is due to discrete approximation of controlled dynamic system
and tabular representation of control function.

The methods of numerical integration allow for discretization of the system with
given accuracy but provided that control functions are continuous and their values
can be determined for arbitrary t ∈ T . However, in practice, piecewise constant
approximation of control functions is often applied, and its values are defined only
in given sites of the temporal network. These values are changed in iteration process,
depending on optimization method to decrease minimized functional or to reduce
the residuals for given terminal conditions. The values of control functions between
the points, which are necessary, for example, to apply the numerical methods of
Runge–Kutta type, as usual are taken to be equal either the value in the nearest left
point or both are defined by linear interpolation by the values in left and right points.
In this process, the error of numerical integration can be considerably extended.
Then, on the obtained numerical solution of the system, the values of parameters,
which are used to choose the method, could be incorrect.

To diminish the errors of calculation of trajectory, one can condense the temporal
network in order to increase the number of desired values of control which implies
to solve optimization problem of a big size. In the case if required control is
smooth enough, then, with some number of points and with the help of interpolation
formulas, the admissible accuracy of its approximation can be provided. However,
in general case, if control functions are discontinuous, for example, of relay type,
this approach may turn out to be inefficient, since, in this case, the condensation
of network affects the approximation accuracy only in the neighborhood of the
switching points. Therefore, in the process of solving the bang–bang optimal control
problems, it is necessary to use the procedure of switching times correction to
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provide the approximation for control functions with prescribed accuracy. In the
absence of this procedure, the control is found in the form of the array of numbers
defined on temporal network. Such a control may differ in significantly from the
optimal one both by the value of objective functional and by the accuracy of optimal
conditions fulfillment.

3.5 The Estimation of Accuracy of a Chosen Method

The application of multimethod algorithm is correct only if all methods use the
same approximation of the control and provide the same accuracy of integration of
the systems. In this case, all optimization methods are used to solve the same finite
dimensional problem obtained by discretization, while the values of parameters used
to choose the method give a more correct estimate of the algorithm efficiency,
providing thus a correct choice of the method to continue iteration process. As
a result, the approximate solution is obtained in a lesser number of iterations,
in comparison to individual use of each method from a given collection. This is
because at each stage of solving the considered problem, a more effective algorithm
is applied to be more adequate in this situation.

4 The Numerical Experiments

Let us present the results of the numerical experiments to demonstrate application
of the multimethod technology. Two examples are considered: a test problem of the
Rosenbrock function minimization and the problem of optimal control of the rocket
flight.

4.1 Example 1

It is required to find the minimum of Rosenbrock function f (x1,x2) = 100(x2−
x2

1)
2 +(1− x1)

2 with constraint (x1− 2)2 +(x2− 2)2 ≤ 1 and initial approximation
x0 = (2,1).

It is known that the absolute minimum of this function is achieved at the point
(1,1). It is equal to 0. In the problem under consideration, the point (1,1) is not
feasible. Therefore the zero value of objective functional is not attained.

This problem was solved numerically by the method of conditional gradient, by
the method of gradient projection, and also by the multimethod algorithm which
contains these two methods. The smallest value of the function equal to 0.0358,
for prescribed accuracy ε = 10−4, was attained using 240, 341, and 170 iterations,
respectively. Minimum point is x∗ = (1.189,1.415).
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4.2 Example 2

In this case, controlled process is described by the system

ẋ1 =−cpx2
1[1.174− 0.9cosu1]− gsinx2

/

(1+ x3)
2,

ẋ2 = 0.6cpx2
1 sinu1 + x1 cosx2

/

[R(1+ x3)]− gcosx2
/

[x1(1+ x3)
2],

ẋ3 = x1 sinx2
/

R,

ẋ4 = x1 cosx2
/

[1+ x3],

where ρ = 0.002704exp(−4.26Rx3), R = 209, g = 0.00032172, and c = 26600.
The initial data x(0) = (0.36,−0.141372,0.019139,0.0) and terminal conditions

x(tk) = (0.27,0.0,0.011962, unbounded)are given, while the parameter tk is not
fixed. It is required to find such control u(t), t ∈ [0, tk] and such smallest value
of parameter tk that the fulfillment of terminal conditions is guaranteed, while the
functional

I(u) =

tk∫

0

x1[exp(−4.26Rx3)]
1/3 dt

should attain the smallest value.
This problem was solved by the above linearization method and also by the

projected Lagrangian method, in iteration of which the nonlinear Lagrangian with
linearizable constraints is minimized [11]. Approximate solution (the accuracy w.r.t.
boundary conditions is 10−3) was found in 282 and 215 iterations, respectively.
The solution with the same accuracy, that was obtained with the multimethod
algorithm including these two methods, was found in 164 iterations. The value of
parameter tk equals 72.412, while the functional I(u) attains the value equal to 24.59.

5 Conclusion

Thus, we can conclude that for each problem under consideration there exists
an appropriate sequence of steps based on different methods which provides
more effective search for the optimal control. In the multimethod algorithms the
construction of such a sequence is accomplished automatically according to some
given criterion estimating the efficiency of optimization process at each stage of
the problem solving. The use of the technology described above is based on the
application software, for example, [5–11, 14], which includes the methods of first
and second order for solving the optimal control problems with constraints of
different types.



288 A.I. Tyatyushkin

References

1. Evtushenko, Yu.G.: Methods of solving of extremal problems and its application. Nauka,
Moscow (1982).

2. Gurman, V.I., Dmitri’ev, M.G., Osipov, G.S.: Intellectual multimethod’s technology for solving
and analysis of control problems: Preprint of Institute of programmed systems of RAS.
Pereslavl–Zallesskii (1996).

3. Ling, L., Xue G.: Optimization of Molecular Similarity Index with Applications to
Biomolecules. J. Glob. Optim. 14(3), 299–312 (1999)

4. Lyubushin, A.A., Chernous’ko, F.L.: The method of successive approximations for computa-
tion of optimal control. Izv. AN SSSR. Tehn. kibernetika. 2, 141–159 (1983).

5. Morzhin, O.V., Tyatyushkin, A.I.: An algorithm of the section method and program tools for
reachable sets approximating. J. of Computer and Systems Sciences International. 47(1), 1–7
(2008).

6. Tyatyushkin, A.I.: Package KONUS for optimization of continuous controlled systems. The
packages of applied softwares: The experience of using. Nauka, Moscow (1989).

7. Tyatyushkin, A.I.: Numerical methods and software for optimization of controlled systems.
Nauka, Novosibirsk (1992).

8. Tyatyushkin, A.I.: Numerical methods for optimization of controlled systems. J. Stability and
control: Theory and Appl. 3(2), 150–174 (2000)

9. Tyatyushkin, A.I.: Parallel computations in Optimal control problems. Siberian J. of Num-
ber.Mathematics (Sib.Branch of Russ. Acad. of Sci). 3(2), 181–190, Novosibirsk (2000).

10. Tyatyushkin, A.I.: Many-Method Technique of Optimization of Control Systems. Nauka,
Novosibirsk (2006).

11. Tyatyushkin, A.I., Zholudev, A.I., Erinchek, N.M.: The program system for solving optimal
control problems with phase constraints. Intern. J. of Software Engineering and Knowledge
Engineering. 3(4), 487–497 (1993).

12. Vasil’ev, O.V., Tyatyushkin, A.I.: On some method of solving of optimal control problems
based on maximum principle. J. vychisl. matem. i mat. fiziki. 21(6), 1376–1384 (1981).

13. Yuan, G.: Modified nonlinear conjugate gradient methods with sufficient descent property for
large-scale optimization problems. Optim. Lett. 3(1), 11–21 (2009).

14. Zholudev, A.I., Tyatyushkin, A.I., Erinchek, N.M.: Numerical optimization methods of
controlled systems. Izv. AN SSSR. Tehn. kibernetika. 4, 14–31 (1989).



Tunneling Algorithm for Solving Nonconvex
Optimal Control Problems

Alexander Yurievich Gornov and Tatiana Sergeevna Zarodnyuk

Abstract This chapter considers a new method of search for the global extremum in
a nonlinear nonconvex optimal control problem. The method employs a curvilinear
search technique to implement the tunneling phase of the algorithm. Local search in
the minimization phase is carried out with the standard algorithm that combines the
methods of conjugate and reduced gradients.

The software implementation of the suggested tunneling algorithm was tested on
a collection of nonconvex optimal control problems and demonstrated efficiency of
the this approach.

Key words Optimal control • Global optimization • Tunneling methods
• Curvilinear search

1 Introduction

Development of approaches to the study of optimal control problems (OCP)
was considered by many researchers [2, 6, 12, 15, 16, 20, 25]. Previously genetic
algorithms were suggested to solve optimization problems of controllable dynamic
systems [1, 3, 9, 14, 18, 19, 22, 23, 26]. However, in recent years, many specialists
have tried to construct more capable algorithms [4,11,13,17,21]. Most publications
devoted to this problem concern the transfer of ideas from finite-dimensional
optimization to the area of optimal control. However, in many cases, this leads to the
algorithms that require large computations to achieve the final results. The approach
suggested by us is based on the methods proposed in the theory ofoptimal control
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and differential inclusions. From our viewpoint it provides much faster solution of
multiextremal problems of optimal control with nonlinear systems of differential
equations and nonconvex functionals.

The idea of tunneling algorithms is well known in the global optimization
theory [29]. The tunneling algorithms were first suggested in the finite-dimensional
optimization in the works by A. V. Vilkov, N. P. Zhidkov and B. M. Shchedrin, and
A. V. Levy and A. Montalvo were based on the use of the tunneling function T (x)
for finding the point from the neighborhood of the next local extremum of function
f (x) [10, 24]: T (x) = ( f (x)− f (x)∗)/‖x− x∗‖α , here x∗—the best iteration value,
α > 0—a parameter. The above studies show that in the case of one-dimensional
continuously differentiable function f (x) with a finite number of local extrema, the
algorithm with tunneling function T (x) converges to the point of global minimum.
The methods based on the use of other techniques of escaping from the found
extrema were unveiled in the studies by J. Barhen, J. W. Burdick, B. C. Certin,
R. P. Ge, Y. F. Qin, Y. Yao, and others.

Tunneling algorithms rest on various methods of escaping from the local extrema.
Once the next local extremum (the local phase of the algorithm) is found, we search
for a point at which the quality criterion value is lower than the known best iteration
value (the tunneling phase of the algorithm). The found point is chosen to be an
initial one for the next local descent. To solve nonconvex optimization problems
of dynamic systems we previously suggested and studied the method of curvilinear
search [8]. It is based on the idea of Chentsov [5] about the possibility of using the
property of connection of the controllable system attainability set for construction
of nonlocal numerical methods of functional minimization. The paper addresses a
new method of search for the global extremum in the nonlinear nonconvex OCP.

2 Formulation of a Nonconvex Optimal Control Problem

The main subject of our study is OCPs with parallelepiped constraints on control.
The system describing the controllable dynamic process may be nonlinear, and,
hence, the objective functional may turn out to be nonconvex, which results in
appearance of local extrema in OCP. Control functions in the considered problems
are smooth and piecewise continuous functions.

The standard statement of the problem is as follows:

ẋ = f (x,u, t), x(t0) = x0, t ∈ T = [t0, t1], (1)

U = {u(t) ∈ Rr : u≤ u(t)≤ u}, (2)

I(u) = φ(x(t1))→min. (3)

The OCP consists in the search of control u∗(t) that meets the parallelepiped
constraints (2) and allows one to obtain the minimum value of the terminal
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functional (3) which depends on the system trajectory (1) at the finite moment of
time t1. The vector function f (x,u, t) and the scalar function φ(x) are assumed to be
continuously differentiable for all arguments except t.

By the multiextremal OCP we understand the problems with feasible controls
u1 = u1(t) and u2 = u2(t) from the set U (2), which can upset the convexity
condition of the aim functional I(u): I(u1 +β (u2−u1))> I(u1)+β (I(u2)− I(u1)),
β ∈ [0,1] [7].

3 Description of Tunneling Algorithm

Tunneling algorithms can be subdivided into two phases: the minimization phase
and the tunneling phase [29]. In the proposed approach the first phase implies the
application of a standard combination of the method of conjugate gradients and
the method of reduced gradient. The second phase is based on the curvilinear search
method, which represents a simplest scheme of sequential variations in the control
space. This scheme presupposes a combination of the best control in the iteration
and the auxiliary control with projection of the control variations onto the feasible
parallelepiped. The variations of control are projected onto the terminal phase space
in the form of curved lines, along which the smallest value of functional is sought in
each iteration. The methods of generating stochastic auxiliary controls are described
in Sect. 4.

The first phase deals with the search of local extremum Iloc, where Iloc =
locmin

{u(t): u(t)∈U}
I(u). The initial control u0 ∈ U is constructed using the algorithms

intended for generation of controls in the form of random relay, piecewise-linear,

The tunneling algorithm

Initialization: Choose u0 ∈U

Iteration k (k ≥ 1):

1. The minimization phase
Find Iloc = locmin

{u(t): u(t)∈U}
I(u)

2. The tunneling phase
If find I(u) : I(u)− Iloc < ε
then go to the minimization phase
else I∗ = Iloc
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and spline functions. The second phase suggests finding I(u) such that I(u)− Iloc <
ε , where ε determines accuracy of search for the minimum functional value. The
found value of I(u) is used in the subsequent minimization phase as initial value
for starting the search for the local extremum. If a better value is not found in the
tunneling phase we suppose that I∗ = I(u∗) = Iloc, where I∗ is the minimum value of
terminal functional in the nonconvex OCP which is obtained with control u∗= u∗(t).

4 The Curvilinear Search Method (The Tunneling Phase)

The modifications of the curvilinear search method are made on the basis of
three different methods designed to generate auxiliary controls and variants of
constructing control variations. One auxiliary control of the kind u1 = u1(t) makes it
possible to obtain linear variation of control ũ1(α) =α(u1−ubest)+ubest, α ∈ [0, 1];
two auxiliary controls u1 = u1(t) and u2 = u2(t) make it possible to obtain quadratic
variation ũ2(α)=α2((u1+u2)/2−ubest)+ubest+α(u2−u1)/2+ubest, α ∈ [−1, 1].
Three controls provide cubic variation of control:

ũ3(α) = α3
(−u1− 3u2 + u3

6
+ 0.5ubest

)

+α2
(

u1 + u2

2
− ubest

)

+α
(−2u1 + 6u2− u3

6
− 0.5ubest

)

+ ubest, α ∈ [−1, 2]. (4)

Variations of control ũi(α, t), i = 1,3 coincide with auxiliary control actions
uj, j = 1,3 for certain values of parameter α (e.g., ũ2(−1) = u1, ũ2(1) = u2); at
the same time ũ1(0) = ũ2(0) = ũ3(0) = ubest. The best control ubest is the control
providing the minimum functional value among all known controls in the current
iteration of the algorithm. Different variants of the curvilinear search algorithm
are implemented for each case of constructing control variation. The first variant
is based on linear combination of the best and auxiliary controls (variant 1).
The second variant uses quadratic variations of control (variant 2). The cubic
combination of the best and auxiliary controls is applied in the third variant of the
curvilinear search algorithm (variant 3). We will present the algorithm variant based
on the use of three auxiliary control actions for construction of cubic variations of
control.

The Curvilinear Search Algorithm (Variant 3)

1. Choose the initial control u0(t) ∈U , t ∈ T = [t0, t1].
2. Specify algorithmic parameters:

NC is the number of iterations in the curvilinear search algorithm.
NP is a starting number of points for one-dimensional search.

3. Calculate the functional value I(u0) chosen at the current step as the best value
Ibest = I(u0), ubest(t) = u0(t). In the kth iteration (k≥ 0).
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4. For all i = 1,3,

a. Stochastic auxiliary controls ui = ui(t) ∈U , t ∈ T = [t0, t1] are generated.
b. If I(ui)< Ibest than Ibest = I(ui) and ubest(t) = ui(t), go to step 9.

5. The control ũ3(α, t) is formed (4), such that ũ3(0) = ubest, ũ3(−1) = u1, ũ3(1) =
u2, ũ3(2) = u3.

6. ũ3(α) is projected onto the feasible region:

a. If ũ3(α)< u than ũ3(α) = u, t ∈ T = [t0, t1].
b. If ũ3(α)> u than ũ3(α) = u, t ∈ T = [t0, t1].

7. Find min
α∈[−1,2]

I(ũ3(α)).

8. If I(ũ3(α∗))< Ibest than Ibest = I(ũ3(α∗)) and ubest = ũk(α∗).
9. Store Ibest and ubest(t).

The iteration ends.

5 Methods for Generation of Starting Points

The efficiency of algorithms designed to find the minimum in the nonconvex
OCP depends on the extent to which the starting controls cover the feasible set.
The algorithms intended for generation of starting points for the methods of solving
multiextremal OCP should meet the following criteria: the generated controls should
be random and feasible (lie within parallelepiped constraints) and belong to the class
of piecewise continuous functions and form a dense set in the limit [7].

The algorithms that make it possible to generate controls in the form of
relay functions with a fixed or random number of switching points, spline func-
tions, and piecewise-linear and tabulated functions have been investigated and
implemented (Fig. 1).

The curvilinear search algorithm was constructed on the basis of the first three
methods of control generation. Generation of control actions in the tabulated form
(Fig. 1d), when at each node of the discretization grid a random value is chosen from
a feasible interval, is considered to be inefficient and, therefore, is not included in
the selected set of auxiliary algorithms.

6 Numerical Examples

Several problems from the test collection of nonconvex OCP [27] were used to test
the proposed algorithmic scheme. The values of global and local extrema, as well
as the points at which they are attained, are shown in Tables 1–3 for test problems
1–3. The optimal controls, trajectories, and attainability sets of controllable dynamic
systems are shown in Figs. 2–4.
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Fig. 1 Examples of generated controls in the form of: (a) relay functions, (b) spline functions,
(c) piecewise-linear functions, and (d) tabulated functions

6.1 Test Problem 1

The controllable dynamic process is described by the system of differential equa-
tions ẋ1 = x2 + x1 sinx1 + u1, ẋ2 =

√
2.1− u1 cosx2, t ∈ [0, 4]. The value of phase

vector at initial time x1(t0) = 3, x2(t0) = 0 and the set of feasible controls U =
[−1, 1] are given. It is necessary to minimize the nonconvex terminal functional
I(u) =−(x1(t1)− 5)2− (x2(t1− 6)2 →min.
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Table 1 The results of
solving test problem 1

Value of Extreme points

N objective functional x1 x2

1 −2.30262 4.1059 4.7740
2 −25.36658 10.036 6.0914
3 −0.40256 4.7926 6.5996

Table 2 The results of
solving test problem 2

Value of Extreme points

N objective functional x1 x2

1 1.06054 0.6120 2.0917
2 0.95589 2.4438 2.6307
3 −2.83027 2.7093 2.2141
4 1.11165 0.5661 −0.8103
5 1.188471 0.1638 −0.5743

Table 3 The results of
solving test problem 3

Value of Extreme points

N objective functional x1 x2

1 28.39093 0.2463 4.3195
2 0.18870 −1.4336 9.5260
3 149.9012 −1.5173 −2.7325

Fig. 2 (a) Optimal control and respective trajectories of the system, (b) Attainable set with
extreme points in test problem 1
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Computation for test problem 1

Minimization phase I(u) =−2.30260
Tunneling phase 17 iterations of the curvilinear search algorithm I(u) =−2.34511
Minimization phase I(u) =−25.36658
Tunneling phase 50 iterations of the curvilinear search algorithm

Optimal solution: I∗(u) =−25.36658
The number of Cauchy problems is 20684. The computing time is 6 s.

Fig. 3 (a) Optimal control and respective trajectories of the system, (b) attainable set with extreme
points in test problem 2

Computation for test problem 2

Minimization phase I(u) = 1.06066
Tunneling phase 3 iterations of the curvilinear search algorithm I(u) = 0.95504
Minimization phase I(u) = 0.95504
Tunneling phase 13 iterations of the curvilinear search algorithm I(u) = 0.94117
Minimization phase I(u) =−2.82955
Tunneling phase 50 iterations of the curvilinear search algorithm

Optimal solution: I∗(u) =−2.82955
The number of Cauchy problems is 43379. The computing time is 9 s
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Fig. 4 (a) Optimal control and respective trajectories of the system, (b) attainable set with extreme
points in test problem 3

Computation for test problem 3

Minimization phase I(u) = 28.44292
Tunneling phase Nine iterations of the curvilinear search algorithm I(u) = 22.66894
Minimization phase I(u) = 0.34703
Tunneling phase Fifty iterations of the curvilinear search algorithm

Optimal solution: I∗(u) = 0.34703
The number of Cauchy problems is 110,885. The computing time is 30 s

6.2 Test Problem 2

Test problem 2 is formulated in the following way: ẋ1 = x2 ·u1, ẋ2 = x1 + u1/(x2
1 +

x2
2), x1(t0) = 1, x2(t0) =−1.2, u ∈ [−1, 1], t ∈ [0, 2]. It is necessary to minimize the

functional I(u) =
(√

2.72− x1− 2.72−x1
7

)

· e0.926·x1− 1.481x1− 0.014x2
2 →min.

6.3 The Test Problem 3

In test problem 3 the controllable dynamic process is described by the following

nonlinear system of differential equations: ẋ1 = x2, ẋ2 = u1− x1 +
x3

1
6 −

x5
1

120 , t ∈
[0, 7]. The initial value of phase vector x1(t0) = 5, x2(t0) = 0 and the set of feasible
controls U = [−1, 1] are specified. The terminal functional is formulated as follows:
I(u) = (x1 + 1)2 +(x2− 9.5)2 →min.
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7 Conclusion

The software implementation of the suggested tunneling algorithm has been tested
on a collection of nonconvex OCP. The computational experiments have demon-
strated the efficiency of the proposed approach. The global extremum known from
the source was found in all solved nonconvex OCP.

The tunneling algorithm suggested in this chapter makes it possible to solve
multiextremal OCP faster as compared to the existing approaches. The developed
approach was implemented and included in the software OPTCON-III [28] which
is intended to solve a wide class of OCP.

Acknowledgements This work is partly supported by Grants N 12-01-00193 and N 10-01-00595
of the Russian Foundation for Basic Research.
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Solving Linear Systems with Polynomial
Parameter Dependency with Application
to the Verified Solution of Problems
in Structural Mechanics

Jürgen Garloff, Evgenija D. Popova, and Andrew P. Smith

Abstract We give a short survey on methods for the enclosure of the solution set of
a system of linear equations where the coefficients of the matrix and the right hand
side depend on parameters varying within given intervals. Then we present a hybrid
method for finding such an enclosure in the case that the dependency is polynomial
or rational. A general-purpose parametric fixed-point iteration is combined with
efficient tools for range enclosure based on the Bernstein expansion of multivariate
polynomials. We discuss applications of the general-purpose parametric method to
linear systems obtained by standard finite element analysis of mechanical structures
and illustrate the efficiency of the new parametric solver.

1 Introduction

In this chapter we consider linear systems

A(x) · s = d(x), (1a)

where the coefficients of the m×m matrix A(x) and the vector d(x) are functions of
n parameters x1, . . . ,xn varying within given intervals [x1], . . . , [xn]

ai j(x) = ai j(x1, . . . ,xn), di(x) = di(x1, . . . ,xn), i, j = 1, . . . ,m, (1b)

x ∈ [x] = ([x1], . . . , [xn])
�. (1c)
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The set of solutions to (1a)–(1c), called the parametric solution set, is

Σ = Σ (A(x),d(x), [x]) := {s ∈R
m | A(x) · s = d(x) for some x ∈ [x]} . (2)

Engineering problems that involve such parametric linear systems may stem from
structural mechanics, e.g., [3, 4, 21, 26, 29, 38, 42], the design of electrical circuits
[5,6], resistive networks [10], and robust Monte Carlo simulation [17], to name but a
few examples. The source of parametric uncertainty is often the lack of precise data
which may result from a lack of knowledge due to, e.g., measurement imprecision
or manufacturing imperfections, or an inherent variability in the parameters, e.g.,
physical constants are only known to within certain bounds.

The parametric solution set can be described explicitly only in very simple cases.
Therefore, one attempts to find the smallest axis-aligned box in R

m containing Σ .
Since even this set can only be found easily in some special cases, it is more practical
to attempt to compute a tight outer approximation to this box.

The chapter is organised as follows. In Sect. 2 we introduce the basic definitions
and rules of interval arithmetic. Which is a fundamental tool of our approach.
In this section we also compare the interval solution set with the parametric
solution set and give a short overview of methods for its enclosure. In Sect. 3.1
we present a method for the enclosure of the parametric solution set, called the
parametric residual iteration method. This method needs tight bounds on the range
of multivariate functions. In the applications we will present later in this chapter the
coefficient functions (1b) are polynomials or rational functions. To find the range
of a multivariate polynomial, we recall in Sect. 3.2 a method which is based on
the expansion of a polynomial into Bernstein polynomials, termed the Bernstein
form. Implementation issues concerning the combination of the parametric residual
iteration method with the Bernstein form are discussed in Sect. 3.3. We apply the
combined approach in Sect. 4 to some problems of structural mechanics and draw
some conclusions in Sect. 5.1

2 The Parametric Solution Set

2.1 Interval Arithmetic

Let IR denote the set of the compact, nonempty real intervals. The arithmetic
operation ◦ ∈ {+,−, ·,/} on IR is defined in the following way:

If a = [a,a],b = [b,b] ∈ IR, then

a+ b = [a+ b,a+ b],

a− b = [a− b,a− b],

1Preliminary results were presented at the 2nd International Conference on Uncertainty in
Structural Dynamics, Sheffield, UK, June 15–17, 2009.
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a · b =
[

min{ab,ab,ab,ab},max{ab,ab,ab,ab}] ,
a/b = [min{a/b,a/b,a/b,a/b},

max{a/b,a/b,a/b,a/b}], if 0 /∈ b.

As a consequence of these definitions we obtain the inclusion isotonicity of the
interval arithmetic operations: If a1,b1 ∈ IR with a1 ⊆ a and b1 ⊆ b then it holds
that

a1 ◦ b1 ⊆ a ◦ b.

Note that some relations known to be true in the set R, e.g., the distributive law, are
not valid in IR. Here we have the weaker subdistributive law

a · (b+ c)⊆ a ·b+ a · c for a,b,c ∈ IR.

The width of an interval a = [a,a] is defined as

ω(a) = a− a.

By IR
n and IR

n×n we denote the set of n-vectors and n-by-n matrices with entries
in IR, respectively. For a nonempty bounded set S ⊆ R

n, define its interval hull by
�S := [infS , supS ] = ∩{[s] ∈ IR

n |S ⊆ [s]}.
Where the end-points of an interval are stored as floating-point numbers, it is

necessary to use outward rounding in all operations, viz. the infimum is rounded
down and the supremum is rounded up. In this way, interval operations deliver
guaranteed results even in the presence of rounding errors with floating-point
arithmetic.

Further details on arithmetic with intervals may be found in [1, 22].

2.2 The Interval Solution Set Versus the Parametric
Solution Set

A system of linear interval equations is a collection of systems

A · s = d, A ∈ [A], d ∈ [d], where [A] ∈ IR
m×m, [d] ∈ IR

m; (3)

its solution set

{s ∈R
m | ∃A ∈ [A], ∃d ∈ [d] : A · s = d} (4)

is called here the interval solution set. There are many methods for the enclosure
of the interval solution set (cf. [1, 22]). With the parametric linear system (1a) a
system (3) is associated which is obtained when each entry in (1b) is replaced by an
enclosure for the range of the functions ai j and di over [x]. In general, the resulting
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interval system can be more easily solved than the parametric system. However, the
dependencies between the parameters are lost, and so the interval solution set is in
general much larger than the parametric solution set.

2.3 Prior Work on the Parametric Solution Set

One of the earliest papers on the solution of linear systems with nonlinear parameter
dependencies is [8], cf. [9]. Later works focus on the solution of systems of linear
equations whose coefficient matrices enjoy a special structure. Here the interval
solution set (4) is restricted in such a way that only matrices which have this special
structure are considered. The restricted solution set can also often be represented as
a parametric solution set (2), cf. [12] for examples and references. In the sequel we
survey some methods for the enclosure of the parametric solution set which have a
wider range of applicability.

A method which is applicable to parameter dependencies which can be repre-
sented as

A(x) =
n

∑
k=1

xkA(k), d(x) =
n

∑
k=1

xkd(k), A(k) ∈ R
m×m, d(k) ∈ R

m, k = 1, . . . ,n,

was recently given in [14]. This parameter dependency covers the (skew-) symmet-
ric, Toeplitz, and Hankel matrices and was also considered in [4].

In [10] parametric linear systems are considered where the uncertain parameters
xi enter the system (1a) in a rank-one manner. As an example, any planar resistive
network has the property that with resistances associated with the parameters xi the
resulting system of linear equations, corresponding to application of Kirchhoff’s
laws, has a rank-one structure. Such systems are solved in [5, 6] by application of
the Sherman–Morrison formula. For systems with a rank-one structure, results are
obtained in [10] which allow one to decide which parameters influence components
of the solution

s(x) = A(x)−1d(x)

in a monotone, convex, or concave manner. Such information greatly facilitates the
computation of an enclosure of the solution set (2).

Another direct method is presented in [15]. Here the coefficient functions of (1a)
are assumed only to be continuous. They are approximated by linear functions in
such a way that one obtains a superset of (2). An interval enclosure for this superset
is determined as an interval vector whose midpoint is obtained as the solution of a
certain system of linear equations. The vector which contains the (half-) widths of
the component intervals is computed as the solution of another system and therefore
must be positive, which is a restriction of the method.

In [36] a direct method is proposed for the case of linear parameter dependency
based on inclusion theorems of Neumaier [22]. However, a prerequisite for this
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method is that a matrix of coefficients generated from the inverse of the midpoint
of the interval matrix A must be an H-matrix [22], a condition which seems to be
rarely satisfied for typical problems.

The method which presently seems to have the widest range of applicability is
the parametric linear solver developed by the second author (E. D. P.); see Sect. 3.1
for details.

3 Methodology

3.1 The Residual Iteration Method

In this section we consider a self-verified method for bounding the parametric
solution set. This is a general-purpose method since it does not assume any
particular structure among the parameter dependencies. The method originates
in the inclusion theory for nonparametric problems, which is discussed in many
works (cf. [34] and the literature cited therein). The basic idea of combining the
Krawczyk-operator [16] and the existence test by Moore [20] is further elaborated
by S. Rump [33] who proposes several improvements leading to inclusion theorems
for the interval solution (4). In [34, Theorem 4.8] S. Rump gives a straightforward
generalisation to (1a) with affine-linear dependencies in the matrix and the right-
hand side. With obvious modifications, the corresponding theorems can also be
applied directly to linear systems involving nonlinear dependencies between the
parameters in A(x) and d(x). This is demonstrated in [26,29]. The following theorem
is a general formulation of the enclosure method for linear systems involving
arbitrary parametric dependencies.

Theorem 1. Consider a parametric linear system defined by (1a)–(1c). Let R ∈
R

m×m, [y] ∈ IR
m, s̃ ∈ R

m be given and define [z] ∈ IR
m, [C] ∈ IR

m×m by

[z] := �{R(d(x)−A(x)s̃) | x ∈ [x]},
[C] := �{I−R ·A(x) | x ∈ [x]},

where I denotes the identity matrix. Define [v] ∈ IR
m by means of the following

Gauss–Seidel iteration:

1≤ i≤ m : [vi] :=
{

[z]+ [C] · ([v1], . . . , [vi−1], [yi], . . . , [ym])
�
}

i
.

If [v] ⊆ [y] and [v]i �= [y]i for i = 1, . . . ,n, then R and every matrix A(x) with x ∈ [x]
are regular, and for every x ∈ [x] the unique solution ŝ = A−1(x)d(x) of (1a)–(1c)
satisfies ŝ ∈ s̃+[v].

In the examples we present in Sect. 4, we have chosen R ≈ A(x̆)−1 and s̃ ≈
R−1d(x̆), where x̆ is the midpoint of [x].
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The above theorem generalises [34, Theorem 4.8] by stipulating a sharp
enclosure of C(x) := I−R ·A(x) for x ∈ [x], instead of using the interval extension
C([x]). A sharp enclosure of the iteration matrix C(x) for x ∈ [x] is also required
by other authors (who do not refer to [34]), e.g., [4], without addressing the issue
of rounding errors. Examples demonstrating the extended scope of application of
the generalised inclusion theorem can be found in [23, 25, 31]. It should be noted
that the above theorem provides strong regularity (cf. [25]), which is a weaker but
sufficient condition for regularity of the parametric matrix.

When aiming to compute a self-verified enclosure of the solution to a parametric
linear system by the above inclusion method, a fixed-point iteration scheme is
proven to be very useful. A detailed presentation of the computational algorithm
can be found in [26, 33].

In case of arbitrary nonlinear dependencies between the uncertain parameters,
computing [z] and [C] in Theorem 1 requires a sharp range enclosure of nonlinear
functions. This is a key problem in interval analysis, and there exists a huge number
of methods and techniques devoted to this problem, with no one method being
universal. In this work we restrict ourselves to linear systems where the elements
of A(x) and d(x) are rational functions of the uncertain parameters. In this case the
coefficients of z(x) = R(d(x)−A(x)s̃) and C(x) are also rational functions of x. The
quality of the range enclosure of z(x) will determine the sharpness of the parametric
solution set enclosure. In [26] the above inclusion theorem is combined with a
simple interval arithmetic technique providing inner and outer bounds for the range
of monotone rational functions. The arithmetic of generalised (proper and improper)
intervals is considered as an intermediate computational tool for eliminating the
dependency problem in range computation and for obtaining inner estimations by
outwardly rounded interval arithmetic. Since this methodology is not efficient in
the general case of non-monotone rational functions, in this work we combine the
parametric fixed-point iteration with range enclosing tools based on the Bernstein
expansion of multivariate polynomials.

3.2 Bernstein Enclosure of Polynomial Ranges

In this section we recall some properties of the Bernstein expansion which are
fundamental to our approach, cf. [2, 11, 41] and the references therein.

Firstly, some notation is introduced. We define multi-indices i = (i1, . . . , in)T as
vectors, where the n components are nonnegative integers. The vector 0 denotes
the multi-index with all components equal to 0. Comparisons are used entrywise.
Also the arithmetic operators on multi-indices are defined componentwise such that
i, l := (i1, l1, . . . , in, ln)T , for,=+,−,×, and / (with l > 0). For instance, i/l,
0≤ i≤ l, defines the Greville abscissae. For x ∈ R

n its monomials are

xi :=
n

∏
μ=1

x
iμ
μ . (5)
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For the n-fold sum we use the notation

l

∑
i=0

:=
l1

∑
i1=0

. . .
ln

∑
in=0

. (6)

The generalised binomial coefficient is defined by
(

l
i

)

:=
n

∏
μ=1

(

lμ
iμ

)

. (7)

For reasons of familiarity, the Bernstein coefficients are denoted by bi; this should
not be confused with components of the right-hand side vector b of (1a). Hereafter,
a reference to the latter will be made explicit.

3.2.1 The Bernstein Form

An n-variate polynomial p,

p(x) =
l

∑
i=0

aix
i, x = (x1, . . . ,xn), (8)

can be represented over

[x] := [x1,x1]×·· ·× [xn,xn],

x = (x1, . . . ,xn), x = (x1, . . . ,xn), (9)

as

p(x) =
l

∑
i=0

biBi(x), (10)

where Bi is the i-th Bernstein polynomial of degree l = (l1, . . . , ln),

Bi(x) =

(

l
i

)

(x− x)i(x− x)l−i

(x− x)l , (11)

and the so-called Bernstein coefficients bi of the same degree are given by

bi =
i

∑
j=0

( i
j

)

(l
j

) (x− x) j
l

∑
κ= j

(

κ
j

)

xκ− jaκ , 0≤ i≤ l. (12)

The essential property of the Bernstein expansion is the range enclosing property,
namely that the range of p over [x] is contained within the interval spanned by the
minimum and maximum Bernstein coefficients:

min
i
{bi} ≤ p(x)≤max

i
{bi}, x ∈ [x]. (13)
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It is also worth noting that the values attained by the polynomial at the vertices of
[x] are identical to the corresponding vertex Bernstein coefficients, e.g., b0 = p(x)
and bl = p(x). The sharpness property states that the lower (resp. upper) bound
provided by the minimum (resp. maximum) Bernstein coefficient is sharp, i.e.
there is no underestimation (resp. overestimation), if and only if this coefficient
corresponds to a vertex of [x].

The traditional approach (see, e.g., [11, 41]) requires that all of the Bernstein
coefficients are computed, and their minimum and maximum are determined. By
use of an algorithm (cf. [11, 41]) which is similar to de Casteljau’s algorithm (see,
e.g., [32]), this computation can be made efficient, with time complexity O(nl̂n+1)
and space complexity (equal to the number of Bernstein coefficients) O((l̂ + 1)n),
where l̂ = maxn

i=1 li. This exponential complexity is a drawback of the traditional
approach, rendering it infeasible for polynomials with moderately many (typically,
ten or more) variables.

In [37] a new method for the representation and computation of the Bernstein
coefficients is presented, which is especially well suited to sparse polynomials.
With this method the computational complexity typically becomes nearly linear with
respect to the number of the terms in the polynomial, instead of exponential with
respect to the number of variables. This improvement is obtained from the results
surveyed in the following sections. For details and examples the reader is referred
to [37].

3.2.2 Bernstein Coefficients of Monomials

Let q(x) = xr, x = (x1, . . . ,xn), for some 0 ≤ r ≤ l. Then the Bernstein coefficients
of q (of degree l) over [x] (9) are given by

bi =
n

∏
m=1

b(m)
im

, (14)

where b(m)
im

is the imth Bernstein coefficient (of degree lm) of the univariate monomial
xrm over [xm,xm]. If the box [x] is restricted to a single orthant of R

n then the
Bernstein coefficients of q over [x] are monotone with respect to each variable x j,
j = 1, . . . ,n.

With this property, for a single-orthant box, the minimum and maximum
Bernstein coefficients must occur at a vertex of the array of Bernstein coefficients.
This also implies that the bounds provided by these coefficients are sharp; see the
aforementioned sharpness property. Finding the minimum and maximum Bernstein
coefficients is therefore straightforward; it is not necessary to explicitly compute the
whole set of Bernstein coefficients. Computing the component univariate Bernstein
coefficients for a multivariate monomial has time complexity O(n(l̂ + 1)2). Given
the exponent r and the orthant in question, one can determine whether the monomial
(and its Bernstein coefficients) is increasing or decreasing with respect to each
coordinate direction, and one then merely needs to evaluate the monomial at these
two vertices.
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Without the single-orthant assumption, monotonicity does not necessarily hold,
and the problem of determining the minimum and maximum Bernstein coefficients
is more complicated. For boxes which intersect two or more orthants of Rn, the box
can be bisected, and the Bernstein coefficients of each single-orthant sub-box can
be computed separately.

3.2.3 The Implicit Bernstein Form

Firstly, we can observe that since the Bernstein form is linear, if a polynomial p
consists of t terms, as follows,

p(x) =
t

∑
j=1

ai j x
i j , 0≤ i j ≤ l, x = (x1, . . . ,xn), (15)

then each Bernstein coefficient is equal to the sum of the corresponding Bernstein
coefficients of each term, as follows:

bi =
t

∑
j=1

b( j)
i , 0≤ i≤ l, (16)

where b( j)
i are the Bernstein coefficients of the jth term of p. (Hereafter, a

superscript in brackets specifies a particular term of the polynomial. The use of
this notation to indicate a particular coordinate direction, as in the previous section,
is no longer required.)

Therefore one may implicitly store the Bernstein coefficients of each term
and compute the Bernstein coefficients as a sum of t products, only as needed.
The implicit Bernstein form thus consists of computing and storing the n sets of
univariate Bernstein coefficients (one set for each component univariate monomial)
for each of t terms. Computing this form has time complexity O(nt(l̂ + 1)2) and
space complexity O(nt(l̂ + 1)), as opposed to O((l̂ + 1)n) for the explicit form.
Computing a ingle Bernstein coefficient from the implicit form requires (n+1)t−1
arithmetic operations.

3.2.4 Determination of the Bernstein Enclosure for Polynomials

We consider the determination of the minimum Bernstein coefficient; the determina-
tion of the maximum Bernstein coefficient is analogous. For simplicity we assume
that [x] is restricted to a single orthant.

We wish to determine the value of the multi-index of the minimum Bernstein
coefficient in each direction. In order to reduce the search space (among the
(l̂ + 1)n Bernstein coefficients) we can exploit the monotonicity of the Bernstein
coefficients of monomials and employ uniqueness, monotonicity, and dominance
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tests cf. [37] for details. As the examples in [37] show, it is often possible in
practice to dramatically reduce the number of Bernstein coefficients that have to
be computed.

3.3 Software Tools

In our implementation we have combined software for the parametric residual
iteration method with software developed for the enclosure of the range of a
multivariate polynomial using the implicit Bernstein form. In the case of a rational,
non-polynomial parameter dependency, the ranges of the numerator and the denom-
inator have to be bounded independently at the expense of some overestimation.
In both packages interval arithmetic is used throughout, such that the resulting
enclosure for the parametric solution set can be guaranteed also in the presence
of rounding errors. The software tools for the residual iteration are implemented in
a Mathematica [40] environment by the second author (E. D. P); this software is
publically available [24, 26]. The software for the Bernstein form is written by the
last author (A. P. S.) and utilises the C++ interval library filib++ [18,19]. Since
this is a specialised software exhibiting good performance there is no reason for its
re-implementation in Mathematica. In order to shorten the development time and
to preserve the beneficial properties of both implementation environments, we have
connected both software packages into a new parametric solver via the MathLink
[40] communication protocol, for details see [12]. However, this connection leads
to longer computing times compared to an implementation in a single environment.
For details of the implementation and the accessibility of the combined software
see [12].

4 Application to Structural Mechanics

A standard method for solving problems in structural mechanics, such as linear
static problems, is the finite element method (FEM). In the case of linearised
geometric displacement equations and linear elastic material behaviour, the method
leads to a system of linear equations which in the presence of uncertain parameters
becomes a parametric system. Treating the parametric system as an interval system
and using a typical interval method for the enclosure of (4) in general result in
intervals for the quantities sought which are too wide for practical purposes.

In [21, 42] the authors combine an element-by-element (EBE) formulation,
where the elements are kept disassembled, with a penalty method for imposing
the necessary constrains for compatibility and equilibrium, in order to reduce the
overestimation in the solution intervals. This approach should be applied simultane-
ously with FEM and affects the construction of the global stiffness matrix and the
right-hand side vector, making them larger. A nonparametric fixed-point iteration is
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then used to solve the parametric interval linear system. While special construction
methods are applied in [21], the parametric system obtained by standard FEM
applied to a structural steel frame with partially constrained connections is solved
by a sequence of interval-based (but not parametric) methods [3].

In the sequel we illustrate the usage of the new parametric solver based on
bounding polynomial ranges by the implicit Bernstein form as described in Sect. 3.2.
The improved efficiency is demonstrated by comparing both the computing time
and the quality of the enclosure of the parametric solution set for the new solver
and a previous solver which is based on the combination of the parametric residual
iteration with the method for bounding the range of a rational function presented in
[26], cf. Sect. 3.1. To compare the quality of two enclosures [a] and [b] with [a]⊆ [b]
we employ a measure Oω for the overestimation of [a] by [b] which is defined by

Oω([a], [b]) := 100(1−ω([a])/ω([b])), (17)

where ω denotes the width of an interval.
The following examples were run on a PC with an AMD Athlon-64 3 GHz

processor.

4.1 One-Bay Steel Frame

We consider a simple one-bay structural steel frame, as shown in Fig. 1, which
was initially studied by interval methods in [3]. Following standard practice, the
authors have assembled a parametric linear system of order eight and involving eight
uncertain parameters. The typical nominal parameter values and the corresponding
worst-case uncertainties, as proposed in [3] but converted to SI units, are shown
in Table 1. The explicit analytic form of the given system involving polynomial
parameter dependencies can be found in [3, 29].

As in [3, 29], we solved the system first with parameter uncertainties which are
1 % of the values presented in the last column of Table 1.

The previous parametric solver finds an enclosure for the solution set in about
0.34 s, whereas the new solver needs only 0.05 s. The quality of the enclosures
provided by both solvers is comparable. As shown in [26,29], the solution enclosure
obtained by the parametric solver is better by more than one order of magnitude than
the solution enclosure obtained in [3].

Based on the runtime efficiency of the new parametric solver, we next attempt to
solve the same parametric linear system for the worst-case parameter uncertainties
in Table 1 ranging between about 10 % and 46 %. Firstly, we notice that the
parametric solution depends linearly on the parameter H, so that we can obtain a
better solution enclosure if we solve two parametric systems with the corresponding
end-points for H. Secondly, enclosures of the hull of the solution set are ob-
tained by subdivision of the worst-case parameter intervals (Eb,Ec, Ib, Ic,Ab,Ac,α)�
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Fig. 1 One-bay structural steel frame [3]

Table 1 Parameters involved in the steel frame example

Parameter Nominal value Uncertainty

Young modulus Eb 1.999∗108 kN/m2 ±2.399∗107 kN/m2

Ec 1.999∗108 kN/m2 ±2.399∗107 kN/m2

Second moment Ib 2.123∗10−4 m4 ±2.123∗10−5 m4

Ic 1.132∗10−4 m4 ±1.132∗10−5 m4

Area Ab 6.645∗10−3 m2 ±6.645∗10−4 m2

Ac 9.290∗10−3 m2 ±9.290∗10−4 m2

External force H 23.600 kN ±9.801 kN
Joint stiffness α 3.135∗105 kNm/rad ±1.429∗105 kNm/rad
Length Lc 3.658 m, Lb 7.316 m

into (2,2,2,2,1,1,6)� subintervals of equal width, respectively. We use more
subdivision with respect to α since α is subject to the greatest uncertainty. The
solution enclosure, obtained within 11 s, is given in Table 2. Moreover, the quality
of the solution enclosure [u] of the respective eight quantities is compared to the
combinatorial solution [h̃], i.e. the convex hull of the solutions to the point linear
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Table 2 One-bay steel frame example with worst-case parameter
uncertainties (Table 1)

105∗ solution enclosure [u] Oω([h̃], [u])

d2x: [138.54954789, 627.59324779] 12.5
d2y: [0.29323100807, 2.1529383383] 8.0
r2z: [−129.02427835, −22.381136355] 23.7
r5z: [−113.21398401, −17.95789860] 25.6
r6z: [−105.9680866, −17.64526946] 25.0
d3x: [135.25570695, 616.85512710] 12.7
d3y: [−3.7624790816, −0.41629803684] 13.2
r3z: [−122.3361772, −21.69878778] 23.5

Solution enclosure [u] found by dividing the parameter intervals
(Eb,Ec, Ib, Ic,Ab,Ac,α)� into (2,2,2,2,1,1,6)� subintervals of equal
width, respectively
All interval end-points are multiplied by 105

The enclosure [u] is compared to the combinatorial solution [h̃]

systems obtained when the parameters take all possible combinations of the interval
end-points. The combinatorial solution serves as an inner estimation of the solution
enclosure.

These results show that by means of a small number of subdivisions, the new
parametric solver provides a good solution enclosure very quickly for the difficult
problem of worst-case parameter uncertainties. Note that sharper bounds, close
to the exact hull, can be obtained by proving the monotonicity properties of the
parametric solution [28].

4.2 Two-Bay Two-Story Frame Model with 13 Parameters

We consider a two-bay two-story steel frame with IPE 400 beams and HE 280 B
columns, as shown in Fig. 2, after [29]. The frame is subjected to lateral static
forces and vertical uniform loads. Beam-to-column connections are considered to
be semirigid, and they are modelled by single rotational spring elements. Applying
conventional methods for the analysis of frame structures, a system of 18 linear
equations is obtained, where the elements of the stiffness matrix and of the right-
hand side vector are rational functions of the model parameters. We consider the
parametric system resulting from a finite element model involving the following
13 uncertain parameters: Ac, Ic,Ec, Ab, Ib,Eb, c, w1, . . . ,w4, F1,F2. Their nominal
values, taken according to the European Standard Eurocode3 [7], are given in
Table 3. The explicit analytic form of the given parametric system can be found
in [30].

The parametric system is solved for the element material properties (Ac, . . . ,Eb),
which are taken to vary within a tolerance of 1 % (i.e. [x−x/200, x+x/200], where
x is the corresponding parameter nominal value from Table 3) while the spring
stiffness and all applied loadings are taken to vary within 10 % tolerance intervals.
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Fig. 2 Two-bay two-story steel frame [29]

Table 3 Parameters involved in the two-bay two-story frame example with
their nominal values

Parameter Columns (HE 280 B) Beams (IPE 400)

Cross-sectional area Ac = 0.01314 m2 Ab = 0.008446 m2

Moment of inertia Ic = 19270∗10−8 m4 Ib = 23130∗10−8 m4

Modulus of elasticity Ec = 2.1∗108 kN/m2 Eb = 2.1∗108 kN/m2

Length Lc = 3 m Lb = 6 m
Rotational spring stiffness c = 108 kN
Uniform vertical load w1 = · · ·= w4 = 30 kN/m
Concentrated lateral forces F1 = F2 = 100 kN

The previous parametric solver finds an enclosure for the solution set in about
7.4 s, whereas the new solver needs only about 1.3 s; here it is about six times faster.
The solution enclosure provided by the new solver is also significantly tighter; the
overestimation (17) of the components of the enclosure provided by the previous
solver relative to the respective components found by the new solver ranges between
53.46 and 92.92.

An algebraic simplification applied to functional expressions in computer algebra
environments may reduce the occurrence of interval variables, which could result in
a sharper range enclosure. Such an algebraic simplification is expensive and when
applied to complicated rational expressions usually does not result in a sharper range
enclosure. For the sake of comparison, we have run the previous parametric solver
in two ways: applying intermediate simplification during the range computation,
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and without any algebraic simplification. The above results were obtained when
the range computation does not use any algebraic simplification. When the range
computation of the previous solver uses intermediate algebraic simplification, the
cost of this improvement is that the computing time is approximately doubled;
the results are obtained in 14.4 s. This is much slower, but provided a tighter
enclosure of the solution set than the rational solver, based on polynomial ranges,
which did not account for all the parameter dependencies. Here the overestimation
of the new solver relative to the modified previous solver ranges between 18.62
and 37.07. It should be noted that given the complicated rational expressions such
an improvement is not at all typical (in the next example, the improvement is only
marginal at a much larger computation time possibly due to the more complicated
expressions). Details may be found in [12].

4.3 Two-Bay Two-Story Frame Model with 37 Parameters

As a larger problem of a parametric system involving rational parameter depen-
dencies, we consider the finite element model of the two-bay two-story steel frame
from the previous example, where each structural element has properties varying
independently within 1 % tolerance intervals. This does not change the order of the
system but it now depends on 37 interval parameters. The explicit analytic form of
the given parametric system can be found in [30]. Here the right-hand side vector is
given to illustrate the dependencies.

(
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1

12(1+ 2Eb1Ib1
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)
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.

The previous solver finds an enclosure for the solution set in about 755 s and
thereby exhibits performance approximately three times slower than the new solver
(about 245 s). Also, the quality of the solution enclosure provided by the new solver
is much better than the solution enclosure provided by the previous solver; here, the
relative overestimation ranges between 28.4 and 95.46.
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5 Conclusions

In this chapter, we demonstrated the advanced application of a general-purpose
parametric method, combined with the Bernstein enclosure of polynomial ranges,
to linear systems obtained by standard FEM analysis of mechanical structures, and
illustrated the efficiency of the new parametric solver. Further applications, viz. to
truss structures with uncertain node locations, can be found in [38].

It is shown that powerful techniques for range enclosure are necessary to provide
tight bounds on the solution set, in particular when the parameters of the system are
subject to large uncertainties and the dependencies are complicated.

The new self-verified parametric solvers can be incorporated into a general
framework for the computer-assisted proof of global and local monotonicity
properties of the parametric solution. Based on these properties, a guaranteed and
highly accurate enclosure of the interval hull of the solution set can be computed
[13,28,39]. The parametric solver for square systems also facilitates the guaranteed
enclosures of the solution sets to over- and underdetermined parametric linear
systems [27].

Being presently the only general-purpose parametric linear solver, the presented
methodology and software tools are applicable in the context of any problem
(stemming, e.g., from fuzzy set theory [35] or the other fields listed in the
Introduction) that requires the solution of linear systems whose input data depend
on uncertain (interval) parameters.
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A Fast Block Krylov Implicit Runge–Kutta
Method for Solving Large-Scale Ordinary
Differential Equations

A. Bouhamidi and K. Jbilou

Abstract In this chapter, we describe a new based block Krylov–Runge–Kutta
method for solving stiff ordinary differential equations. We transform the linear
system arising in the application of Newton’s method to a nonsymmetric matrix
Stein equation that will be solved by a block Krylov iterative method. Numerical
examples are given to illustrate the performance of our proposed method.

Key words Block Krylov • Newton method • ODE • Optimization • Runge–
Kutta

1 Introduction

This chapter is concerned with the numerical solution of the following ODE
problem:

{

y′(t) = f (t,y(t)), t ∈ [t0,T ],

y(t0) = y0 ∈ R
m,

(1)

where y : [t0,T ]→ R
m. We assume that the function

f : [t0,T ]×R
m −→R

m

is continuous in t ∈ [t0,T ] and Lipschitz continuous in y ∈ R
m, i.e.,

|| f (t,y)− f (t,z)|| ≤M||y− z||,
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for some positive M. These conditions guarantee the existence and uniqueness of
a solution y of (1). The numerical approximation of ODEs is still a very attractive
problem. The most popular numerical methods for solving (1) are the well-known
s-stage implicit Runge–Kutta (IRK) methods defined by the following relations; for
more details (see [4, 12, 13]):

yi = yn + h
s

∑
j=1

ai, j f (tn + c jh, y j), i = 1, . . . ,s (2)

and

yn+1 = yn + h
s

∑
j=1

b j f (tn + c jh, y j), (3)

where tn = t0 + nh, for n = 0, . . . ,N, is a discretization by the N + 1 points t0, . . . , tN
of the interval [t0,T ] and h= (T − t0)/N is the stepsize. Here yn is an approximation
of y(tn) and the m-dimensional vectors yi approximate y(tn + cih).
Let b = (b1, . . . ,bs)

T (s≥ 2) be the weight vector, c = (c1, . . . ,cs)
T the node vector,

and let ˜A = (ai j)i, j=1,...,s be the IRK coefficient matrix. The vector c is such that
˜Ae = c with e = (1, . . . ,1)T ∈ R

s.
The Runge–Kutta coefficients are usually given by the Butcher tableau as

follows:

c ˜A
bT =

c1 a11 . . . a1s
...

...
. . .

...
cs as1 . . . ass

b1 . . . bs

.

The main difficulty in the implementation of IRK methods (for stiff problems) is
to efficiently solve nonlinear system of equations. These nonlinear systems could
be solved by using Newton-type methods, and this requires high computation and
cpu time when m is large. For medium problems, some IRK schemes have been
developed to reduce these costs; see [7, 10, 14, 20, 21]. For large problems, Krylov
subspace methods such as the GMRES algorithm [17] could also be used; see [3].

In this chapter, we will exploit the special structure of the matrices of the linear
system arising at each step of the Newton method. Hence, using some properties
of the Kronecker product, the linear systems are transformed into Stein matrix
equations that will be solved by an extended block Arnoldi (EBA) method.

Let A = (ai j) and B = (bi j) be m× s and n× q matrices, respectively. The Kro-
necker product of the matrices A and B is defined as the mn× sq matrix A⊗B =
(ai jB). The vec operator transforms a matrix A of size m× s to a vector a = vec(A)
of size ms× 1 by stacking the columns of A. Some properties of the Kronecker
product are given in [16].

This chapter is organized as follows. In Sect. 2, we describe the IRK methods
and the connection with Stein matrix equations. To solve these matrix equations, a
numerical method based on a block Arnoldi-type method is given in Sect. 3. The last
section is devoted to some numerical examples.
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2 Implicit Runge–Kutta Methods and Stein Matrix
Equations

Using tensor notations, the one-step IRK methods (2)–(3) can be written as

y = (e⊗ yn)+ h(˜A⊗ Im)F(tn, y), (4)

yn+1 = yn + h(b⊗ Im)F(tn, y), (5)

where Im is the m×m identity matrix, y = ( yT
1 , . . . , yT

s )
T ∈R

ms is the stage vector,
and the function F : [t0,T ]×R

ms →R
ms is given by

F(t, y) = ( f (tn + c1h, y1)
T , . . . , f (tn + csh, ys)

T )T . (6)

By solving the nonlinear system given in (4) we obtain y and we compute yn+1

from (5).
Let Rn : Rms → R

ms be the function defined by

Rn( y) =− y+(e⊗ yn)+ h(˜A⊗ Im)F(tn, y). (7)

Hence, (4) is equivalent the following nonlinear system of equation:

Rn( y) = 0. (8)

Therefore, applying Newton’s method to the Eq. (8), we get the iterations

{

y(0) initial guess
y(k+1) = y(k)− [JRn( y(k))]−1 Rn( y(k)), k = 0,1, . . . ,

(9)

where JRn( y) is the Jacobian matrix of size ms×ms of the function Rn evaluated at
y. Hence, an easy computation gives

JRn( y) =−Ims + h(˜A⊗ Im)JF(tn, y),

where JF(tn, y) is the Jacobian matrix of size ms×ms of the function F evaluated
at (tn, y). It is also easy to obtain

JF(tn, y) = diag[Jf (tn + c1h, y1), . . . ,Jf (tn + csh, ys)],

where Jf (t,y) =
[

∂ fi
∂y j

(t,y)
]

1≤i, j≤m
with f = ( f1, . . . , fm)

T is the Jacobian matrix of

size m×m of the function f .
In practical computations, the numerical value of Jf (tn + cih, yi), (i = 1, . . . ,s)

changes very slowly during the Newton iterations, and then there is no need to
reevaluate it. We will assume that Jf (tn + cih, yi) needs to be evaluated once at



322 A. Bouhamidi and K. Jbilou

each step. Thus the same Jn approximation will be used for every stage and over all
the iterations. Therefore, the Jacobian matrix JF(tn, y) can be approximated by

̂Jn = diag[Jn, . . . ,Jn
︸ ︷︷ ︸

s times

] = Is⊗ Jn

and the Jacobian matrix JRn( y) by

̂JRn =−Ims + h(˜A⊗ Im)(Is⊗ Jn).

Using the property (A⊗B)(C⊗D) = AC⊗BD for appropriate sizes of the matrices
A, B, C, and D, we obtain

̂JRn =−Ims + ˜A⊗ (hJn). (10)

Now, the Newton scheme (9) can be replaced by the modified one
{

y(0) initial guess

y(k+1) = y(k)− ̂J−1
Rn

Rn( y(k)), k = 0,1, . . . .
(11)

The vector x(k) = ̂J−1
Rn

Rn( y(k)) is obtained as the solution of the following ms×ms
linear system:

[

˜A⊗ (hJn)− Ims

]

x(k) = Rn( y(k)). (12)

Let F be the matrix-mapping F : [t0,T ]×R
m×s → R

m×s derived from Fn by

F (t,Y ) = [ f (t + c1h, y1), . . . , f (t + csh, ys)] ∈R
m×s,

and let Rn : Rm×s → R
m×s be the residual defined by

Rn(Y ) =−Y + yneT + hF (tn,Y )˜A
T .

Then it is easy to see that for any vector y ∈ R
ms and a matrix Y ∈ R

m×s with
y = vec(Y ), we have Rn(y) = vec(Rn(Y )). Let X (k) and Y (k) be the m× s matrices
such that x(k) = vec(X (k)) and y(k) = vec(Y (k)). Then using the property

vec(AXB) = (BT ⊗A)vec(X), (13)

the linear system (12) can be transformed to the following Stein matrix equation:

(hJn)X
(k)
˜AT −X (k) = Rn(Y

(k)). (14)

Therefore from the relations (11), the approximations Y (k) are derived from the
iterations

{

Y (0) initial matrix guess

Y (k+1) = Y (k)−X (k), k = 0,1, . . . ,kmax,
(15)
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where X (k) is the solution of the Stein matrix equation (14). Using again (13), the
relation (5) can also be given as

yn+1 = yn + hF (tn,˜Y )b,

where ˜Y = Y (kmax) is obtained from the iterations (15).
For small problems, the nonsymmetric Stein matrix equation (14) can be solved

by direct methods or by transforming this matrix equation to a linear system using
properties of the Kronecker product. For large problems, these two approaches are
very expensive. In this case, we will propose an iterative projection method for
solving these nonsymmetric Stein matrix equations.

3 A Numerical Method for Solving Large Nonsymmetric
Stein Matrix Equations

In this section we will propose and study a numerical method for solving the
following Stein matrix equation:

AXB−X =C, (16)

where A ∈ R
m×m, B ∈ R

s×s, C ∈ R
m×s, and X ∈ R

m×s, where the integer m is large
and the integer s is of moderate size. We also assume here that B is nonsingular.

The matrix equation (16) plays an important role in linear control and filtering
theory for discrete-time large-scale dynamical systems and other problems; see
[5, 6, 11, 15, 19] and the references therein. It also appears in image restoration
techniques [2] and in each step of Newton’s method for discrete-time algebraic
Riccati equations [16].

When the matrices are of small sizes, direct methods based on the Schur
decomposition could be used for solving the matrix equation (16); see [1]. Notice
also that by using (13), the matrix equation (16) can be formulated as the following
ms×ms linear system of equations:

(A ⊗ BT − Ims)vec(X) = vec(C). (17)

Krylov subspace methods such as the GMRES algorithm [17] could be used to solve
the linear system (17). It is known that the matrix equation (16) has a unique solution
if and only if λi(A)λ j(B) �= 1 for all i = 1, . . . ,m; j = 1, . . . ,s where λi(A) is the ith
eigenvalue of the matrix A. This will be assumed through this chapter.

We present here a Galerkin projection method based on the EBA algorithm [18].
We consider the case where the m× s matrix C is of full rank and s-m.



324 A. Bouhamidi and K. Jbilou

Algorithm 1 The EBA Algorithm
1. Inputs: A an m×m matrix, V an m× s matrix and k an integer.
2. Compute the QR decomposition of [V,A−1V ] = V1Λ , where V1 is

orthogonal and Λ upper triangular.
3. Set V0 = [ ].
4. For j = 1, . . . ,k

• Set: V (1)
j the first s columns of Vj .

• Set: V (2)
j the second s columns of Vj .

• V j =
[

V j−1,Vj
]

; ̂Vj+1 =
[

AV (1)
j ,A−1V (2)

j

]

.

• Orthogonalize ̂Vj+1 w.r. to V j to get Vj+1:
• for i = 1,2, . . ., j

Hi, j =V T
i
̂Vj+1.

̂Vj+1 = ̂Vj+1−Vi Hi, j.
• endfor;

5. Compute the QR decomposition of ̂Vj+1 =Vj+1 Hj+1, j.
6. EndFor.

3.1 The Extended Block Arnoldi Algorithm

We first recall the EBA process applied to the pair (A,V ) where A ∈R
m×m and V ∈

R
n×s. The projection subspace Kk(A,V ) of Rm that we will consider was introduced

in [8, 18]:

Kk(A,V ) = Range([V,A−1V,AV,A−2V,A2V, . . . ,A−(k−1)V,Ak−1 V ]).

Note that the subspace Kk(A,V ) is a sum of two block Krylov subspaces

Kk(A,V ) =Kk(A,V ) + Kk(A
−1,A−1V )

where Kk(A,V ) = Range([V,AV, . . . ,Ak−1 V ]). The following algorithm allows us
to compute an orthonormal basis of the extended Krylov subspace Kk(A,V ). This
basis contains information on both A and A−1. The EBA process is described as
follows:

Since the above algorithm involves implicitly a Gram–Schmidt process, the ob-
tained block vectors Vk = [V1,V2, . . . ,Vk] (Vi ∈ R

m×2s) have their columns mutually
orthogonal provided none of the upper triangular matrices Hj+1, j are rank deficient.
Hence, after m steps, Algorithm 1 builds an orthonormal basis Vk of the Krylov
subspace Kk(A,V ) and a block upper Hessenberg matrix Hk whose nonzero blocks
are the Hi, j. Note that each submatrix Hi, j (1≤ i≤ j ≤ k) is of order 2s.

Let Tk ∈ R
2ks×2ks be the restriction of the matrix A to the extended Krylov

subspace Kk(A,V ), i.e., Tk = V T
k F Vk. It is shown in [18] that Tk is also block

upper Hessenberg with 2s× 2s blocks. Moreover, a recursion is derived to compute
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Tk from Hk without requiring matrix-vector products with A. For more details, on
how to compute Tk from Hk, we refer to [18]. We note that for large problems,
the inverse of the matrix A is not computed explicitly, and in this case we can use
iterative solvers with preconditioners to solve linear systems with A. However, when
these linear systems are note solved accurately, the theoretical properties of the EBA
process are no longer valid.

Next, we give some properties that will be useful later. Let T̄k = V T
k+1 AVk, and

suppose that k steps of Algorithm 1 have been run, then we have

AVk = Vk+1 T̄k, (18)

= Vk Tk +Vk+1 Tk+1,k ET
k , (19)

where Ti, j is the 2s×2s, (i, j)-block of Tk, and Ek = [O2s×2(k−1)s, I2s]
T is the matrix

of the last 2s columns of the 2ks× 2ks identity matrix I2ks.

3.2 The Extended Block Arnoldi Algorithm for Stein Equations

In this section, we will apply the EBA algorithm to get approximate solutions
to the Stein matrix equation (16). We project the Stein equation (16) onto an
extended block Krylov subspace and then solve, at each iteration, the obtained low-
dimensional equation.

Let A be the linear operator from R
m×s onto R

m×s defined as follows:

A : X −→ A (X) = AXB−X . (20)

Then the Stein equation (16) can be written as

A (X) =C. (21)

We will solve the problem (21) which is equivalent to the initial problem (16).
Let X0 be an initial guess, and set R0 = C− AX0B + X0, the extended block

Arnoldi Stein method constructs, at step k, the new approximation Xk as follows:

X (i)
k −X (i)

0 = Z(i)
k ∈Kk(A ,R0); i = 1, . . . ,s, (22)

with the orthogonality relation

R(i)
k ⊥Kk(A ,R0); i = 1, . . . ,s, (23)

where R(i)
k is the ith component of the residual Rk = C−A (Xk) and X (i)

k is the ith
column of Xk. We give the following result which is easy to prove [9].
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Theorem 1. Let A be the operator defined by (20), then

Kk(A ,R0) = Kk(A,R0).

Using this last property, the relations (22) and (23) are written as

X (i)
k −X (i)

0 = Z(i)
k ∈Kk(A,R0), (24)

and

R(i)
k ⊥Kk(A,R0); i = 1, . . . ,s. (25)

Assume that R0 is of rank s and let [R0,A−1R0] = V1U1 (the QR decomposition
of [R0,A−1R0] where the m× 2s matrix V1 is orthogonal and U1 is 2s× 2s upper
triangular).
Now as the columns of the matrix Vk (constructed by the EBA algorithm) form a
basis of the extended block Krylov subspace Kk(A,R0), the relation (24) implies
that Xk = X0 +VkYk where Yk is a 2ks× s matrix. The relation (25) implies that

V T
k (R0−AVk YkB+VkYk) = 0.

Therefore, using (19), and the fact that Vk is orthonormal, we obtain the low-
dimensional Stein equation

Tk YkB−Yk = C̃ (26)

with C̃ = Ẽ1U1,1 where Ẽ1 is the 2ks× s matrix whose upper s× s principal block is
the identity matrix I2ks and U1,1 is the first s× s block of U1.

The matrix equation (26) will be solved by using a direct method such
as the Hessenberg–Schur method [6]. We assume that during the iterations
λi(Tk)λ j(B)< 1, and this implies that the Eq. (26) has a unique solution.

The next result allows us to compute the norm of the residual (at each iteration)
without computing the residual. This will be used to stop the iterations in the EBA
Stein algorithm without having to compute an extra product with the matrix A which
reduces the cost and storage for large problems.

Theorem 2. The norm of the residual Rk is given by

‖ Rk ‖F = ‖ Tk+1,kET
k YkB ‖F

= ‖ Tk+1,kỸkB ‖F ,

where Ỹk is the 2s× s matrix corresponding to the last s rows of the matrix Yk.

The proof is easily obtained by using the relation (26) and the fact that the matrix
Vk+1 is orthogonal. The EBA algorithm for solving (16) is summarized as follows:
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Algorithm 2 The EBA Algorithm for Stein Equations
1. Choose a tolerance tol, an initial guess X0; an integer kmax and set

k = 1.
2. Compute R0 =C+X0−AX0B.
3. Compute the QR decomposition: R0 =V1U1.
4. While k < kmax and ||Rk||F > tol do

• Apply Algorithm 1 to the pair (A,V1) to generate the blocks
V1 , . . .,Vk+1; and the block Hessenberg matrix Tk.

• Solve by a direct method (the Schur method) the low-order
Stein equation TkZB−Z = ˜C.

• Compute X = X0 +VkZ.
• Compute ‖ Rk ‖F , by using Theorem 2.
• Set k = k+1 and go to step 4.

5. End.

To save CPU time and memory requirements, Algorithm 1 will be used in a
restarted mode. This means that we restart the algorithm every k1 iterations were k1

is a fixed integer.

4 Numerical Examples

The numerical experiments were performed in Matlab 7.0.4, on Windows XP
system running on Intel(R) Core(TM) 2 Duo CPU 3.00 GHz with 3.23 GB RAM.
In our experiments, a maximum number of 30 iterations was allowed for both the
EBA and for the Newton method.

We used the 3-stage RADAU-IIA method of order p = 2s− 1 = 5 which the
corresponding Butcher tableau is given by

4−√6
10

88− 7
√

6
360

296− 169
√

6
1800

−2+ 3
√

6
225

4+
√

6
10

296+ 169
√

6
1800

88+ 7
√

6
360

−2− 3
√

6
225

1
16−√6

36
16+

√
6

36
1
9

16−√6
36

16+
√

6
36

1
9

.

As a numerical example, we consider the following heat equation:
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

∂u(t,x)
∂ t

= c2 ∂ 2u(t,x)
∂x2 + g(t,x), (t,x) ∈ [t0,T ]× [α,β ]

u(t,α) = u(t,β ) = 0, t ∈ [t0,T ],

u(t0,x) = y0(x), x ∈ [α,β ].
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Let yi(t) be the approximation of the exact value u(t,xi), and replace
∂ 2u(t,xi)

∂x2 with

the approximation

∂ 2u(t,xi)

∂x2 / [u(t,xi + k)− 2u(t,xi)+ u(t,xi− k)]/k2,

where xi = xi−1 + k, the parameter k is the stepsize on the x-axis, k = (β −α)/(m+
1), m ∈ N, with x0 = α and xm+1 = β . The vector y(t) = (y1(t), . . . ,ym(t))T is the
exact solution of the following problem:

{

y′(t) = f (t,y(t)), t ∈ [t0,T ]

y(t0) = y0,

with

f (t,y) = ˜Ay+ g(t),

˜A = c2 (m+ 1)2

(β −α)2 tridiag(1,−2,1),

g(t) = (g(t,x1), . . . ,g(t,xm))
T ,

and the vector y0 = (y0(x1), . . . ,y0(xm))
T .

The eigenvalues of the matrix ˜A are λi = −4c2 (m+1)2

(β−α)2 sin2( iπ
2(m+1) ), for i =

1, . . . ,m.
When m increases, the stiff ratio also increases. The stiffness of the problem is due
to the distribution of the eigenvalues λi, and the stiff ratio SR is given by

SR =
max1≤i≤m |λi|
min1≤i≤m |λi| .

As an example, we consider the case where c =
β −α

π
,

g(t,x) = e−t sin

(

π(x−α)

β −α

)

sin(t− t0),

and y0(x) = 0. The exact solution is given by

u(t,x) = e−t sin

(

π(x−α)

β −α

)

(1− cos(t− t0)).

In Table 1, we listed the results for the first experiment. We used different values
of the dimension m, and we reported the relative error norms and the required CPU
time for each value of m. The relative error norm is given by ||Y −Y ||F/||Y ||F where
Y is the matrix whose columns are the exact vector solutions and Y is the matrix
whose columns are the computed approximate vector solutions.
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Table 1 Results for
experiment 1

Dimension Time (s) Relative error

1,000 41 80e−007
2,000 246 5.62e−008
3,000 503 2.50e−008
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Fig. 1 Exact solution (left) and computed solution (right)

For the second test, we set m = 25 and N = 30. The stiff ratio is SR / 3.8× 102,
and the error is ||Y −Y ||F/||Y ||F / 4.02× 10−6. The exact solution u(t,x) is given
in the left of Fig. 1, and the computed approximation is in the right of Fig. 1.

5 Summary

In this chapter, we proposed a numerical method for solving stiff ordinary dif-
ferential equations in large dimensional spaces. The Newton method was applied
to solve the derived nonlinear systems, and this requires, at each iteration of the
Newton method, the computation of the solution of large special linear systems.
These linear systems were transformed to nonsymmetric Stein matrix equations.
Then, we used an EBA method to obtain approximate solutions to these matrix
equations. We finally gave some numerical tests with relatively large problems.
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Semilocal Convergence with R-Order Three
Theorems for the Chebyshev Method and Its
Modifications

Zhanlav Tugal and Khongorzul Dorjgotov

Abstract In this chapter we consider some modifications of the Chebyshev method
that are free from second derivative and prove semilocal convergence theorems for
these modifications as well as for the Chebyshev method. These two modifications
can be considered as a generalization of some well-known iterative methods.

Key words Chebyshev method • Convergence • Nonlinear equations

1 Introduction

As is known, the higher order methods, such as Halley and Chebyshev methods play
an important role in the solution of nonlinear equations. Especially they can be used
in problems, where a quick convergence is required, such as stiff systems [11] and
bifurcation problems [13]. However, they are not used often in practice due to their
operational cost. For instance, in the iterative third-order methods, the main problem
is to evaluate the second derivative of the operator. To overcome this difficulty,
in the past years appeared many (multipoint) iterative methods [5–7, 12, 15] free
from second derivative but with the same order of convergence. As a result, the
operational cost is reduced to that of a second-order iterations, such as Newton’s
method.

In this chapter we propose some new modifications (multipoint iterations) of the
Chebyshev method which are free from second derivative (Sect. 2). In Sects. 3–5
we analyze the convergence of the Chebyshev method and its two modifications,
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respectively, by using a technique consisting of a new system of real sequences
[2,8]. In Sect. 6, we give mild convergence conditions for these methods. In the last
Sect. 7, we present numerical results.

2 Some Modifications of Chebyshev Method

We consider a nonlinear equation

F(x) = 0. (1)

Here F : Ω ⊆ X → Y is a nonlinear Frechet twice differentiable operator defined
on a convex, nonempty domain Ω , and X ,Y are Banach spaces. The well-known
Chebyshev method for solving the nonlinear equation (1) is given by [7]:

yn = xn−ΓnF(xn), Γn = F ′(xn)
−1,

xn+1 = yn− 1
2

ΓnF ′′(xn)(yn− xn)
2, n = 0,1, . . . . (2)

As in scalar cases [15] we can take next approximations

1
2

F ′′(xn)(yn− xn)
2 ≈ 1

2θ
(F ′(zn)−F ′(xn))(yn− xn),

zn = (1−θ )xn +θyn 0 < θ ≤ 1

and

1
2

F ′′(xn)(yn− xn)
2 ≈
(

1+
b
2

)

F(yn)+ bF(xn)− b
2

F(zn),

where

zn = xn +ΓnF(xn), −2≤ b≤ 0.

As a consequence, we define the following new modifications:

yn = xn−ΓnF(xn)

zn = (1−θ )xn+θyn, θ ∈ (0,1]

xn+1 = yn− 1
2θ

Γn(F
′(zn)−F ′(xn))(yn− xn) (3)

and

yn = xn−ΓnF(xn)

zn = xn +ΓnF(xn),

xn+1 = yn−Γn

((

1+
b
2

)

F(yn)+ bF(xn)− b
2

F(zn)

)

,

−2≤ b≤ 0. (4)
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Thus we have classes of new two-and three-point iterative processes (3) and (4). It
should be pointed out that such iterations (3) and (4) were given in [15] for functions
of one variable.

In [5, 6] it was suggested a uniparametric Halley-type iterations with free from
second derivative of the form

yn = xn−ΓnF(xn)

zn = (1−θ )xn +θyn, θ ∈ (0,1]

H(xn,yn) =
1
θ

Γn(F
′(zn)−F ′(xn))

xn+1 = yn− 1
2

H(xn,yn)

[

I+
1
2

H(xn,yn)

]−1

(yn− xn), n≥ 0 (5)

and proved order three convergence of (5), as Halley method. If we take the
approximation

[

I +
1
2

H(xn,yn)

]−1

≈ I

in (5), then (5) leads to (3). In this sense our modification (3) is easier than (5).
It also should be pointed out that the iteration (3) with θ = 1/2 and θ = 1 was
given in [7] and [1], respectively, and proven order three convergence under some
restrictions. The iterations (4) can be considered as a generalization of some well-
known iterations for function of one variable. For instance, if b=−2 the iteration (4)
leads to two-point one with third-order convergence, suggested by Kou et al. [10].
If b = 0 the iteration (4) leads to also two-point one with third-order convergence
that was suggested by Potra and Ptak [9, 12] and CL2 method [1]. From (3) and
(4) it is clear that the modification (4) is preferable to (3), especially for the system
of nonlinear equations, because in (3) the matrix-vector multiplication is needed in
each iteration.

3 Recurrence Relations

In [14] we reduced the two-dimensional cubic decreasing region into one-
dimensional region for the Chebyshev method. Now we will study the convergence
of Chebyshev method (2) in detail. We assume that Γ0 ∈ L(Y,X) exists at some
x0 ∈ Ω , where L(Y,X) is a set of bounded linear operators from Y into X . In what
follows we assume that

(c1) ‖F ′′(x)‖ ≤M, x ∈Ω ,

(c2) ‖y0− x0‖= ‖Γ0F(x0)‖ ≤ η ,

(c3) ‖Γ0‖ ≤ β ,

(c4) ‖F ′′(x)−F ′′(y)‖ ≤ K‖x− y‖, x,y ∈Ω , K > 0.
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Let us suppose that

a0 = Mβ η (6)

and define the sequence

an+1 = f (an)
2g(an)an, (7)

where

f (x) =
2

2− 2x− x2 , g(x) =
x2(4+ x)

8
d, (8)

and d = 1+2ω , ω = K
M2m

, m = minn‖Γn‖> 0. In Sect. 4, we will show that m > 0.

Lemma 1. Let f ,g be two real functions given in (8). Then
(i) f is increasing and f (x) > 1 for x ∈ (0, 1

2).
(ii) g is increasing in (0, 1

2 ).
(iii) f (γx) < f (x), g(γx)≤ γ2g(x) for x ∈ (0, 1

2) and γ ∈ (0,1).

The proof is trivial [8].

Lemma 2. Let 0 < a0 < 1
2 and f (a0)

2g(a0) < 1. Then the sequence {an} is
decreasing.

Proof. From the hypothesis we deduce that 0 < a1 < a0. Now we suppose that
0 < ak < ak−1 < · · · < a1 < a0 < 1/2. Then 0 < ak+1 < ak if and only if
f 2(ak)g(ak) < 1. Notice that f (ak) < f (a0) and g(ak) < g(a0). Consequently,
f 2(ak)g(ak)< f 2(a0)g(a0)< 1. ��
Lemma 3. If 0 < a0 <

1
2d , then f 2(a0)g(a0)< 1.

Proof. It is easy to show that the inequality f 2(a0)g(a0)< 1 is equivalent to

ϕ(a0) = 2a4
0 +(8− d)a3

0− 4da2
0− 16a0+ 8 > 0.

Since

ϕ(0) = 8 > 0, ϕ(0.5) =
9
8
(1− d)< 0 (ϕ(0.5) = 0 when d = 1),

ϕ ′(a0) = 8a3
0 + 24a2

0− 3da2
0− 8da0− 16, ϕ ′(a0)< 0 for 0 < a0 < 0.5.

Therefore there exists

a0 <
1
2
,

such that

ϕ(a0) = 0.

We compute
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ϕ
(

1
2d

)

=
d− 1
8d4

(

64d3− 8d2− 9d− 1
)

.

It is clear that

ϕ
(

1
2d

)

> 0

for d > 1. Thus ϕ(a0)> 0 for 0 < a0 <
1

2d . ��
Lemma 4. Let us suppose that the hypothesis of Lemma 3 is satisfied and define
γ = a1/a0. Then
(i) γ = f (a0)

2g(a0) ∈ (0;1)

(iin) an ≤ γ3n−1
an−1 ≤ γ

3n−1
2 a0

(iiin) f (an)g(an)≤ γ3n

f (a0)
, n≥ 0

Proof. Notice that (i) is trivial. Next we prove (iin) following an inductive
procedure. So

a1 ≤ γa0

and by Lemma 1 we have

f (a1)g(a1)< f (γa0)g(γa0)< f (a0)γ2g(a0) =
γ2 f 2(a0)g(a0)

f (a0)
=

γ3

f (a0)
,

i.e., (ii1), (iii1) are proved. If we suppose that (iin) is true, then

an+1 = f 2(an)g(an)an ≤ f 2(γ
3n−1

2 a0)g(γ
3n−1

2 a0)an

≤ f 2(a0)γ3n−1g(a0)γ
3n−1

2 a0 = γ1+ 3
2 (3

n−1)a0 = γ
3n+1−1

2 a0,

and f (an+1)g(an+1) ≤ f (a0)γ3n+1−1g(a0)

f (a0)
f (a0) =

γ3n+1

f (a0)
= Δγ3n+1

Δ = 1
f (a0)

< 1 and the proof is complete. ��

4 Convergence Study of Chebyshev Method

In this section, we study the sequence {an} defined above and prove the convergence
of the sequence {xn} given by (2). Notice that

M‖Γ0‖‖Γ0F(x0)‖ ≤ a0

‖x1− x0‖ ≤
(

1+
a0

2

)

‖Γ0F(x0)‖.
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Given this situation we prove following statements for n≥ 1:

(In) ‖Γn‖= ‖F ′(xn)
−1‖ ≤ f (an−1)‖Γn−1‖

(IIn) ‖ΓnF(xn)‖ ≤ f (an−1)g(an−1)‖Γn−1F(xn−1)‖
(IIIn) M‖Γn‖‖ΓnF(xn)‖ ≤ an

(IVn) ‖xn+1− xn‖ ≤
(

1+
an

2

)

‖ΓnF(xn)‖

(Vn) yn,xn+1 ∈ B(x0,Rη), where B(x0,Rη) =
{

x ∈Ω : ‖x− x0‖< 1+ a0/2
1− γΔ

η
}

Assuming
(

1+
a0

2

)

a0 < 1, x1 ∈Ω ,

we have

‖I−Γ0F ′(x1)‖ ≤ ‖Γ0‖‖F ′(x0)−F ′(x1)‖ ≤M‖Γ0‖‖x1− x0‖ ≤
(

1+
a0

2

)

a0 < 1.

Then, by the Banach lemma, Γ1 is defined and

‖Γ1‖ ≤ ‖Γ0‖
1−‖Γ0‖‖F ′(x0)−F ′(x1)‖ ≤

1

1− (1+ a0
2

)

a0
‖Γ0‖= f (a0)‖Γ0‖.

On the other hand, if xn,xn−1 ∈Ω , we will use Taylor’s formula

F(xn) = F(xn−1)+F ′(xn−1)(xn− xn−1)+
F ′′(ξn)

2
(xn− xn−1)

2, (9)

ξn = θxn +(1−θ )xn−1, θ ∈ (0,1). (10)

Taking into account (2) we obtain

xn− xn−1 =

[

I− 1
2

Γn−1F ′′(xn−1)(yn−1− xn−1)

]

(yn−1− xn−1). (11)

Substituting the last expression in (9) we obtain

F(xn) = −1
2

F ′′(xn−1)(yn−1− xn−1)
2 +

1
2

F ′′(ξn)(xn− xn−1)
2

=
1
2

[

F ′′(ξn)−F ′′(xn−1)−F ′′(ξn)Γn−1F ′′(xn−1)(yn−1− xn−1)

+
1
4

F ′′(ξn)Γ 2
n−1F ′′(xn−1)

2(yn−1− xn−1)
2
]

(yn−1− xn−1)
2. (12)

Then for n = 1, if x1 ∈Ω , we have
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‖F(x1)‖ ≤ 1
2

[

K‖ξ1− x0‖+Ma0 +
1
4

Ma2
0

]

‖Γ0F(x0)‖2. (13)

From (11) we get

‖x1− x0‖ ≤
(

1+
a0

2

)

‖y0− x0‖ ≤
(

1+
a0

2

)

‖Γ0F(x0)‖.

Using (10) and

‖ξ1− x0‖= θ‖x1− x0‖ ≤ θ
(

1+
a0

2

)

‖Γ0F(x0)‖

in (13) we obtain

‖Γ1F(x1)‖ ≤ ‖Γ1‖‖F(x1)‖

≤ 1
2

f (a0)‖Γ0‖Ma0

(

Kθ
(

1+
a0

2

) 1
M2‖Γ0‖ +

4+ a0

4

)

‖Γ0F(x0)‖2

or

‖Γ1F(x1)‖ ≤ f (a0)

2
a2

0

[

Kθ
(

1+
a0

2

) 1
M2m

+
(

1+
a0

4

)
]

‖Γ0F(x0)‖

≤ f (a0)

8
a2

0(4+ a0)

(

1+
2Kθ
M2m

)

‖Γ0F(x0)‖

= f (a0)g(a0)‖Γ0F(x0)‖
and (II1) is true. To prove (III1) notice that

M1‖Γ1‖‖Γ1F(x1)‖ ≤ M f (a0)‖Γ0‖ f (a0)g(a0)‖Γ0F(x0)‖
≤ f 2(a0)g(a0)a0 = a1

and

‖x2− x1‖ ≤ ‖y1− x1‖+ 1
2

M‖Γ1‖‖Γ1F(x1)‖‖y1− x1‖

≤
(

1+
a1

2

)

‖y1− x1‖=
(

1+
a1

2

)

‖Γ1F(x1)‖, (14)

and (IV1) is true. Using

s‖x1− x0‖ ≤ ‖y0− x0‖+ 1
2
‖Γ0‖M‖Γ0F(x0)‖‖y0− x0‖

≤
(

1+
a0

2

)

‖y0− x0‖

≤
(

1+
a0

2

)

η <
1+ a0/2
1− γΔ

η = Rη
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and

‖y1− x0‖ ≤ ‖y1− x1‖+ ‖x1− x0‖ ≤
(

γ
f (a0)

+ 1+
a0

2

)

η

=
(

1+
a0

2

)
(

1+
Δγ

1+ a0/2

)

η <
(

1+
a0

2

)

(1+Δγ)η

<
1+ a0/2
1− γΔ

η = Rη

and (14) we have

‖x2− x0‖ ≤ ‖x2− x1‖+ ‖x1− x0‖ ≤ Rη .

Thus, y1,x2 ∈B(x0,Rη) and (V1) is true. Now, following an inductive procedure and
assuming

yn,xn+1 ∈Ω and
(

1+
an

2

)

an < 1, n ∈N , (15)

the items (In)− (Vn) are proved.
Notice that Γn > 0 for all n = 0,1, . . .. Indeed, if Γk = 0 for some k, then due to
statement (In), we have ‖Γn‖ = 0 for all n ≥ k. As a consequence, the iteration (2),
as well as (3) and (4), terminated after kth step, i.e., the convergence of iterations
does not hold. To establish the convergence of {xn} we only have to prove that it is
a Cauchy sequence and that the above assumptions (15) are true. We note that

(

1+
an

2

)

‖ΓnF(xn)‖ ≤
(

1+
a0

2

)

f (an−1)g(an−1)‖Γn−1F(xn−1)‖

≤
(

1+
a0

2

)

‖Γ0F(x0)‖
n−1

∏
k=0

f (ak)g(ak).

As a consequence of Lemma 4 it follows that

n−1

∏
k=0

f (ak)g(ak)≤
n−1

∏
k=0

γ3k
Δ = Δ nγ1+3+32+···+3n−1

= Δ nγ
3n−1

2 .

So from Δ < 1 and γ < 1, we deduce that ∏n−1
k=0 f (ak)g(ak) converges to zero by

letting n→ ∞.
We are now ready to state the main result on convergence for ().

Theorem 1. Let us assume that Γ0 = F ′(x0)
−1 ∈ L(Y,X) exists at some x0 ∈Ω and

(c1)− (c4) are satisfied. Suppose that

0 < a0 <
1

2d
, with d = 1+ 2ω , ω =

K
M2m

. (16)
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Then if B(x0,Rη) = {x ∈ X ;‖x− x0‖ ≤ Rη} ⊆ Ω the sequence {xn} defined in (2)
and starting at x0 has at least R-order three and converges to a solution x∗ of the
Eq. (1). In that case, the solution x∗ and the iterates xn,yn belong to B(x0,Rη), and
x∗ is the only solution of Eq. (1) in B(x0,

2
Mβ −Rη)∩Ω . Furthermore, we have the

following error estimates:

‖x∗ − xn‖ ≤
(

1+
a0

2
γ

3n−1
2

)

γ
3n−1

2
Δ n

1−Δγ3n η . (17)

The proof is the same as Theorem 3.1 in [7, 8].

5 Convergence Study of Modifications of the Chebyshev
Method

The convergence of the proposed modifications (3) and (4) is studied analogously
as those of Chebyshev method. The difference is only to prove assumption (IIn)
for these methods. Therefore, we turn our attention only to the proof of assumption
(IIn). At first, we consider a modification (3). For this, if xn,yn ∈Ω we obtain from
Taylor’s formula

F(xn) =−1
2

F ′′(ηn−1)(yn−1− xn−1)
2 +

1
2

F ′′(ξn)(xn− xn−1)
2, (18)

where

ηn−1 = (1−w)xn−1+wzn−1,

ξn = θxn +(1−θ)xn−1, 0 < ω ,θ < 1.

According to (3) we have

xn− xn−1 =

(

I− 1
2θ

Γn−1(F
′(zn−1)−F ′(xn−1))

)

(yn−1− xn−1).

Substituting the last expression into (18) we get

F(xn) =
1
2

(

F ′′(ξn)−F ′′(ηn−1)
)

(yn−1− xn−1)
2

+
1
2

F ′′(ξn)

[

− 1
θ

Γn−1(F
′(zn−1)−F ′(xn−1))(yn−1− xn−1)

2

+
1

4θ 2 Γ 2
n−1(F

′(zn−1)−F ′(xn−1))
2(yn−1− xn−1)

2
]

. (19)
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Then, for n = 1, if y0 ∈Ω , we have

‖F(x1)‖ ≤
[

K
2
‖ξ1−η0‖+ M

2θ
‖Γ0‖Mθ‖y0− x0‖

+
M

8θ 2‖Γ0‖2M2θ 2‖y0− x0‖2
]

‖y0− x0‖2.

Since ξ1−η0 = θ (x1− x0)−wθ (y0− x0), it follows

‖ξ1−η0‖ ≤ θ‖x1− x0‖+wθ‖y0− x0‖ ≤
(

θ
(

1+
a0

2

)

+wθ
)

‖y0− x0‖.

If we take θ̂ = max(θ ,wθ ), then we get the following estimate:

‖F(x1)‖ ≤
{

Kθ̂
(

1+
a0

2

)M2‖Γ0‖
M2‖Γ0‖‖Γ0F(x0)‖2 +

M2‖Γ0‖
2

‖Γ0F(x0)‖2

+
M3

8
‖Γ0‖2‖Γ0F(x0)‖3

}

‖Γ0F(x0)‖.

Therefore, we have

‖Γ1F(x1)‖ ≤ f (a0)g(a0)‖Γ0F(x0)‖, g(a0) =
a2

0(4+ a0)

8
d1 with d1 = 1+ 2.5ω .

Analogously, for the modification (4), we have

F(xn) = −1
2

[(

1+
b
2

)

F ′′(ηn−1)− b
2

F ′′(ζn−1)

]

(yn−1− xn−1)
2

+
F ′′(ξn)

2
(xn− xn−1)

2, (20)

ξn = αxn−1 +(1−α)xn, α ∈ (0,1),

ηn−1 = θxn−1 +(1−θ )yn−1, θ ∈ (0,1),

ζn−1 = wxn−1 +(1−w)zn−1, w ∈ (0,1).

Notice that

ξn−ηn−1 = (1−θ )(xn−1− yn−1)+ρ(xn− xn−1)

= (ρ − (1−θ ))(yn−1− xn−1)− ρ
2

Γn−1Dn(yn−1− xn−1)
2,

ηn−1− ζn−1 = (1−w)(xn−1− zn−1)+λ (yn−1− xn−1)

= (1−w+λ )(yn−1− xn−1),

where ρ = 1−α, λ = 1−θ ,
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xn− xn−1 =

[

I− 1
2

Γn−1

((

1+
b
2

)

F ′′(ηn−1)− b
2

F ′′(ξn−1)

)

(yn−1− xn−1)

]

×(yn−1− xn−1).

Substituting the last expression into (20) we have

F(xn) =
1
2

Bn(yn− xn−1)
2− F ′′(ξn)

2
Γn−1Dn(yn− xn−1)

3

+
F ′′(ξn)

8
Γ 2

n−1D2
n(yn−1− xn−1)

4, (21)

where

Bn = F ′′(ξn)−F ′′(ηn−1)− b
2

(

F ′′(ηn−1)−F ′′(ξn−1)
)

,

Dn =

(

1+
b
2

)

F ′′(ηn−1)− b
2

F ′′(ξn−1).

If ξn,ηn−1,ζn−1 ∈Ω then we have

‖Bn‖ ≤ K

[

|β − (1−θ )|− b
2
(1−w+ γ)

]

‖yn−1− xn−1‖

+
K‖Γn−1‖β

2
M‖yn−1− xn−1‖2,

‖Dn‖ ≤ M.

Using these expressions we get

‖ΓnF(xn)‖ ≤ f (an−1)
a2

n−1

2

{

K
M2m

d̂+
(

1+
an−1

4

)
}

‖Γn−1F(xn−1)‖,

where

d̂ = |β − (1−θ )|− b
2
(1−w+ γ)+β an−1 < 3+ an−1 < 4

(

1+
an−1

4

)

,

|β − γ|< 1 0 < 1−w+ γ < 2.

Then we obtain

‖ΓnF(xn)‖ ≤ f (an−1)g(an−1)‖Γn−1F(xn−1)‖

g(an−1) =
a2

n−1(4+ an−1)

8
d2, d2 = 1+ 4ω .

For the modifications (3) and (4) the cubic convergence theorem 1 is valid, in which
d equals to 1+ 5ω and 1+ 4ω , respectively.
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It should be mentioned that in [4] was constructed a family of predictor-corrector
methods free from second derivative. But these methods, except the case A20,
require more computational cost even as compared to the modification (3).

6 Mild Convergence Conditions

In order to obtain mild convergence conditions for these methods we first consider
inexact Newton method (IN) for (1):

F ′(xk)sk = −F(xk)+ rk, (22)

xk+1 = xk + sk, k = 0,1, . . . ,x0 ∈Ω (23)

The terms rk ∈ Rn represent the residuals of the approximate solutions sk [3, 4]. We
consider a local convergence result [3, 4]:

Theorem 2. Given ηk ≤ η < t < 1,k = 0,1, . . ., there exists ε > 0 such that for any
initial approximation x0 with ‖x0− x∗‖ ≤ ε, the sequence of the IN iterates (22)
satisfying

‖rk‖ ≤ ηk‖F(xk)‖, k = 0,1, . . . (24)

converges to x∗.

Moreover we know that the IN converges superlinearly when ηk→ 0 as k→∞. Now
we analyze the connection between the inexact Newton method and the Chebyshev
method (2) and its modifications (3) and (4). To this end we rewrite (2)–(4) in the
form (22) with

rk = F ′(xk)sk +F(xk) =−1
2

F ′′(xk)(yk− xk)
2,

rk = − 1
2θ

(F ′(zk)−F ′(xk))(yk− xk),

and

rk =−1
2

((

1+
b
2

)

F(yn)+ bF(xn)− b
2

F(zn)

)

,

respectively.

Theorem 3. Let us assume that Γ0 = F ′(x0)
−1 ∈L (Y,X) exists at some x0 ∈ Ω ,

and the conditions (c1)–(c3) are satisfied. Suppose that 0 < a0 < 0.5. Then the
sequences {xk} given by (2), (3) and (4) converge to x∗.

Proof. We first observe that the sequence {ak} given by (7) and (8) with d = 1 is
decreasing, i.e.,
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Table 1 The number of
iterations Examples x0 NM CM MOD 1 MOD 2

(I) 1.5 7 4 5 5 5 4 4 5
(II) 2.0 5 5 3 4 4 4 4 3
(III) 1.5 6 6 3 4 4 3 3 3
(IV) 1 6 4 6 4 4 4 4 -

0 < ak+1 < ak < · · ·< a1 < a0 <
1
2
. (25)

It is easy to show that for residuals rk of all the methods (2),(3) and (4) hold the
following estimation

‖rk‖ ≤ ak

2
‖F(xk)‖,

(

ηk =
ak

2

)

. (26)

From (25) and (26) follows ηk → 0 as k → ∞. Then by Theorem 2 the methods
(2)–(4) converge to x∗. ��
The assumptions in Theorem 3 are milder than cubic convergence condition in
Theorem 1 with d > 1.

7 Numerical Results and Discussion

Now, we give some numerical examples that confirm the theoretical results. First,
we consider the following test equations:

(I) x3− 10 = 0,

(II) x3 + 4x2− 10 = 0,

(III) ln(x) = 0,

(IV ) sin2 x− x2 + 1 = 0.

All computations are carried out with a double arithmetic precision, and the number
of iterations, such that ‖F(xn)‖ ≤ 1.0e− 16, is tabulated (see Table 1). We see that
the third-order MOD 1 and MOD 2 takes less iterations to converge as compared to
second-order Newton’s method (NM).

Now we consider the following systems of equations:

(V ) F(x) =

(

x2
1− x2 + 1

x1 + cos
(π

2 x2
)

)

= 0,
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Table 2 The computational
cost of the methods Methods Evaluation of F Evaluation of F ′

NM 1 1
MOD 1 1 2
MOD 2 3 (2 when b = 0 or b = 2) 1

Table 3 The number of iterations

Examples x0 NM CM MOD 1 MOD 2

θ = 0.5 θ = 1 b =−2 b =−1 b = 0

(V) (0;0.1) 8 5 5 6 3 2 2
(VI) (0,0,0,1,1,0) 6 6 4 4 4 4 4

(VI) F(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1x3 + x2x4 + x3x5 + x4x6

x1x5 + x2x6

x1 + x3 + x5− 1

− x1 + x2− x3 + x4− x5 + x6

− 3x1− 2x2− x3 + x5 + 2x6

3x1− 2x2 + x3− x5 + 2x6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0.

As seen from the Tables 1–3, that the proposed modifications (MOD 1, MOD 2)
are almost always superior to these classical predecessor, the Chebyshev method
(CM), because of their convergence order is as same as CM, but these are simpler
and free from second derivative.

We also compared the computational cost of two modifications to the classical
NM (see Table 2). The numerical results showed that MOD 2 is the most effective
method especially when b =−2 or b = 0.

Conclusion

In this chapter we proposed new two families of methods which include many well-
known third-order methods as particular case. We proved third-order convergence
theorem for these modifications and as well as for Chebyshev method. The new
methods were compared by their performance to Newton’s method and Chebyshev
method, and it was observed that they show better performance than NM and CM.
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