Reconfigurable Resource Scheduling with Variable Delayrigisu

C. Greg Plaxtoh Yu Sur?, Mitul Tiwari?, and Harrick Virt
Department of Computer Science
University of Texas at Austin
{plaxton, sunyu, mitult, vih@cs.utexas.edu

Abstract

Certain emerging network applications involve dynamically allocating sh@salurces to a variety of services to
provide QoS guarantees for each service. Motivated by such apptisati@ address the following online scheduling
problem belonging to the recently introduced class of reconfigurabteires scheduling: unit jobs of different cate-
gories arrive over time and need to be completed within category-spdeliyg guarantees, or else they are dropped at
a unit drop cost; processors can be reconfigured to process jabsaofain category at a fixed reconfiguration cost; the
goal is to minimize the total cost. We study this problem in the framework ofpatitive analysis. Through a novel
combination of the EDF and LRU scheduling principles, we obtain an onlingridign that is constant competitive
when given a constant factor advantage in the number of resoureeamw optimal offline algorithm.

ISupported by NSF Grants CCR-0310970 and ANI-0326001.
2Supported by NSF Grant ANI-0326001 and Texas Advanced Tgogy Program Grant 003658-0608-2003.

1 Introduction

Motivation. Reconfigurable resource scheduling, recently introducgl4], is a class of scheduling problems with the
following salient features: (1) there are jobs of differeategories; (2) resources can be reconfigured to proces®job
a certain category at an overhead, in terms of cost or time.

This paradigm is useful in multi-core and multi-processorimnments that are increasingly used to support a wide
range of high-throughput applications, such as web sesyicetwork applications, and database servers. These envi-
ronments host multiple services (or support multiple catigg of jobs) simultaneously (e. g., a shared data centkaan
multi-service router). To isolate — with respect to seguaitd performance — categories from one another, these envi-
ronments often configure processors to support only ongjoatat a time. The set of processors configured to support
a particular category depends upon the workload demandbkdbcategory; fluctuations in workloads require changes
in processor allocations. For instance, a shared datarcntg] adjusts dynamically the allocation of processors to
independent categories as the workload composition clsai®milarly, a multi-service router based on programmable
multi-core network processors [16, 17, 18] adjusts allores of processors to different packet categories as tlie tra
fic load fluctuates. In certain applications involving QoSgntees, jobs are required to be processed within a delay
tolerance, where the delay tolerance is a function of thecgibgory [9].

Problem Statement.In this paper, we study and solve the following variant ofor&tgurable resource scheduling.
The input is a sequence of requests, each of which is a settgbhs. Each job has a category, and needs to be executed
within a category-specifidelay bound from its arrival, or else it is dropped at a unitcost. A job of a given category
can only be executed on a resource configured for that categaresource can be reconfigured at any time at a fixed
reconfiguration cost. The objective is to minimize the totzst.

Our goal is to design online algorithms that provide goodfgrerance under all possible operating conditions.
This motivates us to study this problem in the framework ahpetitive analysis, where the performance of an online
algorithm is measured by the competitive ratio [15], thathe maximum ratio between the cost incurred by the online
algorithm and that incurred by an optimal offline algorithaver all input sequences (see [1] for a comprehensive
introduction to competitive analysis). In this paper, weptda standard technique in competitive analysis, somstime
referred to agesource augmentatiofy, 13], in which the online algorithm is given extra rescegcas a method to
compensate for its lack of future information. We refer tooatine algorithm that achieves a constant competitiverati
when given a constant factor resource advantageresoairce competitivalgorithm.

We aim to provide a resource competitive online algorithmriconfigurable resource scheduling with variable
delay bounds. In our previous work [14], we solve a variarthwiniform delay bounds and variable drop costs. It
is not clear whether the techniques used in that work can bergkzed to solve the variant studied in this paper. To
appreciate some of the difficulties associated with vagiaelay bounds, consider a scenario in which we are schedulin
two categories of jobs on a single resource: “backgrountsjand “short-term” jobs. Background jobs have deadlines
far in the future, and short-term jobs have smaller delaynidsuand arrive intermittently. We need to decide whether
to use idle cycles to execute background jobs. If we allonkgeaund jobs to use idle cycles whenever available, we
may end up incurring a large number of reconfigurations, opging a lot of short-term jobs; later on, we may regret
incurring these costs if we encounter a lengthy interval imiol no short-term jobs arrive, and all of the backgroundijob
could be executed using one reconfiguration. On the othet, hifame do not allow background jobs to use small chunks
of idle cycles, and instead wait for a long idle period, thatet on, we may regret doing so if we never encounter a long
idle interval. In summary, either of these basic approatded tothrashing(i. e., excessively high reconfiguration cost)
or underutilization(i. e., excessively high drop cost). Even under resourcenamgation, these basic approaches fail,
when there are many categories of jobs with different delayniols.

One natural approach try to overcome these difficulties motwsider algorithms based on the Least Recently Used
(LRU) principle. To pursue this approach, we need to definaoropriate notion of an LRU timestamp in this setting.
We have investigated various natural alternatives (Setéidde8.1.1 for an example). In all of these alternatives, we
encounter the following basic difficulty: if we configure thategories with the most recent LRU timestamp, without
considering whether these categories have jobs to exeitate we may suffer from underutilization; if we configure
the categories that have the most recent LRU timestampd)araljobs to executéhen we may suffer from thrashing.
Thus it appears that LRU alone is insufficient to obtain aues®competitive solution.

Another natural approach is to consider algorithms basethertarliest Deadline First (EDF) principle. As with
LRU, there are different ways we can formulate a specificrétlgm based on the EDF principle (See Section 3.1.2 for an
example). However, all EDF variations seem to suffer fronashing, and therefore fail to yield a resource competitive
solution.

Our Contribution. In this paper, we give a resource competitive online alpatitfor reconfigurable resource

scheduling with variable delay bounds. We solve the problesing a layered approach. First, we use a batching
subroutine to reduce the problem to the special case in wblzh of a given category arrive at integral multiples of
the category-specific delay bound. This layer is analogouké first layer in [14], but is more involved with variable
delay bounds. Second, we reduce the batched problem to-bméted problem in which at moss jobs of category
arrive at each integeral multiple f Third, we solve the core problem using a novel combinatib&RBF and LRU,
which we view as a major contribution of this paper. The médamsi of this combination is to keep two sets of categories
configured: one set consists of categories with the moshtditeestamps, the other set consists of categories that hav
the earliest deadlines and have jobs to execute.

Our consideration of the EDF and LRU combination is motidatg the following observations. The LRU compo-
nent, which does not consider idleness, allows categoiiidssivort delay bounds to remain cached as long as they have
recent timestamps; this reduces thrashing. The EDF conmp@msures that the resources are well utilized. The main
challenge in the analysis is to bound the reconfiguration ¢e address the challenge by employing amortized analysis
and a proof technique called “phase partition” used in [15].

Related Work. In our previous work [14], we introduce the class of reconfadple resource scheduling, and solve a
variant with uniform delay bounds and variable drop costsdalucing to a file caching problem.

Brucker [2, Chapter 9] surveys a class of offline schedulingblems with context switch time, which they call
changeover time. In this class of problems, each job beltmgscertain group, and between the executions of any two
jobs in different groups on the same machine, there is a @wmy period, during which the machine cannot process
any job. Results for single and multiple machine problemth whangeover time are summarized. For a variant with
identical machines, equal sized groups, and equal proxeasid changeover time, Brucker et al. [3] give a polynomial
time offline algorithm that decides whether there existseedale in which all jobs are executed within a common delay
bound.

In a position paper, Srinivasan et al. [17] discuss schadyroblems for multi-core network processors, and con-
sider the application of existing multiprocessor scheuyklgorithms in this domain. Various challenges are idiexti
and some initial ideas to address these concerns are peds&wkku et al. [8] give a scheduling algorithm, called Ever
est, for multi-core network processors. The parametersidened are a per-service delay bound, a per-service egacut
requirement, and a fixed context switch time. Everest is shimperform well in experiments in terms of maximizing
the number of packets processed within a service-specifiy delerance.

The EDF scheduling algorithm is shown [6, 10] to be an optipraemptive uniprocessor scheduling algorithm for
problems that do not involve reconfiguration overhead, imseof the number of jobs executed. In this paper, we discuss
the issues of applying EDF in reconfigurable resource sdhrepwith variable delay bounds, and propose a combination
of EDF and LRU to address the problems.

The classic disk paging problem studied by Sleator and 4tja] can be viewed as a special case of reconfigurable
resource scheduling with unit delay bound, unit reconfijanacost, infinite drop cost, and where each request cansist
of a single job. In this seminal work, the competitive ratfcaay deterministic online paging algorithm is shown to be
at least the cache size, and certain algorithms such as L&Ehamwn to be resource competitive.

O’Neil et al. [12] consider a variation of LRU called LR~ which keeps track of the times of the Idstreferences
to pages. Megiddo et al. [11] consider a self-tuning caclptacement policy called Adaptive Replacement Cache,
which combines recency and frequency aspects of the reqageence by maintaining two lists: one list captures the
recency aspect, and the other captures the frequency aspectombination of EDF and LRU integrates recency and
deadline aspects by keeping two sets of categories configane set captures the recency aspect and the other captures
the deadline aspect.

2 Preliminaries

Problem Definitions. Most of the material in this section also appears in the miekries section of [14]. We include
it here in order to make the current presentation self-dnath
For the reconfigurable resource scheduling problems ceresidn this paper, the input is a sequence of requests, each
of which consists of a (possibly empty) set of unit jobs. Epthis characterized by a non-black color, a nonnegative
integer arrival time, and a positive integer delay boundr &wy job, we define an associated deadline to be its arrival
time plus its delay bound. A job has to be executed on a resafrthe same color between its arrival time and its
deadline, or else it is dropped at a unit drop cost. After agolves, it ispendinguntil it is either dropped or executed.
There is a finite set of resources on which jobs are executesdolrces are numbered frdin Each resource is
associated with a color and can be reconfigured to a diffex@ior at any time at a fixed reconfiguration cost. Initially,

all resources are colored black.

Any problem considered here proceeds in rounds numbered GtoEach round consists of four phases, in the
following order: (1) in thedrop phase jobs with deadline are dropped; (2) in tharrival phase the ith request is
received; (3) in theeconfiguration phasdor each resource, an algorithm decides whether to reamefigp a different
color or not, and if so, to which color; (4) in thexecution phasdor each resource configured to colpmwe execute up
to one pending job of colof.

For any request sequenee a schedulespecifies the reconfigurations, if any, and the job execstitmperform in
each round. The total cost of a schedule is the sum of all fepmation and drop costs. The goal is to device a schedule
of minimum cost for a given request sequence

Let S and.S’ be any two schedules for a given request sequend¥e says is resource competitiveith S’ if, the
number of resources given 19 is within a constant factor of that given 18§, and the cost incurred by is within a
constant factor of that incurred L8/.

An offline algorithm knows all requests in advance. An ontafgorithm has to make decisions without knowing the
future requests. The competitive ratio of an algorithnis defined as the maximum ratio, over all request sequences
o, of the cost incurred byl on ¢ to that incurred by an optimal offline algorithm fet. An algorithm A is defined
to bec-competitive if the competitive ratio is Any c-competitive algorithmA is called constant competitive dfis a
constant. We say an algorithrhis resource competitivi, for any request sequenee the schedule generated Byis
resource competitive with an optimal scheduledor

For the sake of brevity, we use theconfig | drop | delay | batch] notation introduced in [14]. Theeconfig field
describes the details of the reconfiguration cost. In thjgepathere is only one possible value for this field, a fixed
reconfiguration cost denoted ly. The drop field describes the details of the drop cost. In this papergtis only one
possible value for this field, namely since we assume unit drop cost. Td&ay field contains the details of the delay
bound. In this paper, there is only one possible value far fieid, a per-color delay bound denoted By. The batch
field constrains the arrival rounds of requests of cdlto occur at integral multiples of the specified value. In traper,
the possible values for this field ateand D,.

With this notation, our main problem is denoted[dy | 1 | D, | 1]. The special case in which jobs of colbarrive
at integral multiples ofD, is denoted byA | 1 | D, | D,]. We use the terminology “rate-limitdd | 1 | Dy | D,]" to
denote the special case|df | 1 | D, | D,] in which at mostD, color ¢ jobs arrive at each integral multiple @,. In
this paper, we assumg is a positive integer (it is not hard to generalize our restdtarbitraryA).

Roadmap. The rest of the paper is organized as follows. Section 3 sokte-limitedA | 1 | D, | D], where each
D, is a power of2. Section 4 solvefA | 1 | Dy | D], where eactD, is a power of2, with a reduction to rate-limited
[A| 1] Dy | Dy]. Section 5 solves our main probldiy | 1 | D, | 1] by a reduction tdA | 1 | D, | D).

3 Rate-Limited Batched Arrivals

In this section, we solve rate-limitdeh | 1 | D, | D], where eachD; is a power of2. This problem is characterized
by a fixed configuration cogk, a unit drop cost, per-color delay bouiit}, batched arrivals (jobs with delay bourg}
arrive at integral multiples ob,), and rate-limited input (at modd, jobs of color/ arrive at each integral multiple of
Dy).

To solve this problem, we propose a combination of EDF and Lietérred to as algorithmALRU-EDF. The main
result of this section is presented in Theorem 1, which isliis§ heorem 2 in Section 4.

3.1 Algorithms

In this section, we introduce three online algorithms faefémited [A | 1 | D, | D], whereD, is a power of2,
namely,ALRU, EDF, andALRU-EDF. Because these algorithms only differ in the wayrdsources are reconfigured,
we first present the common aspects, and then define the ga@ifon schemes of these algorithms in Section 3.1.1,
Section 3.1.2, and Section 3.1.3, respectively. The regordtion scheme of algorithiALRU is a variation of LRU.
The reconfiguration scheme of algorithm EDF is based on tHestdeadline principle. Even though neith&t RU
nor EDF is resource competitive, the study of these two &lyois motivates our consideration o RU-EDF, which
is a certain combination ahLRU and EDF, and which we show to be resource competitive.

We usen to denote the number of resources given to the online alguoritWe consider the set of resources as a
cache where resoureds viewed as location. We view each color as a page. Each location can cache one téo
view reconfiguring resourcewith color ¢ as caching colof at locationi.

For each colo¥, we maintain a counter and a deadline, denoted. byt and/.dd, respectively. A colo¥ isidle if
there are no pending coldijobs, andhonidleotherwise. A color is eithegligible or ineligible.

The common aspects of the three algorithms are as follovitgally the cache is empty, and all colors are ineligible.
In each roundk, the actions performed in the four phases are describedlas/$o

Drop phase For any color, if k is an integral multiple ofD,, we drop all pending colof jobs, and set colof to be
ineligible and?.cnt to zero if color/ is eligible and not in the cache.

Arrival phase For any color/, if & is an integral multiple ofD,, we receive a request, which consists of a set of jobs
X, and perform the following steps.

1. We set the deadline éfto bek + D,.
2. We increasé.cnt by the number of colo€ jobs in X.
3. If L.cnt is at leastA, we perform the following substeps.

(a) We setl.cnt to (¢.cnt mod A), which we refer to as aounter wrapping everdf color /.
(b) If color ¢ is ineligible, we set colof to be eligible.

Reconfiguration phaseWe use the first half locations of the cache capacity to caiadt colors; the method used
depends on the algorithm, see Sections 3.1.1 through 3\e3ise the remaining cache capacity to replicate the
cache content of the first half locations, that is, we mamthae invariant that each cached color is cached in two
locations.

Execution phase For each resourcg let ¢ be the color cached at locatign We execute one pending job of color

3.1.1 Reconfiguration Scheme ocALRU

Consider any colof. Let k be the most recent integral multiple B,. We define theéimestampof ¢ to be the index of
the latest round before rourkdin which a counter wrapping event of coléoccurs, and) if such a round does not exist.

The reconfiguration scheme of algorith RU works as follows. We maintain the invariant that we kéegligible
colors with the most recent timestamps in the cache, brgales arbitrarily.

Intuitively, like the classic LRU algorithmALRU intends to capture the recency aspect of the input seguddue
to the difference between the reconfiguration and drop cestsupdate the timestamp of each color roughljjob
arrivals of that color. To avoid caching a color with a deadIfar ahead too aggressively (which may not be desirable
since we can use the slack to execute jobs of other colorseaitier deadlines first), for each colgrwe only consider
the counter wrapping events b6for which a subsequent integral multiple bf has elapsed.

At a high level, ALRU may keep idle colors with recent timestamps, which rssial low utilization of resources.
We refer the readers to Appendix A for a detailed exampleghatvsALRU is not resource competitive.

3.1.2 Reconfiguration Scheme of EDF

The reconfiguration scheme of EDF works as follows. We raeleligible colors first on idleness, where nonidle colors
come first, and then in ascending order of deadlines, brgalés by increasing delay bounds, and then by a consistent
order of colors. We update the cache as follows. If a noniliggide color £ in the top3 rankings is not in the cache, we
cache colo¥. In case there is not enough room in the cache, we evict tlog with the lowest rank.

At a high level, EDF suffers from thrashing: when a coldrecomes idle and nonidle alternatively, a nonidle color
¢ with larger delay bound is repeatedly brought in and remdvewh the cache, and so EDF incurs a large number of
reconfigurations. We may later regret paying these recordtgn costs if a long period of time appears later that adlow
to execute all jobs of’ with a single reconfiguration. We refer the readers to AppeBdfor a detailed example that
shows EDF is not resource competitive.

3.1.3 Reconfiguration Scheme ocALRU-EDF

As discussed in Section 3.1.1 and Section 3.1.2, an algotitiat captures only the recency aspect or only the deadline
aspect in the input sequence is not resource competitives oliservation motivates us to think about algorithms that
capture both the recency and deadline aspects. In the falipwe introduce the reconfiguration scheme\fRU-EDF,
which is a combination cALRU and EDF.

The reconfiguration scheme AfLRU-EDF is as follows. We first run the reconfiguration scheshALRU to cache
the 7 eligible colors with the most recent timestamps. At anyansta color is called an LRU-color if it is cached by
ALRU, and a non-LRU color otherwise. We then rank the non-LRWbKs that are eligible, in the same way as we rank
eligible colors in the reconfiguration scheme of EDF (sediSe@.1.2 for details). LefX be the set of nonidle and
non-LRU colors in the tog; rankings but not in the cache. We bring all colorsXninto the cache. In case there is not
enough room in the cache, we repeatedly evict the A@RU color with the lowest rank until there is enough room.

3.2 Analysis of algorithm ALRU-EDF

Consider any input sequenee For any color and any colo¥ job z, we sayz is ineligible if x is dropped byALRU-
EDF while/ is ineligible. All jobs that are not ineligible adigible.

Let OFF denote an optimal offline algorithm. Letdenote the number of resources given to OFF, whete8m.We
use Costopp(o) and Costaru-epr(o) to denote the total cost incurred by OFF af\lRU-EDF ono, respectively.
We useReconfigCostorpp(o) and ReconfigCosta ru-epr(o) to denote the reconfiguration cost incurred by OFF and
ALRU-EDF ono, respectively. We us®rop Costopp(o) and Drop Cosial ru-epr(co) to denote the drop cost incurred
by OFF andALRU-EDF ong, respectively. We uséneligible Drop Costa ry-epr(c) to denote the drop cost incurred
by ALRU-EDF on ineligible jobs ino. We useEligible DropCosta) ry-epr(c) to denote the drop cost incurred by
ALRU-EDF on eligible jobs ir.

We define epochs as follows. For any colpanepochof ¢ ends the momeritbecomes ineligible. A new epoch bf
starts when the previous epoch ends. Note that the last ed@aty color can end prematurely. For any input sequence
o, we usenumEpochs(o) to denote the total number of epochs (including incompletechs) associated with. For
any color¢, we number the epochs of colbéfrom zero. We usepoch (¥, j) to denote epocli of color ¢.

Lemma 3.1 For any input sequence such that for each colof, there are less thark color ¢ jobs ing,

CostaLru-EDF(0) < Costopr(o).

Proof. Consider an arbitrary colof. Since there are less thak color ¢ jobs ino, ¢ never becomes eligible. Hence,
ALRU-EDF never caches and drops all colo¥ jobs. If OFF cacheg at some point, OFF incurs a reconfiguration
cost of A. Otherwise, OFF drops all coldrjob. In either case, the cost incurred by OFF on célmbs is at least that
incurred byALRU-EDF on color/ jobs. Summing up over alls, the lemma follows.]

Lemma 3.2 For any input sequence, EligibleDropCosta| ru-epr(o) < DropCostorg(o).

Proof. See Section 3.3. [}

Lemma 3.3 For any input sequence, ReconfigCostaru-epr(o) < 4 - numEpochs(o) - A.

Proof. We give each epochA units of credit:2A units of “first-time” credit and2A units of “end-of-epoch” credit. It
is sufficient to show that the total reconfiguration cost med by ALRU-EDF can be paid for by the credit associated
with the epochs.

Consider any colo¥ and any nonnegative integgér We use the2A units of “first-time” credit associated with
epoch (¥, 7) to pay for the reconfiguration cost incurred by the first tifrie brought into the cache igpoch (¢, 7) (recall
that each time a color is cached, it is cached in two loca}iolmsthe following, we show that the reconfiguration cost
incurred by each of the subsequent tindés brought into the cache iepoch (¢,) can also be paid for.

Until any subsequent timéis brought into the cache iepoch (¥, j), the deadline of does not increase since the
previous timel is evicted, otherwisé becomes ineligible andpoch(¢,j) ends. Because the timestampobnly
increases when the deadlinedds reached, the timestamp does not increase since the psetiinel is evicted, either.
Hence, wher is brought into the cache subsequentlyjimch (¢,), an idle color’ is evicted. The colot’ remains idle
until its associated deadline is reached and becomesilsleligluring this period (since the tintéis evicted by till the
time ¢/ becomes ineligible), sincé is idle and its timestamp does not improveremains outside the cache. Therefore,
we can associate any subsequent reconfiguratidnrogpoch (¢, j) with the end of an epoch of a color?’, that is, we
can use th@A units of “end-of-epoch” credit associated withoch (¢, k) to pay for a subsequent reconfiguratiorn/of
(in two locations) inepoch (¢, 7).

Summing up over alj’'s and/’'s, the lemma follows.]

Lemma 3.4 For any input sequence, Ineligible Drop Costa| ru-epr(o) < numEpochs(o) - A.

Proof. Consider any colof and any;. By definition of an epoch, iapoch (¢, 7), ¢ starts off ineligible, becomes eligible,
and becomes ineligible again, at which paipbch (¢, j) ends.

By ALRU-EDF, when? becomes ineligiblel.cnt is zero. Letk be the round irepoch (¢,) during which? becomes
eligible. By ALRU-EDF, ¢.cnt reachesA the first time inepoch(¢,7) in roundk. By the way/.cnt is updated, the
number of jobs associated wittthat arrive inepoch (¢, j) and before round is at mostA. Hence, the ineligible drop
cost incurred byALRU-EDF on/ in epoch(¥, j) is at mostA. Summing up ovej’s and/’s, the lemma follows. [

Lemma 3.5 For any input sequence such that for each colof, there are at leasf\ color ¢ jobs ino,
Costopp(o) = Q(numEpochs(o) - A).

Proof. See Section 3.4.]

Theorem 1 Algorithm ALRU-EDF is resource competitive for rate-limitedl | 1 | D, | D,], where eachD, is a power
of 2.

Proof. Let o be any input sequence for rate-limitefl | 1 | D, | D,]. We breaks into two subsequences and 3,
wherea consists of jobs of colors with less thanjobs ing, andj consists of the remaining jobs. L&the the schedule
generated bALRU-EDF ono. Let S’ (resp.,S”) be the schedule om (resp.,3) obtained by removing jobs i (resp.,
«) from S. Itis not hard to see that the cost incurred$3y(resp.,S”’) on « (resp.,3) is at most that incurred by ono.
Let T be the schedule generated by OFFoorLet 77 (resp.,7"') be the schedule om (resp.,3) obtained by removing
jobs in 3 (resp.,a) from T It is not hard to see that the cost incurredBy(resp.,7"’) on « (resp.,3) is at most that
incurred byT’ ono.
By Lemma 3.1, the cost incurred I8f on « is at most that incurred by’ on . By Lemmas 3.2, 3.3, 3.4, and 3.5,

the cost incurred by” on 3 is at most a constant factor times that incurreditfyon 3. Hence, the cost incurred ks
ono is at most that incurred by on . The theorem then follows from the fact that= 8m.]

3.3 Proof of Lemma 3.2

Lemma 3.6 For any input sequence and any subsequeneeof o, DropCostopp(a) < DropCostorg(o).

Proof. Since any schedule by OFF enimplies a schedule by OFF am of smaller or same drop cost, the lemma
follows.]

We define an algorithm to be adouble-speed algorithiifithe reconfiguration and execution phases are repeated in
each round ind. For any input, a double-speed algorithm produceésable-speed schedul®n the other hand, in an
uni-speed algorithmthe reconfiguration and execution phases are performgdamale in each round. For any input, a
uni-speed algorithm produces a uni-speed schedule. Ipé#per, unless otherwise stated, all algorithms and scasdul
are uni-speed.

In this section, we specify the following schemes of ranléfigible colors and pending jobs, which are invoked by
the algorithms that use such schemes in each reconfigugati@se. \We rank eligible colors in the same way as used in
EDF, that is, rank first on idleness, where nonidle colorsesfirst, and then in ascending order of deadlines, breaking
ties by increasing delay bounds, and then by a consistest ofctolors. Note thaf\LRU-EDF uses the same ranking
scheme for non-LRU colors that are eligible. We rank pendiitig in increasing order of deadlines, breaking ties by
increasing delay bounds, and then by a consistent orderlofscoln this paper, we use the same consistent order of
colors in all algorithms that use such ranking schemes.

Algorithm Par-EDF is defined as follows. We giveresources to Par-EDF. In each execution phase, we execute up
to m pending jobs with the best ranks.

Algorithm Seqg-EDF is defined the same as EDF except that $¥¢i& givenm resources and uses all the cache
capacity to cache distinct colors, i.e., we do not use hafdaiche capacity for replication. We use DS-Seq-EDF to
denote double-speed Seq-EDF.

For any input sequeneg, we useDrop Costpar-epr(0) and Drop Costps.seq-EDkc) to denote the drop cost incurred
by Par-EDF and DS-Seq-EDF on respectively.

Lemma 3.7 For any input sequence, DropCostpar-gpr(c) < DropCostopp(o).

Proof. We viewm resources as one super resource which can executemgdbs per round. The proof then follows
from the optimality of traditional EDF algorithm.]

We define amini-roundto be an iteration of the reconfiguration and execution phasa round. We number the
mini-rounds from zero. By definition, there are two (resmepmini-rounds in a round in any double-speed (resp.,
uni-speed) algorithm or schedule. We definglat to be a mini-round on a resourcé, identified by slot%, j). A slot
(k, j) is occupiedf a job is scheduled in mini-roungland on resourcé. A slot that is not occupied ifsee we define a
columnto be the set of slots in the same mini-round. A columiuikif all slots in the column are occupied, andnfull
otherwise. Columns are ordered in increasing order of mooid indices.

For any delay bound, we defineblocksof delay bound as follows. For any nonnegative integeblock: of delay
boundp, denoted byblock(p, i), is thep rounds starting from roundl- p.

An inputo is defined to baiceif Par-EDF does not incur any drops en

Lemma 3.8 For any nice input sequenee DS-Seq-EDF does not incur any dropsan

Proof. The proof proceeds in two steps as follows. First, we consaidouble-speed schedulethat executes all jobs
in 0. Second, we show thdt is a schedule generated by DS-Seq-EDF.

In the first step, we schedule jobs in increasing order ofydietainds. For a certain delay boupdwe schedule jobs
with delay bound block by block. For a certain block @f we schedule jobs with delay boupdn the consistent order
of colors mentioned above. We now describe the scheduliogegs for any delay boung any block: of p, and any
color ¢ with delay bound. Let X be the set of colof jobs that arrive irblock(p, 7). First, we pick the firstX| nonfull
columns. Second, in each of the columns picked in the firgt ste pick an arbitrary free slot. Third, we schedilen
the | X | slots picked in the second step.

We need to show that there are at le@st nonfull columns while we schedul®. By definition of rate-limited
[A|1]|D¢| Dy, | X| < p, henceitis sufficient to show that at leastonfull columns while we schedul®, which we
prove as follows. LefS be the schedule generated by Par-EDFsorsinceo is a nice schedule, all jobs that arrive in
block(p,) are executed by. SinceT is a double-speed schedule, the number of slotgdek (p, i) in T is twice that
in S. Hence, the number of slots irlock(p, i) in T is at least twice the number of jobs that arrivebinck(p,). Hence
at least half of the columns, that is, at leastolumns, are nonfull while we schedulé.

In the second step, we show thats a schedule generated by DS-Seq-EDF as follows. Sincelaly dounds are
powers of2, the increasing order of delay bounds agrees with the isargaorder of deadlines. Hence, the ranking of
nonidle eligible colors agrees with the increasing ordetadfy bounds. By the construction’tf in each mini-round, a
job of color/ is not scheduled until one job of each nonidle eligible cd@cheduled that has a larger delay bound or has
same delay bound and precedésthe consistent order of colors. Hen@eis a schedule generated by DS-Seq-EDi.

Lemma 3.9 For any input sequence and any subsequenceof o, if DS-Seq-EDF executggobs when operated on
«, then DS-Seq-EDF executes at leagibs when operated om.

Proof. Let 8 = ¢ \ a. We sort jobs in3 in increasing order of arrival time, breaking ties arbiilsarWe definey, = a.
For0 < i < |3|, we defines; to be jobi in 3 andy; 1 = v; U {8;}. By definition,o = ~5/.

In the following, we prove the lemma by showing that, for asuch that < i < |8], |X;| < |X;+1], whereX; is
the set of jobs executed by DS-Seqg-EDF when operated.dfi 3; ¢ X1, X;+1 = X;. Otherwise|X; \ X, 41| < 1.
In either case|X;| < | X;11|. This completes the proof and the lemma follows.]

Corollary 3.1 For any input sequence, DropCostps.seq-EDkc) < DropCostpar.gpr(0).

Proof. If ¢ is nice, the corollary follows immediately from Lemma 3.8th@rwise, we break into two subsequences
« and g, wherea consists of the jobs executed by Par-EDFogrand 8 consists of the remaining jobs, that is, the jobs
dropped by Par-EDF os. By Lemma 3.8, DS-Seq-EDF does not incur any drops.oBy Lemma 3.9, the number of
jobs executed by DS-Seq-EDF eris at least the number of jobs executed by DS-Seq-EDE&.ddence the corollary
follows.]

Lemma 3.10 Consider any input sequenee Leta be the subsequence @fthat consists of eligible jobs ia. Then
EligibleDrop CostaL ru-EpF(0) < DropCostps_seq-EDEQ)-

Proof. ConsiderALRU-EDF and DS-Seq-EDF proceed concurrently. Ket(resp.,Y;) be the set of pending eligible
jobs in ALRU-EDF (resp., DS-Seq-EDF) at the beginning of roundVe show the lemma by proving that for afy
X; €Y.

The proof is obtained by induction. For the base case . It is obvious thatX; = Yy = (. The induction step is
as follows. Suppos&; C Y;, we show in the following thak; 1 C Y;;1. Let X/ andY; be the set of pending eligible
jobs in ALRU-EDF and DS-Seq-EDF at the end of the arrival phase indauin the arrival phase of round+ 1, the
number of newly arrived eligible jobs become pending in kadtforithms. This observation, together with the induction
hypothesis thai’; C Y;, indicates thafX; , C Y/, ,. Let color/ be any color that is ever configured by DS-Seq-EDF
in roundi + 1. By definition of DS-Seg-EDF, colatis among them nonidle eligible colors with the best ranks, and
in roundi + 1, DS-Seq-EDF executes up2gobs of color/. SinceX,; C Y/ , in ALRU-EDF, unless colof is idle
(which indicates all colof jobs have been executed), colas also among them nonidle eligible colors with the best
ranks. Sincer = 4m, i.e.,2m = %, by definition of ALRU-EDF, ALRU-EDF configures colof in roundi + 1 and
execute jobs of color/ if there are at leas?, and all color? jobs otherwise. In round+ 1, DS-Seq-EDF configures
up to2m distinct colors ALRU-EDF configure2m distinct nonidle colors if there are that many, and all néizblors
otherwise. ThereforeX; 1 C Y; ;.]

Proof of Lemma 3.2. Consider any input sequenee Let o be the subsequence efthat consists of the eligible
jobs ino. By Lemma 3.6,DropCostorp(a)) < DropCostore(c). By Lemmas 3.10 and 3.7 and Corollary 3.1,
DropCosiaLru-epr(o) < DropCostopp(e). Hence, the lemma follows.]

3.4 Proof of Lemma 3.5

We define super-epochs as follows.sAper-epoclends the moment that at le&st. colors increase their timestamps
since the start of the current super-epoch. A new superkegiacts when the previous super-epoch ends. Note that the
last super-epoch can end prematurely. For convenienceumber the super-epochs from zero.

We define a colof to be ani-active colorif the timestamp of is updated in super-epo¢hFor anyi-active color?,
any epoch of that overlaps with super-epoclis defined to be airactive epochWe define an epoch to specialif it
is noti-active for any complete super-epochAn epoch that is not special imnspecial

We attribute jobs to counter wrapping events as follows. dmwr color/ and any round: that is an integral multiple
of Dy, let X be the set of colof jobs that arrive in round and; be the value of.cnt at the beginning of round. If
|X| < A — j, there is no counter wrapping event of coloin round%; we attribute all jobs inX to the next counter
wrapping event of colof. Otherwise, there is a counter wrapping event of célor roundk; we attribute anyA — j
jobs in X to the counter wrapping event of colbin roundk, and the rest jobs iX to the next counter wrapping event
of color#.

The following lemma follows from the way we update countéhg definition of counter wrapping events, and the
way we attribute jobs to counter wrapping events.

Lemma 3.11 The number of jobs attributed to each counter wrapping eigeatt leastA.

We define a timestamp update event of cdldo be the event that the timestamp/as updated. We assign credit
to timestamp update events as follows: (1) if cofas i-active and there is a reconfiguration from or to cofon
super-epoch incurred by OFF, we givéA units of credit to the first timestamp update event of célor super-epoch
1; (2) for each reconfiguration from or to a colbincurred by OFF, we givéA units of credit to each of the next two
timestamp update events of col@r(3) for any color? job z that is dropped by OFF, we giveunits of credit to the
first timestamp update event of colbsubsequent to the counter wrapping event whids attributed to, if such events
exists.

The following lemma follows from the way we assign credit.

Lemma 3.12 The total credit associated with timestamp update eversall/colors isO(Costopp(o)).

Lemma 3.13 For any i-active color/, either is cached throughout super-epo¢hor there are at leas6A units of
credit associated with the first timestamp update evehirosuper-epoch.

Proof. Let k be the index of the round in which the first timestamp updatnewef/ in super-epoch occurs. Letr be
the index of the round from which super-epacstarts. If at least two counter wrapping events of cdloccur before
roundk, we definej to be the index of the round in which the second to last cowatapping event of before round

occurs. Otherwise, we defineto be.

We first show thatj < r, which we use later in the proof of the lemma. If less than tworter wrapping events
of ¢ occur before round, 5 = 0 and the claim holds. Otherwise, we show the claim as folldves.;’ be the index of
the round in which the last counter wrapping event sefore roundk occurs. By the definitions of counter wrapping
events, timestamps, and timestamp update evgnrtsy’ < k, and the timestamp dfis updated once between round
and round;’ (including round;’). Since the first timestamp update event af super-epochi occurs in roundk, j < r.

Let V' be the time interval between roundand roundr, which is well-defined by the claim shown above. We
now prove the lemma as follows. If OFF evidt$rom the cache or bringéinto the cache in super-epoc¢hby credit
assignment rule (1), the first timestamp update evehtiosuper-epoch gets6 A units of credit. If OFF keepé out of
the cache throughout super-epackve consider the following two cases.

¢ Algorithm OFF evicts out of the cache or bringsinto the cache ifV. It is not hard to see that there is at most
one timestamp update event®in V. Hence, the first timestamp update event of super-epochi is either the
first or the second timestamp update events subsequent te@myfiguration irl/. By credit assignment rule (2),
the first timestamp update eventéih super-epochi gets6 A units of credit.

e Algorithm OFF keepd out of the cache if/. Then OFF keep$ out of the cache since roungdtill round k.
In this case, all jobs contributed to the last counter wragpmvent of? before roundk are dropped by OFF. By
Lemma 3.11 and credit assignment rule (3), the first timegtapdate event of in super-epochi gets at least A
units of credit.

Hence, eithef is either cached throughout super-epagctr the first timestamp update eventédifi super-epocti gets
at least6 A units of credit.]

Lemma 3.14 For any color ¢ and and integerj, the timestamp of is updated inepoch(¢,j), and at the end of
epoch (¥, 7), the timestamp is at least the starteqfoch (¢, j).

Proof. In epoch(¥, 7), ¢ starts off ineligible, becomes eligible, and becomes gilellé again, at which poingpoch (¢,)
ends. At the timg becomes eligible, the counter b6fs wrapped around. At the timébecomes ineligible again, the
current deadline of is reached. By definition of the timestamp, the lemma follows]

Lemma 3.15 For any super-epoct and any coloré, oncel has two complete epochs in super-epackuper-epoch
ends.

Proof. By definition of the timestamp, the value of the timestamprof eolor is smaller than current time. Hence, at
the beginning of super-epochthe timestamp of any color is smaller than the start of sgpech:. By definition of
a super-epoch, at mo3tn colors increase their timestamps during super-epdexcluding the end of super-epoch
Hence, until the end of super-epogtat most2m colors have timestamps with value at least the start of sepechi.
Once/ has a complete epoch super-epechy Lemma 3.14, the timestamp 6fs at least the start of super-epoch
i, which indicated is among them = 7 colors with the most recent timestamps. In the second cdmplgochv in
super-epoch, when? becomes eligible/ is brought into the cache and kept in until the super-epaafds.
By definition of epochs, at the end of the second completelepbtin super-epoch, ¢ becomes ineligible. Because
a color can only become ineligible when it is out of the ca¢his,out of the cache when the second epoch ends, which
means super-epodthas ended. Hence the lemma follows.]

The following corollary immediately from Lemma 3.15.

Corollary 3.2 For any color/ and any nonnegative integérthere are at most three epochs of cofdhat overlap with
super-epochi.

Lemma 3.16 For each color/, there are at most three special epochs.

Proof. By Lemma 3.14 and the definition of aractive epoch, a complete epoch contained in any supetepisc
i-active. Hence, a special epoch is either incomplete, ofap® with the incomplete super-epoch. The lemma then
follows from Corollary 3.2 and the fact that there is only aneomplete epoch and one incomplete super-epoch.m

Corollary 3.3 For any input sequence such that for each colof, there are at least\ color ¢ jobs ino, Costopp(o)
is at least3A times the number of special epochs.

Proof. Consider any colof. If OFF ever configures colat, OFF incurs a cost af\. Otherwise, OFF drops all coldr
jobs, incurring a cost of at leagt since there are at leadt color/ jobs inc. In either case, OFF incurs at least a cost of
A on color/ jobs. The corollary then follows from Lemma 3.16.]

Lemma 3.17 The total credit associated with the timestamp update everat leastA times the number of nonspecial
epochs.

Proof. Let X = {j | super-epoclj is completé. Consider any € X. Letk; be the number of-active colors. Let
k; be the number of-active colors of which the first timestamp event in supesetp is assigned at leastA units of
credit. Letk be the number of-active colors that are cached throughout super-epoBly Lemma 3.13k; < &} + k..

By definition of a super-epocl; > 2m. Sincek! < m, k] > Lk;, or in other words,

ki < 2k]. Q)
For any color, let ¢; denote the number afactive epochs of colof andg; be the number of-active epochs.

number of nonspecial epochs<) ¢
ieX

= Z Z%‘,e

i€X f

< 32 ki
iex

< 6) K.

i€ X

(The first inequality follows from the definition afactive epochs and nonspecial epochs. The second equsditytine
definitions ofi-active colors and-active epochs. The third inequality follows from the defoms ofi-active colors;-
active epochs and Corollary 3.2. The lastinequality usesEon (1).) Obviously, the total creditis atlegst > . _ ki,
hence the lemma follows.]

Lemma 3.5 immediately follows from Corollary 3.3, Lemma$28and 3.17.

4 Batched Arrivals

In this section, we solv@A | 1 | D, | D,], where eachD, is a power of2. This variant is characterized by a fixed
configuration cost\, a unit drop cost, a per-color delay boubd, and batched arrivals (jobs with delay boubdarrive
at integral multiples oD,).

The solution to this variant uses a reduction to rate-lichjt& | 1 | D, | D], which is solved in Section 3.

4.1 Algorithm Distribute

Algorithm Distribute proceeds in three steps. In the firspsgiven an arbitrary instandeof [A | 1 | D, | D], where
D, is a power o2, we construct an instandé of rate-limited[A | 1 | D, | D,] as follows. Each color associated with

is characterized by a coldrassociated witlf and a nonnegative integgrdenoted by, j). Leto be the input sequence
associated witl. For any nonnegative integérlet o; be request of o. For any color, we rank color jobs ing; in

an arbitrary order. For any coldrand any colo¥ job z in o;, we construct a joly with the same characterization except

the color ofy is (¢, j), wherej = %’“jz) andrank(z) is the rank ofz in o;. Let o, be the union of all such’s. The

input sequence’ that associates witl is the the concatenation ef in increasing order of.

In the second step, we use algoritixh RU-EDF to obtain a schedul# for I'.

In the third step, we construct a schedlefor I from S’ as follows. Whenevel’ configures color(¢,), S
configures colo¥. WheneverS’ executes a job of coldl, j), S executes a job of colatk

Note that Distribute is an online algorithm.

10

4.2 Analysis

Lemma 4.1 If there exists an offline scheduléfor I, then there exists an offline scheddlefor I’ that is resource
competitive withl".

Proof. See Section 4.3.]

Lemma 4.2 The cost incurred by is at most that incurred bg’.

Proof. SincesS replaces colof?, j) with color ¢, the reconfiguration cost incurred Byis at most that incurred bg’.
Since the number of jobs executed by equals the numbe¥, j) jobs executed by’, hence the drop cost incurred by
S equals that incurred bg’. Hence, the lemma follows.]

Theorem 2 Algorithm Distribute is resource competitive fk | 1 | D, | D,], where eachD, is a power of2.

Proof. Suppose there exists an offline schedllfor I. By Lemma 4.1, there exists an offline schedIildor I’ that is
resource competitive witl’. By Theorem 1, the schedul¥, that is, the schedule given by algorithiv. RU-EDF for
I’, is resource competitive with”. By Lemma 4.2, the cost incurred % that is, the schedule obtained by algorithm
Distribute forI, is at most that incurred b§’. Hence,S is resource competitive with' and the theorem follows. m

4.3 Proof of Lemma 4.1

In this section, we use the definitions of blocks and slotsckvare defined in Section 3.3. We sort slots in ascending
order of resource indices and then in ascending order ofroimd indices, where mini-rounds are defined in Section 3.3
For any schedule, any delay boung and any nonnegative integér we define a resourck to be (S, p,)-
monochromatidf resourcek is configured with one color throughowlock(p,) in S, and (S, p,7)-multichromatic
otherwise. An(S, p, i)-monochromatic resourdeis defined to bé.S, p, i, /)-monochromatidf resourcek is configured
with color ¢ throughoutblock (p,) in S.
In the following, we introduce an algorithm Aggregate thaltds an arbitrary schedufe as input, and generates a
schedul€el” with three times the resourcesBf For convenience, with each resoufkc T, we associate resourcgs,
3k + 1, and3k + 2 in T, referred to as resourdg, 0), (k, 1), and(k, 2), respectively. We us&’, ; andY,, ; to denote
the the set of resources that i p, i)-monochromatic andr’, p, i)-multichromatic, respectively. We defin€) ; to be

{resourcgk,0), (k,1), and(k,2) | resourcek € X, ;}

andY, ; to be
{resourcegk, 0), (k,1), and(k,2) | resourceék €Y, ;}.

We defineM,, ; , to be
{resourcegk,0) | resourcek is (T, p, i, £)-monochromati¢.

For any resourcék, 0) in M, ; ¢, we define its-levelin block(p, i) to be the largest delay bougdsuch that resource
is (T, ¢, j)-monochromatic, wherélock(q, j) encloseslock(p,). Resources i, ; , are ranked in descending order
of T-levels inblock(p,).

To constructl”, Aggregate starts with an empty schedule and schedulestallgxecuted b¢" by proceeding in
ascending order of delay bounds. For a certain delay beuidigregate proceeds block by block in increasing order
block indices. For a certain block gf Aggregate proceeds in an arbitrary order of colors wittagddloundp. Now we
describe Aggregate for any delay boumdany blocki of p, and any colo¥¢ with delay boundp.

First, we label the resources M,, , , from 0 to | M, ; ;| — 1 as follows. Ifi = 0, we label resources if/,, ; , from
0to |M, ;.| — 1 arbitrarily. Otherwise, for any resourdesuch that resourcg, 0) is in both M, ; , andM,, ;1 ¢, we
let resourcek, 0) inherit its label in block(p, ¢ — 1); we then give the remaining labels iy | A1, ; ¢|) to the remaining
resources invf, ; ,, one label per resource.

Second, we partition the set of colbjobs executed b in block(p, i) into groups of size (one of the groups can
have size less thay).

Third, we assign groups of coldrto the resources i/, ; , in descending order of group size and in descending
order of resource ranks, one group per resource.

11

Fourth, we determine the schedule of resource¥ljy , in block(p, i) as follows. For any resourdg;, 0) in M, ; s
to which we assign a groufd, we executeélU| color (£, j) jobs continuously on resour¢é, 0) in block(p,), and then
mark all slots on resourdg:;, 0) in block(p, i) as occupied, whergis the label we give to resour¢é, 0) for block(p, 1)
in the first step.

Fifth, we sety = | M, ; »|. While there is at least one group not assigned yet, we pertfioerfollowing steps.

1. We pick an arbitrarys such that resourcg, 0), (k, 1) and(k, 2) are inY,, and there are at leagtfree slots in
block(p, 1) on them (we will show such exists in Lemma 4.4).

2. LetU be the group not assigned with the largest size (breakisgatieitrarily). We assigiy to resourcgk, 0),
(k,1) and(k, 2), executdU| color (¢, q) jobs in the first freéU| slots inblock(p, i) on resourcék, 0), (k,1) and
(k,2), and incremeng.

Lemma 4.3 The schedul&” is a schedule foi’.

Proof. By the construction of’ and7”, it is not hard to see that the jobs executed/Bys a subset of the jobs i, the
input associated witli’. Hence the lemma follows. [

Lemma 4.4 For any delay boungh and any nonnegative integérwhile algorithm Aggregate works on the schedule of
jobs with delay boung in block(p, i), there exists such that resourcék, 0), (k, 1) and(k,2) are inY, ; and there are
at leastp free slots inblock(p, i) on these three resources.

Proof. We fix our attention on the process of scheduling jobs witlagéloundp in block(p,).

First, we show that all jobs scheduled &tvock(p, i) in or before this process are executedinck(p,i) in T. To
see that, we observe that (1) for any delay boyrahd any nonnegative integgrall jobs of delay bound scheduled
to block(q, j) are executed iblock(q, j) in T; (2) in or before this process, only jobs of delay bound at tpoare
scheduled. The claim follows from these two observationd,the fact that each delay bound is a powe?.of

Second, we show that the number of jobs we schedule on resoin&’ . in block(p, i) is at least that executed on
resources iX, ; in block(p,) in T. Itis obvious that the claim holds forJobs with delay boyndt remains to show the
claim for jobs with delay bound less thanLet g be any delay bounds less than_et j be any nonnegative integer such
thatblock(q, j) C block(p,1). Let color be any color with delay boung Letr be the number of colof jobs arrive in
block(q, j). We defineX, ; , to be the(T, ¢, 7, ¢)-monochromatic resource. By the way we schedule cbjobs, we fill
resources iV, ; , with color/ jobs in descending order @f-levels inblock(q, j). By definitions ofl -levels, thel-level
of any resource iV, ; , N X}, ; in block(q, j) is greater than that of any resourcelify ; ,NY, ; in block(q, j). Hence,
the number of colof scheduled on resourcesid, ; , N X/ ; in block(q, j) is min (g - |Mg.je N X1’”| ,7). Itis easy to
see that the number of coléscheduled on resourcesi, ; NX, ; in block(q, j) is atmostmin (q - | X ;e N Xy 4|, 7).
By definition of X, ;, Xp i Mg i, anquM, | Xq.56 N Xpi| =]M e N XI’“] Hence, the number of coldrjobs
scheduled on resourcesM” ¢N X, ; in block(q, j) is at least that executed on resourceX(iyy; (N X, ; in block(q, j)
in T'. By definition of X, ;, X, ¢, and the fact that colaris associated with delay bougdno color/ jobs are executed
on resources itX,, ; \ X, ;¢ in block(q, 7). Hence, the claim holds for coldrjobs in block(q, j). Summing up over all
{’s, 7's andq’s, the claim follows.

From the above two steps, we conclude that the number of jowsdsiled inY ; in block(p,) is at most that
executed irY), ; in block(p, i) in T that is, the number of jobs scheduledvif; in block(p, i) is at mostp - [Y,, ;|. Since
the total number of slots that are marked as occupiadinis at least the - | ;|, and|Y ;| = 3|Y},;|, we obtain that

at least} of the slots iny, ; are free. Hence the lemma follows. |

Lemma 4.5 The drop cost incurred by” is the same as that incurred by,

Proof. It is sufficient to show that, for any delay boupédnd nonnegative integeérthe jobs of delay boungd executed
by T in block(p, i) are executed b¥”’. By Aggregate, we intend to schedule all jobs of delay bouesecuted byl" in
block(p, 1), itis sufficient to show that whenever we schedule a grouplo$ jof delay boung, there are enough slots
in the target resources. Itis not hard to see that the jobglafcound» scheduled toX;, ; can find enough slots in the
target resources. By Lemma 4.4, we conclude that the jobslafdoundp scheduled t , can find enough slots in
the target resources, too. Hence, the lemma follows.]

Lemma 4.6 The reconfiguration cost incurred # is at most a constant factor of that incurred By

12

Proof. We define a reconfiguration ifi’ to be aspecial reconfiguratioiif the reconfiguration is made on the boundary
of block(p, i) on resources i, ; ¢, for anyp, ¢ and¢. For any groufd’ of jobs with delay boung that are executed in
block(p, i), we definel to be a(p, i)-multichromatic group iU is assigned to resources}f ;.

We first bound the cost incurred by special reconfiguratioRi an arbitrary delay boung and a nonnegative
integer:. We consider special reconfigurations on the boundary tbeck (p, i) andblock(p,i + 1). Itis not hard to
verify that if resourcet is (T, p, i,)-monochromatic, then resour¢k, 0) is (17, p, i, (¢, j))-monochromatic, for some
nonnegative integef. Hence, it is sufficient to bound the reconfiguration cosuined byT" due to the relabeling of
resources inJ,Y, ; ,, whereY,, ; , is the set of resources that are in bdth, ; , and M, ;11 ,. Fix any color/. Let
p.i.¢ be the number ofT’, p, i, £) resources. Leg, ; , be the number ofT, p, 7, £) resources with labels at least; 1 ¢
in block(p,4). Itis not hard to verify that the number of resourcesYi; , that change labels frorblock(p, i) to
block(p,i+1) is at mosty, ; ¢, Which is in turn at mosinax(0, rp, ;. ¢ — 7p,i+1,¢). SUMming up over all's, we obtain that
the number of resources that change labels fédoak (p, 7) to block(p, i + 1) is at most the number of reconfigurations
on the boundary betwedrock(p, i) andblock(p,i + 1) in T. Summing up over alp’s andi’s, the cost incurred by
special reconfigurations is at most the reconfiguration icasirred by7.

We then bound the cost incurred by nonspecial reconfiguratio the following three steps. First, we associate
6A units of credit with each reconfiguration . Second, we show that we can spread the credit so that(gath
multichromatic group get6A units of credit, for any delay boung and any nonnegative integéras follows. By
the way we form groups and the fact that we can execute at pjudis on a resource iblock(p,), the number of
(T, p,i)-multichromatic resources is at least the numbe(gf)-multichromatic groups. Since there is at least one
reconfiguration on eactil’, p, ¢)-multichromatic resource ihlock(p,), hence the claim follows. Third, we show that
the cost incurred by nonspecial reconfigurations can be deaiby the total credit associated with the multichromatic
groups as follows. For each multichromatic grolipof jobs with delay boung that are executed iblock(p, i), we
use2A units of credit to pay for the reconfigurations at the begignand end of/ in 77, and4A to pay for the
reconfigurations caused by the wrapping around when the ebldd: (p, 7) is encountered while scheduliig Hence
the cost incurred by nonspecial reconfiguration'ins within a constant factor of the reconfiguration cost imedrby
T.

Hence, the lemma follows. [

Lemma 4.1 follows from Lemmas 4.3, 4.5, and 4.6.

5 Our Main Result

In this section, we solv@A | 1 | D, | 1], which is characterized by a fixed configuration cdsta unit drop cost,
per-color delay bound,, and non batched arrivals (requests can arrive at any round)

To simplify the presentation, we focus on the special caserevbachD, is a power of2. The special case is solved
by a reduction tdA | 1 | D, | Dy], which is solved in Section 4. For any colosuch thatD, = 1, jobs of color¢ are
already batched. Hence, throughout this section, we asgime 1, for any color?. Section 5.1 and Section 5.2 give
the algorithm and analysis for the reduction, respectivielysection 5.3, we comment on how to extend our solution for
the special case to arbitrary delay bounds.

5.1 Algorithm VarBatch

For any delay boungd, we definehalf-blocksof delay bound as follows. For any nonnegative integehalf-blocki of
delay boundp, denoted by:alfBlock(p, i), is the£ rounds starting from round- £.

Algorithm VarBatch takes an input sequencéor [A | 1 | D, | 1], where eactD; is a power of2, and proceeds in
the following two steps. First, we construct an inptifor [A | 1 | % | %] by delaying any jolx of delay bound that
arrives inhalfBlock(p, i) until halfBlock(p,i + 1), and restricting the execution ofto halfBlock(p,i + 1). Second, we
apply algorithm Distribute on’ to obtain the final schedule.

Note that algorithm VarBatch is an online algorithm.

5.2 Analysis of VarBatch

Consider any delay boundand any johr of delay boundp. Let x arrive in halfBlock(p,i). We say the execution af
is early if x is executed irhalfBlock(p,), punctualif x is executed irhalfBlock(p,i + 1), andlateif x is executed in

13

halfBlock(p,i + 2). We define a schedulg to beearly (resp. late) if all job executions inS are early (resp., late). We
define a schedul§ to bepunctualif all job executions inS are punctual.

Lemma 5.1 For any input sequence and any early offline schedule with reconfiguration cos€' and one resource,
there exists a punctual schedufiéthat executes all jobs executed $yvith three resources and incurs a reconfiguration
cost ofO(C).

Proof. Given S, we constructs’ in the following three steps. First, we identify a set of j@sspecialjobs as follows.
For any delay boung, any color? with delay boung and any nonnegative integgtif color £ is configured throughout
halfBlock(p, i) andhalfBlock(p,i + 1) in S, we label all colo¥ jobs executed ithalfBlock(p,) in S as special.

Second, we schedule special jobs on resoQras follows. For any colof and special jolx of color ¢ executed in
roundj in .S, we executer in roundj + % on resourcé of S’.

Third, we determine the schedule of nonspecial jobs on resduand?2 in ascending order of delay bounds. For
any delay boung and any nonnegative integgrwe determine the schedule of nonspecial jobs of delay bauind
halfBlock(p,i) in an arbitrary order of colors as follows. For any colowith delay boundp, let X, be the set of
nonspecial jobs of colot executed imalfBlock(p, 1) in S. We schedule jobs i&X, in the first free slots on resourde
and2 in halfBlock(p,i + 1), where slots are defined in Section 3.3.

We need to show the following properties $f. (1) all job executions irb” are punctual; (2) the drop cost incurred
by S’ is the same as that incurred I8y (3) the reconfiguration cost incurred t$/ is at most a constant factor that
incurred bys.

By the way we schedule jobs 7, for any delay boung and nonnegative integer integemny job of delay bound
p executed irhalfBlock(p,i+ 1) in S’ arrives in blockhalfBlock(p, i). By definition of punctual executions and the fact
thatS is an early schedule, all job executions3hare punctual, that is, (1) holds.

To show (2), itis sufficient to show that any job executecblig executed bys’. It is straightforward that any special
job executed bys is executed bys’. In the following, we show that any nonspecial jobs execled is executed by
S’. It is not hard to verify that, for any delay boundand any nonnegative integér nonspecial job scheduled in
halfBlock(p,i + 1) in S” are executed inalfBlock(p, i) or halfBlock(p,i + 1) in S, hence with two resources, we can
execute all nonspecial job scheduleditdfBlock(p,i + 1) in S’. Summing up over alp’s andi’s, we obtain that any
nonspecial job executed t#/is executed bys’. Therefore, (2) follows.

It is straightforward that the reconfiguration cost incdri@n resourcé) of S’ is at most the reconfiguration cost
incurred byS. Now we show how to bound the reconfiguration cost incurredemourcel and 2 of S’ with the
accounting method in the following three steps. First, weoamte12A units of credit with each reconfiguration in
S. Second, we show that we can spread the credit such that eagh gets at leastA units of credit, where a group
is a continuous sequence of nonspecial jobs of the same £atoa half-block of D, in S, as follows. For each
reconfiguration from colof to color ¢’ on a resourcé;, we give4A units of credit to the group of cola¥ scheduled
on resources immediately after the reconfiguration tdock (D, 7); we give4A units of credit to the group of coldr
scheduled on resourdeimmediately before the reconfiguration bfock(Dy, i); we give4A units of credit to the last
group of color¢ scheduled on resourdein block(Dy,i — 1); where the reconfiguration incurs iock(Dy, 7) and in
block(Dy, 7). Third, we show that the total credit associated with theugeocan pay for the reconfiguration cost on
resourcel and2 in S’ as follows. For each groug of color ¢, we use2A units of credit to pay for the beginning and end
of U in §’, and2A to pay for the reconfigurations caused by the wrapping areumeh the end of the current half-block
of Dy is encountered while schedulidg Hence, (3) follows.

Therefore, the lemma follows.]

The following lemma can be proved with a proof similar to tfmtLemma 5.1 and hence omitted here.

Lemma 5.2 For any input sequence and any late offline schedulg with costC' and one resource, there exists a
punctual scheduleS’ that executes all jobs executed Bywith three resources and incurs a reconfiguration cost of
o(0).

Lemma 5.3 For any inputo for [A | 1 | D, | 1] and any offline schedulg for o, there exists a punctual scheduié
that is resource competitive withl.

Proof. SupposeS usesm resources. Consider any integesuch thatd < & < m. Let S, denote the schedule of
resourcek in S. Let Cj, denote the cost incurred by,. Let Sy, Sk1, and Sk denote the schedule obtained by
retaining only the early, punctual, and late executionSjnrespectively. Obviously, the reconfiguration cost inedrr
by each ofSy, o, Sk,1, andSy, o is at mostCy.

14

By Lemma 5.1, there exists a punctual schedﬂjgj that executes all jobs executed By o with three resources
and incurs a reconfiguration cost©OfCy). By Lemma 5.2, there exists a punctual schediflg that executes all jobs
executed byS;, » with three resources and incurs a reconfiguration cog?(@¥;). Hence, all jobs executed I8, are
executed by} , Sk,1 andSy, ,, and the total reconfiguration cost incurred8y,,, Si,1, ands;, , areO(Cy).

Given 7m resources, we constru§t as follows. We use resourc&é to 7k + 6 to execute the jobs executed on
resourcek in S. We useS;, , in resources fronTk to 7k + 2, Sy 1 in resourcesk + 3, S;. , in resources fronTk + 4 to
7k + 6. By the above argument, all jobs executedjnare executed on resources fr@imto 7k + 6 in S’, and the total
reconfiguration cost incurred by’ on resources fronik to 7k + 6 are O(Cy). Summing up over alk’s, the lemma
follows.]

Theorem 3 Algorithm VarBatch is resource competitive fdx | 1 | Dy | 1].

Proof. Consider any input for [A | 1 | D, | 1]. Suppose there exists an offline schedtiior o with costC' andm
resources. By Lemma 5.3, there exists a punctual schetidler o with costO(C) andO(m) resources. Let’ be a
request sequence obtained by delaying the arrival of edch b delay bound that arrives inalfBlock(p, i) in o until
halfBlock(p, i + 1) and restricting the execution efto halfBlock(p,i + 1). SinceS’ is punctual, there exists an offline
schedules” for ¢’ that behaves exactly &&.

The sequence’ can be viewed as an input sequence[fdr| 1 | 2¢ | Be]. By Theorem 1, algorithm Distribute
is resource competitive fd\ | 1 | 2¢ | Z¢]. Hence, algorithm Distribute generates an online schefifier o’ that
is resource competitive with”’. ThereforeI" incurs costO(C') with O(m) resources. Fos, algorithm VarBatch first
transformso into ¢’ by delaying the job arrivals and then applies algorithm iibste to generate schedutefor o”.
The scheduld’ is also the final schedule for.

In summary, for any input for [A | 1 | D, | 1], if there exists an offline schedufe for o with costC' andm
resources, algorithm VarBatch generates a schefldite o with costO(C) andO(m) resources. Therefore, algorithm
VarBatch is resource competitive foh | 1 | Dy | 1].]

5.3 Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay boundsiiaightforward. The basic idea is as follows: for any delay
boundp such tha’ < p < 27+, and any jobr with delay boundp that arrives inkalfBlock(27~1,4), we delay the
arrival of until halfBlock(2’~!,i + 1) and restrict the execution of in halfBlock(2’~!,i + 1). The proof of the
extended solution is similar as given in Section 5.2.

References

[1] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analys8ambridge University Press, Cam-
bridge, 1998.

[2] P. Brucker.Scheduling AlgorithmsSpringer-Verlag, Berlin, 2001.

[3] P.Brucker, M. Y. Kovalyov, Y. M. Shafransky, and F. WernBatch scheduling with deadlines on parallel machines.
Annals of Operation83:23-40, 1998.

[4] A. Chandra, W. Gong, and P. Shenoy. Dynamic resourceaiion for shared data centers using online mea-
surements. IfProceedings of the ACM SIGMETRICS International Confezest Measurement and Modeling of
Computer Systempages 300-301, June 2003.

[5] J. S. Chase, D. Anderson, P. Thakar, A. Vahdat, and R.@&©dylanaging energy and server resources in hosting
centers. InProceedings of the 18th ACM Symposium on Operating SystanmspRes, pages 103-116, October
2001.

[6] M. Dertouzos. Control robotics: The procedural contodlphysical processors. IRroceedings of the IFIP
Congresspages 807-813, 1974.

[7] B. Kalyanasundaram and K. Pruhs. Speed is as powerfuhasayance.Journal of the ACM47:617—-643, 2000.

15

[8] R. Kokku. ShaRE: Run-time System for High-performance Virtualizegt®&s PhD thesis, Department of Com-
puter Science, University of Texas at Austin, August 2005.

[9] R. Kokku, T. Ricte, A. Kunze, J. Mudigonda, J. Jason, and H. Vin. A case fortime-adaptation in packet
processing system&CM SIGCOMM Computer Communication Revi@d:107-112, 2004.

[10] C. Liu and J. Layland. Scheduling algorithms for multigramming in a hard real-time environmedburnal of
ACM, 20:46-61, 1973.

[11] N. Megiddo and D. S. Modha. Arc: A self-tuning, low ovedd replacement cache. Rroceedings of the 2nd
USENIX Conference on File and Storage Technolggiages 115-130, 2003.

[12] E. J. O'Neil, P. E. O'Neil, and G. Weikum. The LRU-K pageptacement algorithm for database disk buffering.
In Proceedings of ACM SIGMQIpages 297-306, May 1993.

[13] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimahé-critical scheduling via resource augmentatigigo-
rithmica, pages 163-200, 2002.

[14] C. G. Plaxton, Y. Sun, M. Tiwari, and H. Vin. Reconfigulabesource scheduling. Froceedings of 18th ACM
Symposium on Parallelism in Algorithms and Architectudedy/August 2006. To appear.

[15] D. D. Sleator and R. E. Tarjan. Amortized efficiency &t lupdate and paging ruleSommunications of the ACM
28:202-208, 1985.

[16] T. Spalink, S. Karlin, L. L. Peterson, and Y. Gottlieb.uiling a robust software-based router using network
processors. [Proceedings of the 18th ACM Symposium on Operating Systentgdres, pages 216—229, October
2001.

[17] A. Srinivasan, P. Holman, J. Anderson, S. K. Baruah, &ndaur. Multiprocessor scheduling in processor-based
router platforms: Issues and ideas.Hroceedings of the 2nd Workshop on Network Processetsruary 2003.

[18] H. Vin, J. Mudigonda, J. Jason, E. J. Johnson, R. Ju, Aiz€yand R. Lian. A programming environment for
packet-processing systems: Design considerationsrdneedings of the 3rd Workshop on Network Processors
and ApplicationsFebruary 2004.

A Analysis of ALRU

In this section, we show tha&L RU is not constant competitive even with a nonconstanbfaaiowup in the number of
resources.

Let OFF denote an arbitrary offline algorithm. We give OFF oesource (the argument can be easily extended to
the general case that OFF has more than one resource). Retalle giveALRU n resources. Considéy colors with
a delay boun@’ and one color with a delay bouri¥, where2* > 2/+1 > nA. For convenience, we refer to each
color with a delay boun@’ as a short-term color and the color with a delay bo@fds a long-term color. The input
sequence proceeds 2 rounds as follows. We receiv& jobs for each of the short-term color every integraléf and
2% jobs for the long-term color at the very beginning.

It is not hard to verify that the timestamp of any short-temioc is always at least as recent as that of the long-term
color. Hence ALRU caches all short-term colors at the beginning of the sddotegral of2/ and then keeps the same
configuration afterwards. The reconfiguration cost inaditog ALRU is nA. The drop cost incurred bALRU is at
least2”.

Consider an offline algorithm OFF that caches the long-teslar¢hroughout. The reconfiguration cost incurred by
OFF isA. The drop cost incurred by OFF25—7~1nA. Hence, the competitive ratio dfLRU is at least

nA + 2F
A+ 2k=i=1p A"

Because® > 27! > nA, we obtain that the competitive ratioﬂk(%), which is not a constant wheiis sufficiently
large.

16

B Analysis of EDF

In this section, we show that EDF is not constant competéixen with a nonconstant factor blowup in the number of
resources.

Let OFF denote an arbitrary offline algorithm. We give OFF oggource (the argument can be easily extended to
the general case that OFF has more than one resource). Retalle give EDF» resources. We considér+ 1 colors
as follows: a color with a delay bouritd, a color with a delay boun@*, a color with a delay boun#***, ..., and a
color with a delay bound**=—1, where2* > 2/ > A > n. The input sequence proceed2fit = ! rounds as follows.
For the color with a delay bound @f, we receiveA jobs for each integral multiple ¥, until round2*—!. For a color
with a delay bound 02"+, for 0 < p < 5, we receive2*+7~1 jobs at the very beginning.

For the above input sequence, EDF first cachesgtioelor with the smallest delay bounds, and then executes jobs
for the color with the largest delay bound whenever any rembecomes idle. The reconfiguration cost incurred by
EDF is at lease* 71 A.

Consider an offline algorithm OFF that caches the color withekay bound of2’/ throughout rounds frond to
2k=1_1, and caches the color with a delay boun@/f? throughout rounds frod* 7~ to 257 —1, where0 < p < Z.
Algorithm OFF does not incur any drop cost and incurs a regomdition cost of 2 + 1) A.

Hence the competitive ratio of EDF is at Ie&%f%, which is not a constant § — j is sufficiently large.
2

17

