
Encoding and Compression for the Devices Profile for Web Services

Guido Moritz1, Dirk Timmermann1, Regina Stoll2

University of Rostock
1 Institute of Applied Microelectronics and CE

2 Institute of Preventive Medicine
18055 Rostock, Germany

guido.moritz@uni-rostock.de

Frank Golatowski
Center for Life Science and Automation

CELISCA
18119 Rostock, Germany

frank.golatowski@celisca.de

Abstract—Most solutions for Wireless Sensor Networks (WSN)
come equipped with their own architectural concepts which raise
the problem of possible incompatibility of computer networks
and the WSN. Often gateway concepts are used to overcome this
problem. But this is not the best solution on the long term. Other
research fields and industrial domains are heading for universal
cross domain architecture concepts based on internet
technologies that are more mature and better understood. The
IETF 6LoWPAN working group provides the groundings for
standardized communication using existing network protocols
like IPv6 also in low power radio networks. A big challenge when
deploying further application layer network protocols on top of
6LoWPAN is the message size of existing - mostly XML
based - protocols which does not meet the resource requirements
of deeply embedded devices without further research efforts. This
paper presents different data compression techniques for the
Devices Profile of Web Services (DPWS) to be applied in
6LoWPAN networks. Therefore, we analyze a realistic scenario.
We determined 18 message types in the scenario and compressed
and encoded all messages by using existing schemes and tools.
For the first time, we also investigate on the Efficient XML
Interchange (EXI) format for DPWS.

SOAP; Compression; Encoding; Web Sevices for Devices;
DPWS; Devices Profile for Web Services

I. INTRODUCTION

The deployment of matured and well-known internet
protocols like IP, TCP, and UDP is a proper approach to
overcome interoperability problems of networking devices.
Especially deeply embedded devices, with very limited
resources like computing power, power supply, and only tens
of kB RAM and ROM, were excluded from this standardized
communication due to missing tailored concepts, standards,
and implementations. Thus, the Internet Engineering Task
Force (IETF) has established the 6LoWPAN working group [1]
in accordance to the IPv6 specification. The focus of
6LoWPAN is to compress IPv6 headers to be sent on top of
IEEE 802.15-based technologies, especially IEEE 802.15.4 [2].
Thereby 6LoWPAN establishes the basis for TCP and UDP
data transmissions in battery powered wireless sensor
networks, driven by deeply embedded devices with tens of kB
RAM and ROM. These deeply embedded devices are the target
platforms of this paper.

But the applicability of application layer protocols that
meet the resource constraints is still a big challenge. High
research efforts are made to develop cross domain
communication middleware basing on architectural concepts

like REST (Representational state transfer) and Service-
oriented Device Architectures (SODA) [3] and on technologies
like UPnP (Universal Plug and Play), JINI, and DPWS
(Devices Profile for Web Services). In August 2008 a technical
committee (TC) at OASIS was formed for the “Web Services
Discovery and Web Services Devices Profile” (WS-DD) [5].
WS-DD standardizes the lightweight subset of the Web
services protocol suite that makes it easy to find, share, and
control devices on a network. The work of this TC is based on
the former DPWS, WS-Discovery and SOAP-over-UDP
specifications. Focus of this paper is to apply DPWS also in
6LoWPAN networks.

However, to deploy DPWS on deeply embedded devices, it
is necessary to find solutions for message size reduction by a
tailor made data compression or encoding. This paper presents
a wide survey and comparison of existing techniques. In
contrast to existing investigations, this paper uses messages
taken from a realistic deployment scenario of DPWS
messaging and includes the evaluation of the Efficient XML
Interchange (EXI) encoding and Fast Infoset (FI) in
schema-informed mode.

II. MESSAGE FORMAT AND HTTP COMPRESSION

The Devices Profile for Web Services (DPWS) bases on
well-known protocols and adds several extensions to enable
Web services based communication for embedded devices. In
accordance to client/server architecture as widely used by web
applications, DPWS also specifies two different roles: devices
and clients. A DPWS device hosts zero or more Hosted
Services and one Host Service. The Host Service represents the
device itself and announces the Hosted Services which are the
endpoint services. Every Hosted Service may have
miscellaneous operations. A core feature of DPWS is the
automatic discovery of devices and their Hosted Services, even
in a dynamic changing environment. The complete discovery
process is described more detailed in [6].

In general, DPWS requires two different transport patterns.
During the discovery phase, messaging requires group
addressing (multicast). This allows DPWS devices to announce
their presence in or their leaving of a network and DPWS
clients to discover unknown devices without any specific
knowledge about network and/or devices infrastructure.
Because of the absence of a direct end-to-end communication,
multicast messages are carried by the UDP transport protocol.
In contrast to the messaging during discovery phase, DPWS
requires direct end-to-end communication pattern between
clients and devices, e.g., for service invocation and eventing.

For data transport and representation, the SOAP 1.2 protocol
[7] is applied. SOAP in turn uses XML based data
representation and XML Schema [8] for encoding and
document structuring. The SOAP envelopes can be carried by
various underlying protocols (binding). The SOAP
specification defines the SOAP-over-HTTP binding [9]. The
HTTP protocol in turn is bound to the TCP protocol. Because
the former described non-discovery specific messages in
DPWS need direct end-to-end communication, for these
message types the SOAP-over-HTTP binding is used due to
compatibility with existing Web services mostly using
SOAP-over-HTTP. For the discovery in DPWS, where UDP
multicast is required, SOAP-over-HTTP is not applicable.
Hence, a new SOAP-over-UDP binding is specified by the
OASIS WS-DD technical committee [10].

In summary of the above described message types,
transport schemes and representation formats, a differentiation
has to be made between SOAP-over-UDP multicast messages
and SOAP-over-HTTP messages carried over TCP, when
facing data encoding and compression for DPWS messages.
SOAP-over-UDP leaves the SOAP envelope unchanged and
the only difference to SOAP-over-HTTP messages is the
missing HTTP header (see WS-Discovery [10]). As specified
in the SOAP-over-HTTP binding and the according HTTP
specification [11], the following HTTP header fields are
required in a HTTP request:

 HTTP Method, URI and Protocol
e.g.: POST /{URI} HTTP/1.1
The first line specifies the HTTP method. All DPWS
SOAP-over-HTTP messages are using the POST
method. The URI format is defined in [12].

 Target host transport specific address and port
e.g.: Host: {IP address }:{port}

 Content-Type: application/soap+xml; charset=utf-8
All XML SOAP messages require this Content-Type
definition.

 Content-Length: {Length of SOAP Envelope in
bytes}

 Connection: {connection-token, e.g. close|keep-alive}
 SOAPAction: "{Action URI}"

This header field is mandatory in the SOAP-over-
HTTP binding, but may be empty.

For the corresponding HTTP response, the following HTTP
headers are required:

 HTTP/1.1 {Status Code} {Status Code Meaning}
e.g.: HTTP/1.1 200 OK
The HTTP status codes can be used to identify
problems during message parsing and processing, e.g.
Additionally, the SOAP envelope contains SOAP
specific error messages.

 Server: {Server Type/Name}
 Content-Type: application/soap+xml; charset=utf-8

All XML SOAP messages require this Content-Type
definition.

 Content-Length: {Length of SOAP Envelope in
bytes}

 Connection: {connection-token, e.g. close|keep-alive}

Additionally to the presented header fields, own header
fields for HTTP request and response can be defined for
domain or vendor specific extensions.

Most of the required HTTP header fields do not provide
additional useful information due to the usage of
WS-Addressing in DPWS. Hence, nearly all required
information are carried in the SOAP envelope and are at the
best redundant, at worst not required in the HTTP header. All
DPWS messages use the POST method of HTTP 1.1 and the
resource address is carried in the SOAP envelope. The target
host address and port can be derived from the transport layer in
most implementations. The content type is defined in the
SOAP-over-HTTP binding and is stable. Connections can be
tokenized as keep-alive, but applications should not rely on this
behavior. The SOAPAction field is mandatory, but may be
empty. The server HTTP header field is also mandatory, but
not analyzed in most implementations. Even in error or fault
cases, SOAP envelopes contain information about details and
the HTTP status code might be not required. To sum up, out of
the vast number of HTTP header fields, the content length in
bytes, the identification of the payload format (SOAP envelope
and encoding), and in some scenarios the HTTP status codes
are required only. This information can be represented in a
much more efficient binary encoding as in compliant HTTP
headers. This would have a big impact on the HTTP related
overhead as described in section IV.

III. SOAP COMPRESSION AND ENCODING SCHEMES

Currently, no compression schemes for the HTTP protocol
and the HTTP header fields are widely used. Within the IETF
6LoWPAN working group, an active document is published
describing a specific 6LoWPAN HTTP compression called
Chopan - Compressed HTTP Over PANs [13]. Nevertheless,
this document is not complete and fully matured in the time of
writing this paper. To sum up, only the SOAP envelope part
within DPWS messages can be compressed using specific
encoding and compression schemes, due to the absence of a
standardized HTTP header compression format.

For SOAP compression and encoding, several XML
specific and XML non-specific compressors and schemes exist.
This paper only concentrates on schemes which are open
solutions and which are not protected by a patent or any other
legal regulation. Hence, e.g., Adaptive SOAP [14] is out of
scope of this paper. Furthermore, the schemes have to be
implemented and thus not only a theoretical assumption on the
expected compression rate can be made, but measurements of
message size in a realistic scenario are possible. Hence, the
compression schemes XEBU [16], Exalt [17], and XGrind [18]
have to be left out. Some implementations exist, but are not
maintained any longer and could not be used for evaluations. In
the remainder of this section, potential schemes are briefly
described.

A. The WAP Binary XML

The WAP Binary XML (WBXML) [19] format is a binary
representation for XML based messages, to allow compression
in mobile networks. WBXML is specified by the Open Mobile
Alliance and is currently a W3C note. The WBXML format
requires previously defined structures and naming for tags and
attributes to be included in the WBXML specification. This

makes WBXML not applicable to be used for SOAP
compression due to not known message formats and arbitrary
naming.

B. Differnce encoding

Werner describes in his dissertation [15] a difference
encoding format. Out of the service describing WSDL files,
skeleton messages are generated. These skeleton messages are
embedded at compile time into the implementation. During
runtime, only the difference between these skeletons and the
full messages are transmitted. For deeply embedded devices
with only tens of kB RAM and ROM, difference encoding
cannot be applied. During run-time, the comparison of skeleton
message and difference document requires too much memory
(RAM), to store the messages during processing.

C. XMLPPM

The XML-Conscious PPM Compression (XMLPPM)
scheme is described by Cheney in [20], [21] and [22].
XMLPPM combines a general algorithm for text compression
with a SAX parser and the Prediction by Partial Match (PPM)
algorithm. The latter utilizes existing context information while
stepping through XML structures (e.g. specific SOAP envelope
format including SOAP header and SOAP body).

D. gzip and bzip2

In contrast to the other presented compression and encoding
schemes, gzip [24] and bzip2 [25] are not specific XML
schemes, but are already widely used in computer and network
applications, even by other existing HTTP based protocols.
Both compressors can be configured to allow the best ratio
between compression rate and required computing power. But
both algorithms are too heavy weight to be applied on deeply
embedded devices due to the leakage of memory and
processing power. Nevertheless, in section IV.C measurements
of both algorithms will be presented.

E. XMill

The XMill XML compressor was developed by Liefke et. al
in 1999 [26]. It was the first XML specific compressor that
could be used without specific knowledge about the XML
document structure. Therefore, the SAX based solution stores
events (structural information) and payload (data) in different
containers. The structural container items points to specific
items in the data container. This omits redundant data storage.
Liefke et al. promise a compression rate similar to that one of
raw bzip2, while requiring less computing time and reaching
similar compression times like the raw gzip algorithm. The
XMill scheme itself is not a pure binary format, but can be
converted into and thus the document size further reduced by
applying XML unspecific algorithms like gzip or bzip2 on the
resulting XMill containers.

F. Efficient XML Interchange (EXI)

The mission of the Efficient XML Interchange Working
Group [27] of the W3C is the development of “a format that
allows efficient interchange of the XML Information Set, based
on the conclusions of the XML Binary Characterization
Working Group”. As result of this working group the EXI
format is developed. EXI is the original Efficient XML format

of AgileDelta Inc, with a number of added features partly from
contributor candidates like Fast Infoset, Xebu, etc.

Because the EXI format is a dedicated XML compressor, it
also makes use of structural information and separates between
XML structure and payload data. For encoding into the EXI
format, string tables are generated. These tables have variable
length and indexes to tokenize and identify each occurred
string. The bit width of these indexes is also kept variable to
allow most compact data format. Other non-string payload data
like integer or date/time values are represented by defined
built-in binary formats. Recurring structure information fields,
e.g., closing tags, are also pre-defined. Because of the strict
separation of structure and data elements, after converting the
XML document in the EXI format, structure and payload
information can be reordered and arranged in a pattern to allow
similar structure and data items to be close to each other. This
in turn provides the best preconditions to apply compression
schemes after re-encoding which exploit repeated occurrence
of equal bit strings. For this compression, EXI is bound to the
Deflate algorithm [30].

Additionally to the separation of structure and data
information and the usage of structure information already
provided by XML in general, EXI is capable of assigning
further information for dedicated documents and document
types. These information are available through XML Schema
documents that are available along with XML based protocols
like SOAP and further WS-* specifications. The schema
documents provide an abstract description of layout of an XML
document representing the according protocols. EXI uses
standard XML schemas without further mark-ups or
annotations to specify additional information used for encoding
and decoding. The resulting format is called EXI schema-
informed.

A more detailed and comprehensible description of the EXI
format can be found in the EXI Primer [28].

During examining EXI in schema-informed mode, we
found two major improvements to be mentioned. DPWS points
to versions of WS-Addressing and WS-Eventing that are
inconsistent by their referring namespaces. For the
measurements presented in section IV of this paper, this
inconsistency was resolved. Furthermore, DPWS specifies well
defined values to be used as XML tag values (e.g., discovery
messages in wsa:Action field) or as attribute values. These
values can be included in the XML schema files as
enumerations, which has a considerable influence on the
resulting message sizes.

G. Fast Infoset

Fast Infoset (FI) [23] is a standardized binary representation
of XML documents. Strings are tokenized in FI at their first
occurrence. Redundancies within the strings are omitted
because the strings can be referenced among each others. Both
concepts are typical for XML specific compressors and similar
to EXI.

Additionally, FI also features schema-informed mode. As
difference to EXI, in FI it is possible to use schema-informed
mode without need for the decompressor to have access to the
schema. In this mode, only the data types are encoded in the
most compact binary format. FI also is capable of data
compression after re-encoding, but is not bound to a specific
compressor like EXI.

0

500

1000

1500

2000

2500

M
e

ss
ag

e
 S

iz
e

 in
 B

yt
e

XML

EXI

FI

HTTP

Figure 1. DPWS message sizes in XML, EXI, and FI format

IV. EVALUATION

A. Test Scenario

To evaluate the different existing compression and
encoding schemes for SOAP and thus for DPWS messaging,
we implemented a test scenario by using our WS4D-gSOAP
DPWS toolkit available at [29]. Because measuring other
performance parameters than message sizes is out of scope of
this paper, we recorded all message types of a scenario and
made an offline evaluation. We implemented the air
conditioner tutorial example already existing in the
WS4D-gSOAP toolkit, because this example provides all
possible message types and formats and reflects a realistic
scenario to be applied on deeply embedded devices. Deeply
embedded devices are not expected to provide complex
services and operations. More important than complex services
is the integration of this class of deeply embedded devices in an
existing networking infrastructure of resource richer devices.
Thus, the air conditioner example realizes basic functionalities
like invoking operations to read the current temperature or to
set a new target temperature to be kept by the air conditioner.
This example and the measured message sizes are only one
possible realization and are only used to evaluate existing
compression schemes. Other implementations and
measurements may vary. Scope of these measurements is a
qualitative comparison of the former presented schemes and
modes.

B. Message type classification

While examining and capturing possible message types and
their size, we identified 18 different message types that can be
separated in different groups:

 Discovery
Hello, Probe, Probe Match, Directed Probe, Directed
Probe Match, Resolve, Resolve Match, Bye

 Metadata Exchange
Get Metadata Device, Get Metadata Device Response

 Service Invocation
1-Way Service Invocation, 2-Way Service Invocation,
2-Way Service Response

 Eventing
Event Subscription, Event Subscription Response,
Event Delivery, Event Unsubscribe, Event Unsubscribe
Response

The discovery specific messages are characterized by using
partly multicast addressing. For metadata exchange a service
(not a device) may provide a WSDL file for service
description. Providing a WSDL is optional according to the
DPWS specification and omitted in our scenario. It is not
realistic that a deeply embedded device stores its own WSDL,
which requires much memory and is only significant at
development time for most Web services toolkits. The service
invocations are divided in 1-Way and 2-Way messages
whereas only 2-Way message require a response on a request.
Within the example it is also possible to use a push eventing
delivery mechanism in opposite to pull data by polling the
service. Therefore, clients can use a publish/subscribe pattern
for eventing in DPWS. For clarity, in the analyses we left out
event subscription management specific messages like
subscription status requests and lease time management.

C. Measurements

In section II, the general format of DPWS messages
consisting of SOAP envelopes which are partly embedded in
the HTTP protocol is described. Figure 1 gives an overview
about the recorded messages and their size on top of the
transport layer, separately for HTTP header and SOAP
envelope. Figure 1 also depicts best case compression for EXI
and FI for each message. The required header size for TCP,
UCP, and IP are not included in these measurements. The
6LoWPAN working group defines specific header compression
for IPv6 and UDP headers. A TCP header description is
currently not available but imaginable. Because the scope of

Figure 2. Summary EXI and FI
(numbers in brackets derived from table 1)

TABLE I. MESSAGE SIZE (SOAP ONLY)

Compressor Average
in byte

Average
in %

Minimum
in byte

Maximum
in byte

EXI 1 153,72 19,60 66,00 354,00
EXI 2 167,22 20,60 55,00 452,00
EXI 6 196,17 24,13 66,00 533,00
EXI 3 205,00 26,25 119,00 414,00
Fast Infoset 1 218,39 27,98 103,00 455,00
Fast Infoset 2 242,00 30,09 97,00 563,00
EXI 4 315,67 40,31 192,00 630,00
XMLPPM 425,22 55,16 274,00 749,00
gzip (C=9) 425,56 55,66 297,00 755,00
gzip (C=1) 437,44 56,99 300,00 799,00
Xmill (C=9) 459,39 59,78 303,00 824,00
Xmill (C=1) 463,72 60,18 304,00 852,00
EXI 5 467,77 59,64 234,00 1118,00
bzip2 (C=1) 474,78 61,82 315,00 852,00
bzip2 (C=9) 474,78 61,82 315,00 852,00
Fast Infoset 5 561,89 69,70 315,00 1301,00
XML 814,89 100,00 418,00 2089,00

1schema-informed (optimized) / compression with Deflate
2schema-informed (optimized) / without compression
3schema-informed (default) / compression with Deflate
4schema-less / compression with Deflate
5schema-less / without compression
6schema-informed (optimized) / without compression / byte aligned

this paper is the compression and encoding of DPWS messages
on top of 6LoWPAN protocols and the 6LoWPAN header
compression schemes vary, all layers below and including the
transport layer are not taken into account.

The table 1 presents the overall size of the compressed
SOAP envelope excluding the HTTP header. The averages are
computed out of all 18 message types. The average HTTP
header size of all messages is 147 byte (maximum 184 byte,
minimum 128 byte), keeping in mind that HTTP header is not
used for discovery messages using the SOAP-over-UDP
binding.

The measurements differentiate for EXI and FI between
schema-informed and schema-less mode. For schema-informed
mode, we used default schema files as published along with the
related specifications and additionally optimized versions of
these schemas, tailored for DPWS. Because main scope is to
investigate on a general compression for DPWS in 6LoWPAN
independent of application scenario, for the measurements no
additional schema information for the implemented exemplary
scenario was used. Furthermore, influence of compression with
Deflate after re-encoding is presented. FI is capable of other
compressors, but for comparability this paper presents FI only
with Deflate. A better compression rate could be achieved
using a PPM based compression, resulting in 23% average
compression rate. The implementation for FI used for these
measurements did not support for not preserving namespace
prefixes and for compact binary optimized representation for
uuids used, e.g., as message ids in DPWS. Each message id has
a size of 45 byte. Binary encoding of uuids would have a
considerable influence on the resulting message size. A
comparison of EXI and FI in the different modes is depicted in
figure 2.

Of particular importance is the influence of the Deflate
compression for EXI and FI. Deflate uses a window to
reference already occurred strings/data in the message. The
window size is by default defined to 32kB in [30]. Because the
resulting message size is far below 32kB, the complete
message most be cached while parsing and requires additional
memory. Using schema-informed mode with optimized schema
files, usage of Deflate has a minor influence on compression
rate for both EXI and FI.

The results show that there is no significant difference
between all compressors exclusive Fast Infoset and EXI.
Unexpected is the equal compression rate for bzip2 as the
compression factor has no influence on the resulting size. A

reason for this behavior could not be found. The similarity of
the resulting size of most of the compressors and formats can
be ascribed to the specific test scenario. Deployment of DPWS
on deeply embedded devices, which is the main scope of this
paper, results in simple and lightweight services and thus in
simple message structures. In the messages only few repeated
strings occur, which makes the compressors result in nearly the
same values. Non-XML specific compressors like gzip and
bzip2 also result in nearly the same compression rate, but
require much more resources.

For completeness, we also analyzed the influence of a
specific byte alignment option of EXI. The EXI format uses a
variable string table bit width. Most systems are optimized to
handle data in multiples of 8 bit. Thus, and for debugging
purposes, EXI allows the usage of a byte alignment option. The
string tables and all other structural information have a fixed
width of multiples of 8 byte in this mode and thus the payload
data can be processed easier. We analyzed this byte alignment
option with respect to our test scenario in schema-informed
mode with optimized schema files. Because of the above
discussed minor influence of Deflate and because focus of
applying byte alignment is to reduce parsing complexity, the
following values do not include Deflate compression. The
overall byte aligned messages in schema-informed (optimized)
mode without compression are on an average 3.5% bigger than
non byte aligned in the same mode. Hence, using byte aligned
mode to reduce parsing efforts is a reasonable solution.

Certainly the usage of all XML schema definitions on
deeply embedded devices is a big challenge. The size of all
used schemas is 27,2kB in XML format. This is far too much
do be embedded on deeply embedded devices directly. The
schemas have to be converted into a binary format at compile
time to reduce memory consumption. Additionally, the
performance requirements of EXI and FI, including and
excluding usage of schemata, have to be analyzed. These

analyses where not possible due to missing implementations
which meet the memory requirements of the target platforms.

V. CONCLUSION AND FUTURE WORK

This paper presents different XML specific and XML
non-specific compressors and their influence on message size
of the Devices Profile for Web Services (DPWS). Therefore a
test scenario was analyzed with 18 different messages
occurring in the test scenario. Main scope of the paper is the
SOAP compression to make DPWS applicable for deeply
embedded devices in 6LoWPAN network, which are
characterized by minimal resources like computing power,
limited power supply, and few tens of RAM and ROM. The
results show that most existing compressors suffer from the
simplicity of XML structures which are the results of non-
complex services deployed on the deeply embedded device.
Only the Efficient XML Interchange (EXI) and Fast Infoset
(FI) format provides a much better compression rate, because
of the usage of XML schema definitions to include further
structure information. Usage of compression after re-encoding
has a minor influence.

Further efforts most include performance evaluations and
resource requirements analyses of the presented schemas,
whereby main focus should be on EXI and FI.

ACKNOWLEDGMENT

This work has been achieved in the ITEA2 project
uSERVICE and OSAmI and has been funded by the German
Federal Ministry of Education and Research under contract
numbers 01|S0902F and 01|S08003I.

We would like to thank Noemax Technologies Ltd.
(http://www.noemax.com) for their considerable contribution
regarding Fast Infoset.

REFERENCES
[1] IETF, IPv6 over Low power WPAN (6lowpan), Technical report,

http://tools.ietf.org/wg/6lowpan/, 2008.

[2] IETF Network Working Group, Transmission of IPv6 Packets over
IEEE 802.15.4 Networks, RFC 4944, http://tools.ietf.org/html/rfc4944,
2008.

[3] Deugd, S. d., Carroll, R., Kelly, K., Millett, B., and Ricker, J., “SODA:
Service-Oriented Device Architecture,” IEEE Pervasive Computing, vol.
5, no. 3, 2006, pages 94-C3.

[4] (SOCNE 2008), Ginowan, Okinawa, Japan, 2008, pages 1381-1386.

[5] OASIS Web Services Discovery and Web Services Devices Profile
(WS-DD) TC, www.oasis-open.org/committees/ws-dd/, (2009)

[6] Guido Moritz, Elmar Zeeb, Steffen Prüter, Frank Golatowski, Dirk
Timmermann, Regina Stoll, “Devices Profile for Web Services in
Wireless Sensor Networks: Adaptations and Enhancements,” IEEE 14th
International Conference on Emerging Technologies and Factory
Automation (ETFA2009), In Proceedings in, La Palma, Spain, 2009.

[7] World Wide Web Consurtium (W3C) Recommondation, SOAP Version
1.2, Online, http://www.w3.org/TR/soap/, 2007.

[8] World Wide Web Consurtium (W3C) Recommondation, XML Schema,
Online, http://www.w3.org/XML/Schema, 2004.

[9] World Wide Web Consurtium (W3C) Recommondation, SOAP Version
1.2 Part 2, Online, http://www.w3.org/TR/2007/REC-soap12-part2-
20070427/, 2007.

[10] OASIS Web Services Discovery and Web Services Devices Profile
(WS-DD) TC, Online, http://www.oasis-open.org/committees/ws-dd,
2009.

[11] R.Fielding, et al, Hypertext Transfer Protocol .- HTTP/1.1,
http://www.ietf.org/rfc/rfc2616.txt, IETF RFC 2616, 1999.

[12] Berners-Lee, T., Fielding, R. and L. Masinter, Uniform Resource
Identifiers (URI): Generic Syntax and Semantics, RFC 2396, 1998.

[13] Frank, B., Chopan - Compressed HTTP Over PANs, IETF Networking
Group draft, 2009.

[14] Rosu, M.-C., “A-SOAP: Adaptive SOAP Message Processing and
Compression”, IEEE International Conference on Web Services
(ICWS2007), pp.200-207, 2007.

[15] Christian Werner, „Optimierte Protokolle für Web Services mit
begrenzten Datenraten,“ Dissertation, Logos Verlag Berlin, ISBN 978-3-
8325-1409-9, 2007

[16] Kangasharju, J., Tarkoma, S., Lindholm, T., “Xebu, A Binary Format
with Schema-Based Optimizations for XML Data,” International
Conference on Web Information Systems Engeneering (WISE2005), In
Proceedings on, New York City, New York, USA, 2005, pp. 528–535

[17] Toman, V., “Syntactical Compression of XML Data,” International
Conference on Advanced Information Systems Engineering
(CAiSE2004), In: Proceedings on, Riga, Lettland, 2004.

[18] Tolani, P., Haritsa, J. R., “XGRIND: A Query-friendly XML
Compressor,” International Conference on Data Engineering
(ICDE2002), In: Proceedings on, San Jose, California, USA, 2002, pp.
225–234.

[19] World Wide Web Consortium (W3C) Member Submission, WAP
Binary XML Content Format. Online,
http://www.w3.org/1999/06/NOTE-wbxml-19990624/, 1999.

[20] Cheney, J., "Compressing XML with multiplexed hierarchical PPM
models," Data Compression Conference, 2001. Proceedings. DCC 2001.
, vol., no., pp.163-172, 2001.

[21] James Cheney, "Tradeoffs in XML Database Compression," Data
Compression Conference, pp. 392-401, Data Compression Conference
(DCC'06), 2006.

[22] James Cheney, “An empirical evaluation of simple DTD-conscious
compression techniques,” Eighth Workshop on the Web and Databases
(WebDB 2005), In Proceedings on, pages 43-48, 2005.

[23] International Telecommunication Union (ITU), Recommendation X.891,
Generic Applications of ASN.1 – Fast Infoset, 2005.

[24] Deutsch, P., GZIP file format specification version 4.3, RFC1952,
http://www.ietf.org/rfc/rfc1952.txt, 1996.

[25] Burrows, Michael; Wheeler, David J., “A Block Sorting Data
Compression, Algorithm,” Technical Report SRC 124, Digital
Equipment Corporation, Palo Alto, Californien, USA, 1994.

[26] H. Liefke and D. Suciu, "Xmill: an efficient compressor for xml data,"
SIGMOD Rec., vol. 29, no. 2, pp. 153-164, 2000.

[27] World Wide Web Consurtium (W3C), Efficient XML Interchange
Working Group, Online, http://www.w3.org/XML/EXI/, 2009.

[28] World Wide Web Consurtium (W3C) Working Draft, Efficient XML
Interchange (EXI) Primer, Online, http://www.w3.org/TR/2007/WD-exi-
primer-20071219/, 2007.

[29] WS4D: Web Services for Devices, http://www.ws4d.org, 2009.

[30] ETF Network Working Group, DEFLATE Compressed Data Format
Specification version 1.3, RFC 1951, http://tools.ietf.org/html/rfc1951,
1996.

