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This article addresses path selection problems that arise in a large-scale media 

server. In particular, the problem on a distributed server with two tiers of server nodes 
connected by a VC-enabled interconnection network is considered. To serve each in-
coming request, a pair of server nodes should be selected to handle the request. In addi-
tion, a network path in the interconnection network should be arranged to pipe the pro-
gram stream between the pair of server nodes for the request. The problem is modeled as 
a network flow problem. A two-pass flow (TPF) algorithm is proposed to solve the flow 
problem that involves multiple types of flow. The proposed algorithm allocates system 
resources effectively to maximize the number of admitted requests without violating re-
source constraints. Unlike some other works, the algorithm does not need to rely on as-
sumptions about any particular configuration of the underlying interconnection network.  
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1. INTRODUCTION 
 

The popularity of media-streaming services is increasing the demand for powerful 
multimedia servers. To provide better cost/performance ratios and to ensure scalability, 
distributed (or clustered) server architecture is usually chosen to fulfill the requirements. 
A distributed server provides multiple server nodes interconnected by an interconnection 
network (or LAN) to serve a large number of requests simultaneously. While most of the 
systems currently available use simple network architectures (for example, a fast 
Ethernet switch) to connect server nodes, this study argues that a more complex network 
system, consisting of multiple routing nodes, is needed to connect more server nodes to 
form a large-scale server to meet future needs. The demands and related design issues of 
a large-scale server have been pointed out in [1, 2, 6]. This study addresses path selection 
problem associated with such a large-scale media server. In particular, such a problem on 
a server with two-tier architecture is considered since it is considered to be scalable and 
cost-effective. Typically, in two-tier server architecture, some server nodes are config-
ured as front-end (delivery) nodes, and some are configured as back-end (storage) nodes. 
Communication between front-end nodes and back-end nodes proceeds via a dedicated 
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interconnection network. When user requests arrive at a front-end node, the server 
chooses some server nodes to respond to the requests. In such a media server, the 
front-end node is responsible for fetching the requested program stream from the 
back-end server nodes and then forwarding the stream to the user. To ensure seamless 
stream retrieval, the following problems must be properly addressed. (1) How should a 
front-end node be selected to handle the request? (2) How should a back-end node be 
selected to provide the program stream? (3) How should a sequence of network links be 
selected to pipe the program stream from the back-end node to the front-end node? 
Briefly, in responding to each request, a network path, including two end points (a 
front-end node and a back-end node), must be effectively arranged so that the request can 
be served without violating resource constraints. 

In a large media server with a complex interconnection network, the path selection 
problem is important. Inappropriate path selection promotes network congestion and hot- 
spot problems. The properties of media stream transmission, such as long transmission 
duration, high data volume, and real-time constraints, necessarily make the problem 
more serious. Consider an Internet user who wishes to view an MPEG1-encoded movie 
from the server. All of the requesting packets can be sent in a few seconds at little cost in 
terms of bandwidth required for transmission, while delivery of the requested movie can 
take more than an hour, at a network bandwidth cost as high as 1.5Mbps for an MPEG1- 
encoded video. Consequently, this study argues that effectively organizing network flow 
within the distributed server at some computational cost is worth doing. This study pro-
poses an efficient algorithm to allocate system resources effectively. Under the con-
straints of currently available system resources, the algorithm maximizes the number of 
admitted requests. Meanwhile, balanced utilization of system resources is also considered. 

The path selection problem discussed herein is similar to the processor-memory 
mapping problems on a multiprocessor system. Previous works on the processor-memory 
mapping problems have produced extensive results reported in the literature. Design is-
sues such as message routing over the interconnection network and the consideration of 
blocking, permutation and multicasting have been comprehensively addressed [9]. Addi-
tionally, Rathi, Tripathi, and Lipovski [10], Fung and Torng [11] and Marsan and Gerla 
[12] have studied the performance of resource allocation on various multiprocessor ar-
chitectures. However, most of these studies were based on some well-defined network 
configurations, including hyper-cube, mesh and ring configurations, or on some regular 
MIN (multistage interconnection network) structures. In contrast with these previous 
works, this paper deals with a general network topology. In addition, Elmallah and Cul-
berson [15] studied general routing problems on various classes of MINs and trans-
formed the problems into (integral) multi-commodity flow problems. However, their 
work is only applicable to some MIN configurations and not to a general network con-
figuration. 

Juang and Wah [13] proposed a transformation scheme for transforming multiproc-
essor resource-sharing problems into network flow problems, to which existing algo-
rithms can be applied. Their method is applicable to any general loop-free network con-
figuration. They transformed the resource-sharing problem into a minimum-cost integral 
flow problem. Using a similar transforming method, they also demonstrated that similar 
problems on heterogeneous servers can be transformed into multi-commodity minimum 
cost integer flow (MCMCIF) problems. However, integral solutions to this class of prob-
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lems cannot be guaranteed [14]. Compared with their work, similar solution techniques 
are applied in this study. However, the problem considered here has different characteris-
tics and is modeled differently. 

More recent studies based on similar system architectures can be found in [5, 6]. 
Chang et al. in [5] considered multimedia file allocation problems on a distributed media 
server in which a VC network is assumed to provide connection between all server nodes. 
To serve each request, a network path should be determined to pipe the requested me-
dia-file from the storage node of the media-file resident to the front-end node at which 
the request arrives. Giving both file information (including the set of media files to be 
deployed and their access behaviors) and server information (including the network 
structure and all link bandwidth constraints), they developed efficient file allocation 
schemes to minimize transfer time of the bottleneck links on the interconnection network. 
Comparing with this paper, a similar network model (VC network) and constraints (link 
bandwidth along the flow path) are considered, but the objective is different. Conse-
quently, the techniques used to solve the problem and the results are different. Beren-
brink and Brinkmann [6] considered the distributed path selection scheme in a custom-
ized storage network called PRESTO, which consists of a set of intelligent routing 
switches, called active routers. Similar problems under similar server architecture 
(two-tier architecture with a VC-enabled network) were considered. As in [13], they 
modeled the distributed path selection problem as an MCMCIF problem. Although their 
problem model is quite general, the problem is hard to solve (since it is an NP-complete 
problem). They proposed different heuristic algorithms to solve the problem under some 
network topological configurations. Tay and Pang [20] proposed a load-sharing scheme 
for minimizing the request waiting time. The server node capacity is considered in dif-
ferent queuing models. However, the general interconnection network topologies and 
individual link states of the network are not accounted for. 

Many issues are related to the design of an efficient media server, but this study fo-
cuses on path selection inside a distributed media server. These issues include for exam-
ple, disk scheduling [16], file displacement and retrieval [5], VBR [17]/CBR [18] 
streaming, distributed media-object sharing/synchronization [19], and system availability 
[21], among others. Each of them deserves to be discussed, but they are beyond the scope 
of this study. This study makes no assumptions about above design issues. The results of 
this study complement the preceding research cited above. 

The following section details the target system architecture and the problems con-
sidered here. Section 3 depicts formal models of the path selection problem and problem 
transformation schemes used to transform the problem into a network flow problem. 
Section 4 presents an efficient algorithm, called TPF (two-pass flow) algorithm, to solve 
the problems. An example is provided to show how the algorithm operates. The correct-
ness and complexity of the algorithm are briefly addressed as well. Section 5 draws 
conclusions. 

2. TARGET SYSTEM ARCHITECTURE AND PROBLEM ISSUES 

2.1 Architecture of Target Systems 

Some assumptions are made about the two-tier media server discussed herein. First, 
the interconnection network supports VC (virtual-circuit) switching. A virtual-circuit 
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network enables the bandwidth to be reserved throughout the connection. Such a 
VC-enabled network can be realized using a customized-design network, such as 
PRESTO [6], or using VC-enabled routing devices, such as ATM switches [3]. This as-
sumption can be relaxed when the underlying interconnection network consists of only 
one switch, as in several LAN-based cluster servers. Second, a powerful request dis-
patcher (which physically may include multiple nodes to provide sufficient computing 
power and fault-tolerant capability) is assumed to work together with the server. The dis-
patcher represents the media server externally. Requests are directed to the dispatcher 
accordingly. The dispatcher then forwards each request individually to a designated 
front-end node, based on the results of the path selection scheme (described later). The 
request forwarding scheme can be realized by using conventional HTTP redirection 
techniques. A flow manager (which could be the dispatcher or another system node) is 
configured to help the server establish a network path between the selected front-end 
node and back-end node pair for each requested program. The assumption of the exis-
tence of a dispatcher is normally made in distributed multimedia servers. Various web 
servers, including SWEB [7] and RobustWeb [8], employ a similar mechanism to redis-
tribute requests directly or indirectly. Finally, we assume that the video stream provided 
by the system is compressed with same bit-rate. The network bandwidth consumed in 
transporting each media program in the interconnection network is assumed to vary little, 
under a CBR (constant bit rate) transmission scheme. For example, all media programs 
are encoded using CBR scheme with variable-quality frames, or a video smoothing 
scheme is applied to enable constant-quality VBR (variable bit-rate) -compressed videos 
to be transported over a CBR service network [18, 23, 24]. Notably, however, no as-
sumption is made about the topology of the underlying interconnection network. The 
proposed algorithm does not rely on any assumption about the network topology, making 
it more realistically applicable to real problems. Meanwhile, the assumption of single 
bit-rate of video program necessarily makes the problem tractable. When multiple 
bit-rates of video program are allowed (that is, each program stream might demand dif-
ferent network bandwidth along a single network path), the problem resembles a maxi-
mal flow problem with “unsplittablility” constraints, which has been shown to be an 
NP-hard problem. The property and heuristic algorithms of the unsplittable flow problem 
can be found in [25].  

Fig. 1 presents the system blocks and operations of the two-tier server architecture. 
Client requests are sent via the Internet to the dispatcher (step 1 in the figure). The dis-
patcher collects a set of requests that arrive within a specified time period. Based on the 
request patterns and current system state, the flow manager generates a path selection 
scheme, in which for each individual admitted request, a pair of server nodes (front-end 
node and back-end node) is assigned to respond to the request and the network path con-
necting this pair of nodes is determined. According to the assignment, the dispatcher re-
directs each admitted request to the front-end node corresponding to the pair of nodes 
selected for the request (steps 2 and 3). The front-end node handles the (redirected) re-
quest and forwards the request to the corresponding server node (step 4). The server node 
then begins to deliver the request stream to the front-end node along the network path 
selected for the admitted request (step 5). The front-end node forwards the program 
stream to the client (step 6). Data delivery continues until the stream has been completely 
transmitted. 
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Fig. 1. Two-tier server architecture for the path selection problem. 

2.2 The Path Selection Problem 

Path selection problems in a two-tier media server arise because of the sharing of 
system resources, such as the processing power of the server nodes and the link band-
width of the interconnection network. Transporting a video stream from a back-end node 
to a front-end node consumes a fraction of the bandwidth on each link along the network 
path connecting both of the nodes. Thus, only a limited number of streams can be deliv-
ered simultaneously. Similarly, each server node can serve only a limited number of 
streams because of the limitation on processing power or I/O capability. Meanwhile, for 
each request, the server should properly select a back-end node to serve the request. Only 
a node capable of providing the requested program and with enough processing power 
can be selected. Additionally, before a requested program is forwarded to the client, the 
requested program should be forwarded to the front-end node handling the request. Con-
sequently, for each request, the server should guarantee the existence of an available net-
work path to pipe the requested program stream between the back-end node and 
front-end node pair selected for the request. For each request, multiple paths may exist 
for the pair of nodes selected to handle the request. Last but not least, the server should 
handle multiple requests concurrently. Given all these constraints, an intuitive selection 
scheme is to randomly choose a feasible path and nodes for each request. However, this 
scheme is prone to cause blocking on some critical paths, resulting in poor overall per-
formance. Besides, the server status, for example, the utilization and availability of net-
work links and nodes, can change dynamically. A selection scheme should be sufficiently 
flexible and efficient to adapt to possible changes in server configurations. Finally, an 
efficient path selection scheme should not only maximize system throughput, but also 
reduce the system cost, as measured against some criteria, such as resource load balance 
and priority. 
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3. PROBLEM MODELS 

Inspired by [13], the path selection problem is herein modeled as a network flow 
problem. A graph G = (V, E) represents the topology of a distributed system, where V 
represents the set of nodes and E represents the set of all network links. First, a general 
problem model is considered; this model yields an equivalent multi-commodity minimum 
cost Integer flow (MCMCIF) problem. Although the MCMCIF flow model is sufficiently 
powerful to model the path selection problem, it is hard to solve. The authors in [13] and 
[6] experienced similar problems with such a model. A simplified model is presented 
here to deal with the path selection problem better. Without lose of generality, conven-
tional terms in the flow network are reserved. That is, hereafter, this study refers to types 
of services (in the transformed network flow model) as programs (in the path selection 
problem). A service flow (or flow shortly) in the network model corresponds to a pro-
gram stream (or stream shortly) in the problem; a request to transport a specified type of 
service over the flow network in the model corresponds to a request to fetch a specified 
program file over the interconnection network in the problem.  

3.1 A General Model for the Path Selection Problem  

First, a general problem paradigm is considered, in which the interconnection net-
work is aware of the variation of program streams. Consider a two-tier media server: 
multiple requests are made for different program files on different front-end nodes. To 
serve a request, a back-end node that provides the requested program file should be se-
lected, and a network path for piping the program stream from the back-end node to the 
front-end node must be available. Since each request consumes a fixed amount of system 
resources, a feasible assignment of resources should not violate the resource constraints. 
The problem is similar to the so-called multi-commodity integer flow problem. Accord-
ingly, the model of the path selection problem is similar to that of the flow problem. 
Mathematically, this problem model, called Model 1 hereafter, is as follows:  

Minimize c xij ij
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xij ∈ I, for all link i, and type j.                                         (9) 

In the above formulas, Ei(x) denotes the set of all ingress-links to node x; similarly, Ee(x) 
denotes the set of all egress-links from node x; Qs in Eq. (8) equals the sum of all Qsj for 
all types j; Table 1 summarizes all related notations. As in [13], the cost associated with 
an unassigned request is assumed to have a large enough value (virtually infinite value). 
Therefore, the solutions of the above formulas yield the maximal number of admitted 
requests. Furthermore, if more than one solution yields the same maximal number of 
admitted requests, the one with the minimal cost is selected. Eq. (2) maintains flow con-
servation associated with each intermediate node. Eq. (3) sets capacity constraints on 
individual types of flow associated with each link. Eq. (4) sets constraints on the total 
flow capacity associated with each link. Similarly, Eqs. (5) and (6) set constraints on the 
processing capacity associated with each back-end node; and Eqs. (7) and (8) set con-
straints on the processing capacity associated with each front-end node, in which the 
flow capacity constraints associated with the out-link of the front-end node and the 
number of requests available on the front-end node should be considered additionally. 
Finally, Eq. (9) presents the constraint that the number of admitted requests should be an 
integer. The above mathematical problem is equivalent to a multi-commodity minimum 
cost integer flow (MCMCIF) problem, which has been demonstrated to be NP-complete 
[14]. 

Table 1. Parameters in the general model. 

Parameters 
number of links NL 

number of intermediate nodes NI 

number of front-end nodes NF 

number of back-end nodes NB 

number of service types T 

Service capacity of type j available in back-end node t btj 

Total Service capacity available in back-end node t bt 

Service capacity of type j available in front-end node s dsj 

Total Service capacity available in front-end node s ds 

Link capacity of type j available in link i. uij 

Total Link capacity available in link i. ui 

Link capacity of type j available in link i. usj 

Link capacity available for the out link of front-end node s. us 

Unit flow cost for type j passing through link i. cij 

Number of requests for type j pending at front-end node s. qsj 
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3.2 A Simplified Model 
 

Based on the preceding general model, a simplified model is constructed for the 
path selection problem to fit the problem exactly. Examining the characteristics of the 
path selection problem described in previous sections reveals that some constraints in the 
above general model are not necessary for the problem. A modified model, called Model 
2 hereafter, of the problem is as follows: 

Minimize c xij ij
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  for all front-end node s,                     (15) 

xij ∈ I, for all link i, and type j,                                        (16) 

ci1 = ci2 … ciT == ci.                                                (17) 

Table 2 summarizes the parameters of the modified model. The modified model elimi-
nates (a) the constraints on the capacity of each link flow for each individual flow type 
(Eq. (3)) and (b) the constraints on the capacity of each front end node and on the num-
ber of requests available on the front-end node for each flow type (Eq. (7)). A partial 
modification is made in Eq. (8). The constraint on the number of available requests is 
eliminated, yielding Eq. (15). Also, the cost is independent of the type in the modified 
model, yielding Eq. (17). The modifications are based on the following reasons. First, the 
types of flow over a network link need not be differentiated. In the path selection prob-
lem considered in this study, different types of requests correspond to different programs 
of media-files. The interconnection network does nothing other than forward program 
streams. None of the links on the network are aware of the contents of the program 
stream being carried. Only the data rate is meaningfully related to the consumption of 
bandwidth associated with the links. Consequently, the cost term Cij associated with each 
type of service sent over link i can be treated equally on the link. That is, Ci1 = Ci2 = … =  
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Table 2. Parameters in the modified model. 

Parameters 
number of links NL 

number of intermediate nodes NI 

number of front-end nodes NF 

number of back-end nodes NB 

number of service types T 

Service capacity of type j available in back-end node t btj 

Total Service capacity available in back-end node t bt 

Total Service capacity available in front-end node s. ds 

Total Link capacity available in link i. ui 

Link capacity available for the out link of front-end node s. us 

Unit flow cost passing through link i. ci 

Number of requests for type j pending at the dispatcher qj 

CiT = Ci (Eq. (17)), and the constraints on the capacity of the network links for each type 
of services are unnecessary (Eq. (3)). Similarly, the constraints on the server capacity for 
individual types in front-end nodes (Eq. (7)) need not be considered because front-end 
nodes do not need to process the program stream (service) but need only forward the 
stream to the client. Finally, the constraints on the numbers of requests available on each 
front-end node are eliminated (Eqs. (7), and (8)) since in the target system, requests are 
sent to the dispatcher, not directly to front-end nodes.  

3.3 Problem Transformation 

A path selection problem mathematically modeled as Model 2 can be transformed 
into a special case of the MCMCIF problem, in which no explicit type of differentiation 
is imposed on the network links. That is, no capacity constraint on an individual type of 
flow is associated with network links, and individual unit flow costs for different types of 
flow associated with a link are all the same for the link. The transformation scheme is as 
follows.  
 
1. All physical nodes (including the dispatcher) and network links in the server have 

corresponding nodes and links in the flow network.  
2. A by-pass node p and a terminal node t are added to the flow network.  
3. Assign link capacity ui and unit flow cost ci to the link that corresponds to network 

link i, i = 1 … NL. Assign the link capacity usi and the unit flow cost (default = 0) to 
the link between node ss (corresponding to the dispatcher) and node si (corresponding 
to front-end node i, i = 1 … NF). Assign a link capacity vector (Bi1, Bi2, …, BiT) and a 
cost vector (default = 0) to the link that connects terminal node t to node ti (corre-
sponding to back-end server node i, i = 1 … NB).  

4. Expand each node si in the flow network (corresponding to front-end node i, i = 1 … 
NF) into two nodes, si and si, and connect the two nodes with a new link, as depicted in 
Fig. 2 (a). Associate the new link with the front-end node capacity and its unit flow 
cost.  
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5. Expand each node ti in the flow network, (corresponding to back-end server node i, i = 
1 … NB) into two nodes, ti and ti′, connected to each one by a link, as shown in Fig. 2 
(b). Associate the new link with the back-end node capacity and its unit flow cost. 

S

(Fs/Cs)

t

(Ft/Ct) t' t
Ft/Ct

s s'
Fs/Cs

(a)

(b)  

Fig. 2. Problem transformation for Step 4 (a): split each front-end node s into two nodes s and s′; 
that for Step 5 (b): split each back-end node t into two nodes, t′ and t. 
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Fig. 3. An example of the path selection problem in a two-tier media server. 

 
Fig. 3 presents an example of a two-tier multimedia server, which includes three 

front-end nodes and four back-end nodes interconnected by an interconnection network 
consisting of four routing nodes. The example shows the current system status in terms 
of incoming requests and available resources. Twenty-eight requests are available on the 
dispatcher: nine for type-1, 12 for type-2, and seven for type-3 service. The available 
capacities of the three front-end nodes (s1, s2, and s3) are assumed to be six, 10, and 12, 
respectively. The four back-end nodes (t1, t2, t3, and t4) are assumed to be able to serve 
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different types of requests with different capacities. Similarly, the link capacity and the 
unit flow cost are presented for each network link in the example. Fig. 4 shows the result 
of applying the above transforming scheme to the example.  
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Fig. 4. An instance of the flow network G1 transformed from the problem example shown in Fig. 3. 

3.4 Parameter Setting 

Most of the parameters in the problem model are functions of the system structure 
and device characteristics. The setting of capacity limits on individual server nodes and 
network links is a matter of policy. The upper bounds of these values can be obtained by 
means of off-line measurement. The cost terms can be set more flexibly. No physical 
constraint is associated with the cost terms. The setting depends totally on the resource 
allocation policy. For example, one way to balance the utilization of system resources is 
to assign a cost to a resource (server node or network link) in proportion to the inverse of 
the capacity available on the resource. Therefore, when two resources can be used to 
serve a request, the one with the lighter load (that is, with more capacity) is chosen. 

4. TWO-PASS FLOW ALGORITHM 

This section presents an algorithm, called the TPF (two-pass flow) algorithm, to 
solve the path selection problem described above. The two-pass flow algorithm, first 
constructs a flow network to represent the problem. Then, two passes of flow algorithms 
are applied to yield optimal solutions. 

4.1 TPF (Two-Pass Flow) Algorithm 

The two-pass flow algorithm is summarized below and illustrated using an example. 
Figs. 4 to 10 present the results of applying the algorithm step by step to the problem 
example depicted in Fig. 3. 
 
Algorithm TPF 
1. Generate a flow network, G1, for the given problem. Transform a given path selection 



CHUN-CHAO YEH AND JIE-YONG JUANG 

 

744 

 

problem into a network flow problem by using the transformation scheme presented in 
the previous section (section 3.3). The result of the transformation yields a flow net-
work, named G1 hereafter. Fig. 4 presents an instance of the flow network, G1, ob-
tained by transforming the path selection problem depicted in Fig. 3, as an example. 

2. Reconstruct a flow network G2 from G1. Reconstruct the flow network G1 by inserting 
T new nodes (denoted as qt1, qt2, …, qtT) between terminal node t and nodes ti, i = 1 … 
NB. Replace the old links (ti, t) with new links (ti, qtj) between nodes ti and qtj and new 
links (t, qti) between nodes t and qti, j = 1 … T, i = 1 … NB. For each link (ti, qtj), as-
sign a capacity vector (bi1, bi2, …, biT), where bik = Bij if k == j, else bik = 0. Similarly, 
for each link (t, qtj), assign a capacity vector (q1, q2, …, qT), where qk = Qj if k == j, 
else qk = 0. The result of reconstruction yields a new flow network, named G2 hereaf-
ter. Following the above example, Fig. 5 presents an instance of the flow network G2 
reconstructed from the one depicted in Fig. 4. 
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Fig. 5. The results for the example after Step 2 in the TPF algorithm. 

 
3. Apply conventional flow algorithm to a single-type flow network obtained from G2. 

(First pass) Treat the flow network G2, determined in Step 2, as a single-commodity 
flow network by considering all types of flow as a single flow type. That is, replace 
the capacity constraint vector (u1, u2, …, uT) for T types of flow with the capacity con-
straint value u = u1 + u2 + … + uT. Also, replace the request vector (Q1, Q2 , …, QT) 
with the number of total requests Q = Q1 + Q2 + … + QT . Then, apply conventional 
minimal cost flow algorithm [14] to this single-type flow network, yielding the opti-
mal flow assignment, denoted as A = {ai | i = 1, 2, …, |E2|} hereafter, where |E2| is the 
number of links in G2. The value of ai indicates the amount of flow that will pass 
through link i when maximal flow (at minimal cost) is achieved in the flow network. 
Fig. 6 presents the results of applying the flow algorithm to the example flow network 
depicted in Fig. 5. 

4. Reconstruct a flow network G3 from G2. Reverse the flow direction of the network G2 
obtained in Step 2 (such that the flow direction is from node t to node ss). For each 
link i in the flow network, replace the value of the capacity constraint associated with 
the link with the value ai obtained in Step 3. Based on the result shown in Fig. 6, Fig. 
7 presents an instance of the flow network G3 reconstructed from the one depicted in 
Fig. 5, as an example. 
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Fig. 6. The results for the example after Step 3 in the TPF algorithm. (The value inside the paren-
theses below each link indicates the result of flow assignment.) 
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Fig. 7. The results for the example after Step 4 in the TPF algorithm. 

 
5. Apply flow algorithm to G3. (Second pass) For each type of flow, say type k, on the 

flow network G3, obtained in Step 4, perform the following. (Assume each link i ini-
tially has a capacity constraint ui.) 
(a) Apply conventional minimal cost flow algorithm to the type-k flow on flow net-

work G3 by turning off all the links (t, qtj) for all i ≠ k. , thus obtaining an optimal 
flow assignment, say Fk = {Fk

i | i = 1, 2, …, |E3|} hereafter, for the flow network 
G3 , where |E3| is the number of links in G3. 

(b) For each link i in the network, update the capacity constraint by decreasing the 
value by Fk

i. That is, ui = ui − Fk
i. 

 
Figs. 8 to 10 show the results of optimal flow assignment for the instance of the 

flow network G3 shown in Fig. 7, which was obtained from the example problem de-
picted in Fig. 4. 

 
6. Obtain the paths selected for each admitted request from {Fk | k = 1, …, T}. The flow 

assignments {Fk | k = 1, …, T}, obtained in Step 5, are the optimal flow assignments to 
the flow network. The assigned flow on the by-pass links represents the requests that 
cannot be admitted for the moment. Each flow path for type-k service in the flow net-
work corresponds to a path selected for a request of program k in the server. That is, if 
a type-k flow f passes through nodes ti′ and sj′ in the flow network, then the  
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Fig. 8. The results for the example after type-1 requests are processed in Step 5 in the TPF algo-

rithm. (The vector below each link indicates the result of flow assignment.) 
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Fig. 9. The results for the example after type-1/type-2 requests are processed in Step 5 in the TPF 

algorithm. 
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Fig. 10. The results for the example after all requests are processed in Step 5 in the TPF algorithm. 

(The vector below each link indicates the result of flow assignment.) 

 
server selects back-end node i and front-end node j to handle a request for program k. 
Moreover, the path between the pair of server nodes (i, j) for the request can be de-
termined by referring to the path of flow f in the flow network. 

 
Given a path selection problem with all of the related system parameters shown in 

Table 2, applying the above two-pass flow algorithm yields an optimal path selection 
scheme that maximizes the number of admitted requests at minimal cost. The flow as-
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signments {Fk | k = 1, …, T} derived in Step 5 of the TPF algorithm indicate the amount 
of resource units being consumed on individual network links and server nodes in serv-
ing the admitted requests. A flow assignment f = (f1, f2, …, fT) to the link (si, si′) implies 
that the dispatcher should forward individually fk program-k requests to the front-end 
node i, k = 1, …, T. A flow assignment f = (f1, f2, …, fT) to the link (ti′, ti) implies that 
back-end server node i will be assigned to serve fk program-k requests. The flow assign-
ment f = (f1, f2, …, fT) to a link (i, j) that corresponds to the network link connecting 
nodes i and j in the server implies that the server will direct fk program-k streams over the 
network link. Restated, the server will direct a total of f1 + f2 + … + fT programs over the 
network link. 

For example, Fig. 10 shows an optimal path selection for the example media server 
shown in Fig. 3. The results imply that the server can serve up to 21 requests (nine pro-
gram-1, eight program-2, and four program-3 requests) at a minimal cost of 406 (by 
summing all the flow costs contributed by all the links). The flow assignment (4, 3, 0) to 
the link (s3, s3′) implies that among all the pending requests (nine program-1, 12 pro-
gram-2 and seven program-2 requests), the dispatcher should forward four program-1 
requests and three program-2 requests to front-end server node 3. The flow assignment (4, 
0, 0) to the link (t4′, t4) implies that back-end server node 4 will be assigned to serve four 
program-1 requests. The flow assignment (4, 0, 1) to the link (c, t4′) implies that the 
server will direct five program streams (four program-1 and one program-3 streams) over 
the network link that connects intermediate node c to back-end server node 4. 
 
4.2 Complexity and Correctness 
 

The above TPF algorithm requires, at worst, T + 1 passes of network flow computa-
tion, where T is the number of service types supported by the server. One pass is associ-
ated with the first flow-pass (forward pass) in Step 3; T passes are associated with the 
second flow-pass (backward pass) in Step 5, each one yielding an optimal assignment for 
one type of flow. In practice, only k + 1 passes are required if only k different types of 
requests are made during the scheduling period. The minimal cost flow can be efficiently 
computed in polynomial time [14, 22]. Consequently, the proposed TPF algorithm can be 
implemented efficiently. 

The following paragraphs briefly discuss correctness of the TPF algorithm. First, the 
problem transformation from the path selection problem to the flow network problem is 
correct. Similar techniques can be found in [13]. The reconstructed flow-network G2 in 
Step 2 can be easily shown to be equivalent to the flow network G1 built in Step 1. That 
is, any feasible flow assignment to G1 is also feasible to G2, and vice versa. The link (ti, t) 
in G1 is replaced with T links (ti, qtk), k = 1, …, T in G2. Each link (ti, qtk) is associated 
with a capacity constraint (0, …, 0, Bik, 0, …, 0), where Bik is the available capacity for 
type-k flow on the link (ti, t). From the perspective of node ti, the capacity constraints are 
equivalent. Meanwhile, in G2, all of the flow from node ti will be forwarded to node t 
through a set of T nodes qtk, k = 1, …, T. Node qtk added to G2 in Step 2 plays the role of 
a concentrator of type-k flow to sink all possible type-k flow that emerges from all the 
nodes ti, i = 1 … NB. Note that in G1, the amount of type-k flows available on source 
node ss is Qk, and in G2, the constraint of capacity vector (0, …, 0, Qk, 0, …, 0) imposed 
on the link (qtk, t) allows at most the same amount (Qk) of type-k flow to pass through the 
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link. Consequently, the constraints are equivalent between G1 and G2. Then, in Step 3, 
the flow type constraints are relaxed and, consequently, the available flow can be pushed 
as much as possible from source node ss to terminal node t via all possible routes. Ap-
parently, the cost of using such a strategy yields a low bound of the minimal cost for the 
same flow network with type-differentiation. Accordingly, if a feasible flow assignment 
can be found under type-specific constraints, and if it yields the same cost for the same 
flow network with relaxation of the constraints associated with individual types, then the 
typed flow assignment is optimal. The flow network G3 constructed in Step 4 is a special 
kind of network, called a capacity-conservative flow network [4], in which for each node 
except the source node and the terminal node, the total capacity of all the links that 
emerge from the node is the same as the total capacity of all the links that sink to the 
node. Our previous work [4] showed that if a flow network is capacity-conservative, then 
all the link capacity can be fully utilized. Therefore, the TPF algorithm up to Step 6 
yields a multiple type flow assignment {Fk | k = 1, …, T}, in which to each link on the 
flow network, the number of units of flow assigned is equal to the capacity available on 
the link. That is, the assignment will lead to the same cost as in Step 3 (the first pass). 
Consequently, the flow assignment {Fk | k = 1, …, T} in Step 6 is optimal for the flow 
network G1 built in Step 1. 

5. CONCLUSIONS 

This study has investigated path selection problems in a media server with a two-tier 
architecture, in which a VC-enabled network interconnects all front-end nodes and 
back-end nodes. System resources must be effectively allocated to enable as many re-
quests as possible to be served. The process-power limitations on the server nodes and 
bandwidth constraints on the network links have been simultaneously considered. With 
proper problem transformation, the path selection problem can be transformed into a 
special form of a minimal-cost multi-commodity integer flow problem, and an efficient 
algorithm has been proposed to solve the problem. The proposed TPF algorithm involves, 
at worst, T + 1 passes of minimal cost flow algorithms. In practice, only k + 1 passes are 
required if only k different types of requests are made during the scheduling period. The 
proposed path selection scheme is intended to be used with a large media server, in 
which two-tier server architecture is utilized. In particular, the underlying interconnec-
tion network of the server is VC-enabled and subject to change over time. No topological 
constraint is imposed on the interconnection network.  

Many problems have characteristics similar to those of (integer) network flow prob-
lems. A general multi-commodity integral flow problem is hard to solve. However, some 
degenerated forms of the problems can be simple but still sufficiently powerful to model 
real-world problems. The path selection problem is an example. The corresponding 
network flow problem solved here involved multiple flow types. We believe the solution 
techniques presented in this paper are applicable to other problems that can be modeled 
with mathematical forms similar to those discussed herein.  
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