
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 20, 733-751 (2004)

733

Path Selection on VC-Networks within a Distributed Media
Server for Concurrent Stream Retrieval

CHUN-CHAO YEH AND JIE-YONG JUANG*

Department of Computer Science
National Taiwan Ocean University

Keelung, 202 Taiwan
*Department of Computer Science and Information Engineering

Taichung Healthcare and Management University
Taichung, 413 Taiwan

This article addresses path selection problems that arise in a large-scale media

server. In particular, the problem on a distributed server with two tiers of server nodes
connected by a VC-enabled interconnection network is considered. To serve each in-
coming request, a pair of server nodes should be selected to handle the request. In addi-
tion, a network path in the interconnection network should be arranged to pipe the pro-
gram stream between the pair of server nodes for the request. The problem is modeled as
a network flow problem. A two-pass flow (TPF) algorithm is proposed to solve the flow
problem that involves multiple types of flow. The proposed algorithm allocates system
resources effectively to maximize the number of admitted requests without violating re-
source constraints. Unlike some other works, the algorithm does not need to rely on as-
sumptions about any particular configuration of the underlying interconnection network.

Keywords: path selection, bandwidth allocation, admission control, multi-commodity
flow network, concurrent stream retrieval

1. INTRODUCTION

The popularity of media-streaming services is increasing the demand for powerful
multimedia servers. To provide better cost/performance ratios and to ensure scalability,
distributed (or clustered) server architecture is usually chosen to fulfill the requirements.
A distributed server provides multiple server nodes interconnected by an interconnection
network (or LAN) to serve a large number of requests simultaneously. While most of the
systems currently available use simple network architectures (for example, a fast
Ethernet switch) to connect server nodes, this study argues that a more complex network
system, consisting of multiple routing nodes, is needed to connect more server nodes to
form a large-scale server to meet future needs. The demands and related design issues of
a large-scale server have been pointed out in [1, 2, 6]. This study addresses path selection
problem associated with such a large-scale media server. In particular, such a problem on
a server with two-tier architecture is considered since it is considered to be scalable and
cost-effective. Typically, in two-tier server architecture, some server nodes are config-
ured as front-end (delivery) nodes, and some are configured as back-end (storage) nodes.
Communication between front-end nodes and back-end nodes proceeds via a dedicated

Received July 10, 2002; revised March 6 & July 30, 2003; accepted September 17, 2003.
Communicated by Chu-Sing Yang.

CHUN-CHAO YEH AND JIE-YONG JUANG

734

interconnection network. When user requests arrive at a front-end node, the server
chooses some server nodes to respond to the requests. In such a media server, the
front-end node is responsible for fetching the requested program stream from the
back-end server nodes and then forwarding the stream to the user. To ensure seamless
stream retrieval, the following problems must be properly addressed. (1) How should a
front-end node be selected to handle the request? (2) How should a back-end node be
selected to provide the program stream? (3) How should a sequence of network links be
selected to pipe the program stream from the back-end node to the front-end node?
Briefly, in responding to each request, a network path, including two end points (a
front-end node and a back-end node), must be effectively arranged so that the request can
be served without violating resource constraints.

In a large media server with a complex interconnection network, the path selection
problem is important. Inappropriate path selection promotes network congestion and hot-
spot problems. The properties of media stream transmission, such as long transmission
duration, high data volume, and real-time constraints, necessarily make the problem
more serious. Consider an Internet user who wishes to view an MPEG1-encoded movie
from the server. All of the requesting packets can be sent in a few seconds at little cost in
terms of bandwidth required for transmission, while delivery of the requested movie can
take more than an hour, at a network bandwidth cost as high as 1.5Mbps for an MPEG1-
encoded video. Consequently, this study argues that effectively organizing network flow
within the distributed server at some computational cost is worth doing. This study pro-
poses an efficient algorithm to allocate system resources effectively. Under the con-
straints of currently available system resources, the algorithm maximizes the number of
admitted requests. Meanwhile, balanced utilization of system resources is also considered.

The path selection problem discussed herein is similar to the processor-memory
mapping problems on a multiprocessor system. Previous works on the processor-memory
mapping problems have produced extensive results reported in the literature. Design is-
sues such as message routing over the interconnection network and the consideration of
blocking, permutation and multicasting have been comprehensively addressed [9]. Addi-
tionally, Rathi, Tripathi, and Lipovski [10], Fung and Torng [11] and Marsan and Gerla
[12] have studied the performance of resource allocation on various multiprocessor ar-
chitectures. However, most of these studies were based on some well-defined network
configurations, including hyper-cube, mesh and ring configurations, or on some regular
MIN (multistage interconnection network) structures. In contrast with these previous
works, this paper deals with a general network topology. In addition, Elmallah and Cul-
berson [15] studied general routing problems on various classes of MINs and trans-
formed the problems into (integral) multi-commodity flow problems. However, their
work is only applicable to some MIN configurations and not to a general network con-
figuration.

Juang and Wah [13] proposed a transformation scheme for transforming multiproc-
essor resource-sharing problems into network flow problems, to which existing algo-
rithms can be applied. Their method is applicable to any general loop-free network con-
figuration. They transformed the resource-sharing problem into a minimum-cost integral
flow problem. Using a similar transforming method, they also demonstrated that similar
problems on heterogeneous servers can be transformed into multi-commodity minimum
cost integer flow (MCMCIF) problems. However, integral solutions to this class of prob-

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

735

lems cannot be guaranteed [14]. Compared with their work, similar solution techniques
are applied in this study. However, the problem considered here has different characteris-
tics and is modeled differently.

More recent studies based on similar system architectures can be found in [5, 6].
Chang et al. in [5] considered multimedia file allocation problems on a distributed media
server in which a VC network is assumed to provide connection between all server nodes.
To serve each request, a network path should be determined to pipe the requested me-
dia-file from the storage node of the media-file resident to the front-end node at which
the request arrives. Giving both file information (including the set of media files to be
deployed and their access behaviors) and server information (including the network
structure and all link bandwidth constraints), they developed efficient file allocation
schemes to minimize transfer time of the bottleneck links on the interconnection network.
Comparing with this paper, a similar network model (VC network) and constraints (link
bandwidth along the flow path) are considered, but the objective is different. Conse-
quently, the techniques used to solve the problem and the results are different. Beren-
brink and Brinkmann [6] considered the distributed path selection scheme in a custom-
ized storage network called PRESTO, which consists of a set of intelligent routing
switches, called active routers. Similar problems under similar server architecture
(two-tier architecture with a VC-enabled network) were considered. As in [13], they
modeled the distributed path selection problem as an MCMCIF problem. Although their
problem model is quite general, the problem is hard to solve (since it is an NP-complete
problem). They proposed different heuristic algorithms to solve the problem under some
network topological configurations. Tay and Pang [20] proposed a load-sharing scheme
for minimizing the request waiting time. The server node capacity is considered in dif-
ferent queuing models. However, the general interconnection network topologies and
individual link states of the network are not accounted for.

Many issues are related to the design of an efficient media server, but this study fo-
cuses on path selection inside a distributed media server. These issues include for exam-
ple, disk scheduling [16], file displacement and retrieval [5], VBR [17]/CBR [18]
streaming, distributed media-object sharing/synchronization [19], and system availability
[21], among others. Each of them deserves to be discussed, but they are beyond the scope
of this study. This study makes no assumptions about above design issues. The results of
this study complement the preceding research cited above.

The following section details the target system architecture and the problems con-
sidered here. Section 3 depicts formal models of the path selection problem and problem
transformation schemes used to transform the problem into a network flow problem.
Section 4 presents an efficient algorithm, called TPF (two-pass flow) algorithm, to solve
the problems. An example is provided to show how the algorithm operates. The correct-
ness and complexity of the algorithm are briefly addressed as well. Section 5 draws
conclusions.

2. TARGET SYSTEM ARCHITECTURE AND PROBLEM ISSUES

2.1 Architecture of Target Systems

Some assumptions are made about the two-tier media server discussed herein. First,
the interconnection network supports VC (virtual-circuit) switching. A virtual-circuit

CHUN-CHAO YEH AND JIE-YONG JUANG

736

network enables the bandwidth to be reserved throughout the connection. Such a
VC-enabled network can be realized using a customized-design network, such as
PRESTO [6], or using VC-enabled routing devices, such as ATM switches [3]. This as-
sumption can be relaxed when the underlying interconnection network consists of only
one switch, as in several LAN-based cluster servers. Second, a powerful request dis-
patcher (which physically may include multiple nodes to provide sufficient computing
power and fault-tolerant capability) is assumed to work together with the server. The dis-
patcher represents the media server externally. Requests are directed to the dispatcher
accordingly. The dispatcher then forwards each request individually to a designated
front-end node, based on the results of the path selection scheme (described later). The
request forwarding scheme can be realized by using conventional HTTP redirection
techniques. A flow manager (which could be the dispatcher or another system node) is
configured to help the server establish a network path between the selected front-end
node and back-end node pair for each requested program. The assumption of the exis-
tence of a dispatcher is normally made in distributed multimedia servers. Various web
servers, including SWEB [7] and RobustWeb [8], employ a similar mechanism to redis-
tribute requests directly or indirectly. Finally, we assume that the video stream provided
by the system is compressed with same bit-rate. The network bandwidth consumed in
transporting each media program in the interconnection network is assumed to vary little,
under a CBR (constant bit rate) transmission scheme. For example, all media programs
are encoded using CBR scheme with variable-quality frames, or a video smoothing
scheme is applied to enable constant-quality VBR (variable bit-rate) -compressed videos
to be transported over a CBR service network [18, 23, 24]. Notably, however, no as-
sumption is made about the topology of the underlying interconnection network. The
proposed algorithm does not rely on any assumption about the network topology, making
it more realistically applicable to real problems. Meanwhile, the assumption of single
bit-rate of video program necessarily makes the problem tractable. When multiple
bit-rates of video program are allowed (that is, each program stream might demand dif-
ferent network bandwidth along a single network path), the problem resembles a maxi-
mal flow problem with “unsplittablility” constraints, which has been shown to be an
NP-hard problem. The property and heuristic algorithms of the unsplittable flow problem
can be found in [25].

Fig. 1 presents the system blocks and operations of the two-tier server architecture.
Client requests are sent via the Internet to the dispatcher (step 1 in the figure). The dis-
patcher collects a set of requests that arrive within a specified time period. Based on the
request patterns and current system state, the flow manager generates a path selection
scheme, in which for each individual admitted request, a pair of server nodes (front-end
node and back-end node) is assigned to respond to the request and the network path con-
necting this pair of nodes is determined. According to the assignment, the dispatcher re-
directs each admitted request to the front-end node corresponding to the pair of nodes
selected for the request (steps 2 and 3). The front-end node handles the (redirected) re-
quest and forwards the request to the corresponding server node (step 4). The server node
then begins to deliver the request stream to the front-end node along the network path
selected for the admitted request (step 5). The front-end node forwards the program
stream to the client (step 6). Data delivery continues until the stream has been completely
transmitted.

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

737

bj

fiFront-end

nodes

Back-end

nodes

Dispatcher

Flow manager

internet

VC-enabled interconnect network

r3

r2

Client

1

2
3

45

6

Request/control flow

data flow

Fig. 1. Two-tier server architecture for the path selection problem.

2.2 The Path Selection Problem

Path selection problems in a two-tier media server arise because of the sharing of
system resources, such as the processing power of the server nodes and the link band-
width of the interconnection network. Transporting a video stream from a back-end node
to a front-end node consumes a fraction of the bandwidth on each link along the network
path connecting both of the nodes. Thus, only a limited number of streams can be deliv-
ered simultaneously. Similarly, each server node can serve only a limited number of
streams because of the limitation on processing power or I/O capability. Meanwhile, for
each request, the server should properly select a back-end node to serve the request. Only
a node capable of providing the requested program and with enough processing power
can be selected. Additionally, before a requested program is forwarded to the client, the
requested program should be forwarded to the front-end node handling the request. Con-
sequently, for each request, the server should guarantee the existence of an available net-
work path to pipe the requested program stream between the back-end node and
front-end node pair selected for the request. For each request, multiple paths may exist
for the pair of nodes selected to handle the request. Last but not least, the server should
handle multiple requests concurrently. Given all these constraints, an intuitive selection
scheme is to randomly choose a feasible path and nodes for each request. However, this
scheme is prone to cause blocking on some critical paths, resulting in poor overall per-
formance. Besides, the server status, for example, the utilization and availability of net-
work links and nodes, can change dynamically. A selection scheme should be sufficiently
flexible and efficient to adapt to possible changes in server configurations. Finally, an
efficient path selection scheme should not only maximize system throughput, but also
reduce the system cost, as measured against some criteria, such as resource load balance
and priority.

CHUN-CHAO YEH AND JIE-YONG JUANG

738

3. PROBLEM MODELS

Inspired by [13], the path selection problem is herein modeled as a network flow
problem. A graph G = (V, E) represents the topology of a distributed system, where V
represents the set of nodes and E represents the set of all network links. First, a general
problem model is considered; this model yields an equivalent multi-commodity minimum
cost Integer flow (MCMCIF) problem. Although the MCMCIF flow model is sufficiently
powerful to model the path selection problem, it is hard to solve. The authors in [13] and
[6] experienced similar problems with such a model. A simplified model is presented
here to deal with the path selection problem better. Without lose of generality, conven-
tional terms in the flow network are reserved. That is, hereafter, this study refers to types
of services (in the transformed network flow model) as programs (in the path selection
problem). A service flow (or flow shortly) in the network model corresponds to a pro-
gram stream (or stream shortly) in the problem; a request to transport a specified type of
service over the flow network in the model corresponds to a request to fetch a specified
program file over the interconnection network in the problem.

3.1 A General Model for the Path Selection Problem

First, a general problem paradigm is considered, in which the interconnection net-
work is aware of the variation of program streams. Consider a two-tier media server:
multiple requests are made for different program files on different front-end nodes. To
serve a request, a back-end node that provides the requested program file should be se-
lected, and a network path for piping the program stream from the back-end node to the
front-end node must be available. Since each request consumes a fixed amount of system
resources, a feasible assignment of resources should not violate the resource constraints.
The problem is similar to the so-called multi-commodity integer flow problem. Accord-
ingly, the model of the path selection problem is similar to that of the flow problem.
Mathematically, this problem model, called Model 1 hereafter, is as follows:

Minimize c xij ij

j Ti E 11 £ ££ £

ÂÂ , (1)

Subject to

x xij ej

e Ee ki Ei k

- =

ŒŒ

ÂÂ
()()

,0 for all intermediate node k, and type j, (2)

0 £ £x uij ij , for all link i, and type j, (3)

x uij

j T

i

1£ £

Â £ , for all link i, (4)

x bij

i Ei t

tj

Œ

Â £

()

, for all back-end node t, and type j, (5)

x bij

i Ei ti j T

t

Œ£ £

ÂÂ £

()

, for all back-end node t, (6)

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

739

x d q uej

e Ee s

sj sj sj

Œ

Â £

()

min(, ,), for all front-end node s, and type j, (7)

x d q uej

e Ee sj T

sj sj sj

Œ£ £

ÂÂ £

()

min(, ,),
1

 for all front-end node s, (8)

xij ∈ I, for all link i, and type j. (9)

In the above formulas, Ei(x) denotes the set of all ingress-links to node x; similarly, Ee(x)
denotes the set of all egress-links from node x; Qs in Eq. (8) equals the sum of all Qsj for
all types j; Table 1 summarizes all related notations. As in [13], the cost associated with
an unassigned request is assumed to have a large enough value (virtually infinite value).
Therefore, the solutions of the above formulas yield the maximal number of admitted
requests. Furthermore, if more than one solution yields the same maximal number of
admitted requests, the one with the minimal cost is selected. Eq. (2) maintains flow con-
servation associated with each intermediate node. Eq. (3) sets capacity constraints on
individual types of flow associated with each link. Eq. (4) sets constraints on the total
flow capacity associated with each link. Similarly, Eqs. (5) and (6) set constraints on the
processing capacity associated with each back-end node; and Eqs. (7) and (8) set con-
straints on the processing capacity associated with each front-end node, in which the
flow capacity constraints associated with the out-link of the front-end node and the
number of requests available on the front-end node should be considered additionally.
Finally, Eq. (9) presents the constraint that the number of admitted requests should be an
integer. The above mathematical problem is equivalent to a multi-commodity minimum
cost integer flow (MCMCIF) problem, which has been demonstrated to be NP-complete
[14].

Table 1. Parameters in the general model.

Parameters
number of links NL

number of intermediate nodes NI

number of front-end nodes NF

number of back-end nodes NB

number of service types T

Service capacity of type j available in back-end node t btj

Total Service capacity available in back-end node t bt

Service capacity of type j available in front-end node s dsj

Total Service capacity available in front-end node s ds

Link capacity of type j available in link i. uij

Total Link capacity available in link i. ui

Link capacity of type j available in link i. usj

Link capacity available for the out link of front-end node s. us

Unit flow cost for type j passing through link i. cij

Number of requests for type j pending at front-end node s. qsj

CHUN-CHAO YEH AND JIE-YONG JUANG

740

3.2 A Simplified Model

Based on the preceding general model, a simplified model is constructed for the
path selection problem to fit the problem exactly. Examining the characteristics of the
path selection problem described in previous sections reveals that some constraints in the
above general model are not necessary for the problem. A modified model, called Model
2 hereafter, of the problem is as follows:

Minimize c xij ij

j Ti E 11 £ ££ £

ÂÂ , (10)

Subject to

,0
)()(

∑∑
∈∈

=−
kEee

ej
kEii

ij xx for all intermediate node k, (11)

,
1

i
Tj

ij ux ≤∑
≤≤

 for all link i, (12)

,
)(

∑
∈

≤
tEii

tjij bx for all back-end node t, and type j, (13)

,
)(1

∑∑
∈≤≤

≤
tEii

tij
Tj

bx for all back-end node t, (14)

x d uej

e Ee sj T

s s

Œ£ £

ÂÂ £

()

min(,),
1

 for all front-end node s, (15)

xij ∈ I, for all link i, and type j, (16)

ci1 = ci2 … ciT == ci. (17)

Table 2 summarizes the parameters of the modified model. The modified model elimi-
nates (a) the constraints on the capacity of each link flow for each individual flow type
(Eq. (3)) and (b) the constraints on the capacity of each front end node and on the num-
ber of requests available on the front-end node for each flow type (Eq. (7)). A partial
modification is made in Eq. (8). The constraint on the number of available requests is
eliminated, yielding Eq. (15). Also, the cost is independent of the type in the modified
model, yielding Eq. (17). The modifications are based on the following reasons. First, the
types of flow over a network link need not be differentiated. In the path selection prob-
lem considered in this study, different types of requests correspond to different programs
of media-files. The interconnection network does nothing other than forward program
streams. None of the links on the network are aware of the contents of the program
stream being carried. Only the data rate is meaningfully related to the consumption of
bandwidth associated with the links. Consequently, the cost term Cij associated with each
type of service sent over link i can be treated equally on the link. That is, Ci1 = Ci2 = … =

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

741

Table 2. Parameters in the modified model.

Parameters
number of links NL

number of intermediate nodes NI

number of front-end nodes NF

number of back-end nodes NB

number of service types T

Service capacity of type j available in back-end node t btj

Total Service capacity available in back-end node t bt

Total Service capacity available in front-end node s. ds

Total Link capacity available in link i. ui

Link capacity available for the out link of front-end node s. us

Unit flow cost passing through link i. ci

Number of requests for type j pending at the dispatcher qj

CiT = Ci (Eq. (17)), and the constraints on the capacity of the network links for each type
of services are unnecessary (Eq. (3)). Similarly, the constraints on the server capacity for
individual types in front-end nodes (Eq. (7)) need not be considered because front-end
nodes do not need to process the program stream (service) but need only forward the
stream to the client. Finally, the constraints on the numbers of requests available on each
front-end node are eliminated (Eqs. (7), and (8)) since in the target system, requests are
sent to the dispatcher, not directly to front-end nodes.

3.3 Problem Transformation

A path selection problem mathematically modeled as Model 2 can be transformed
into a special case of the MCMCIF problem, in which no explicit type of differentiation
is imposed on the network links. That is, no capacity constraint on an individual type of
flow is associated with network links, and individual unit flow costs for different types of
flow associated with a link are all the same for the link. The transformation scheme is as
follows.

1. All physical nodes (including the dispatcher) and network links in the server have

corresponding nodes and links in the flow network.
2. A by-pass node p and a terminal node t are added to the flow network.
3. Assign link capacity ui and unit flow cost ci to the link that corresponds to network

link i, i = 1 … NL. Assign the link capacity usi and the unit flow cost (default = 0) to
the link between node ss (corresponding to the dispatcher) and node si (corresponding
to front-end node i, i = 1 … NF). Assign a link capacity vector (Bi1, Bi2, …, BiT) and a
cost vector (default = 0) to the link that connects terminal node t to node ti (corre-
sponding to back-end server node i, i = 1 … NB).

4. Expand each node si in the flow network (corresponding to front-end node i, i = 1 …
NF) into two nodes, si and si, and connect the two nodes with a new link, as depicted in
Fig. 2 (a). Associate the new link with the front-end node capacity and its unit flow
cost.

CHUN-CHAO YEH AND JIE-YONG JUANG

742

5. Expand each node ti in the flow network, (corresponding to back-end server node i, i =
1 … NB) into two nodes, ti and ti′, connected to each one by a link, as shown in Fig. 2
(b). Associate the new link with the back-end node capacity and its unit flow cost.

S

(Fs/Cs)

t

(Ft/Ct) t' t
Ft/Ct

s s'
Fs/Cs

(a)

(b)

Fig. 2. Problem transformation for Step 4 (a): split each front-end node s into two nodes s and s′;
that for Step 5 (b): split each back-end node t into two nodes, t′ and t.

s1
x /y

t1
u(x,y,z)
(a,b,c)

x/y

front-end node s1 with available capacity= x,
cost=y

back-end node t1 with available total capacity = u,
individual type capacity= (x,y,z) for service types 1,
2, and 3 , and the corresponding type cost = (a,b,c)

 effective link capacity
x and per unit cost y
on the interconnection
network link

 intermediate node a of the
interconnection network

legend:

ss
dispatcher node ss with pending requests = (x,y,z)
for service type 1, 2, and 3

x

Internet

interconnection
netwoks3

12 /0

s1
6 /0

9/7

15/2

20/0

20/0

11/12

9/10

10/9

5/1

4/2

1/
1

a

b

c

d

s2
10 /0

20/0

8/4

t1
5 (3,1,1)
(0,0,0)

t2
5 (4,2,0)
(0.0.0)

t3
7 (0,5,2)
(0,0,0)

t4
8 (5,0,3)
(0,0,0)

4/1

12/10

(9,12,7)

Users from
internet

media server

(x,y,z)

ss

Fig. 3. An example of the path selection problem in a two-tier media server.

Fig. 3 presents an example of a two-tier multimedia server, which includes three

front-end nodes and four back-end nodes interconnected by an interconnection network
consisting of four routing nodes. The example shows the current system status in terms
of incoming requests and available resources. Twenty-eight requests are available on the
dispatcher: nine for type-1, 12 for type-2, and seven for type-3 service. The available
capacities of the three front-end nodes (s1, s2, and s3) are assumed to be six, 10, and 12,
respectively. The four back-end nodes (t1, t2, t3, and t4) are assumed to be able to serve

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

743

different types of requests with different capacities. Similarly, the link capacity and the
unit flow cost are presented for each network link in the example. Fig. 4 shows the result
of applying the above transforming scheme to the example.

9/7

15/2

20
/0

20/0

a

b

c

d

11/12

4/1

12/10

5/1

4/2

1/
1

s3

p

t4'

t1'

ss

inf/inf inf/inf

t3'

s2

s1

t2'

8/
4

20/0

10/9

9/10

(0,5,2)/0

(4,2,0)/0

(3,1,1)/0

t

(9,12,7) (-9,-12,-7)

(5,0,3)/0

t4

t1

t3

t2

8/0

7/0

5/0

5/0

s3'

s2'

s1'

12/
0

10/
0

6/0

Fig. 4. An instance of the flow network G1 transformed from the problem example shown in Fig. 3.

3.4 Parameter Setting

Most of the parameters in the problem model are functions of the system structure
and device characteristics. The setting of capacity limits on individual server nodes and
network links is a matter of policy. The upper bounds of these values can be obtained by
means of off-line measurement. The cost terms can be set more flexibly. No physical
constraint is associated with the cost terms. The setting depends totally on the resource
allocation policy. For example, one way to balance the utilization of system resources is
to assign a cost to a resource (server node or network link) in proportion to the inverse of
the capacity available on the resource. Therefore, when two resources can be used to
serve a request, the one with the lighter load (that is, with more capacity) is chosen.

4. TWO-PASS FLOW ALGORITHM

This section presents an algorithm, called the TPF (two-pass flow) algorithm, to
solve the path selection problem described above. The two-pass flow algorithm, first
constructs a flow network to represent the problem. Then, two passes of flow algorithms
are applied to yield optimal solutions.

4.1 TPF (Two-Pass Flow) Algorithm

The two-pass flow algorithm is summarized below and illustrated using an example.
Figs. 4 to 10 present the results of applying the algorithm step by step to the problem
example depicted in Fig. 3.

Algorithm TPF
1. Generate a flow network, G1, for the given problem. Transform a given path selection

CHUN-CHAO YEH AND JIE-YONG JUANG

744

problem into a network flow problem by using the transformation scheme presented in
the previous section (section 3.3). The result of the transformation yields a flow net-
work, named G1 hereafter. Fig. 4 presents an instance of the flow network, G1, ob-
tained by transforming the path selection problem depicted in Fig. 3, as an example.

2. Reconstruct a flow network G2 from G1. Reconstruct the flow network G1 by inserting
T new nodes (denoted as qt1, qt2, …, qtT) between terminal node t and nodes ti, i = 1 …
NB. Replace the old links (ti, t) with new links (ti, qtj) between nodes ti and qtj and new
links (t, qti) between nodes t and qti, j = 1 … T, i = 1 … NB. For each link (ti, qtj), as-
sign a capacity vector (bi1, bi2, …, biT), where bik = Bij if k == j, else bik = 0. Similarly,
for each link (t, qtj), assign a capacity vector (q1, q2, …, qT), where qk = Qj if k == j,
else qk = 0. The result of reconstruction yields a new flow network, named G2 hereaf-
ter. Following the above example, Fig. 5 presents an instance of the flow network G2
reconstructed from the one depicted in Fig. 4.

9/7

15/2

20
/0

20/0

a

b

c

d

11/12

4/1

12/10

5/1

4/2

1/
1

s3

p

t4'

t1'

ss

inf/inf inf/inf

t3'

s2

s1

t2'

8/
4

20/0

10/9

9/10

(9,12,7)

t4

t1

t3

t2

8/0

7/0

5/0

5/0

s3'

s2'

s1'

12/0

10/0

6/0

qt1

qt2

qt3

(5,0,0)/0

(0,0,1)/0

(0,0,3)/0 (4,
0,0

)/0

(0,2,0)/0

(3
,0

,0
)/0 (0,0,2)/0

(0,1,0)/0

(0,5,0)/0

(9,0,0)/0

(0,12,0)/0

(0
,0,

7)
/0

t

(-9,-12,-7)

Fig. 5. The results for the example after Step 2 in the TPF algorithm.

3. Apply conventional flow algorithm to a single-type flow network obtained from G2.

(First pass) Treat the flow network G2, determined in Step 2, as a single-commodity
flow network by considering all types of flow as a single flow type. That is, replace
the capacity constraint vector (u1, u2, …, uT) for T types of flow with the capacity con-
straint value u = u1 + u2 + … + uT. Also, replace the request vector (Q1, Q2 , …, QT)
with the number of total requests Q = Q1 + Q2 + … + QT . Then, apply conventional
minimal cost flow algorithm [14] to this single-type flow network, yielding the opti-
mal flow assignment, denoted as A = {ai | i = 1, 2, …, |E2|} hereafter, where |E2| is the
number of links in G2. The value of ai indicates the amount of flow that will pass
through link i when maximal flow (at minimal cost) is achieved in the flow network.
Fig. 6 presents the results of applying the flow algorithm to the example flow network
depicted in Fig. 5.

4. Reconstruct a flow network G3 from G2. Reverse the flow direction of the network G2
obtained in Step 2 (such that the flow direction is from node t to node ss). For each
link i in the flow network, replace the value of the capacity constraint associated with
the link with the value ai obtained in Step 3. Based on the result shown in Fig. 6, Fig.
7 presents an instance of the flow network G3 reconstructed from the one depicted in
Fig. 5, as an example.

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

745

9/7
(7)

15/2

(6)

20
/0

(7
)

20/0(6)

a

b

c

d

11/12
(11)

4/1
(4)

12/10

(5)

5/1
(5)

4/2(4)

1/
1

(1
)

s3

p

t4'

t1'

ss

inf/inf
(7)

inf/inf
(7)

t3'

s2

s1

t2'

8/
4

(8
)

20/0
(8)

10/9(7)

9/10

(5)

(9,12,7)

t4

t1

t3

t2

8/0
(5)

7/0
(7)

5/0
(5)

5/0
(4)

s3'

s2'

s1'

12/0
(7)

10/0
(8)

6/0
(6)

qt1

qt2

qt3

(5,0,0)/0
(4)

(0,0,1)/0
(1)

(0,0,3)/0

(1) (4,
0,0

)/0

(3)

(0,2,0)/0

(2)

(3
,0

,0
)/0

(2
)

(0,0,2)/0(2)

(0,1,0)/0

(1)

(0,5,0)/0
(5)

(9,0,0)/0(9)

(0,12,0)/0
(8)

(0
,0,

7)
/0

(4
)

t

(-9,-12,-7)

Fig. 6. The results for the example after Step 3 in the TPF algorithm. (The value inside the paren-
theses below each link indicates the result of flow assignment.)

7/7

6/2

7/
0

6/0

a

b

c

d

11/12

4/1

5/10

5/1
4/2

1/
1

s3

p

t4'

t1'

ss

7/inf 7/inf

t3'

s2

s1

t2'

8/
4

8/0

7/9

5/10

(9,12,7)

t4

t1

t3

t2

5/0

7/0

5/0

4/0

s3'

s2'

s1'

7/0

8/0

6/0

qt1

qt2

qt3

(4,0,0)/0

(0,0,1)/0

(0,0,1)/0 (3,
0,0

)/0

(0,2,0)/0

(2
,0

,0
)/0 (0,0,2)/0

(0,1,0)/0

(0,5,0)/0

(9,0,0)/0

(0,8,0)/0

(0
,0,

4)
/0

t

(-9,-12,-7)

Fig. 7. The results for the example after Step 4 in the TPF algorithm.

5. Apply flow algorithm to G3. (Second pass) For each type of flow, say type k, on the

flow network G3, obtained in Step 4, perform the following. (Assume each link i ini-
tially has a capacity constraint ui.)
(a) Apply conventional minimal cost flow algorithm to the type-k flow on flow net-

work G3 by turning off all the links (t, qtj) for all i ≠ k. , thus obtaining an optimal
flow assignment, say Fk = {Fk

i | i = 1, 2, …, |E3|} hereafter, for the flow network
G3 , where |E3| is the number of links in G3.

(b) For each link i in the network, update the capacity constraint by decreasing the
value by Fk

i. That is, ui = ui − Fk
i.

Figs. 8 to 10 show the results of optimal flow assignment for the instance of the

flow network G3 shown in Fig. 7, which was obtained from the example problem de-
picted in Fig. 4.

6. Obtain the paths selected for each admitted request from {Fk | k = 1, …, T}. The flow

assignments {Fk | k = 1, …, T}, obtained in Step 5, are the optimal flow assignments to
the flow network. The assigned flow on the by-pass links represents the requests that
cannot be admitted for the moment. Each flow path for type-k service in the flow net-
work corresponds to a path selected for a request of program k in the server. That is, if
a type-k flow f passes through nodes ti′ and sj′ in the flow network, then the

CHUN-CHAO YEH AND JIE-YONG JUANG

746

7/7(4,0,0)

6/2
(5,0,0)

7/0
(4

,0,
0)

6/0

(5,0,0)

a

b

c

d

11/12
(4,0,0)

4/1(2,0,0)

5/10

(4,0,0)

5/1
(5,0,0)

4/2(0,0,0)

1/
1

(0
,0

,0
)

s3

p

t4'

t1'

ss

7/inf
(0,0,0)

7/inf
(0,0,0)

t3'

s2

s1

t2'

8/4

(0,0,0)

8/0(0,0,0)

7/9(0,0,0)

5/10

(3,0,0)

(9,12,7)

t4

t1

t3

t2

5/0
(4,0,0)

7/0
(0,0,0)

5/0
(3,0,0)

4/0
(2,0,0)

s3'

s2'

s1'

7/
0

(4
,0

,0
)

8/
0

(0
,0

,0
)

6/
0

(5
,0

,0
)

qt1

qt2

qt3

(4,0,0)/0
(4,0,0)

(0,0,1)/0
(0,0,0)

(0,0,1)/0

(0,0,0)

(3,
0,0

)/0

(3,0,
0)

(0,2,0)/0

(0,0,0)

(2
,0

,0
)/0

(2
,0

,0
)

(0,0,2)/0
(0,0,0)

(0,1,0)/0

(0,0,0)

(0,5,0)/0(0,0,0)

(9,0,0)/0

(9,0,0)

(0,8,0)/0
(0,0,0)

(0
,0

,4
)/0

(0
,0

,0
)

t

(-9,-12,-7)

Fig. 8. The results for the example after type-1 requests are processed in Step 5 in the TPF algo-

rithm. (The vector below each link indicates the result of flow assignment.)

7/7(4,3,0)

6/2
(5,0,0)

7/
0

(4
,3,

0)

6/0

(5,0,0)

a

b

c

d

11/12
(4,5,0)

4/1(2,1,0)

5/10

(4,0,0)

5/1
(5,0,0)

4/2(0,3,0)

1/
1

(0
,0

,0
)

s3

p

t4'

t1'

ss

7/inf
(0,4,0)

7/inf
(0,4,0)

t3'

s2

s1

t2'

8/4

(0,5,0)

8/0(0,5,0)

7/9(0,5,0)

5/10

(3,2,0)

(9,12,7)

t4

t1

t3

t2

5/0
(4,0,0)

7/0
(0,5,0)

5/0
(3,2,0)

4/0
(2,1,0)

s3'

s2'

s1'

7/
0

(4
,3

,0
)

8/
0

(0
,5

,0
)

6/
0

(5
,0

,0
)

qt1

qt2

qt3

(4,0,0)/0
(4,0,0)

(0,0,1)/0
(0,0,0)

(0,0,1)/0

(0,0,0)

(3,
0,0

)/0

(3,0,
0)

(0,2,0)/0

(0,2,0)

(2
,0

,0
)/0

(2
,0

,0
)

(0,0,2)/0
(0,0,0)

(0,1,0)/0

(0,1,0)

(0,5,0)/0(0,5,0)

(9,0,0)/0

(9,0,0)

(0,8,0)/0
(0,8,0)

(0
,0

,4
)/0

(0
,0

,0
)

t

(-9,-12,-7)

Fig. 9. The results for the example after type-1/type-2 requests are processed in Step 5 in the TPF

algorithm.

7/7(4,3,0)

6/2
(5,0,1)

7/
0

(4
,3,

0)

6/0

(5,0,1)
a

b

c

d

11/12
(4,5,2)

4/1(2,1,1)

5/10

(4,0,1)

5/1
(5,0,0)

4/2

(0,3,1)

1/
1

(0
,0

,1
)

s3

p

t4'

t1'

ss

7/inf
(0,4,3)

7/inf
(0,4,3)

t3'

s2

s1

t2'

8/4

(0,5,3)

8/0(0,5,3)

7/9(0,5,2)

5/10

(3,2,0)

(9,12,7)

t4

t1

t3

t2

5/0
(4,0,1)

7/0
(0,5,2)

5/0
(3,2,0)

4/0
(2,1,1)

s3'

s2'

s1'

7/
0

(4
,3

,0
)

8/
0

(0
,5

,3
)

6/
0

(5
,0

,1
)

qt1

qt2

qt3

(4,0,0)/0
(4,0,0)

(0,0,1)/0
(0,0,1)

(0,0,1)/0

(0,0,1)

(3,
0,0

)/0

(3
,0,

0)

(0,2,0)/0

(0,2,0)

(2
,0

,0
)/0

(2
,0

,0
)

(0,0,2)/0
(0,0,2)

(0,1,0)/0

(0,1,0)

(0,5,0)/0(0,5,0)

(9,0,0)/0

(9,0,0)

(0,8,0)/0
(0,8,0)

(0
,0

,4
)/0

(0
,0

,4
)

t

(-9,-12,-7)

Fig. 10. The results for the example after all requests are processed in Step 5 in the TPF algorithm.

(The vector below each link indicates the result of flow assignment.)

server selects back-end node i and front-end node j to handle a request for program k.
Moreover, the path between the pair of server nodes (i, j) for the request can be de-
termined by referring to the path of flow f in the flow network.

Given a path selection problem with all of the related system parameters shown in

Table 2, applying the above two-pass flow algorithm yields an optimal path selection
scheme that maximizes the number of admitted requests at minimal cost. The flow as-

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

747

signments {Fk | k = 1, …, T} derived in Step 5 of the TPF algorithm indicate the amount
of resource units being consumed on individual network links and server nodes in serv-
ing the admitted requests. A flow assignment f = (f1, f2, …, fT) to the link (si, si′) implies
that the dispatcher should forward individually fk program-k requests to the front-end
node i, k = 1, …, T. A flow assignment f = (f1, f2, …, fT) to the link (ti′, ti) implies that
back-end server node i will be assigned to serve fk program-k requests. The flow assign-
ment f = (f1, f2, …, fT) to a link (i, j) that corresponds to the network link connecting
nodes i and j in the server implies that the server will direct fk program-k streams over the
network link. Restated, the server will direct a total of f1 + f2 + … + fT programs over the
network link.

For example, Fig. 10 shows an optimal path selection for the example media server
shown in Fig. 3. The results imply that the server can serve up to 21 requests (nine pro-
gram-1, eight program-2, and four program-3 requests) at a minimal cost of 406 (by
summing all the flow costs contributed by all the links). The flow assignment (4, 3, 0) to
the link (s3, s3′) implies that among all the pending requests (nine program-1, 12 pro-
gram-2 and seven program-2 requests), the dispatcher should forward four program-1
requests and three program-2 requests to front-end server node 3. The flow assignment (4,
0, 0) to the link (t4′, t4) implies that back-end server node 4 will be assigned to serve four
program-1 requests. The flow assignment (4, 0, 1) to the link (c, t4′) implies that the
server will direct five program streams (four program-1 and one program-3 streams) over
the network link that connects intermediate node c to back-end server node 4.

4.2 Complexity and Correctness

The above TPF algorithm requires, at worst, T + 1 passes of network flow computa-
tion, where T is the number of service types supported by the server. One pass is associ-
ated with the first flow-pass (forward pass) in Step 3; T passes are associated with the
second flow-pass (backward pass) in Step 5, each one yielding an optimal assignment for
one type of flow. In practice, only k + 1 passes are required if only k different types of
requests are made during the scheduling period. The minimal cost flow can be efficiently
computed in polynomial time [14, 22]. Consequently, the proposed TPF algorithm can be
implemented efficiently.

The following paragraphs briefly discuss correctness of the TPF algorithm. First, the
problem transformation from the path selection problem to the flow network problem is
correct. Similar techniques can be found in [13]. The reconstructed flow-network G2 in
Step 2 can be easily shown to be equivalent to the flow network G1 built in Step 1. That
is, any feasible flow assignment to G1 is also feasible to G2, and vice versa. The link (ti, t)
in G1 is replaced with T links (ti, qtk), k = 1, …, T in G2. Each link (ti, qtk) is associated
with a capacity constraint (0, …, 0, Bik, 0, …, 0), where Bik is the available capacity for
type-k flow on the link (ti, t). From the perspective of node ti, the capacity constraints are
equivalent. Meanwhile, in G2, all of the flow from node ti will be forwarded to node t
through a set of T nodes qtk, k = 1, …, T. Node qtk added to G2 in Step 2 plays the role of
a concentrator of type-k flow to sink all possible type-k flow that emerges from all the
nodes ti, i = 1 … NB. Note that in G1, the amount of type-k flows available on source
node ss is Qk, and in G2, the constraint of capacity vector (0, …, 0, Qk, 0, …, 0) imposed
on the link (qtk, t) allows at most the same amount (Qk) of type-k flow to pass through the

CHUN-CHAO YEH AND JIE-YONG JUANG

748

link. Consequently, the constraints are equivalent between G1 and G2. Then, in Step 3,
the flow type constraints are relaxed and, consequently, the available flow can be pushed
as much as possible from source node ss to terminal node t via all possible routes. Ap-
parently, the cost of using such a strategy yields a low bound of the minimal cost for the
same flow network with type-differentiation. Accordingly, if a feasible flow assignment
can be found under type-specific constraints, and if it yields the same cost for the same
flow network with relaxation of the constraints associated with individual types, then the
typed flow assignment is optimal. The flow network G3 constructed in Step 4 is a special
kind of network, called a capacity-conservative flow network [4], in which for each node
except the source node and the terminal node, the total capacity of all the links that
emerge from the node is the same as the total capacity of all the links that sink to the
node. Our previous work [4] showed that if a flow network is capacity-conservative, then
all the link capacity can be fully utilized. Therefore, the TPF algorithm up to Step 6
yields a multiple type flow assignment {Fk | k = 1, …, T}, in which to each link on the
flow network, the number of units of flow assigned is equal to the capacity available on
the link. That is, the assignment will lead to the same cost as in Step 3 (the first pass).
Consequently, the flow assignment {Fk | k = 1, …, T} in Step 6 is optimal for the flow
network G1 built in Step 1.

5. CONCLUSIONS

This study has investigated path selection problems in a media server with a two-tier
architecture, in which a VC-enabled network interconnects all front-end nodes and
back-end nodes. System resources must be effectively allocated to enable as many re-
quests as possible to be served. The process-power limitations on the server nodes and
bandwidth constraints on the network links have been simultaneously considered. With
proper problem transformation, the path selection problem can be transformed into a
special form of a minimal-cost multi-commodity integer flow problem, and an efficient
algorithm has been proposed to solve the problem. The proposed TPF algorithm involves,
at worst, T + 1 passes of minimal cost flow algorithms. In practice, only k + 1 passes are
required if only k different types of requests are made during the scheduling period. The
proposed path selection scheme is intended to be used with a large media server, in
which two-tier server architecture is utilized. In particular, the underlying interconnec-
tion network of the server is VC-enabled and subject to change over time. No topological
constraint is imposed on the interconnection network.

Many problems have characteristics similar to those of (integer) network flow prob-
lems. A general multi-commodity integral flow problem is hard to solve. However, some
degenerated forms of the problems can be simple but still sufficiently powerful to model
real-world problems. The path selection problem is an example. The corresponding
network flow problem solved here involved multiple flow types. We believe the solution
techniques presented in this paper are applicable to other problems that can be modeled
with mathematical forms similar to those discussed herein.

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

749

REFERENCES

1. L. Golubchik, R. R. Muntz, C. F. Chou, and S. Berson, “Design of fault-tolerant
large-scale VOD servers: with emphasis on high-performance and low-cost,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 12, 2001, pp. 363-386.

2. D. M. Dias, W. Kish, R. Mukherjee, and R. Tewai, “A scalable and highly available
web server,” in Proceeding of 41st IEEE International Computer Society Conference
(COMPCOM), 1996, pp. 85-92.

3. S. Baqai, M. Woo, and A. Ghafoor, “Network resource management for enter-
prise-wide multimedia services,” IEEE Communications Magazine, 1996, pp. 78-85.

4. C. C. Yeh, “Design of a multiprocessor data server”, Ph.D. dissertation, Department
of Computer Since and Information Engineering, National Taiwan University, Tai-
wan, 1998.

5. P. Y. Chang, D. J. Chen, and K. M. Kavi, “Multimedia file allocation on VC networks
using multipath routing,” IEEE Transactions on Computers, Vol. 49, 2000, pp.
971-977.

6. P. Berenbrink and A. Brinkmann, “Distributed path selection for storage networks,”
in Proceedings of International Conference on Parallel and Distributed Processing
Techniques, 2000, pp. 1097-1105.

7. D. Andresen et al., “SWEB: towards a scalable world wide web server on multicom-
puters,” in Proccedings of the 10th International Parallel Processing Symposium,
1996, pp. 850-856.

8. B. Narendran, S. Rangarajan, and S. Yajnik, “Data distribution algorithms for load
balanced fault-tolerant web access,” in Proceedings of the 16th Symposium on IEEE
Reliable Distributed Systems, 1997, pp. 97-106.

9. H. J. Siegel, Interconnection Network for Large-Scale Parallel Processing,
McGraw-Hill Series in Computer Organization and Architecture, McGraw-Hill, New
York, 1990.

10. B. D. Rathi, A. R. Tripathi, and G. J. Lipovski, “Hardwired resource allocators for
reconfigurable architectures,” in Proceedings of International Conference on Parallel
Processing, 1980, pp. 109-117.

11. F. Fung and H. Torng, “On the analysis of memory conflicts and bus contentions in a
multiple-microprocessor system,” IEEE Transactions on Computers, Vol. 28, 1979,
pp. 28-37.

12. M. A. Marsan and M. Gerla, “Markov models for multiple bus multiprocessor sys-
tems,” IEEE Transactions on Computers, Vol. 31, 1982, pp. 239-248.

13. J. Y. Juang and B. W. Wah, “Resource sharing interconnection networks in multi-
processors,” IEEE Transactions on Computers, Vol. 38, 1989, pp. 115-128.

14. S. Even, Graph Algorithms, Computer Science Press, 1979.
15. E. S. Elmallah and J. C. Culberson, “Multicommodity flows in simple multistage

networks,” Networks, Vol. 25, 1995, pp. 19-30.
16. T. P. J. To and B. Hamidzadeh, “Run-time optimization of heterogeneous media ac-

cess in a multimedia server,” IEEE Transactions on Multimedia, Vol. 2, 2000, pp.
49-61.

17. D. Makaroff, G. Neufeld, and N. Hutchinson, “Design and implementation of a VBR
continuous media file server,” IEEE Transactions on Software Engineering, Vol. 27,

CHUN-CHAO YEH AND JIE-YONG JUANG

750

2001, pp. 13-28.
18. M. Y. Wu and W. Shu, “Efficient support for interactive browsing operations in clus-

tered CBR video servers,” IEEE Transaction on Multimedia, Vol. 4, 2002. pp. 48-58.
19. L. Golubchik, V. S. Subrahmanian, S. Marcus, and J. Biskup, “Sync classes: a

framework for optimal scheduling of requests in multimedia storage servers,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 12, 2000, pp. 60-77.

20. Y. C. Tay and H. H. Pang, “Load sharing in distributed multimedia-on-demand sys-
tems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 12, 2000, pp.
410-428.

21. R. Tewari, D. M. Dias, R. Mukherjee, and H. M. Vin, “High-availability in clustered
multimedia servers,” in Proceeding of IEEE International Conference on Data Engi-
neering, 1996, pp. 645-654.

22. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for
network flow problems,” Journal of ACM, Vol. 19, 1972, pp. 248-264.

23. J. Lauderdale and D. H. K. Tsang, “A new techniques for transmission of
pre-encoded MPEG VBR video using CBR service,” in Proceeding of International
Conference on Communication, 1996, pp. 1416-1420.

24. Z. L. Zhang, J. Kurose, J. Salehi, and D. Towsley, “Smoothing, statistical multiplex-
ing, and call admission control for stored video,” IEEE Journal on Selected Areas in
Communications, Vol. 15, 1997, pp. 1148-1166.

25. Y. Dinitz, N. Garg, and M. X. Goemans, “On the single-source unsplittable flow
problem,” in Proceeding of IEEE Symposium on Foundations of Computer Science,
1998, pp. 290-299.

Chun-Chao Yeh (葉春超) received his Ph.D. and M.S. de-
grees in computer science and information engineering from Na-
tional Taiwan University, Taipei, Taiwan, in 1998 and 1991, re-
spectively, and his B.S. degree in computer science from National
Chiao Tung University, Hsinchu, Taiwan, in 1989. While he was
working toward his Ph.D. degree at National Taiwan University,
he got a DAAD/NSC scholarship to be a visiting researcher in
GMD, Germany, from July 1996 to April 1997. He has been an
Assistant Processor of Computer Science Department, National
Taiwan Ocean University, Keelung, Taiwan, since 2000. His re-

 search interests include computer networks, real-time and em-
bedded systems, and web servers.

PATH SELECTION PROBLEMS ON DISTRIBUTED MEDIA SERVERS

751

Jie-Yong Juang (莊志洋) received the B.S. degree in
Electrical Engineering from National Taiwan University, Taipei,
Taiwan, in 1976, the M.S. degree in Computer Science from
University of Nebraska, Lincoln, in 1981, and the Ph.D. degree in
Electrical Engineering from Purdue University, West Lafayette,
IN, in 1985. He is a Professor of the Department of Computer
Science and Information Engineering of the Taichung Healthcare
and Management University, Taichung, Taiwan. From Febru-
ary 1991 to July 2000, he was a Professor of the Department of
Computer Science and Information Engineering of National Tai-

wan University, Taipei, Taiwan. He was with the Department of Electrical Engineering
and Computer Science of Northwestern University, Evanston, IL, from January 1985 to
January 1991. His areas of research include Multimedia and Communication, Embedded
OS, and Knowledgement.

