
P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

Journal of Network and Systems Management, Vol. 11, No. 3, September 2003 (C©2003)

An Adaptive Policy-Based Framework for Network
Services Management

Leonidas Lymberopoulos,1,2 Emil Lupu, 1 and Morris Sloman1

This paper presents a framework for specifying policies for the management of net-
work services. Although policy-based management has been the subject of consider-
able research, proposed solutions are often restricted to condition-action rules, where
conditions are matched against incoming traffic flows. This results in static policy con-
figurations where manual intervention is required to cater for configuration changes and
to enable policy deployment. The framework presented in this paper supports automated
policy deployment and flexible event triggers to permit dynamic policy configuration.
While current research focuses mostly on rules for low-level device configuration, sig-
nificant challenges remain to be addressed in order to:a) provide policy specification
and adaptation across different abstraction layers; and, b) provide tools and services for
the engineering of policy-driven systems. In particular, this paper focuses on solutions
for dynamic adaptation of policies in response to changes within the managed envi-
ronment. Policy adaptation includes both dynamically changing policy parameters and
reconfiguring the policy objects. Access control for network services is also discussed.

KEY WORDS: Policy-Based Management; management of differentiated services;
service management; adaptive management; policy adaptation.

1. INTRODUCTION

Network services are developing from best-effort packet-forwarding services to
services that provide Quality-of-Service (QoS) guarantees to the user. Two ap-
proaches have been proposed for providing QoS to services within IP networks.
Integrated Services(IntServ) [1] uses the Resource ReSerVation Protocol (RSVP)
[2] to provide per-flow QoS support by dynamically reserving resources on RSVP-
enabled routers.Differentiated Services(DiffServ) is a much simpler alternative
to IntServ/RSVP. The QoS information is encoded in the Type of Service (ToS)
byte in the IP header to identify different classes of service.

1Department of Computing, Imperial College London, London, United Kingdom.
2To whom correspondence should be addressed at 180 Queen’s Gate, SW7 2BZ, London, United
Kingdom. E-mail:llymber@doc.ic.ac.uk

277

1064-7570/03/0900-0277/0C©2003 Plenum Publishing Corporation



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

278 Lymberopoulos, Lupu, and Sloman

Service Level Agreements (SLAs) are established between a service provider
and its customers to formally define the expectations and obligations that exist
in their business relationship. SLAs can also be defined between multiple peer
service providers who cooperate to provide an overall service that spans multiple
administrative domains.

Many current approaches to specifying Service Level Agreements, particu-
larly for network services, concentrate on specifying quality-of-service parameters
such as delay, throughput, error rates and availability. The specification of the ser-
vice is essentially static in that it often assumes a single type of service is provided
at all times; but many clients require services which vary according to date or
time. In addition, ‘fallback’ classes of services should be provided under failure
conditions when the main class of service cannot be provided — service adaptation
may take place either as a result of failures within the network or to accommodate
changes in client application requirements. For example, a collaborative design ap-
plication may switch from an audio phase to a phase needing video services, so the
client application must be able to trigger changes to the underlying communication
service.

A service provider may provide a sophisticated set of services, which are
offered to a client organization consisting of many different users. Not all users
within a client organization may need access to all the offered services. Autho-
rization should be part of the SLA management system to specify which users
are permitted to access particular services or functions within the services. This
information is also likely to change during the lifetime of the SLA as new services
or service functions are offered, or the set of client users changes.

The Ponderlanguage developed at Imperial College provides a framework
for specifying both authorization policies—the conditions under which users can
perform actions on resources—and, obligation policies—event triggered condition
action rules. It is a declarative object-oriented language with support for policy
structuring to cater for policy specification in complex systems. In this paper we
discuss some of the issues that arise in using Ponder for service management, and
then focus on how our policy-based management framework can be used to provide
dynamic management of services in Differentiated Services (DiffServ) networks.
The fundamental objective of policy-based management is to allow flexible and
adaptive management where the policies define the adaptation choices or strategy
which can be modified without recoding or even shutting down the system. In this
paper we describe the use of policies for adaptation at the service layer to select
and modify policies at the network layer.

The rest of the paper is organized as follows: in Section 2 we outline the
requirements for a policy-based system for service management. Section 3 briefly
presents the Ponder language, and Section 4 analyzes the use of policy adaptation
and gives an enforcement architecture for an adaptive policy system. Section 5
presents how our adaptive policy framework can apply in a Differentiated Services



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 279

environment, followed by a description of how it has been implemented in a
network simulator in Section 6, as well as some results from the simulation. In
Section 7 we present and compare our approach with related work, and the final
section discusses conclusions and directions for future work.

2. SERVICE MANAGEMENT ISSUES

Consider a typical network of a large enterprise which consists of several local
area networks (LANs) interconnected with a wide area network (WAN) through
one or more access routers. The IT department of the enterprise is responsible
for operating the network so as to satisfy the SLA established in the enterprise.
Following the policy based management approach, the administrator will deploy
network policy rules and the management system will automatically distribute the
rules to the network devices. The enforcement of the policy rules will provide
the network service QoS guarantees to the applications using the service. For
example, if the established SLA in the enterprise states that “A video application
between clients in Site A and a video server in Site B should receive Gold Service”
and Differentiated Services architecture [3] is deployed in the network then the
administrator should deploy a policy rule that instructs the network to forward the
packets that belong to the video application according to the Expedited Per Hop
Behavior [4].

A more sophisticated approach towards the automatic deployment of SLAs
is a management system that can automatically derive network policy information
from service specific information. In this approach, the technical part of the SLA
is specified as a set of Service Level Specifications (SLSs). A SLS is a set of
parameters (throughput, delay, jitter etc.) and their values which together define
the service offered to a traffic stream by a QoS-enabled network. It includes spe-
cific values or bounds for the traffic stream QoS metrics (e.g., round-trip delay,
throughput, packet loss probability, etc.). The management system will perform
a mapping function from the SLSs within an SLA, in order to derive network
policy information, as shown in Fig. 1. In general, refining an abstract high level
service specification to implementable policies is extremely difficult and can-
not be automated, but the SLS considered here is a comparatively simple set
of parameters which can be used to query a database in order to automate the
mapping.

An interesting variation of this could be the deployment of a mapping function
responsible not only for deriving the parameters of a network policy from the
SLS parameters, but also for selecting which network policy will be used for
the application described in the SLS. For example, if “Gold Network Service” is
defined with specific low values on the upper bounds of round-trip delay and packet
loss, then a network policy, which can guarantee these specific bounds should be
chosen for the video application.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

280 Lymberopoulos, Lupu, and Sloman

Fig. 1. SLS to network-level policy mapping.

In addition to mapping from SLS to network policy information, a manage-
ment system should also support dynamic service management in order to react to
changes that require modification of the existing network configuration. Figure 2
outlines the typical cases where the management system should change the existing
network configuration—these include:r A new user or an application request changes to the provided QoS. In the

video application example, clients in site A may request more network

Fig. 2. Service management with a policy-based management system.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 281

resources for a running session, in order to receive better video quality
from the video server located at Site B. Adaptive applications, which tai-
lor their behavior according to the available network resources, can change
their QoS requirements at run-time. This implies that network policy at-
tributes must be changed at run-time to support the new user or application
requirements.r Performance measurements from a monitoring service may indicate per-
formance degradation, thus requiring changes in the service network con-
figuration or even the selection of a new service to cater for the client
application. This in turn may require attribute changes in the deployed
network policy rules or even the selection of a different network policy to
cater for the application. For example, if a deployed network policy that
handles the video application packets can no longer guarantee low packet
loss due to high congestion, then a different network policy rule which can
guarantee low packet loss should be chosen for the video application.r Events indicating network failures or time events may trigger changes. For
example, a network policy deployed only within a specific path of routers
in the managed network may not be suitable for the video application when
the routing path inside the managed domain changes. In this case, a new net-
work policy, which can be applied to the new path, must be automatically
configured and distributed in order to handle the video application packets.

In addition, it is necessary to specify who is authorized to access specific
services or management functions. A certain group of users should be able to access
either specific services or functions within the provided service. For example, the
administrator may want “Gold” service to be accessible only to users in Sites A and
C, but not to users in Site D of the enterprise. On the other hand, only users with
administrative privileges in Sites A and B should be given the ability to change
parameters of the service, such as the bandwidth allocated to the service. This
information can also change dynamically as new services are being offered or the
set of client users changes.

We propose an adaptive policy-based framework to cover the wide range of
requirements identified earlier for the management of services. In this, policy is
specified with Ponder [5], a declarative, object-oriented language for specifying
security and management policies for distributed systems. Policy adaptation is
specified and enforced by other policies, specified in the same Ponder policy
notation.

3. THE PONDER POLICY LANGUAGE

Ponder is an object-oriented, declarative language for specifying manage-
ment and security policies. This paper focuses on the use ofobligation policies,



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

282 Lymberopoulos, Lupu, and Sloman

Fig. 3. Obligation Policy Syntax.

which specify the actions that managers must perform when certain events oc-
cur, and provide the ability to respond to changing circumstances. Obligations are
event-triggered condition-action rules, which explicitly identify thesubjects(i.e.,
managers or configuration agents) that are responsible for performing the man-
agement actions ontargetobjects. Both subject and target objects are specified in
terms ofdomains, which are a means of grouping objects to which policies apply
[6]. Events can be internal, e.g., a timer event, or external events, which are col-
lected and distributed by a monitoring service. Composite events can be specified
using the event composition operators that the language supports. The syntax of
obligation policies is shown in Fig. 3.

Actions can be operations defined in the management interface of the target
object or internal operation of the management agent. In the latter case, the target
element of a policy is optional. The concurrency operators “->” and “‖” separate
the policy actions in the obligation action list and respectively specify whether
actions should be executed sequentially or in parallel. The optional catch-clause
specifies an exception that is executed if the execution of the policy actions fails
for some reason. This syntax is used for declaring a policy instance. The language
provides reuse by supporting definition of policy types, which can be instantiated
for each specific environment. Figure 4 shows the syntax for declaring obligation
policy types and instantiations.

Policies are automatically deployed into the relevant Policy Management
Agents (PMA) specified by the subject of the policy. The PMA interprets and
enforces the obligation policies on a domain of target devices. In the current
Ponder prototype implementation [7], an obligation policy enforcement object is
implemented as a Java program downloaded to a PMA. The PMA registers with

Fig. 4. Obligation Types and Instantiations.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 283

the event service to receive the relevant events, which will trigger the policies it
holds. Events may pass parameters to the PMA.

We have given a very brief overview of Ponder. More details on authorization
policies, event composition, composite policies and constraints can be found in
(see Damianouet al. [5]) and a discussion on conflict detection and resolution in
(see Lupu and Sloman [8]).

4. POLICY ADAPTATION WITHIN THE PONDER FRAMEWORK

When applying policies to network elements, the policy actions are those
provided by the management interface of the managed element. Thus, the “level
of abstraction” of the policies is determined by the available implementation.
However, as discussed in Section 2, service management may require adaptation
of existing network policies to cater for changes within the managed network.
Thus, policies themselves need to be managed and adapted. In this paper, we
identify different adaptation requirements and show how policy adaptation can
itself be specified and enforced by other policies, specified in the same Ponder
policy notation.

We use the term “Policy Adaptation” to describe the ability of the policy-
based management system to modify network behavior in one of the following
ways:r Adaptation by dynamically changing the parameters of a QoS policy to

specify new attribute values for the run-time configuration of managed
objects.r Adaptation by selecting and enabling/disabling a policy from a set of pre-
defined QoS policies at run-time. The parameters of the selected network
QoS policy are set at run-time.r Adaptation by learning which are the most suitable policy configuration
strategies from the system behavior. This can be used to select policies or
even generate new ones when needed.

In this paper, we will focus only on the first two categories of policy adaptation as
adaptation by learning still requires considerable further work.

4.1. Run-Time Modification of Policy Parameters

In the general case, the specification of a network-level QoS policy used
for dynamically adapting the managed devices’ configuration follows the format
shown in Fig. 5.

In Fig. 5, an event triggers the execution of the policy in one or more
subjects, i.e., Network-level Policy Management Agents (PMAs). Using the
EventParameters, the PMA calculates the required policyActionParameters,



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

284 Lymberopoulos, Lupu, and Sloman

Fig. 5. Generic format for network QoS policy.

by calling the internal methodCalculateActionParameters, then it invokes the
relevant policy actions on the target objects in theTargetDomainofDeviceswith
the new policy parameters.

Policies provide a flexible means for providing this type of adaptation rather
than components written in a procedural language. New adaptation strategies can
be incorporated into the management system by adding new policies which react to
different events using the existing policy actions or by replacing existing policies
with new versions, which either implement new actions on the managed objects
or new actions on the Policy Management Agents. With programmable networks,
new actions may be added, via a management interface in network elements, so the
policies can be updated to access this new functionality. The code that implements
new actions or new calculation methods within the Policy Management Agent’s
engine can be loaded at run-time either through the administration console or by
the new policies themselves. If the functionality of the PMA were implemented
using a traditional programming language, it would be necessary to recompile the
code and replace the agent which would require stopping the system while this
was being done.

4.2. Adaptation by Dynamically Selecting and Enabling Policies from
a Set of Policies

In this approach, higher-level control policies are triggered by reconfiguration
events and determine which lower-level network policy must be enabled/disabled
to adapt the configuration of the managed system. As we discussed in the pre-
vious section, the advantage of using policies rather than a procedural language
for selecting and enabling the appropriate network-level policies is that modifying
or adding new management strategy at this level can be achieved by replacing
the control policy or adding new ones. Furthermore, the same Ponder deployment
framework can be used to distribute both high-level control policies and network
QoS policies [7]. In this paper we will focus on service management policies as



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 285

Fig. 6. Specification of a generic service management policy.

an example of these higher-level policies. In the general case, a service manage-
ment policy is specified with the template obligation ruleGenericServicePolicy,
presented in Fig. 6.

In the policy shown in Fig. 6, anAdaptationRequestevent triggers the selec-
tion of policies for configuring network elements such as routers. TheServicePMA
first selects the most appropriate network-level policy to actually implement the
configuration, using theselectPolicymethod; the policy is enabled; parameters re-
lated to the specific policy are calculated; and, finally an event is sent via the event
service to pass parameters and trigger the network-level policy. The network-level
policy will be interpreted by one or more Network-level PMAs which will actually
configure network devices. Note that the advantage of triggering the network-level
policy via the event service is that there may be multiple agents managing subsets
of the network devices. These agents will all receive the event and configure their
respective devices.

4.3. Enforcement Architecture

In the general case, the management functionality of the generic Policy
Management Agent ServicePMA is specified with the obligation rule
GenericServicePolicy, presented in Fig. 6.

The enforcement architecture is presented in Fig. 7.

1. TheServicePMA receives the eventAdaptationRequestfrom the event
service. As discussed in Section 2, the adaptation event could be from
a new application requiring changes to QoS, performance measurements
coming from a monitoring service that require changes in the service
network configuration, events indicating network failures or time events,
etc.

2. TheServicePMA requests the current policy database from the policy
service.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

286 Lymberopoulos, Lupu, and Sloman

Fig. 7. Enforcement architecture for policy adaptation.

3. The policy database is received and theServicePMA then invokes a se-
lection algorithm to choose a suitable network policy from the set of
implemented network policies.

4. Theenable()method is called on the selected network policy object, which
in turn calls theenable()method on the relevant Network-level PMAs. En-
abling the policy means that policy enforcement objects within the PMAs
register the obligation event with the event service, as described by Dulay
[7]. At this point, the selected policy is activated in the Network-level
PMAs, but it needs to be triggered by the obligation event to perform the
policy actions. Furthermore, an “old” policy can be unloaded or disabled
from the corresponding PMAs.

5. The obligation event is generated with the network policy calculated
parameters to trigger the policy.

6. The event service disseminates the obligation event to all Network-level
PMAs that are registered to receive the specific event.

5. SERVICE MANAGEMENT OVER DIFFERENTIATED
SERVICES NETWORKS

In our approach, adaptation is enforced by higher-level policies. This sec-
tion presents a usage scenario, where network policy that provides Per Domain
Behavior in a Differentiated Services environment is adapted by service manage-
ment policies. Service management policies are enforced by Policy Management
Agents at the service-level. The latter are responsible for the management of ser-
vices that run within the managed DiffServ network. Section 5.3 presents how



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 287

authorization policy, specified in the Ponder notation can be used to control access
to the services provided in the DiffServ network.

5.1. Network-level Per Domain Behavior Policies

The IETF DiffServ working group Nichols and Capenter [9] has proposed
the term Per Domain Behavior (PDB) to describe the behavior experienced by a
particular set of packets as they cross a DiffServ domain. A PDB is characterized
by specific metrics that quantify the treatment a set of packets with a particular
DSCP (or set of DSCPs) will receive as it crosses a DiffServ domain. A PDB spec-
ifies a forwarding path treatment for a specific aggregate. A PDB is implemented
with one or more Per Hop Behaviors (PHBs). A PHB describes the forwarding
behavior of a DiffServ node applied to a particular DiffServ behavior aggregate.
PHBs are implemented in nodes by means of some buffer management and packet
scheduling mechanisms. Each PDB has measurable attributes that can be used to
describe what happens to its packets as they enter and cross the DiffServ domain.
In our framework, each PDB is implemented as a network-level policy rule. Each
rule guarantees the PDB attributes to the corresponding traffic aggregate. Table I
presents examples of QoS guarantees that PDB policies can offer to their associated
traffic aggregates.

In our framework, PDB policies are specified as Ponder obligation rules. The
actual implementation of the PDB policy, i.e., the implementation of the PHB (or
the set of PHBs) that will guarantee the QoS characteristics to the corresponding
traffic aggregate, is hidden from the customer. The customer (human or automated
agent) is offered the externally observable PDB QoS attributes. An example of a
PDB Ponder policy rule is given here.

Example 1. Policy rule for providing a specific PDB

instoblig /Policies/PDBPolicy1
subject /PMAs/DiffServAgent;
target r = /DiffServDomainA/Routers/CoreRouters;
on PDB1 ConfigRequest(DS, maxinput rate, minoutput rate);
do /* DS: The Diffserv codepoint for EF: 101110.PDB1 is

implemented with the EF PHB*/
r.applyEFPHB(DS, maxinput rate, minoutput rate);

when max input rate<= min output rate; /* Property that EF
traffic must satisfy */

In this example, we assume that the core routers within the DiffServ domain
implement the EF PHB, so the PDB policy will configure them accordingly. A
possible implementation described by Jacobson et al. in [4] of theapplyEFPHB
action can use the Weighted Round Robin scheduling algorithm to schedule the
packets at the egress interface of each core router. The weight for the EF traffic



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

288 Lymberopoulos, Lupu, and Sloman

Ta
bl

e
I.

P
D

B
P

ol
ic

ie
s

an
d

T
he

ir
Q

oS
C

ha
ra

ct
er

is
tic

s

P
D

B
E

nf
or

ce
m

en
t

A
ss

ur
ed

E
nf

or
ce

m
en

t
T

im
e

w
he

n
id

en
tifi

er
ne

tw
or

k
po

lic
y

ba
nd

w
id

th
(M

bp
s)

D
el

ay
(m

s)
Ji

tte
r

(m
s)

Lo
ss

(%
)

ro
ut

er
s

pa
th

va
lid

P
D

B
1

/P
ol

ic
ie

s/
P

ol
ic

y1
10

≤2
0

≤3
≤1

〈r
l,
..
.,

rN
〉

E
ve

ry
da

y
P

D
B

2
/P

ol
ic

ie
s/

P
ol

ic
y2

20
≤1

0
≤1

≤0
.1

〈r
l,
..
.,

rM
〉

W
or

ki
ng

ho
ur

s
..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 289

class is calculated from the parametermin output rate as:

weight =min output rate/total output rate,

wheretotal output rate is the egress interface’s bandwidth. Note that the policy
rule in this example will configure the core routers within the DiffServ domain
to implement the EF PHB on the corresponding traffic aggregate. An additional
policy is needed to provide the necessary configuration to the edge routers of the
DiffServ domain. When the network-level PMADiffServAgent receives the event
PDB1 ConfigRequest, it invokes theapplyEFPHB action on all routers in the
target domain. This way, all core routers within the target domain will guarantee a
minimum output rate (throughput) to the EF-marked packets, when these packets
do not exceed the configured maximum input rate at the ingress router interface.
An alternative implementation of EF could use priority scheduling at the egress
interface of the target core routers. More details on the specification of network-
level DiffServ policies can be found (see Lymberopoulos et al. in [10]) which
also describes the generic enforcement architecture within the Ponder deployment
model.

Our current implementation extends the Ponder toolkit [11] with the func-
tionality to enforce DiffServ policies. Policies in the Ponder toolkit are Java RMI
objects. The DiffServ specific policy actions (e.g.,applyEFPHB) are methods
within the policy object that the network-level Policy Management Agents in-
voke when triggered by the configuration request event. Policy actions are con-
structed using the DiffServ element classes that the DiffServ implementation [12]
provides.

5.2. Service Management Policies

The Per Hop Domain Behavior (PDB) policies which we introduced in the
previous section are enforced by DiffServ enabled Network-level PMAs (Fig. 7).
These configure the QoS mechanisms of the managed devices within the Diff-
Serv network. However, as we have already discussed in Section 2, network
service management requires additional functionality. The required functional-
ity that enables dynamic service management is provided in our framework by
Service Level Policy Management Agents at the service level. In the following,
we will provide examples of service management policies for dynamic service
management.

5.2.1. SLS to PDB Mapping Policy
SLS to PDB mapping can be performed by theServiceManagementAgent

when the administrator triggers the policy ruleSLSMappingPolicy by means of
an SLS request.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

290 Lymberopoulos, Lupu, and Sloman

Example 2. SLS to PDB mapping policy

instoblig SLSMappingPolicy{
subject ServiceManagementAgent;
on SLS Request (SLSparameters);
do pdb policy= selectusingalgorithmA(SLSparameters)->

pdb policy.enable()->
pdb policy parameters= calculate (pbdpolicy, SLSparameters)->
EventService.GenerateEvent (pdbpolicyObligationEvent,
pdb policy parameters;

In Example 2, a new SLS request from an application with specific parameters
will trigger the SLSMappingPolicy. The ServiceManagementAgentuses the
SLS parameters to select a suitable PDB policy from the policy database. The PDB
policy is enabled and triggered to configure network devices. Note that we use the
Tequila project SLS approach for DiffServ SLS parameter specification [13]. A
“parser” component within the Ponder management toolkit is used to translate
the Tequila external SLS specification to pairs of〈parameter, value〉. These pairs
are stored in the structure SLSparameters and are conveyed to the agent with
the obligation eventSLS Request. Upon the receipt of theSLS Request, the
ServiceManagementAgentwill select the appropriate PDB policy for this specific
request. An example of a selection algorithm is outlined in [14], where the PDB
is selected according to the triple〈delay, loss, throuhput〉.

5.2.2. Policy to Handle Service Performance Degradation
A number of different adaptation strategies could be used for handling ser-

vice run-time performance degradation, notified by the monitoring service, as
indicated in Fig. 2. There may be a need to dynamically change these strategies
by replacing a policy within theServiceManagementAgentwith a new version
or by enabling/disabling different versions of the policy. Policies provide a more
flexible means of implementing this type of service-level adaptation than scripts
or special purpose code. Events indicating high delay or high packet loss could
trigger policies in theServiceManagementAgent. In the following examples, we
indicate adaptation strategies, which could be implemented by Ponder policies
for the management of a network service such as the video client application de-
scribed in Section 2, but we do not define the actual policies. In all the examples,
we assume that the video application receives the EF network service and that the
EF PHB is implemented as presented in Example 1.

The monitoring system detects that the EF service end-to-end delay exceeds
a threshold so it generates aHighDelay event received by theServiceManage-
mentAgent. Corrective actions which may be performed include: a) Increase the
minimum departure rate of the EF traffic at the egress of every core router to
guarantee that the service packets (especially large ones) will remain in the output



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 291

queue for less time before being transmitted to the next hop; and, b) Notify the
client application to choose a different state, which requires less bandwith and
hence decreases the incoming traffic rate at the ingress interface. This way, the EF
aggregate will experience less delay.

The action for aHighPacketLossevent would be to increase the maximum
arrival rate of the incoming EF traffic at the ingress interfaces of both the edge and
the core routers that the EF traffic traverses. This will reduce the number of packets
being dropped by the policer at the ingress interface. Alternatively, as packet loss
is proportional to the aggregation degree, the number of EF microflows can be
reduced, in order to reduce packet loss in the remaining EF traffic.

5.2.3. Policy to Support Changes in Routing or Link Failures
A PDB is usually associated with a path of routers within the DiffServ domian

(e.g., when using DiffServ over MPLS). When a link fails or routing changes for
a specific class of traffic, the corresponding PDB may not be guaranteed by the
routers in the new path. A new PDB must be selected for this class of traffic
that satisfies the network service QoS requirements and that can be served by the
new path. Which PDB is selected and how, is a decision that can be formulated
as a service management policy. The following example provides a policy that
implements this functionality.

Example 3. Policy for configuring DiffServ upon link failures or routing
changes

instoblig RoutingChangePolicy{
subject ServiceManagementAgent;
on routeChanged (newPath);
do pdb= selectusingalgorithmA(SLSparams, newPath) ->

pdb.enable() -> pdbparams []= calculate(SLSparams) ->
EventService.GenerateEvent (pdbObligationEvent, pdbparams[]);

This policy instructs theServiceManagementAgentto find a suitable PDB
for the service with SLS parameters (SLS parameters[]) when the path of routers
that serves the service packets has changed. Information about the new path is
conveyed to theServiceManagementAgentwith therouteChangedevent. This
event could be triggered by a component which is responsible for detecting and
reporting routing changes. The new PDB is selected by the selection algorithm A.
As in Example 1, the selection of the PDB can be adapted by replacing the existing
policy with one using a different selection algorithm.

5.2.4. Policy to Reflect Changes in Application or User Requirements
The user/application may request different QoS guarantees at run-time by

updating SLS parameters. As a consequence, network policy attributes must be



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

292 Lymberopoulos, Lupu, and Sloman

changed to support the new user/application requirements. A policy example,
which enables theServiceManagementAgentto provide this type of service adap-
tation is given later.

Example 4. Policy for re-configuring DiffServ when SLS parameters change
at run-time

instoblig SLSRenegotiationPolicy{
subject ServiceManagementAgent;
on SLS Request (newSLS parameters[], serviceid);
do pdb policy = policyService.lookup (serviceid) ->

new pdb policy parameters[]= calculate (pbdpolicy,
new SLS parameters[]) ->
EventService.GenerateEvent(pdbpolicyObligationEvent,
new pdb policy parameter[]);}

In this policy example, the event SLSRequest carries both the new SLS
parameters that the application/user requires and a unique identifier of the client
application that requires its SLS renegotiation (this identifier could be the Flow
Description parameter [13] of the Tequila SLS). The PDB policy reference that
is responsible for this specific service is obtained via a lookup() operation on
the Policy service, assuming that a table containing the service identifiers and
their PDBs is updated when the initial request for SLS to PDB mapping has been
successful. Alternatively, the PDB that will guarantee the new service requirements
could be selected at run-time among the set of implemented PDBs, as in the
SLSMappingPolicy in the example 1.

5.3. Service Authorization Policies

As we have discussed in Section 2 of this paper, authorization should be
part of the service management system to specify which users are able to access
particular services or functions within the services. Consider a scenario where
users request network services for their applications through Service Access Points
(SAPs). Access control agents should be implemented at each SAP to interpret
authorization policies and control requests related to the service. In Example 5, the
policy ruleGoldServiceAccessControlPolicyallows only users from sites A and
C to perform the action of allocating “Gold Service” to their client applications.
“Gold Service” will be allocated to the client application only if the requested
bandwidth is less than 100 Mbps.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 293

Example 5. Policy for controlling users’ access to a particular network
service

instauth+ GoldServiceAccessControlPolicy{
subject /Users/SiteAusers+ /Users/SiteCusers;
target ServiceAccessPointAgent;
action allocateGoldService (clientapplication, bandwidth);
when bandwidth< 100;

It is possible to permit selected customer administrators to access the SAP
to set service parameters such as changing the bandwidth allocated to the “Gold
Service”. This can be implemented using the following policy:

Example 6. Policy for controlling access to management function within a
network service

instauth+ GoldServiceBandwidthControlPolicy{
subject /Users/SiteAusers/Admins+ /Users/SiteBusers/Admins;
target ServiceAccessPointAgent;
action allocateBandwidthToGoldService(bandwidth);}

6. IMPLEMENTATION OF A PROTOTYPE ADAPTIVE MANAGEMENT
SYSTEM AND EVALUATION

Our enforcement architecture has been implemented using the Ponder toolkit
[11]. A Service Policy Management Agent implements one or more selection
algorithms which query a simple policy database to choose a suitable policy. Using
a graphical tool, the administrator selects which network QoS policies should be
included in the policy database and edits the QoS attributes (see Table I) of each
selected policy. New policies can be included in the policy description database at
run-time or existing policies can be removed. The administrator can also load new
selection algorithms in the Service PMA. This allows new adaptation strategies to
be implemented within the management system at run-time by adding new service
management policies which use the new selection algorithms.

The applicability of our approach to the adaptive management of Differen-
tiated Services networks has been tested on simulated DiffServ networks, using
the JavaSim [15] network simulator, which offers DiffServ functionality. We have
extended the JavaSim simulator with new components, which allow the commu-
nication between the simulator and the Policy Management Agents, which are
implemented using the Ponder toolkit. These components and their interaction
with the Ponder Policy Management Agents are presented in Fig. 8.

Monitoring Componentsmeasure the performance characteristics such as
throughput, packet loss and end-to-end delay for DiffServ traffic classes during
a simulation. These measurements are used to display performance graphs and
by Event Componentsto generate performance degradation events when traffic



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

294 Lymberopoulos, Lupu, and Sloman

Fig. 8. Prototype implementation of an adaptive policy based management system.

measurements exceed specific thresholds. For example, an event indicating packet
loss will be created when the packet loss of a specific class of traffic exceeds a
configured threshold.

In addition,Event Componentsgenerate events indicating network failures or
new user/application QoS requirements. For example, when a host inside the sim-
ulated network requests certain QoS for for a new traffic flow, a QoS request event
will be generated. All events are dispatched to the Service PMA, where they trigger
policies, through the Elvin Event Service [16], a publish/subscribing messaging
system, which we are currently using within the Ponder Toolkit. The policies either
select lower-level network policies to enable or enforce corrective actions on the
managed devices. In this implementation, corrective actions are invoked on the
target devices directly by the Service PMA, although the same actions could be
initiated by Network-level PMAs after a Service PMA request.

The Policy Management Agents and the JavaSim simulator run on different
hosts. Policy actions are communicated to the simulated nodes through theProtocol



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 295

Fig. 9. Simulated DiffServ network.

Adapter Component, which acts as an interface to the simulator. Policy Manage-
ment Agents send TCP messages, using our proprietary text-based protocol to the
Protocol Adapter Componentwhich translates the messages into commands sent
to the management interface of the target simulation nodes. Note that our policy
based management system abstracts the protocols used for communication be-
tween a manager agent and the managed device. AProtocol Adapter Component
could easily be implemented to translate management actions into standard policy
protocols such as COPS or SNMP which would be supported by real network
elements.

We present results of an experiment based on a simulated typical DiffServ
network, with the topology indicated in Fig. 9. We implemented three PDB policies
within this network, theGreenPolicy PDBwith the EF PHB, theYellowPolicy PDB
with the AF11 PHB and theRedPolicy PDBwith the BE PHB. We used priority
scheduling at the egress interface of each core router. Using a graphical tool, the
administrator selects which network policies should be included in the QoS policy
database, and edits the QoS attributes for each PDB. The tool interfaces with a
domain browser to select policies from the directory server, where policy objects
are stored. The values assigned to QoS attributes represent the attributes’ upper
thresholds, where−1 indicates there is no upper threshold.

In this experiment, we show how our adaptive management system automati-
cally performs the SLS to PDB mapping for new SLS requests, implemented with
the policySLSMappingPolicyfrom Example 2. The eventSLSRequestparameters
are the address of the node issuing the SLS request and the requested values of



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

296 Lymberopoulos, Lupu, and Sloman

Fig. 10. Throughput of Individual traffic flows.

delay, packet loss and jitter with the selection algorithm choosing the closest PDB
according to the triple〈delay, packetLoss, jitter〉. Figure 10 indicates the through-
put of each individual flow that traverses the DiffServ network, while Figure 11
displays the throughput of the DiffServ aggregates. At first, Host 3 sends 200Kbps
of EF traffic, host 4 sends 400Kbps of AF11 traffic and host 5 sends 800 Kbps of
BE traffic. At point A in Figs 10 and 11, host 6 issues a SLS request for a 100 Kbps
service which guarantees delay<80 ms, packet loss<0.3% and jitter< 6ms. This
SLS request is handled by our management system to adapt configuration of the

Fig. 11. Throughput of DiffServ aggregates.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 297

DiffServ network. As we can observe, the ServicePMA chooses theGreenService
for this SLS request and triggers theGreenPolicy. As a result of the enforcement
of theGreenPolicy, the DiffServ network adapts configuration to guarantee the EF
PHB to the traffic originating from host 6.

At point B, host 7 issues a SLS request for a service of 300 Kbps with delay
<120.0 ms, packet loss<2% and jitter<10 ms. This time the ServicePMA chooses
theYellowServiceand host 7 receives the AF11 PHB. We can observe that after
this point the BE class suffers from starvation, since the total throughput of EF and
AF11 traffic is 1000 Kbps, which is the maximum capacity of the core network.
Later, at point C, the host 6 request an alternativel service of 100 Kbps with delay
<110 ms, packet loss<3% and jitter<15 ms. The ServicePMA reacts to this
request by choosing the AF11 service for the user application.

We have conducted several other experiments within simulated DiffServ net-
works. These demonstrate how service management policies cater for the dynamic
management of network services. However, due to space limitations, we will not
provide in this paper the results from these experiments.

7. RELATED WORK

Various frameworks have been proposed for providing service management
in QoS enabled networks. Many of them propose a Service Level Specification
to configuration mapping function in their architecture. Other research groups
are working on policy specification and enforcement. Our work aims at bring-
ing together these areas, by showing how to use the flexibility of a policy based
management framework for dynamic service management.

The IETF Policy working group is defining a framework for managing QoS
within networks [17]. They do not have a language for specifying policies but
are using the X.500 directory schema. IETF policies are of the formif 〈set of
conditions〉 then do〈a set of actions〉. Directories are used for storing policies but
not for grouping subjects and targets. They do not have the concepts of subject and
target that can be used to determine to which components a policy applies, so the
mapping of policies to components has to be done by other means (i.e., interface
roles). Furthermore, they do not support policy rules that can be dynamically
triggered by events to reconfigure the managed system according to changing
circumstances. The policy work in the IETF seems to be focused only in the
network layer and they have not considered the interaction between application
and network policy.

A number of vendors are marketing policy toolkits for defining policies for
DiffServ enabled networks, e.g., [18, 19]. Most of these are similar to the IETF
ideas. None of them supports a language but they do have graphical editors that
allow the administrator to define individual policies and then explicitly identify the
enforcement components to which the policies must be loaded. None of these tools



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

298 Lymberopoulos, Lupu, and Sloman

appear to have considered the automation of the policy lifecycle and how to adapt
the configuration of network elements when conditions change. New configura-
tion need to be imposed manually by the administrator through the management
console.

A policy-based management system is proposed by Verma et al. [20] for
managing Service Level Agreements within DiffServ networks. They use a tabu-
lar specification where a policy table contains entries, which map traffic aggregates
into classes of service. The list of PHBs that different devices support is obtained
by a resource discovery mechanism. Thus, rather than providing a policy-based
management system for managing the characteristics of DiffServ devices, the pro-
posed system only maps application flows into predefined and already implemented
PHBs. Moreover, this system can only communicate policies to the enforcement
devices during the initial configuration process, initiated by the administrator and
cannot adapt to run-time changes in the managed environment. In addition, the
scope of this approach is specifically aimed at a management system for a DiffServ
network, whereas our work is applicable to a wide range of management areas.

A SLS to DiffServ configuration mapping framework is proposed by Prieto
and Brunner [14]. The management system consists of two parts. The first per-
forms both the SLS to PDB mapping process and an admission control process.
The mapping module uses anN-dimensional space (e.g., delay, packet loss, and
throughput) to classify an input SLS into an available intradomain service, which
is offered by an implemented PDB within the DiffServ network. The second is
the policy-based control part which controls the SLS mapping and the admission
control processes. Network policy is used as the device configuration mechanism
but they not have any concrete proposals for the policy part of the framework.
Furthermore, the SLS to PDB mapping process is only initiated by the user; no
actions are undertaken by the management system to dynamically select a new
PDB when network conditions change.

Keller et al. [21] proposes a contract-based architecture for application-level
service management. Contracts are used for defining, deploying, monitoring and
enforcing SLAs in a dynamic e-Business environment. A generic object-oriented
model describes the various sections of a contract between a client and a service
provider. Contracts are managed by a Contract Management System, whose main
functional components are: a measurement, a violation detection and a manage-
ment component. The measurement component is responsible for collecting data
relevant to service QoS parameters. The violation detection component retrieves
data from the measurement component and evaluates if the guarantees defined
in the contract are met. In case of a QoS violation, a notification is sent to the
management component which initiates corrective measures. The advantage of
our proposed framework for network-level service management is the flexibility
to implement dynamically new management strategies within the service manage-
ment system.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 299

A Customer Service Management (CSM) architecture [22] allows delega-
tion of the service management task from the service provider to the customer.
Customers can adjust SLS parameters through a parameter setting function block
within the CSM module which implements a SLS mapping function, to derive
device configuration from SLS information. Our framework can provide this func-
tionality, by allowing users to trigger the execution of management actions within
the Service Management Agent.

The framework proposed by Yoshiharaet al. [23] adapts policy parameters
on monitoring the network. A management script includes policies, expressed
in the IETF representation, and also specifies how the policy life cycle should
be managed. The script notifies the management system about QoS threshold
violations. In this work, a prototype implementation is provided for Differentiated
Services, where policy parameters, such as the peak rate of a traffic profile, its
peak burst size and the associated DSCPs, are changed dynamically to adapt to
system behavior. The framework we propose for the adaptive management of
DiffServ can specify, in a uniform way, all the necessary information required
for enforcement and adaptation of policies using obligation rules. In addition
to providing adaptation by changing policy parameters, we can also select new
policies to be enabled upon events other than just QoS violation events.

An architecture for the management of a network offering active services is
presented by Marshallet al. [24]. A bacterial algorithm forms the basis for the
adaptation performed by autonomous controllers which are programmed (like a
bacterium) to autonomously replicate policies that improve its performance and
de-activate policies that degrade performance. This way, “useful” policies spread
and “poor” policies die out. A policy is evaluated though a fitness (revenue-cost)
function. In this work, each policy is related to one active service; policies con-
trol the deployment of services (proxylets) in their active services environment.
Marshall and Roadknight [25] presents an example of this type of adaptation for
providing QoS differentiation of active services, where the queue length of network
servers (DPSs) is adapted to provide either short delay or low loss to service(s),
depending on the users QoS requirements. Example of these requirements (poli-
cies or service genes) can be: “Accept request for service A if DPS <80% busy”
of “Accept request for service C if queue length<20”. In our framework, policies
are used in a more generic sense, describing the actions that management agents
must undertake when receiving different types of requests. We provide adaptation,
in a more systematic way, by adapting the policy based management system itself,
either by changing attributes of policies or by removing and adding new policies.

A QoS Architecture transport system for a multicast, multimedia networking
environment offers a QoS configurable API at the transport layer, which enables
applications to have control over QoS [26]. QoS is specified at the API in terms
of a flow specification, which includes parameters such as delay, throughput, jitter
etc. and a QoS policy. The QoS policy enables users to advise the infrastructure



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

300 Lymberopoulos, Lupu, and Sloman

on how to deal with the flow when resource availability changes. A distributed
QoS adapter interprets the policy and is responsible for informing applications
when resources become available. A QoS adaptation protocol is implemented
for the communication between QoS adapters. Our framework can provide this
functionality, but also it may apply adaptive behavior in other circumstances, as
we presented through the examples in Section 4.

A lot of work on QoS adaptation has also been carried out in the Distributed
Systems area, which we will not present due to space limitations. Most of this
work provides adaptation by hard coded QoS management and monitoring in
middleware systems for supporting multimedia applications.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an adaptive policy-based framework for net-
work services management. Our approach provides the administrator the flexibility
to define network, service management and service authorization policy using the
Ponder high-level language.

Network policy rules configure the QoS mechanisms of the devices within
the target domain. Network rules specified within our framework are dynamically
triggered by events, in order to change the configuration of the managed objects
under certain circumstances. This dynamic configuration of policy forms the basis
of the adaptive management our framework can provide.

We presented how policy adaptation in our framework is enforced by higher-
level Ponder-policies. Adaptation is provided in one of the following ways: a) by
dynamically changing the parameters of a QoS policy to specify new attribute
values for the run-time configuration of managed objects; and, b) by selecting and
enabling/disabling a policy from a set of pre-defined QoS policies at run-time. The
parameters of the selected network QoS policy are calculated and set at run-time.

Service management policies are a specific case of higher-level management
policies which adapt the underlying network policy. We presented examples that
demonstrate how service management policies cater for the dynamic management
of services in a Differentiated Services network.

One issue that needs to be addressed here is the problems that may arise
using an adaptive management system rather than manual intervention to adapt
network configuration. Possible problems are that the management system may
oscillate or fail to deliver a feasible network configuration. For the first problem,
we give the network administrator the ability to configure theEvent Components
of the adaptive management system, to filter out frequent events of the same type
and to use thresholds to ensure that small changes in performance do not generate
events to trigger configuration changes. Badly programmed policies could pos-
sibly introduce instability, as is the case with any incorrect program. In order to
deliver a feasible network configuration, we are currently working on the design



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 301

and implementation of a validation process inside our adaptive management frame-
work. This process will ensure that the policy is consistent with the functional or
resource constraints within the target environment.

Finally, in order to protect network services from unauthorized usage, we
provide the administrator the ability to specify with service authorization policies
which users are able to access particular services or functions within the services.

An important issue that needs to be addressed is to enhance the functionality
of the Service Management system to initiate corrective actions which are not
pre-defined. Currently, its task is to adapt the set of underlying network policies
upon pre-defined conditions. However, corrective measures should be undertaken
to remedy any causes of violations in the delivery of the service to the client
application. This will require the management system to carry out problem deter-
mination tasks and to perform root cause analysis in order to initiate the corrective
actions when violations are detected. We also intend to experiment with Linux
based routers as well as commercial routers or switches to evaluate the perfor-
mance implications of executing policies on routers. Future work also includes the
application of our approach to the management of MPLS networks.

9. ACKNOWLEDGMENTS

We gratefully acknowledge the support of the EPSRC for research grant
GR/R31409/01 (PolyNet) as well as Cisco Systems for support on the Polyander
project.

REFERENCES

1. R. Braden, D. Clark, and D. Shenker, Integrated Services in the Internet Architecture: an Overview,
RFC 1633, June 1994.

2. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, ReSerVation Protocol (RSVP) Version
1 Functional Specification, RFC 2205, September 1997.

3. M. Carlson, W. Weiss, S. Blake, Z. Wang, D. Black, and E. Davies, An Architecture for Differen-
tiated Services, RFC 2475, December 1998.

4. V. Jacobson, K. Nichols, and K. Poduri, An Expedited Forwarding PHB, RFC2598, September
1999.

5. N. Damianou, N. Dulay, E. Lupu, and M. Sloman, The Ponder Policy Specification Language,
Proc. Policy 2001,International Workshop on Policies for Distributed Systems and Networks,
Bristol, United Kingdom, January 29–31 2001.

6. M. Sloman, and K. Twidle, Domains: A framework for structuring management policy, Chap. 16
Networks and Distributed Systems Management, Sloman, pp. 433–453, 1994.

7. N. Dulay, E. Lupu, M. Sloman, and N. Damianou, A Policy Deployment Model for the Ponder
Language,IEEE/IFIP International Symposium on Intergrated Network Management, Seattle,
May 14–18 pp. 529–544, 2001.

8. E. Lupu and M. Sloman, Conflicts in policy-based distributed systems management,IEEE Trans-
actions on Software Engineering, Special Issue on Inconsistency Management, Vol. 25, No. 6,
pp. 852–869, December 1999.



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

302 Lymberopoulos, Lupu, and Sloman

9. K. Nichols and B. Carpenter, Definition of Differentiated Services Per Domain Behaviors and
Rules for their Specification, RFC 3086, April 2001.

10. L. Lymberopoulos, E. Lupu and M. Sloman, An An adaptive Policy Based Management Frame-
work for Differentiated Services Networks.IEEE Third International Workshop on Policies for
Distributed Systems and Networks, Monterey, California June 5–7 2002.

11. N. Damianou, N. Dulay, E. Lupu, M. Sloman and T. Tonouchi, Tools for domain-based policy
management of distributed systems.Eighth Network Operations and Management Symposium,
Florence, Italy, April 15–19 2002.

12. P. Martinez, M. Brunner, J. Quittek, F. Strauß, J. Sch¨onwälder, S. Mertens, and T. Klie, Using the
script MIB for policy-based configuration management,Eighth Network Operations and Manage-
ment Symposium, Florence, Italy, April 15–19 2002.

13. D. Goderis, Y. T’joens, C. Jacquenet, G. Memenios, G. R. Egan, D. Griffin, P. Georgatsos,
L. Georgiadis, and P. V. Heuven, Service Level Specification Semantics, Parameters and negotia-
tion requirements,draft-tequila-sls-01.txt, June 2001.

14. A. Prieto and M. Brunner, SLS to DiffServ configuration mappings,12th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, Nancy, France, October 15–17
2001.

15. DRCL JavaSim,http://www.javasim.org
16. Elvin: Content Based Messaging,http://elvin.dstc.edu.au/
17. Y. Snir, Y. Ramberg, J. Strassner and R. Cohen, Policy Framework QoS Information Model, Internet

Draft, draft-ietf-policy-qos-info-model-03.txt, April 2001.
18. Cisco COPS QoS Policy Manager product documentation,http://www.cisco.com/univercd/cc/

td/doc/product/rtrmgmt/qos/qpm21/index.htm
19. Allot Communications NetPolicy Policy Based Management System product documentation,

http://www.allot.com/html/productsnetpolicy.shtm
20. D. Verma, M. Beigi, and R. Jennings, Policy Based SLA Management in Enterprise Networks.In-

ternational Workshop on Policies for Distributed Systems and Networks, Bristol, United Kingdom
January 29–31 2001. Springer-Verlag LNCS, pp. 137–152, 1995

21. A. Keller, G. Kar, H. Ludwig, A. Dan, and J. Hellerstein, Managing Dynamic Services: A Contract-
based Approach to a Conceptual Architecture.Eighth Network Operations and Management Sym-
posium, Florence, Italy, April 15–19 2002.

22. R. Sprenkels, A. Pras, B. Beinjum, and L. de Goede, A Customer Service Management Architecture
for the Internet.11th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, Texas, December 4–6 2000.

23. K. Yoshihara, M. Isomura, and H. Horiuchi, Distributed Policy-based Management Enabling Pol-
icy Adaptation on Monitoring using Active Network Technology.12th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Management, Nancy, France October 15–17
2001.

24. I. Marshall, H. Gharib, H. Hardwicke, and C. Roadknight A novel architecture for active service
management.IEEE/IFIP International Symposium on Intergrated Network Management, Seattle,
pp. 795–810, May 2001.

25. I.W. Marshall and C.M.Roadknight, Provision of quality-of-service for active services,Computer
Networks, Vol. 36, No. 1, June 2001.

26. A.T. Campbell, A Quality of Service Architecture, Ph.D. Thesis, Lancaster University, United
Kingdom January 1996.

Leonidas Lymberopoulosgraduated in July 2000 from the Department of Electrical Engineering
and Computer Science of National Technical University of Athens. Since September 2000, he has been



P1: FLT

Pp964-jons-470901 JONS.cls September 4, 2003 18:30

An Adaptive Policy-Based Management Framework 303

a Research Associate in the DSE Group in the Department of Computing, Imperial College London.
His research interests are in the area of Policy-Based Networking.

Emil Lupu is a lecturer in the Department of Computing, Imperial College London. He has over
9 years experience in policy-driven network and systems management and serves on the program com-
mittee of the IFIP/IEEE Integrated Management and Network Operations and Management symposia,
and on the steering committee of the Policy for Networks and Distributed Systems conference.

Morris Sloman leads the DSE Group in the Department of Computing Imperial College London.
He is a member of the editorial board of theJournal of Network and Systems Management, the steering
committee for the IFIP/IEEE Integrated Management Symposium, and the Policy for Networks and
Distributed Systems conferences.


