
A Probabilistic Retrieval Model for
Semistructured Data

Jinyoung Kim, Xiaobing Xue and W. Bruce Croft

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts Amherst
{jykim,xuexb,croft}@cs.umass.edu

Abstract. Retrieving semistructured (XML) data typically requires ei-
ther a structured query such as XPath, or a keyword query that does
not take structure into account. In this paper, we infer structural infor-
mation automatically from keyword queries and incorporate this into a
retrieval model. More specifically, we propose the concept of a mapping
probability, which maps each query word into a related field (or XML
element). This mapping probability is used as a weight to combine the
language models estimated from each field. Experiments on two test col-
lections show that our retrieval model based on mapping probabilities
outperforms baseline techniques significantly.

1 Introduction

Despite the huge amount of unstructured text data on the web, structured
databases support most web services as a back-end, and XML is becoming in-
creasingly popular as the format for semistructured data. Therefore, effective
retrieval of structured or semistructured data continues to be a significant re-
search issue for many applications.

In this paper, we focus on the retrieval of semistructured data in the form
of XML documents where the fields (or XML elements) have primarily textual
content. This type of data often has considerable overlap in the content and use
of elements. Most user queries for such data will target one or more of these
elements, which leads to search interfaces where users enter query specifications
into multiple fields.

To motivate the approach described in this paper, we start with an example,
where a user wants to find a romantic movie featuring Meg Ryan. In the IMDB1

website, searching with a simple query ‘meg ryan romance’ does not produce any
relevant movies in the top ranked list. If the “power” search interface is used,
the user can specify ‘meg ryan’ in the cast field and ‘romance’ in the genre field,
which finds a number of movies such as ‘Sleepless in Seattle’.

From this example, it is evident that providing structural information for
each part of a query can be more effective. This raises the question of whether
1 Internet Movie Database: http://www.imdb.com

2

we should always ask users to provide this information for each query. Consid-
ering that many users are generally only willing to express the simplest forms of
queries, this may be an excessive burden. This is supported by the observation2

that “advanced” search functions involving field-based queries are not used by
most users. Explicitly issuing structured queries such as SQL or XPath is also
beyond the capability of most users since it requires the knowledge of the schema
as well as the query language.

The focus of the work described in this paper is to shift the burden of speci-
fying effective queries for semistructured data from the user to the system. Our
approach is to have the system “guess” the structural information that is im-
plicit in keyword queries. In the next section, we provide a general description
of this approach.

1.1 Inferring the User’s Intent

We begin with the observation that a query has an implicit mapping of each
query term into XML element(s), even though users may not want to fill out
complex forms or formulate structured queries. Imagine a user is trying to find
a movie description XML document composed of elements like title, genre, cast,
and so on. If she issues the query ‘meg ryan romance’, it would be desirable if the
system can infer the mapping between these query terms and the corresponding
XML elements (cast and genre) without any additional specification.

The distribution of words in the elements in the database provides clues for
this inference process. In our example query for the IMDB database, the query
term ‘romance’ will be found more frequently in the genre elements, while the
terms ‘meg’ and ‘ryan’ occur mostly in the cast or team elements. An impor-
tant assumption of our work is that each XML element will have a distinctive
distribution of terms, which, in the case of the IMDB database, is reasonable
considering that different XML elements describe different aspects of the movie.

Given a mapping between query terms and XML elements, how can we
use this information for retrieval? One way is to convert keyword queries into
structured queries. In the example above, the resulting XPath query would be
//movie[actor=‘meg ryan’ and genre=‘romance’].

While this is a reasonable approach, we expect that there will be an inherent
loss of information in this conversion process, since it is likely that only a few
of the top ranked elements will be used in the resulting structured query. In
this case, if some query terms were mapped into elements not intended by the
user, we cannot expect to get the right result. Extending the movie example, if
a query word is inferred to be an actor’s name by the system yet actually was a
director’s name, no relevant movie will be returned. A structured query also in
general returns a set, although in most cases a ranked list will be more desirable,
especially if there are too many items in the result set or the XML document
contains full-text elements.

2 http://www.useit.com/alertbox/20010513.html

3

Accordingly, we take an IR approach and regard the mapping relationship
as the strength of evidence each element provides for each query term. In other
words, if an element (e.g., genre) is given the highest mapping probability for a
given query term (e.g., ‘romance’), then the occurrence of the query term in that
element is assigned more weight than any other elements, reflecting the inference
that the user may have meant the type genre for the query term ‘romance’. This
retrieval model can exploit the mapping without the loss of information in that
every element can contribute a score. In addition, the result is naturally a ranked
list of documents.

In summary, we try to infer the user’s query intent on a per-term, per-element
basis, finding which document element each query term may be associated with.
Then we incorporate the resulting mapping into the traditional language mod-
eling approach to IR [11] to combine element-level scores into a document score.

The rest of this paper is organized as follows. We introduce related work in
Section 2, followed by our mapping probability estimation technique and the
corresponding retrieval model in Section 3. Then we provide experimental ver-
ification of this approach in Section 4. Lastly, we conclude with a discussion of
potential future work.

2 Related Work

Related work can be mostly found in investigations of the XML retrieval task,
which has been addressed from both the IR and database perspectives. This work
is also similar to the research on keyword search over relational databases, since
the task is basically ranked retrieval of structured data using keyword queries.

The INEX initiative is a major study of XML retrieval [2]. The INEX ad-
hoc track addresses the task of retrieving XML data with explicit document
structure, such as section and title, and has used test data consisting of scientific
papers or Wikipedia articles. Our focus instead is on XML data where each
element type has more specific semantics and, consequently, a distinctive term
distribution. This is consistent with the view that the database schema represents
the important semantics of the data rather than the structural layout. Also,
whereas INEX addresses the issues of finding the right granularity for XML
retrieval and the corresponding evaluation metrics, we limit our task to retrieving
entire documents (or XML records).

A recent paper from INEX [8] suggested an extension of the classic proba-
bilistic retrieval model where each term score is weighted by tag (element type)
score. A tag score for each term is estimated based on the probability that the
element judged relevant contains the term. This method is similar to the one pre-
sented in this paper in that it weights element-level scores using tag scores, but it
does require element-level relevance judgments. Evaluations of this method were
inconclusive. The BM25f model [13] also has some similarity to our approach.

Other recent work [10] showed that a keyword query can be refined into a
structured query by mapping each query term into a set of structural fragments
and transforming these fragments into the XPath query that represents the orig-

4

inal information need most appropriately. While the initial mapping step of this
method bears some resemblance to our mapping probability estimation and can
be done using collection statistics, the subsequent conversion into a structured
query has the potential problem of missing information that we mentioned in
Section 1.1. Calado et al [3] describe a method of ranking candidate structured
queries that is similar to the one described in this paper, although it was applied
and evaluated differently.

The database community has also studied XML retrieval with keyword queries.
The concept of Lowest Common Ancestor (LCA) [5] has been proposed to answer
keyword queries, where the LCA corresponds to the lowest-level XML element
which contains all query words in its descendant elements. Besides XML retrieval
with keyword queries, there has been work about keyword search in relational
databases, which includes DBXplorer [1], DISCOVER [6]. For these systems,
the answers to the keyword query are the tuple trees joined from multiple tables
containing query words.

3 A Probabilistic Retrieval Model for Semistructured
Data

In this section, we introduce the probabilistic retrieval model for semistructured
data. We start by discussing the hierarchical language model, which is the basis
of our method. Then we explain how we can infer mapping probabilities from
collection statistics and incorporate them into the retrieval model.

The following notation will be used throughout this paper. We will assume
that a query Q = (q1, q2, ..., qm) is composed of m words and the collection C
built on a single XML Schema E = (E1, E2, ..., En) is composed of n element
types. Each document d in the collection is composed of elements (e1, e2, ..., en),
where each element is marked using lowercase letters to distinguish it from the
corresponding element type in the schema.

Note our simplifying assumptions that the document as a whole is the unit
of retrieval and every document has only one level of elements. The model can
be extended to relax these assumptions, such as dealing with a hierarchy of
elements.

3.1 Hierarchical Language Model

Ogilvie and Callan [9] suggested the hierarchical language model (HLM), where
they proposed a language modeling approach to IR adapted for XML component
retrieval, by smoothing with parent/child elements and differential weighting for
each element type.

Based on our simple one-level schema E, a document score in the HLM
approach is formed by taking a weighted average of element-level scores as ex-
pressed in the following:

5

P (Q|d) =
m∏

i=1

n∑
j=1

µjPQL(qi|ej) (1)

PQL(qi|ej) = (1− λ)P (qi|ej) + λP (qi|Ej) (2)

PQL(qi|ej) is the query-likelihood score of element ej after appropriate smooth-
ing with the background language model built using all instances of Ej . Callan
and Ogilvie also suggest guidelines for determining n weight parameters µj for
each element, such as setting them proportional to the length of text content or
the importance for retrieval.

However, the weights in HLM are fixed regardless of the query once they
are set. This can be too restrictive if each element provides a different strength
of evidence for different query terms. In view of this, our work can be seen as
an extension of HLM where we assign different element-level weights that are
estimated for each query term.

3.2 Mapping Probabilities

As briefly discussed in the introduction, we can infer the mapping between each
query term and XML element based on collection statistics. More formally, using
Bayes’ theorem, we can estimate the posterior probability PM (Ej |w) that a
given query term w is mapped into XML element Ej by combining the prior
probability PM (Ej) and the probability of a term occurring in a given element
type PM (w|Ej).

PM (Ej |w) =
PM (w|Ej)PM (Ej)

P (w)
=

PM (w|Ej)PM (Ej)∑
Ek∈E PM (w|Ek)PM (Ek)

(3)

PM (w|Ej) is calculated by dividing the number of occurrences for term w by
total term counts in the element Ej across the whole collection. In other words,
PM (w|Ej) is the probability of generating word w from a virtual document
created by combining all Ej elements in the collection. Also, PM (Ej) denotes
the prior probability of element Ej being mapped into any query term before
observing collection statistics.

Following this estimation procedure, the mapping probability can be viewed
as a normalized query-likelihood score for each element type given a query. It
can also be interpreted as an effort to capture the ‘significance’ of a query term
for each element type. For instance, a query term ‘romance’ can be found in
both genre and plot elements of a movie XML document, yet ‘romance’ is more
significant in genre than in plot element and therefore it is more likely to be the
element the user intended.

Another point worth remarking is that it is relatively cheap to calculate this
mapping probability since it is based on collection statistics, which is already
available in the search engine index. Therefore, no additional indexing is required
for mapping probability calculation. Also, this can be done before a user issues
a query, thereby having virtually no impact on the perceived speed of retrieval.

6

3.3 Incorporating Mapping Probabilities into the Retrieval Model

With the mapping probabilities estimated as described above, the probabilistic
retrieval model for semistructured data (PRMS) can use them as weights for
combining the score from each element into a document score, as follows:

P (Q|d) =
m∏

i=1

n∑
j=1

PM (Ej |qi)PQL(qi|ej) (4)

Here, the mapping probability PM (Ej |w) is calculated as described in Section
3.2 and the element-level query-likelihood score PQL(w|ej) is estimated in the
same way as in the HLM approach.

The rationale behind this weighting is that the mapping probability is the
result of the inference procedure to decide which element the user may have
meant for a given query term. For instance, for the query term ‘romance’ , this
model assigns higher weight when it is found in genre element as we assume that
the user is more likely to have meant a type of movie rather than a word found
in plot.

One may imagine a case where the user meant ‘meg ryan’ to be words in the
title and ‘romance’ to be in the plot. Given that our goal is to make the best
guess with the minimal information supplied by user, however, the PRMS will
not rank movies that match this interpretation as highly as the more common
meaning. Movies that do match this interpretation will, however, appear in the
ranking rather than being rejected outright which would be the case if we were
generating structured queries. The experimental results based on collections and
queries taken from the actual web services supports the claim that the common
interpretation is usually correct.

4 The Experiments

In this section we describe experiments for verifying the effectiveness of the sug-
gested model. Since our retrieval model returns a ranked list of documents given
a keyword query, we follow standard IR experimental methodology [4], measur-
ing retrieval effectiveness using a set of queries and getting overall performance
score by averaging query-level scores.

We prepared two XML collections, IMDB and Monster. As will be explained
in a greater detail in the following, IMDB is viewed as a “clean” collection in
the sense that data has been entered into the correct fields. We expect this type
of database to be very suitable for our method, whereas the Monster data has
much more “noise” and is consequently more challenging. For both collections,
each word is stemmed during indexing using the Krovetz stemmer [7]. Stopwords
were not removed.

For the retrieval experiments, we used Indri [14], a state-of-the-art search
engine based on the language modeling approach to IR [11]. We chose Indri for
several reasons. First, it supports indexing of XML documents by their elements,

7

which means that each XML element is considered as a small document for which
a relevance score can be calculated. Second, it supports combining scores from
each element with arbitrary weights based on an inference network, which is
a crucial aspect of our retrieval model. In a sense, our retrieval model can be
understood as transforming a given keyword query into a semistructured Indri
query expression where different weight is given to each element for each query
term.

In addition to the search engine, since we needed a mapping probability for
each query term, we created a simple program that calculates mapping probabil-
ities based on the collection statistics available in the Indri index. The program
simply reads term occurrences from the index corresponding to each XML el-
ement and computes the mapping probability based on Equation 3, which was
later used as a weight for Indri queries.

For a comparison of retrieval effectiveness, our baselines were the standard
document query-likelihood model (DQL) and a variant of the hierarchical lan-
guage model (HLM) which assigns a fixed weight for each element according to
its presumed importance.

Our experiments require some parameters to be tuned in advance. We had
to determine smoothing parameters [15] and element-level weights for HLM. For
each collection, we set aside 10 training queries to find the best-performing pa-
rameters and used these parameters for test queries. Since the HLM parameters
required training for each XML element, we adopted a iterative line search based
on the Golden Section Search [12] algorithm.

4.1 Experiments with IMDB Data

We did an initial experiment with the IMDB3 dataset, which consists of 437,281
“documents” or XML records. Each document corresponds to a movie and was
constructed from text data4. The element types were ‘title’, ‘year’, ‘releasedata’,
‘language’, ‘genre’, ‘country’, ‘location’, ‘colorinfo’, ‘cast’, ‘team’ and ‘plot’. As
seen in the earlier example, document content consists mostly of keywords, with
an exception of the plot element. Since each element has little overlap in word
distribution, it was expected that the mapping probabilities could be estimated
with high accuracy.

We prepared 40 queries, assuming the situation where a user wants to find a
movie with partial information spanning over many elements. One may remem-
ber some words in the title, the name of an actor, or the year it was released and
so on. These are all combined into a keyword query, as summarized in Table 1.
Since most queries were designed to find a single movie, we could find relevant
documents by manual search.

We also present some examples of estimated mapping probabilities in Table
2. As you can see, most query terms appear to be mapped into the expected

3 An XML collection of movies from the Internet Movie Database:
http://www.imdb.com

4 Available in http://www.imdb.com/interfaces#plain

8

Table 1. Example queries for IMDB collection.

Query Description

1 Love Letter Iwai Movie with title ‘Love Letter’, directed by Iwai Shynji

2 Ziyi Zhang hidden tiger ‘Crouching Tiger Hidden Dragon’ featuring Ziyi Zhang

3 Meg Ryan war A war movie featuring Meg Ryan

4 Redemption crime ‘The Shawshank Redemption’, a crime movie

5 Brokeback Ang Lee ‘The Brokeback Mountain’ directed by Ang Lee

elements. Given these mapping probabilities, we automatically formulated ex-
ample query 3 into the Indri query shown in Figure 1, where the score from each
element is combined for each query term. In this query, #wsum is the weighted
sum operator which supports the weighted combination of evidence, #combine
is the top-level combination operator, and the ‘.’ operator specifies an element
of the document.

Table 2. Mapping probability examples from IMDB collection. For each query-term,
only 3 elements are used for this example.

Query 3

meg cast:0.407 team:0.382 title:0.187

ryan cast:0.601 team:0.381 title:0.017

war genre:0.927 title:0.070 location:0.002

Query 4

redemption title:0.983 location:0.017 year:0.000

crime genre:0.990 title:0.010 location:0.000

#combine (#wsum(0.407 meg.(cast) 0.382 meg.(team) 0.187 meg.(title))

#wsum(0.601 ryan.(cast) 0.381 ryan.(team) 0.017 ryan.(title))

#wsum(0.927 war.(genre) 0.070 war.(title) 0.002 war.(location)))

Fig. 1. Indri query example from IMDB collection.

Out of a total of 134 query terms, 91 (68%) query terms were mapped into
the correct element with the highest probability. Including elements with the
second highest mapping probability, 113 (84%) were correct. As an example of
an incorrect mapping, in the query ‘star wars’, the term ‘wars’ was stemmed
into ‘war’ and mapped into a genre element rather than a title element, which
would have been right in this case.

We used Mean Average Precision (MAP) and Reciprocal Rank (RecipRank)
as the performance metrics. MAP is the mean of query-wise overall precision av-
eraged for each relevant document, which is the most widely used performance
measure. When most queries have only one relevant document, as in this experi-
ment, Reciprocal Rank is a common measure. This measure is simply 1/r where
r is the rank of the first relevant document found.

9

Table 3 shows the overall retrieval effectiveness for the test queries on the
IMDB collection. It is clear that the proposed method performs significantly
better (p-value < 0.01 with two-tailed t-test) than both baselines. Another ob-
servation is that HLM performed worse than DQL. This seems reasonable given
that each query term was targeted for a different element and HLM assigns pre-
determined weights for each element, which could cause worse performance than
not assigning weights at all (which is the case for DQL).

We notice that the performance of the HLM model is quite low here. A further
explanation is that, in the HLM, the importance of different fields is the same
for different query words. This assumption is invalid for our query set, however,
where each query word is aimed at different fields. Consider the query “gladiator
action scott” for example, which should find the movie “Gladiator”. Here, the
word “gladiator” is targeted for the “title” field, whereas the word “action” is
targeted for the “genre” field and so on. Table 4 shows the weights used by
PRMS and HLM, where it is clear that high performance of PRMS comes from
the flexible weights of the fields, while a set of fixed field weights (based on a
training set of queries) accounts for low performance of HLM.

Table 3. Retrieval performance for IMDB collection. Percentages are improvements
over the DQL baseline.

Measure DQL HLM PRMS

MAP 0.374 0.344(-8.8%) 0.630(68.4%)

RecipRank 0.405 0.350(-15.7%) 0.635(56.8%)

Table 4. Field weights(for 4 elements) and the retrieval performance for the query
“gladiator action scott”.

PRMS - RecipRank : 1.0

gladiator title:0.634 genre:0.000 plot:0.25 team:0.000

action title:0.005 genre:0.971 plot:0.01 team:0.000

Scott title:0.011 genre:0.000 plot:0.020 team:0.440

HLM - RecipRank : 0.01

all terms title:0.229 genre:0.108 plot:0.024 team:0.048

4.2 Experiments with Monster Data

Since the IMDB collection does not contain much full text content and the test
queries were designed mostly for demonstrating the effectiveness of our method,
we performed a second experiment using the Monster5 job description collection
composed of 1,034,795 XML documents.

This was a more realistic setting for many applications since documents were
longer, with mostly full-text content. The 60 queries we used were requests for

5 Collections and queries were licensed from Monster: http://www.monster.com

10

positions created by real users of the Monster service. For instance, a query
‘executive assistant power point excel type schedule’ was intended to find an
executive assistant with proficiency in Microsoft Office Suite who can handle
daily administrative duties.

Each document is composed of elements like ‘resumetitle’, ‘summary’, ‘de-
siredjobtitle’, ‘schoolrecord’, ‘experiencerecord’, ‘location’ ,‘skill’ and ‘addition-
alinfo’. Given that the entry of data by type was enforced and that people often
put data into the wrong elements, there could be considerable word overlap
among the different elements. This made the job of estimating mapping proba-
bilities more challenging. For example, the word ‘automotive’ was mapped into
the desiredjobtitle element with the highest probability, but the resumetitle and
skill elements also got high scores.

Table 5. Retrieval performance for Monster collection. Percentages are improvements
over the DQL baseline.

Measure DQL HLM PRMS

MAP 0.432 0.254(-70.1%) 0.530(22.7%)

Prec@5 0.51 0.39(-30.8%) 0.61(19.6%)

Prec@10 0.502 0.322(-55.8%) 0.577(14.9%)

Prec@20 0.483 0.26(-86.1%) 0.545(12.8%)

Table 5 shows the retrieval performance of our methods for the Monster
collection. The PRMS method still performs significantly better (p-value < 0.01
with two-tailed t-test) than the baseline methods, although the differences are
smaller here. HLM is still worse than DQL, reflecting the fact that query terms
were targeted into many different XML elements and assigning fixed weights can
hurt performance.

It was not the case this time that our method performed better than the
baseline for all cases. As an example of where our method was worse, for the
query ‘toxicology lab supervisor wastewater oakland’, the words ‘toxicology’ and
‘lab’ were mapped into the wrong element ‘experience’, while relevant documents
contained these words in ‘jobtitle’. As seen in this case, mapping query terms into
elements not intended by user explains the smaller performance improvement of
the PRMS method compared to the IMDB collection.

We also wanted to investigate how performance would change if we used only
elements with higher mapping probabilities for each query word, to simulate the
loss of information when a given keyword query was converted into a structured
query. Comparing the result of retrieval using elements with only the top-k
mapping probabilities for the IMDB and Monster collections in Table 6, we
could find that performance gets worse as we use only the first few elements
with highest mapping probabilities. The degree of degradation was found to be
greater in the Monster collection, where mapping probability calculation was
more challenging.

Lastly, for the Monster collection, we did an experiment with the prior map-
ping probability PM (Ej) as defined in Section 3.3. This prior probability allows

11

us to represent that some elements are more important than others regardless
of query terms. Since our analysis for the Monster collection revealed that most
queries could be related to resumetitle and desiredjobtitle, we assigned higher
prior weights for these two element types, thereby effectively simulating prior
probabilities. The results show that this modification gives a slight boost com-
pared to the original PRMS model, although the margin is not statistically
significant.

Table 6. Retrieval performance for IMDB and Monster using top-k elements. k is the
number of elements (with highest mapping probabilities) used for retrieval.

IMDB

Measure PRMS-top1 PRMS-top2 PRMS-top3 PRMS-top4 PRMS-top5

MAP 0.413 0.572(38.6%) 0.618(49.7%) 0.630(52.7%) 0.630(52.7%)

Monster

Measure PRMS-top1 PRMS-top2 PRMS-top3 PRMS-top4 PRMS-top5

MAP 0.260 0.403(54.8%) 0.483(85.2%) 0.497(90.7%) 0.512(96.2%)

Table 7. Retrieval performance for Monster using higher prior weights for title fields.
40% higher weights for PRMS-PW1.4, 80% for PRMS-PW1.8.

Measure DQL PRMS PRMS-PW1.4 PRMS-PW1.8

MAP 0.423 0.534(26.3%) 0.539(27.5%) 0.538(27.2%)

RecipRank 0.640 0.716(11.9%) 0.715(11.7%) 0.715(11.7%)

5 Conclusion

In this paper, we developed a method to infer the implicit mapping between
query terms and XML elements, and proposed a novel retrieval model exploit-
ing the resulting mapping probabilities. Our experimental results show that the
proposed method, the probabilistic retrieval model incorporating mapping prob-
abilities, improves retrieval effectiveness significantly over baseline methods in
realistic settings. We also observed that more performance gain is achieved when
mapping probability estimation is more accurate.

Recently we did an additional experiment for the IMDB collection using 1,200
queries targeted for the IMDB movie description webpages, taken from MSN
query log data. Again, the result verified our approach, where our method showed
significantly better performance over baseline methods. We are also working on
further verification of the suggested retrieval model in other settings.

Our approach for structured document retrieval leaves many interesting chal-
lenges. Since this method is orthogonal to most existing works for XML retrieval,
it can be combined with other techniques to improve the retrieval effectiveness
further. The most obvious extension is applying our retrieval model to retrieve
elements as opposed to the whole document. We can also straightforwardly ex-
tend this term-based mapping probability into a phrase-based one, by finding

12

the likelihood of each element containing a phrase found in the query instead of
a term.

6 Acknowledgements

This work was supported in part by the Center for Intelligent Information Re-
trieval, in part by NSF grant #IIS-0707801, and in part by NSF grant #IIS-
0711348. Any opinions, findings and conclusions or recommendations expressed
in this material are the authors’ and do not necessarily reflect those of the spon-
sor.

References

1. S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: enabling keyword search over
relational databases. In SIGMOD Conference, page 627, 2002.

2. S. Amer-Yahia and M. Lalmas. Xml search: languages, inex and scoring. SIGMOD
Record, 35(4):16–23, 2006.

3. P. Calado, A. S. da Silva, R. C. Vieira, A. H. F. Laender, and B. A. Ribeiro-Neto.
Searching web databases by structuring keyword-based queries. In CIKM ’02:
Proceedings of the eleventh international conference on Information and knowledge
management, pages 26–33, New York, NY, USA, 2002. ACM.

4. C. W. Cleverdon. The significance of the cranfield tests on index languages. In
SIGIR, pages 3–12, 1991.

5. L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank: Ranked keyword
search over xml documents. In SIGMOD Conference, pages 16–27, 2003.

6. V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB, pages 670–681, 2002.

7. R. Krovetz. Viewing morphology as an inference process. In Proceedings of the
Sixteenth Annual International ACM SIGIR Conference on Research and Devel-
opment Information Retrieval, pages 191–203. ACM, ACM, 1993.

8. F. T. M. Géry, C. Largeron. Probabilistic document model integrating xml struc-
ture. Proceedings in INEX, pages 139–149, 2007.

9. P. Ogilvie and J. Callan. Hierarchical language models for xml component retrieval.
In INEX, pages 224–237, 2004.

10. D. Petkova, W. B. Croft, and Y. Diao. Refining keyword queries for xml retrieval
by combining content and structure. CIIR Technical Report, 2008.

11. J. Ponte and W. B. Croft. A language modeling approach to information retrieval.
pages 275–281, New York, NY, 1998. ACM, ACM.

12. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

13. S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25 extension to multiple
weighted fields. In CIKM ’04: Proceedings of the thirteenth ACM international
conference on Information and knowledge management, pages 42–49, New York,
NY, USA, 2004. ACM.

14. T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: A language model-
based search engine for complex queries, 2005. poster presentation.

15. C. Zhai and J. D. Lafferty. A study of smoothing methods for language models
applied to information retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

