
 
 

UNIVERSITE PARIS-SUD 
 

ÉCOLE DOCTORALE : STITS 
Institut d’Electronique Fondamentale 

 
DISCIPLINE : PHYSIQUE 

 
 
 

THÈSE DE DOCTORAT 
 
 

soutenue le 24/10/2012 
 

 
par 
 
 

Khanh Van DO 
 

 
Contribution à l’Exploration des Propriétés 
Dispersives et de Polarisation de Structures à 

Cristaux Photoniques Graduels  
 
 

 
 
 
 
Directeur de thèse : Eric CASSAN, Professeur, Université Paris-Sud 
 
Composition du jury : 
 
Président du jury :    
Rapporteurs :  Emmanuel CENTENO, Professeur, Université Montpellier II 

   Olivier VANBESIEN, Professeur, Université Lille 1 

Examinateurs :   Alfredo de ROSSI, HDR, Thales Group 

   Anne TALNEAU, DR, LPN- CNRS 

   Eric CASSAN, Professeur, Université Paris-Sud 

   Frédérique de FORNEL, DR, Université de Bourgogne 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3

http://tel.archives-ouvertes.fr/tel-00788683
http://hal.archives-ouvertes.fr


 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



Acknowledgement 

 
 First and foremost, I would like to express my sincere appreciation and 

deepest gratitude to my supervisor Professor Eric CASSAN from the MINAPHOT 

group of the Institut d'Electronique Fondamentale (IEF – UMR 8622 CNRS) for his 

encouragement, guidance and support during my thesis. His willingness to promote 

me professionally through advising and recommending on my work, and sending me 

to schools, conferences has been most generous. 

 I would like to thank the program Pôle Universitaire Français à Hanoi, the 

collaboration Master program between the Université Paris-Sud and the University of 

Engineering and Technology, Vietnam National University of Hanoi, where I followed 

my graduate study on Micro-and-Nano Technologies. My sincere thanks also sent to 

Professor Elisabeth Dufour-Gergam, representative of this Master program, for her 

kind helps on the first day I came to Paris and throughout my studies both in Vietnam 

and France. 

 It was a great opportunity for me to joint and work in a professional 

environment with enthusiastic, dynamic professors, technicians and colleagues in the 

Silicon Photonics Group during my three years. My many thanks devote to all group 

members for their support and friendship. On the top of this list, I am especially 

grateful to Xavier Le Roux, who provided a huge effort for the realization of graded 

photonic crystal structures in the CTU clean room. I would like to thank him for his 

main involvement in the fabrication of GPhC samples, for sharing me his technology 

expertise in the clean-room and for his fruitful discussions on the design, fabrication 

as well as investigation of GPhC samples involved in my thesis. 

 I would like to warmly thank Laurent VIVIEN, Delphine MARRIS-MORINI 

and Anatole LUPU for their availability and kindness to give me practical advices 

and helps on the characterization of samples. Thanks to it I have perhaps got valuable 

results which will be presented in this manuscript. 

 One part of the characterization of GPhC samples was done in the 

collaboration with the Groupe d’Optique de Champ Proche, Laboratoire 

Interdisciplinaire Carnot de Bourgogne (ICB Dijon). I would like to thank Professor 

Frédérique de FORNEL, Benoit CLUZEL and PhD student Jean DELLINGER for 

their efforts on investigating our samples, their great contribution and worth 

discussions on SNOM results. 

 Also, I would like to thank all members of the administrative and technical 

staff of IEF for the services they gave me during my study. 

 Finally, I am eternally grateful to my parents, my brothers, my second family 

in France Mme. Danièle ROUSSEAU and all of my friends for their constant love and 

encouragement. 

 

Orsay, October 2012 

Khanh Van DO 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 ii 

 

 

 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 iii 

 

Table of contents 

 

 

Acknowledgement ......................................................................................................i 

Table of contents...................................................................................................... iii 

Introduction ................................................................................................................1 

Chapter 1  
Introduction to Photonic Crystals and Graded Photonic Crystals ................3 

1.1. Two-dimensional photonic crystals .................................................................3 

1.1.1. Real lattice, reciprocal space and Brillouin zone.........................................3 

1.1.2. Band diagram...............................................................................................5 

1.1.3. Conservation of parallel wave-vector at the interface between two media .6 

1.1.4 Equi-frequency surfaces and refraction at the interface with a photonic 

crystal.....................................................................................................................8 

1.1.5. Some examples of dispersion effects in photonic crystals.........................11 

1.1.5.1. Negative refraction .............................................................................13 

1.1.5.2. Self-collimation effect .........................................................................13 

1.1.5.3. Superlensing effect ..............................................................................15 

1.1.5.4. Superprism effect ................................................................................16 

1.2. Planar two dimensional photonic crystals ....................................................17 

1.3. Introduction to Graded Photonic Crystals ...................................................19 

1.3.1. Introduction................................................................................................19 

1.3.2. Equi-frequency surface deformations ........................................................20 

1.3.2.1. Equi-frequency surface deformations by changing the angle between 

the two primitive lattice vectors .......................................................................20 

1.3.2.2. Equi-frequency surface deformations by changing the aspect ratio 

between the two primitive lattice vectors.........................................................22 

1.3.2.3. Equi-frequency surface deformations by the gradient of photonic 

crystal filling factor..........................................................................................23 

1.4 Conclusion ........................................................................................................24 

Chapter 2  

Hamiltonian optics-assisted ray tracing in graded photonic crystals using 
the local photonic bandstructure .........................................................................25 

2.1. General principle of Hamiltonian optics.......................................................26 

2.2. Hamiltonian optics for graded photonic crystals .........................................27 

2.2.1. Hamiltonian optics for graded photonic crystals operating in the 

homogeneous regime ...........................................................................................27 

2.2.2. Hamiltonian optics for graded photonic crystals in the diffractive regime31 

2.2.2.1. Calculation of EFSs ............................................................................32 

2.2.2.2. Analytical extraction of EFSs for one particular case........................33 

2.2.2.3. Hamiltonian optics-assisted ray tracing in the chosen GPhC operating 

in the diffractive regime near the photonic bandgap.......................................35 

2.3 Conclusion ........................................................................................................38 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 iv 

Chapter 3  
Modeling and Simulation of Graded Photonic Crystals.................................39 

3.1. Mirage and superbending effect in the considered square-lattice GPhC ..39 

3.1.1 Structure design ..........................................................................................41 

3.1.2. Circular 90°-bending GPhC structure........................................................42 

3.1.2.1. Study of the incident point to inject light into GPhC configuration ...42 

3.1.2.2. Light propagation in circular 90°-bending GPhC structure ..............44 

3.1.2.3. Estimation of losses and bandwidth in the 90°-bending GPhC 

structure ...........................................................................................................45 

3.1.2.4. Enhancement of the transmission efficiency in the 90°-bending GPhC 

structures..........................................................................................................47 

3.1.3. Other configurations for light bending effect ................................................49 

3.1.3.1. 180°-bending GPhC structure ............................................................49 

3.1.3.2. 270°-bending GPhC structure ............................................................50 

3.2. Wavelength dispersion sensitivity of graded photonic crystals ..................51 

3.2.1. Sensitivity to wavelength...........................................................................51 

3.2.2. Two-channel demultiplexing .....................................................................53 

3.2.3. Four-channel demultiplexing.....................................................................55 

3.3. Polarization properties of graded photonic crystals....................................56 

3.4. Conclusion .......................................................................................................61 

Chapter 4  
Fabrication and Characterization of Graded Photonic Crystals .................63 

4.1. Description of fabrication process of considered GPhC structures ...........64 

4.1.1. Mask design ...............................................................................................65 

4.1.2. Fabrication process in CTU clean room ....................................................68 

4.1.2.1. Overview of fabrication process of the GPhC sample........................68 

4.1.2.2. Proximity effecs in e-beam lithography process.................................70 

4.2. Description of characterization benches .......................................................72 

4.2.1. Experimental setup for the far-field measurement.....................................72 

4.2.2. Experimental setup for the near field measurement ..................................73 

4.3. Results and discussions...................................................................................75 

4.3.1. SEM images of fabricated structures .........................................................75 

4.3.2. Experimental investigation of  the optical mirage and super-bending effect 

in GPhCs ..............................................................................................................76 

4.3.2. Dispersion properties of the GPhC configuration......................................78 

4.3.2.1. Dispersion properties of the considered GPhC configuration ...........78 

4.3.2.1. Wavelength demultiplexing devices based on the considered GPhC 

configuration....................................................................................................81 

4.3.3. Polarization-dependency of the GPhC configuration ................................82 

4.3.4. Transition between homogenizable regime and PhC regime ....................83 

4.4. Conclusion .......................................................................................................90 

Conclusion and Perspectives .................................................................................91 

References .................................................................................................................93 

French Summary .....................................................................................................97 

Publications and Conferences.............................................................................113

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 1 

 

 

 

Introduction 

 

 
 
            This thesis is in the context of the research efforts conducted in recent years on 

the investigation of artificial electromagnetic materials. The underlying pursed idea is 

to define structures and media with adjustable properties (where ε and µ values may 

be designed, for example) leading to original and/or exploitable electromagnetic 

phenomena (invisibility, Luneberg or Maxwell's fish-eye lenses), and has led to the 

concept of metamaterials. Emblematic phenomena in metamaterials, such as 

"cloaking" or negative refraction, were first studied and then demonstrated 

experimentally in the range of microwave frequencies, typically in the period 2000-

2006. Among those significant works, a particular one was presented by D. Schurig et 

al. in a well-known article published in the Science journal in 2006. The direct 

transposition of the concepts used at microwave frequencies to optical wavelengths in 

near infra-red range (λ∼1.5µm) proved later to be more difficult than initially foreseen 

due to the technological constraints on fabrication techniques for the realization of 

“meta-atoms” with far sub-wavelength dimensions (around 50nm) and to the high 

level of metals optical absorption losses at optical frequencies. From a theoretical 

point of view, an adaptation of spatial coordinate transforms previously developed for 

metamaterials was proposed in 2008 by J. Li and J.B. Pendry as a new conformal 

transformation to take into account the use of media with quasi-isotropic properties 

usually encountered in optics (most of semiconductors including silicon, oxides, etc). 

Application of these ideas has led to several papers by American research groups 

(Stanford, Berkeley) reporting in 2009 experimental results on optical media obtained 

by the modulation of the effective index seen by light (index-map) using the drilling 

of holes in a silicon wafer with a control of the hole density. All of these advances 

have helped but have not solve all the problems, true photonic metamaterials reduced 

to non-index maps remaining based on the use of metals and therefore loss-limited. 

Another noticeable feature of these works is that optical media are almost 

systematically addressed within the principle of homogenization, which can lead to a 

very wide band operation provided that the employed meta-atoms have not a 

resonating behaviour, and this point is generally seen as an advantage. 

           In this context, this thesis has been devoted to the study of graded photonic 

crystals previously proposed in different works in the late 1990’s and mi-2000’s. The 

main common point with ‘index-map materials’ recently employed as non-lossy 

photonic metamaterials is the use of all-dielectric structures generally made of an air-

hole lattice etched in a silicon wafer with variable chirped parameters (such as the air-

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 2 

hole filling factor). The main difference arises from the fact that the flexible choice of 

the lattice period to wavelength ratio (a/λ) can lead to two types of operating regimes 

of light propagation: the homogenization regime where a/λ << 0.5, and the diffractive 

one where a/λ (typically) > 0.2. The latter provides the possibility to reconfigure the 

optical paths of the beams propagating in the medium by tuning the light wavelength 

and thus to exploit the dispersive effects of the photonic crystals. It has attracted 

particular attention in our work. 

 Starting from October 2009, we first conducted preliminary studies to 

investigate the effect of opto-geometric deformations of planar photonic crystal 

lattices using Plane Wave Expansion calculations by considering the possibility of a 

gradual filling factor, a gradual variation of the orientation of the two basic vectors of 

the lattice and the aspect ratio between these two basic vectors, etc. They yielded 

interesting qualitative trends and opened perspectives to the present works. However, 

considering the richness and complexity of the possible two-dimensional gradients of 

lattice parameters and their combination, we chose to restrict the studies performed in 

this thesis to the case of a square lattice photonic crystal made of air hole with a two-

dimensional gradual filling factor. 

 

This thesis is organized into four chapters: 

 The first chapter gives the general concepts related to two-dimensional planar 

photonic crystals (PhCs) and graded photonic crystals (GPhCs). Their dispersive 

properties with respect to light propagation are presented in connection with the equi-

frequency surface shapes. The observation of the dependency of graded photonic 

crystal equi-frequency surfaces (EFSs) with lattice deformations is also introduced in 

this chapter. 

 Chapter 2 aims at presenting a simple ray tracing approach for the study of 

light propagation in graded photonic crystals. The chosen approach is based on the 

two equations of Hamiltonian optics, the Hamiltonian being related to the local PhC 

dispersion relationship at each point along the propagation path. An analytical 

expression of EFSs as a function of varied lattice parameters is presented in this 

chapter through the extraction of the exploited EFSs for the particular GPhC studied 

reference structure made of a square photonic crystal with a varying air hole filling 

factor profile. 

In chapter 3, simulations of graded photonic crystals are shown using the 

method of Hamiltonian optics ray tracing and the FDTD methods. The properties of 

light bending effect, sensitivity to wavelength, and polarization dependency of the 

proposed configuration are described and numerically studied in this chapter. 

The fabrication process of GPhC sample as well as the experimental 

investigation of those samples are then presented in Chapter 4. Electron Beam 

Lithography and Reactive Ion Etching techniques are used for the fabrication of 

GPhCs samples and two methods of optical measurements are employed for the 

characterization of those fabricated GPhC samples. 

 

 Finally, we conclude and draw some possible perspectives on the study of 

GPhCs in the last part of this manuscript.
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Chapter 1 

 

Introduction to Photonic Crystals and 

Graded Photonic Crystals 

 

 

 

This chapter is devoted to the presentation of the general concepts related to two-

dimensional photonic crystals and graded photonic crystals. First, two-dimensional 

photonic crystals will be presented with their dispersive properties with respect to 

light propagation relying on the equi-frequency surface shapes. In the second part, we 

will see the basic concepts of graded photonic crystal structures made of a 

modulation of lattice parameters. Some sets of equi-frequency surfaces of different 

types of photonic crystals with different values of lattice parameters are then shown 

in order to have a qualitative insight into the study on graded photonic crystals based 

on the deformations of equi-frequency surfaces. 

 

1.1. Two-dimensional photonic crystals 

 Two-dimensional photonic crystals (2D-PhCs) are structures with a periodic 

arrangement of low and high dielectric constants in two dimensions and infinite in the 

third dimension. 2D-PhCs exhibit most of important characteristics of planar photonic 

crystals and can be used to investigate many of the physical effects present in 

photonic crystal structures and devices. 

1.1.1. Real lattice, reciprocal space and Brillouin zone 

Two-dimensional photonic crystals can be represented in space by two 

primitive vectors 1a
r

 and 2a
r

 as seen in Fig. 1(a) and (c). 2D photonic crystals can be 

classified into different types corresponding to different sets of these two primitive 

vectors. We can see the dielectric map or real lattice of two common types of 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 4 

photonic crystal structures: the square lattice in which 1 2a a=
r r

 and 

=latticeθ ( )1 2, 90a a = °
r r

 (Fig.1(a)) and the triangular lattice where 1 2a a=
r r

 and 

=latticeθ ( )1 2, 60a a = °
r r

 (Fig.1(c)). Photonic crystal structures are commonly known to 

be made of high index rods surrounded by a low index material or low index holes 

embedded in a high index material. Figs. 1(a) and (d) give an example of the real 

lattice dielectric maps of two simple photonic crystal structures (square and 

triangular lattices) made of air holes of radius ar 3.0=  in a high dielectric constant 

medium. 

 For the study of photonic crystal properties, beside the real lattice, we use 

also the two notions of reciprocal space and Brillouin zone. 

Square lattice 

 

 
 

(a) 

 

 

 
 

 (b) 

 

 

 

(c) 

Triangular lattice 

a1

a2

r
a1a1

a2a2

r

 
 

(d) 

 

 
 

(e) 

 

 

(f) 

Figure 1.1: Real lattice, reciprocal lattice and Brillouin zones of (a), (b), (c) Square lattice 

aaa == 21

rr
, ( ) o

lattice aa 90, 21 ==
rr

θ ; and (d), (e), (f) Triangular lattice aaa == 21

rr
, 

( ) o

lattice aa 60, 21 ==
rr

θ   made of air holes ar 3.0= , respectively. 

 Reciprocal space: each set of direct lattice vectors defines two reciprocal 

lattice vectors which specify the reciprocal space. The reciprocal space of a 2D PhC 

is defined from the real lattice with the following relation:  

    ijji ba πδ2. =
rr

              (1.1) 

where ia
r

 and jb
r

are the primitive vectors in real lattice and reciprocal lattice, 

respectively, and ijδ  is the Kronecker symbol. 
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 Brillouin zone: the first Brillouin zone can be visually defined as a region in 

the reciprocal space formed by the points which are closer to the original lattice point 

than to any other points. The first Brillouin zone has symmetry properties 

corresponding to the symmetries of the real lattice. Hence, in some cases, the 

irreducible Brillouin zone – the smallest surface that allows reconstructing the first 

Brillouin zone using the symmetries of the reciprocal lattice – can be used to 

characterize the properties of photonic crystals. We can see in Fig. 1.1 the two 

primitive vectors in reciprocal space and Brillouin zones of two types of photonic 

crystals: the square and triangular lattice. The first Brillouin zone of a square lattice 

is a square while it is hexagonal for the case of a triangular lattice. 

 The first Brillouin zone is the region containing all needed wave-vectors k
r

 

for the study of band structure and dispersion properties of photonic crystals. 

 

1.1.2. Band diagram 

 The study of photonic crystals is governed by the Bloch-Floquet theorem in 

such a way that the behaviour of waves propagating inside a periodic medium is 

regulated by a periodic envelope function multiplied by a plane wave. The solutions 

to this equation are the eigenvalues ( )k
r

ω  and eigenvectors k
r

. The eigenvalues ( )k
r

ω  

are continuous functions of k
r

 and forming discrete bands in a band structure or 

dispersion diagram of the photonic crystal structure. 

 The band structure or dispersion diagram of a photonic crystal lattice is the 

graphical representation of the frequency (eigenvalues) against the wave-vector 

(eigenvectors) relationship. This relationship depends on both the lattice parameters 

and the polarization of light. In two dimensional systems, electromagnetic fields can 

be divided into two independent polarizations: the transverse electric (TE) modes, in 

which the electric field is in the plane of periodicity and the magnetic field is 

perpendicular to this plane, and the transverse magnetic (TM) modes where the 

magnetic field is in the plane of periodicity and the electric field is perpendicular to 

it. Then, the band structure of a photonic crystal lattice can also be separated in TE 

and TM bands. 

 Due to the scaling-invariance of Maxwell’s equations, frequencies ω  are 

conventionally given in the unit of 2 /c aπ  as a normalized value, which is 

equivalent to /a λ , and the two components of wave-vector ( ),
x y

k k k
r

 are given by: 

2

2

normalized

normalized

a a

c

a
k k

ω ω
π λ

π

= =

=
r r

          (1.2) 

where a  is the lattice constant and c  the light speed in vacuum. For the simplicity, 

hereinafter, the written of ω  and k
r

 are the normalized frequency, and normalized 

wave-vectors, respectively. 

 The bandstructure of a photonic crystal lattice is usually plotted along the 

main directions that are along the overall boundaries of the first Brillouin zone. 
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 6 

However, upon the symmetry of photonic crystals, it suffices to consider only the 

variation of the wave-vector k
r

 along the boundaries of the irreducible Brillouin 

zone, the smallest region that can be used to reproduce the first Brillouin zone. 

Fig.1.2. shows the bandstructure diagram of the square and the triangular lattices for 

both TE (red line) and TM (blue dashed line) polarizations along the main direction 

X MΓ − − − Γ  for the square lattice, and M KΓ − − − Γ  for the triangular lattice, 

respectively (the boundaries of the irreducible Brillouin zone presented as the orange 

regions in two insets of the two figures Fig. 1.2(a) and (b)). 

 The considered structure contains a photonic crystal lattice made of air holes 

(refractive index 
1

1
air

n ε= = ) embedded in the silicon host material 

( 2 3.45Sin ε= = ). The hole radius for the two cases is a3.0 . As can be seen in the 

figure, there is a TE band gap in the case of triangular lattice and there is no band gap 

for the case of square lattice. Inside the photonic bandgap, light is prohibited to 

propagate. 

 

ε1

ε2

Γ M K Γ

Γ

MK

ε1

ε2

X M Γ

Γ

MX

Γ

ε1

ε2

Γ M K Γ

Γ

MK

ε1

ε2

Γ M K Γ

Γ

MK

ε1

ε2

X M Γ

Γ

MX

Γ

ε1

ε2

X M Γ

Γ

MX

Γ
 

                                         (a)                                                                                 (b) 

Figure 1.2.: Band structure diagram of 2D photonic crystal structures made of air hole ( 0.3r = ; 

1 1
1n ε= = ) in silicon (Si) host material (

2 2
3.45n ε= = ) calculated by the Plane wave 

expansion method for the two both polarizations TE (red line) and TM (blue dashed line) of (a) 
the square lattice, (b) the triangular lattice.  

 

1.1.3. Conservation of parallel wave-vector at the interface between 

two media 

 To study the properties of photonic crystal structures, in particular, the 

propagation of light inside photonic crystal structures, it is necessary to consider the 

coupling condition from the incident medium to the photonic crystal area. Let us first 

remind the simplest case: the condition for light coupling at the interface between 

two homogeneous media with refractive index of 1n  and 2n  in case of injecting one 

plane wave of frequency ω  at incident angle inθ . The reflection reflectθ  and the 

transmission angle transθ  of light are then determined by the Snell-Descartes’ laws in 

the following form: 
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inreflect

transin nn

θθ

θθ

=

= sinsin 21
             (1.3) 

 These laws represent in fact the conservation of the parallel component of the 

wave-vector at the interface between the two media: 

           

    )//()//()//(// transreflectin kkkk ===             (1.4) 

 In a homogeneous medium, the dispersion relation has the form of  

           

    
c

nk
ω

=               (1.5) 

or : 

           

    
2

2
22

//

2222

c
nkkkkk yx

ω
=+=+= ⊥            (1.6) 

that makes the so-called iso-frequency contours at constant frequencies in the 

( ),
x y

k k  plane to be circles. 

 

ktrans 
kreflect 

kin 

n1 n2 n1 n2 

iso-k// 

iso-ω iso-ω 

iso-k// 

ktrans 

ktrans kin 
kreflect 

A B C 

k// 

k┴ 
 

                       (a)                                        (b)                                                               (c) 

Figure 1.3: Propagation principle of a plane wave between two dielectric media (with refractive 

index 
1

n  and 
2

n ): (a) Schematic wave-vector of incident, reflected and refracted (transmitted) 

waves; (b) Iso-frequency contour and parallel wave-vector in incident medium; and (c) Iso-

frequency contour and parallel wave-vector in refracted medium 

 Fig. 1.3 presents the coupling principle at the interface of two homogeneous 

media relying on the conservation of parallel wave-vector. The incident wave-vector 

is at point A  of the iso-frequency contour; the related input parallel wave-vector 

intersects the iso-frequency contour of the incident medium at point B, and the one of 

the refraction medium at point C, yielding the direction of reflected and transmitted 

waves. 

 It can be seen that the concept of iso-frequency contour is useful in defining 

the refraction effect between two media. In all cases, with respect to photonic crystal 

structures, the dispersion diagram is an important tool to characterize their dispersion 

properties. 
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 8 

 In the following, the relationship between the concept of iso-frequency 

contour and the dispersion diagram of photonic crystals will be discussed to serve for 

the purpose of coupling light waves from an incident medium into 2D photonic 

crystals. 

 

1.1.4 Equi-frequency surfaces and refraction at the interface with a 

photonic crystal 

 In section 1.1.2, for the plot of dispersion diagrams (bandstructures) of 

photonic crystal structures, only the main propagation directions being along the 

boundaries of the irreducible Brillouin zone defined by three critical points ( ( )0,0Γ , 

( )0,0.5X  and ( )0.5,0.5M  for square lattice, and ( )0,0Γ , ( )0,0.5M , and 

( )1/ 3,1/ 3K −  for triangular lattice) were considered (see again Fig. 1.2). However, 

the Brillouin zone is a two-dimensional region of wave-vectors, and thus the 

dispersion diagram is actually made of surfaces as seen in Fig. 1.4(a). Each wave-

vector k
r

 defined by a set of two components ( ),
x y

k k  in the wave-vector plane 

corresponds to one value of frequency of each discrete band of the photonic crystal, 

while for one frequency ω  of each photonic band, there is a loci of wave-vectors k
r

. 

By projecting the dispersion surfaces of each photonic band onto the wave-vector 

plane, we can get the two-dimensional contours corresponding to the loci of allowed 

wave-vectors ( )
yx kkk ,

r
 at fixed frequency ω  in the reciprocal space. These contours 

are called the Equi-Frequency Surfaces (EFSs). It can be said that EFSs give a 2D 

visualization of the dispersion surfaces and they contain all possible wave-vectors at a 

given frequency. 

 As an example, Fig. 1.4(b) and 1.4(d) respectively map out the EFS diagram 

of the first and second TE bands of a square lattice photonic crystal made of air holes 

( 0.3r a= ) in a silicon host material. Visually, we see that EFSs have different shapes 

for different frequencies and different bands. 

 If the band structure of photonic crystals gives information mainly on the 

photonic band gap, showing which frequency is allowed or prohibited to propagate 

inside the periodical medium, the EFS diagrams of photonic crystals bring more 

information on dispersive phenomena of such structure in allowed frequency ranges. 

Within a photonic crystal medium, the propagation of light can indeed be determined 

by the relationship [1]: 

           

    ( )( )G k
V grad k

k

ω
ω

∂ = = ∂ 
r

rr
                     (1.7) 

where GV
r

 is the group velocity. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1.4: 2D square lattice photonic crystal made of air holes ( 1
air

n = , / 0.3r a = ) in a silicon 

host material ( 3.45
Si

n = ): (a) Dispersion surfaces; (b) Equi-frequency surfaces (EFSs) diagram for 

the first TE band; (c) EFSs diagram in the first quarter of 1st Brillouin zone for the first TE band 

with one  group velocity at a given point; and (d) EFSs diagram for the second TE band.  

  

 The group velocity is therefore determined by the normal line to the EFS 

( ) 0ωω =k  at point ( )
yx kkk , , as presented in Fig. 1.4(c). The concavity of the EFSs 

then plays an important role. We will come back to this last point, which is important 

for the study of dispersive properties of GPhCs in Chapter 3 and Chapter 4. 

 Now, let us consider the case where an incident plane wave of frequency ω  

strikes an interface of a photonic crystal medium as figured out in Fig. 1.5(a). To 

couple the plane wave from a homogeneous medium into the PhC medium, it is 

needed to consider first of all which energy band the frequency ω  is in. For example, 

light waves will be totally reflected if their frequency is inside the photonic bandgap. 

On the contrary, outside the photonic bandgap, some light can be transmitted or 

refracted, then propagating within the photonic crystal medium. 

 Secondly, the condition of conservation of parallel wave-vector 
/ /k  must be 

matched at the interface between the two media. This condition is regulated by the 
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initial injected point and the incident angle of the light beam. As long as the 

/ /k conservation condition is satisfied, light is allowed to propagate inside the 

photonic crystal medium with a Bloch wave directed along the group velocity 

direction, i.e. along to the normal line to the EFS of frequency ω . Fig. 1.5 shows a 

typical example of this kind of situation. As can be seen, a plane wave of normalized 

frequency 276.0=ω  is injected into a 45°-rotated square photonic crystal lattice 

with an incident angle θ  from air. Frequency ω  corresponds to the black circle iso-

frequency contour in air (incident medium) and the red EFS in the photonic crystal 

medium. The excited EFS has the form of a circle, centred at the edge of the first 

Brillouin zone. With the condition of matched parallel wave-vector //k , the direction 

of reflected waves and refracted waves are determined and presented by the dark blue 

and red vectors, respectively. It can be also seen that, the refracted wave is in the 

same side with respect to the incident wave, disobeying to the Snell’s law, meaning 

that we have here a negative refraction effect. 

 

 
                                               (a)                                                                       (b) 

Figure 1.5: (a) Schematic of light propagation (reflection and refraction) when injecting an 
incident plane wave into a square lattice photonic crystal rotated by 45°. (b) With the condition 

of conservation of the wave-vector component parallel to the interface, the reflected and 

refracted waves are determined by two vectors normal to the iso-frequency contour in the 

homogeneous medium and EFS in the photonic crystal medium, respectively. 

  

 Due to the periodicity of photonic crystals, the incident beam will excite 

reflected and transmitted waves with parallel wavevectors of the form Λ+ /2.// πpk , 

where Λ  is the periodicity along the interface of photonic crystal structure and p  is 

an integer. Thus, each incident plane wave of frequency ω  with two components of 

wave-vector ( )/ / ,k k⊥ will yield some reflected and diffracted waves with the same 

frequency ω , as seen in Fig. 1.5(a). 

 The shapes of equi-frequency surfaces in photonic crystals is an important 

characteristic when using the EFS diagram for the study of photonic crystal 
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properties, and they can be simple or complex depending on the type of photonic 

crystals, the considered polarization and the given frequency. 

 For low frequencies in the first photonic band away from the band edge, 

where the lattice period is much smaller than the wavelength scale, the theorem of 

effective medium can be applied to study the properties of photonic crystals. In this 

regime, a photonic crystal structure can be considered as an effective medium with 

one (or two) effective refractive index (indices), and the EFSs in this range of 

frequency are centered at the ( )0,0Γ  point. In this range of frequencies, photonic 

crystals are said to work in the long-wavelength 1/ <<λa  (or homogenizable) 

regime. 

 For frequencies near the band edge or in higher photonic bands, photonic 

crystal structures can be no more considered simply as effective media. Depending 

on the curvature of EFSs of these frequencies, one can observe different dispersive 

phenomena inside PhC structures, as illustrated in Fig. 1.6. The convex (Fig. 1.6(a)) 

or concave (Fig. 1.6(b)) EFSs can spread the light beam or produce the lensing effect 

inside photonic crystals, while when working with the EFSs one can conserve the 

beam width and making an initially divergent beam becoming collimated (Fig. 

1.6(c)). Photonic crystals, in this frequency range, are said to work in the short-
wavelength (or non-homogenizable, or diffraction) regime. 
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PhCs
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PhCs
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PhCs
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VGVG
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PhCs

VG
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                     (a)                                                     (b)                                                       (c) 

Figure 1.6: EFS curvatures inducing dispersive phenomena in photonic crystals (a), (b) convex 

and concave EFSs corresponding to negative refraction effect; and (c) flat EFS corresponds to 

self-collimation effect 

 

 These two working regimes will be mentioned in Chapter 2, which presents 

the adopted methodology for the study of photonic crystals and graded photonic 

crystals in this thesis. In the following section, some examples on dispersive 

phenomena in relation with EFSs of photonic crystals will be figured out. 

 

1.1.5. Some examples of dispersion effects in photonic crystals 

 In these examples as well as in the rest of this thesis, we frequently model the 

spatial extent of input optical guided modes by Gaussian distributions. It is worth 

reminding that if a Gaussian beam in the real space has a form: 
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 −
=

2

2

exp)(
x

gauss

x
xf

σ
            (1.8) 

where xσ  is the beam waist, then in the reciprocal space, we also have a distribution 

of wave-vector k
r

 as a Gaussian function: 








 −
=

2

2

exp
1

)(
kk

gauss

k
kF

σσπ
            (1.9) 

 These two equations are presented in Fig. 1.7. Between two parameters 
xσ  

and kσ  we have the uncertainty principle: 

2. =kx σσ              (1.10) 

 

x (m) k (m-1)x (m) k (m-1)
 

                                              (a)                                                                                   (b) 

 Figure 1.7: (a) Spatial profile of a Gaussian beam with beam waist mx µσ 3=  and (b) 

Corresponded spectral profile (wave-vector distribution) of this Gaussian beam. 

  

 Eq. 1.10 shows that if a Gaussian beam has a large variance in space, then its 

transform in reciprocal space has a low variance – the uncertainty principle between 

the spatial distribution of Gaussian beam and the distribution of wave-vector in 

reciprocal space. The spectral width of a Gaussian beam is very important for the 

study of light propagation because it induces the beam divergence. For a Gaussian 

beam, the angle of divergence is expressed in terms of its beam waist: 

     
xnπσ

λ
θ =0                                                 (1.11) 

where λ  is the wavelength, and n  the refractive index of the medium. 

 It means that a Gaussian beam may excite a Bloch wave with several values 

of wave-vector k
r

 (several values of parallel wave-vectors //k ) at different angles. 

This point will be seen in the following examples. 
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1.1.5.1. Negative refraction 

 Fig. 1.8 gives an example of the negative refraction effect inside a two-

dimensional square lattice photonic crystal structure made of air holes ( nma 300= , 

1=airn , nmr holeair 5.92=− ) embedded in dielectric host material ( 03.3=−materialhostn ). 

The lattice is rotated by 45°, with an interface along the M−Γ  direction. EFS 

diagram of the first TE band is presented in Fig. 1.8(a). It can be seen in the figure 

that near the edge of the first Brillouin zone, a frequency 0.195ω = is used to excite a 

Bloch wave with wave-vector 0,0k  and giving the group velocity GV , leading to a 

case of negative refraction. 

 

Homogeneous medium Photonic crystalHomogeneous medium Photonic crystal

 
                                       (a)                                                                                    (b) 

Figure 1.8: Negative refraction effect: (a) Equi-frequency surfaces diagram of a 2D 45°-rotated 

square lattice photonic crystal made of air holes (periodicity 300a nm= , hole radius 

92.5r nm= ) in dielectric ( 3.03n = ) host material. The conservation of parallel wave-vector 

gives an excitation of a Bloch wave corresponding to negative refraction phenomena; and (b) 

Negative refraction of a light wave ( 1540nmλ = ) which is injected from homogeneous medium 

(air) into the photonic crystal structure with an incident angle of 20
i

oθ =  (two-dimensional 

FDTD simulation). 

 Fig. 1.8(b) presents the FDTD simulation result for the considered case. A 

continuous Gaussian beam is injected into the photonic crystal structure from a 

homogeneous medium with an incident angle o

i 20=θ . We can see the negative 

refraction effect inside the photonic crystal structure and also two reflected waves 

due to the grating effect at the homogeneous medium-photonic crystal interface, as 

discussed before. 

 

1.1.5.2. Self-collimation effect 

 Fig. 1.9 presents a self-collimation effect in a structure of a 2D 45°-rotated 

square lattice photonic crystal ( 300a nm= ) made of air holes ( 92.5r nm= ) in a 

dielectric ( 3.03n = ) host material with MΓ − interface. An EFS with square shape is 
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excited by several wave-vectors corresponding to different incident angles. All of the 

Bloch waves excited by these wave-vectors propagate in the same direction, 

perpendicular to the interface as seen in Fig 1.9(a). We can see that the self-

collimation effect occurs in wave-vector space when the equi-frequency contour is 

flat (the curvature is zero). The EFS with a zero curvature in this photonic crystal 

structure has the wavelength 1.39
collim

mλ µ= . The self-collimation phenomenon is 

illustrated by 2D FDTD simulation presented in Figs. 1.9(b) and 1.9(c). 

 

  

 (a) 

                                        (b)                                                                        (c) 

Figure 1.9.: Self-collimation effect: Equi-frequency surfaces diagram of a 2D 45°-rotated square 

lattice photonic crystal made of air holes (periodicity 300a nm= , hole radius 92.5r nm= ) in 

dielectric ( 3.03n = ) host material. For a light beam of different incident angles, the conservation 

of parallel wave-vector 
//

k  gives an excitation of some Bloch waves with collinear group 

velocities; and (c) Electric intensity of a Gaussian beam at collimation wavelength 

1.39
collim

µmλ = in the homogeneous medium of index 3.03n = ; and (d) The same Gaussian beam 

propagates inside the photonic crystal medium without divergence (2D FDTD simulation). 
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1.1.5.3. Superlensing effect 

 Fig. 1.10 presents the superlensing effect in a 2D 45°-rotated square lattice 

photonic crystal ( nma 465= ) made of air holes ( 139.5r nm= ) in a dielectric host 

material ( 03.3=n ) with M−Γ  interface. 

 

(a)   

 

(b)    

Figure 1.10: Superlensing effect: (a) Equi-frequency surfaces diagram of the second TE band of 

a 2D 45°-rotated square lattice photonic crystal 465a nm=  made of air holes 139.5r nm=  in 

dielectric 3.03n =  host material. One plane wave of wave-vector 
i

k
+

 (positive incident angle 

0
i

θ > ) excites one Bloch wave of group velocity 
G

V
+

 to propagate at negative angle 0
phc

θ < ; 

and (b) Intensity of electric field of a continuous beam with focusing wavelength 

1.55
focus

mλ µ=  which is divergent before propagating inside the considered photonic crystal 

structure 

 A divergent source of frequency 3.0=ω  (in the second TE band) in the 

homogeneous medium is represented by two incident wave-vectors +
ik  and −

ik . 

 When propagating in the homogeneous medium, these two waves propagate 
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with +
GV  and −

GV  group velocities. At the interface between the two (the 

homogeneous and the PhC) media, the wave with wave-vector +
ik  is coupled with 

the Bloch wave of group velocity +
ϕ,GV  so the group velocity is directed towards 

negative 
//k  (negative refraction). The Bloch wave −

ϕ,GV  and the wave of wave-vector 

−
ik  have symmetric behaviours. These two Bloch waves have the propagation 

directions as illustrated in Fig 1.10(a). 

 The superlensing effect in the considered photonic crystal structure is 

illustrated in Fig. 1.10(b). A Gaussian source with wavelength mµ55.1  and beam 

width 2.5µm  in a homogeneous medium with an index 3.03n =  is injected into the 

photonic crystal structure. It can be seen that the group velocities in the photonic 

crystal medium are much more anglularly separated than in the homogeneous 

medium and the focusing point of the beam in the photonic crystal is much closer to 

the interface in comparison with the source in the homogeneous medium. 

 

1.1.5.4. Superprism effect 

 In certain cases, the refraction angle is largely tuned with a small variation of 

incident angle or of light frequency. We call this phenomenon the super-angular (or 

frequency) dispersion, or the superprism effect [2-5]. In general, the superprism 

effect occurs when a strong curvature zone of equi-frequency surface is excited. A 

variation of incident angle generates the variation of parallel wave-vector. The strong 

curvature of equi-frequency surfaces induces a strong variation of the group 

velocities which are normal to these equi-frequency surfaces, resulting in a strong 

variation of the overall propagation direction of light. 

 Fig. 1.11 shows an example of the frequency superprism effect in a 2D square 

lattice photonic crystal made of air holes with a MΓ − interface. The first TE band is 

excited at several frequencies with an incident angle of 15
o
. When the conservation 

condition of parallel wave-vector //k  is satisfied, a line in the Bloch wave space is 

excited (Fig. 1.11(a)). At the border of the Brillouin zone, EFSs have curvature such 

that refraction angle can be strongly varied from 1 15θ = °  to 2 90θ = − °  with frequency 

increase from 1 0.17ω =  to 1 0.22ω =  as seen in Fig. 1.11(b). 

 Fig. 1.11(c) and 1.11(d) present the field intensity of a 8µm -width beam 

propagating in the considered photonic crystal structure at the two wavelengths 

1 1.5µmλ =  and 2 1.41µmλ = , showing the frequency superprism effect. The light 

beam with wavelength 1 1.5µmλ =  is refracted inside the photonic crystal structure 

with an angle of -5° while the light with wavelength 
2 1.41µmλ =  propagates at 

refractive angle of -45°. The beam is more spreading for the shorter wavelength 

2 1.41µmλ = . This effect can be explained by the fact that the excited zone of the 

EFS of the wavelength 1 1.5µmλ =  is flatter than the one obtained for the wavelength 

2 1.41µmλ = . 
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(a)                                                                               (b) 

 

 
(c)                                                                (d) 

Figure 1.11: Superprism effect: (a) Equi-frequency surfaces of a 2D 45°-rotated square lattice 

photonic crystal ( 300a nm= ) made of air hole 92.5r nm= in dielectric host material 3.03n = . 

Wave-vector space k excited by a source of incident angle 15− ° and the variation of frequency is 

indicated by doted line; (b) Refraction angle as function of frequency; (c) Refraction of a 

Gaussian beam at wavelength 1.5µm , beam width 8µm  in the considered photonic crystal 

structure. As can be seen in (b), refraction angle is lightly negative with an angle of 5− ° . (d) 

Refraction angle of a Gaussian beam (as in (c)) at wavelength 1.41µm , refraction angle is 

around 45− ° . 

 

 The strong beam spreading effect that can be seen in Fig. 1.11(d) is typically 

what we would like to circumvent. We will come back on this point later in the 

manuscript. 

 

1.2. Planar two dimensional photonic crystals 

 Because of the infinite size in the vertical direction, two dimensional photonic 

crystals are not physical objects to be used in practice. In order to be used in 

integrated circuits with light coupling from a slab waveguide, they are implemented 

as planar two dimensional photonic crystals in which the 2D-PhCs are sandwiched 

betweens layers of materials with lower refractive indices: for example a SiO2 buried 

oxide layer as the optical substrate and air (or SiO2) as the superstrate, as illustrated in 

Fig.1.12. Since the average index in the slab waveguide core is higher than that in the 
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two cladding layers of lower refractive indices, light is confined in the direction 

without periodicity (vertical direction) by total internal reflection. 

   

Si

SiO2

Si

Si

SiO2

Si

 

Figure 1.12: Schematic picture of a planar two-dimensional photonic crystal fabricated in a 

silicon slab waveguide. 

 Fig.1.13 presents the TE band diagram of a planar 2D square lattice PhC made 

of air holes ( / 0.3r a = ) in a SOI wafer ( 3.45Sin = , 
2

1.45SiOn = ) together with the 

light line, which is defined by claddingnck /=ω . The region that is above the light line 

is called the light cone. It corresponds to the frequency region where the modes are 

not confined in the slab but can escape vertically and introduce intrinsic losses. Below 

the light line, modes are well confined and guided in the planar 2D-PhC structure; 

thus we will mainly consider these modes in the following of the manuscript. 

X MΓΓΓΓ ΓΓΓΓ

ε1

ε2

ε1

ε2

Γ

MX

Γ

MX

X MΓΓΓΓ ΓΓΓΓ

ε1

ε2

ε1

ε2

Γ

MX

Γ

MX

  

Figure 1.13: TE band diagram of a planar 2D square lattice photonic crystal made of air holes 

0.3r a=  on SOI wafer. Light line is define by 
2

/
SiO

ck nω = . The region above the light line is 

called the light cone. Below the light line, modes are well confined. 
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 In this thesis, silicon on insulator (SOI) 2D planar PhCs are considered in all 

cases from simulations to fabrications. The reason of choosing this is that silicon has a 

high refractive index contrast relative to both air (on top) and silica (SiO2 – at the 

bottom); thus, light modes are well confined. Moreover, the fabrication of planar 2D-

PhCs on SOI is CMOS compatible and can be done based on a developed and 

controllable fabrication platform. 

 

1.3. Introduction to Graded Photonic Crystals 

1.3.1. Introduction 

 Manipulating electromagnetic waves at optical frequencies has become a topic 

of strong interest in some years. It is motivated by the purpose of exploiting original 

electromagnetic phenomena, easing the fabrication, reducing the losses, and the 

possibility of integrating several optical functions onto one single device. The use of 

metamaterials [6-10] coupled with the formalism of transformation optics have shown 

the possibility to mold the flow of electromagnetic waves in almost arbitray shape 

waveguiding structures or in cloaking configurations [11-15]. However, at optical 

frequencies, the use of this method faces several challenges [16]. First of all, strongly 

anisotropic metamaterials with complicated permittivities and permeabilities are 

needed, while the potential benefit brought by the use of photonic metamaterials is 

mitigated by the strong optical losses induced by the use of metals. For this reason, 

experimental results have only been obtained by reducing the target to the use of 

broadband all-dielectric structures [17, 18]. This resulted in the use of sub-wavelength 

dielectric structures to control the local average refractive index of planar optical 

waveguides. It is interesting to work in these conditions and then obtain a broadband 

operation meaning working in the long-wavelength regime, but this is not the choice 

that was retained in the present PhD thesis. 

 To work in the diffraction regime, photonic crystals are also a possible 

approach. As presented in the previous section, the dispersion properties of photonic 

crystals can be used for the manipulation of light. The anisotropy of the dispersive 

bands and their sensitivity to frequency can enhance light deflection inside PhCs. 

 In the homogenizable (long-wavelength) regime mentioned above, gradual 

structures are used for the purpose of manipulating light. In order to work in the 

diffraction (short-wavelength) regime, we need to increase the frequency /aω λ= . 

The structure in this case is no more presented as a gradual map of index but a gradual 

map of band structure (EFSs). We can achieve this by introducing a modulation of the 

PhC lattice parameters. The result is called a graded photonic crystal (GPhC). It was 

proposed in [6, 19, 20]. The understanding of controlling light in graded photonic 

crystals in most cases can be explained relying on the fact that the modulation of 

lattice parameters results in the change of the band diagram, giving a deformation of 

EFSs. 

 There are many degrees of freedom to define GPhC structures by modulating 

the lattice parameters: the aspect ratio between two basis vectors 1a
r

 and 2a
r

 of the 

lattice, the angle latticeθ  between these two vectors ( )21,aa
rr

, and the size (filling 

factor) (or even the shape) of scattering elements. Fig. 1.14 shows an example of a 
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graded photonic crystal medium consisting of a spatial variation of the hole filling 

factor in a triangular lattice photonic crystal. 

 

 
(a) 

 
(b) 

Figure 1.14: (a) Triangular lattice photonic crystal (
1 2

a a a= =
r r

; ( ) 0

1 2
, 60

lattice
a aθ = =
r r

; 

/ 0.3r a = ) and (b) a graded photonic crystal medium made of triangular lattice photonic crystal 

with a profile of filling factor ( )/ ,r a f x y=  

 In this thesis, we aim at investigating the deformation of EFSs by changing 

lattice parameters and then propose a methodology for the study of GPhCs properties 

for the control of electromagnetic waves at optical wavelengths. For this, different 

photonic crystals made with a large set of different parameter values have been 

considered for the calculation of dispersion surfaces and for the observation of EFS 

deformations, which is worth for the studies of all the rest of this thesis. In the 

following sections, we will present some representative examples related to the 

deformations of EFSs. 

 

1.3.2. Equi-frequency surface deformations 

 As just pointed out above, we will briefly introduce in this section some 

examples of EFS deformations as a function of lattice parameter changes to have an 

overview on the study of GPhCs which will be discussed in detail in forthcoming 

sections and chapters. 

 

1.3.2.1. Equi-frequency surface deformations by changing the angle between the 

two primitive lattice vectors 

 We first begin by the observation of EFS diagrams of two common 2D 

photonic crystal lattices: the square and the triangular lattices made of air holes in a 

SOI wafer. 
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(b) 

Figure 1.15: EFS diagrams of the first TE band of two 2D photonic crystal lattices: (a) the square 

and (b) the triangular made of air holes ( / 0.3r a = ) on SOI wafer ( 3.45
Si

n = ,
2

1.45
SiO

n = ). 

 The EFS diagrams of the first TE band of the two 2D photonic crystal lattices 

are presented in Fig. 1.15 with their dielectric maps in real lattice. We can see that, 

for low frequencies, the EFSs of these two lattices are quite similar, having circle 

shapes and centered at the Γ  point. Near the band edge (the edge of the first Brillouin 

zone), their EFSs are centered at high symmetric point (M for square lattice and K for 

triangular lattice), yet, their shapes are different. 

 Between these two considered photonic crystal lattices, the only different 

parameter is the angle ( )1 2,lattice a aθ =
r r

 between the two primitive lattice vectors. 

 Now, we introduce some chirps on the lattice parameters of photonic crystal 

lattices to have a qualitative insight to the deformation of EFSs that is the key point 

for the study of graded photonic crystals – the main topic of this thesis. 

 First of all, let us imagine that we are able to generate a GPhC medium by 

chirping the latticeθ parameter from 45° to 90°. 
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k//k//

k//k//k//

 
                                                (a)                                                                             (b)           

Figure 1.16: (a) Equi-frequency surfaces (EFSs) of different lattices: the square lattice 90
lattice

θ = ° , 

the 75°-lattice 75
lattice

θ = ° , the triangular lattice 60
lattice

θ = ° , and the 45°-lattice 45
lattice

θ = ° and at 

frequency 0.22ω = . Other parameters ( 1/ 21 == aaratio
rr

; 3.0/ =ar ) are the same for these 

lattices. (b) Group velocities of light waves at this frequency in these photonic crystal lattices. 

 Fig. 1.16(a) shows the EFSs of four photonic crystal lattices: square lattice 

( 90latticeθ = ° ), 75°-lattice ( 75latticeθ = ° ), triangular lattice ( 60latticeθ = ° ), and 45°-

lattice ( 45latticeθ = ° ) at frequency 22.0=ω . Changing the angle latticeθ  between the 

two primitive lattice vectors from 45° to 90°, it can clearly be seen that EFSs have a 

huge modification. Assuming that a Bloch wave propagates in these photonic crystals 

excited by this frequency with a parallel wave-vector //k , because of the large 

differences among these EFSs, the directions of Bloch modes defined by the group 

velocities can be different by nearly 75°, as seen in Fig. 1.16(b). 

 

1.3.2.2. Equi-frequency surface deformations by changing the aspect ratio 

between the two primitive lattice vectors 

 Considering a modification of the lattice ratio of a rectangular lattice, Fig. 

1.17 illustrates the EFS deformations at frequency 23.0=ω  of rectangular lattices 

(with aspect ratios of 1; 1.05; 1.1 and 1.2). The shapes of EFSs in this case are not 

much different, but their sizes and their centers are modulated and shifted a lot. The 

direction of Bloch waves propagating inside GPhCs made by these photonic crystal 

lattices can be bended by 90° as presented in Fig. 1.17(b). 
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k//

k//k//

k//

 
                                              (a)                                                                             (b) 

Figure 1.17: (a) Equi-frequency contours (EFSs) at frequency 0.23ω =  of rectangular lattices with 

aspect ratio of 1(square lattice); 1.05; 1.1 and 1.2. Other parameters (
o

lattice 90=θ ; 3.0/ =ar ) 

are the same for these lattices; and (b) Group velocities of light wave at this frequency in these 

photonic crystal lattices. 

 

1.3.2.3. Equi-frequency surface deformations by the gradient of photonic crystal 

filling factor 

 Now let’s consider the square lattice photonic crystal structure made of air 

holes with a filling factor chirp / 0.2;0.25;0.3;0.35r a = . Making such a variation, 

we can also get a deformation of EFSs, as presented in Fig. 1.18 for the frequency 

24.0=ω . 

 
                                             (a)                                                                                   (b) 

Figure 1.18: (a) Equi-frequency contours at frequency 0.24ω =  of square lattice with different air 

holes radius r/a=0.2; 0.25; 0.3 and 0.35. Other parameters ( 1/ 21 == aaratio
rr

; 
o

lattice 90=θ ) are 

the same for these lattices; and (b) Group velocities of light wave at this frequency in these photonic 

crystal lattices. 

k//
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 The air hole radius is varied from 0.2 to 0.35, resulting in a modulation of 

EFFs size with a small change in the shape and without changing the center of them. 

We can see that, in comparison with the two former cases, the lattice change is 

simpler, the deformation of EFSs is smaller. However, we still get a large difference 

on direction of Bloch waves excited in GPhCs medium made with a gradient of 

filling factor. 

 This case will be considered to generate the graded photonic crystals used for 

the study of this thesis, which will be presented in the following chapters. 

 

1.4 Conclusion 

 In this chapter, we have presented the general concepts related to planar two-

dimensional photonic crystals and graded photonic crystals and some dispersive 

phenomena in 2D photonic crystals. We see the rich variety of dispersive effects in 

connection with the equi-frequency surface shapes in PhCs. We also see the rich 

variety of EFS deformations that we can have with GPhCs. And it is possible to 

combine them for the study of molding the flow of light using graded photonic 

crystals mainly working in the diffraction regime. 

 At the beginning of my PhD work, GPhCs were proposed by [6, 19-21], 

especially with a 1D-chirp (lattice periodicity in one dimension), and there was no 

experimental demonstration of the predicted phenomena at optical frequencies. In 

this thesis, we have chosen a simple configuration (square lattice, variable filling 

factor, working at in the first band) with the aim to demonstrate the light bending 

(mirage) effect with 2D-chirps of one lattice parameter (modulation of filling factor 

in x-y space), the possibility to use dispersive phenomena in GPhCs, and start out the 

exploration of the issues related to the light polarization in GPhCs. These points will 

be developed in forthcoming chapters. 

 We begin first in Chapter 2 by describing the method that we relied on for the 

study of light propagation in GPhC structures. 
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Chapter 2 

 

Hamiltonian optics-assisted ray tracing in 

graded photonic crystals using the local 

photonic bandstructure 

 

 

 

This chapter aims at presenting a simple modal approach for the study of light 

propagation in graded photonic crystals (GPhCs) focusing on GPhCs mainly 

operating in the diffraction regime. 

 In principle, artificial optical materials can be studied by using the formalism 

of transformation optics [13, 17, 18]. This method either requires a precise control of 

the electric permittivity and magnetic permeability or an appropriate choice of the 

chosen coordinate transformation. Using this method, studied devices usually work 

with a broadband operation without sensitivity to wavelength. For the study of light 

propagation in GPhCs, it is also possible to use the Finite-Difference Time-Domain 

(FDTD) method. Yet, it is applicable only for the validation but not for the prediction 

of light propagation in GPhCs. 

 The method of Hamiltonian optics ray propagation has been proposed for the 

study of non-uniform photonic crystal structures in [6, 19], the so-called Hamiltonian 

being related to the local dispersion relationship of the graded photonic crystal. We 

have adopted this approach in the present thesis. 

 In this chapter, the principle of Hamiltonian optics will firstly be described. 

The use of Hamiltonian method for the study of GPhCs is considered for two different 

regimes: the homogenizable regime and the diffraction one. Since the Hamiltonian is 

related to the dispersion relationship of GPhCs, in applying this method, it is 

convenient to have an analytical expression of EFSs as a function of varied lattice 

parameters. The extraction of EFSs of one particular case of square photonic crystal 

with a varying filling factor profile will be presented as an example. Then, a 

configuration of GPhC is proposed to be studied by the method of Hamiltonian optics 

and then to be compared with results obtained using FDTD simulation. 
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2.1. General principle of Hamiltonian optics 

 Hamiltonian optics is a semi-analytical approach that can be applied for the 

study of light propagation inside inhomogeneous structures with slowly spatially 

varying parameters, meaning that the local dispersion relation is known. Using this 

method, light propagation can be described through the two following Hamiltonian’s 

equations: 

( )

( )

( , )

( , )

d
H grad H

d

d
H grad H

d

σ

σ

= ∇ =

= −∇ = −

k k

r r

r
k r

k
k r

            (2.1) 

where r is the position in space, k the wave-vector and σ  is a quantity related to time, 

and ( , )H k r  is the local Hamiltonian in ( , )k r  space. 

 It can be seen from the first equation in Eq. (2.1) that the optical light path is 

directed along the group ‘velocity’ ( )( ),grad Hk k r . Using this method, a slow 

varying inhomogeneous structure can be considered more or less as a continuous set 

of different media between which the parallel wave-vector is naturally matched at 

each interface. This is the meaning of the second equation in Eq. (2.1). An implicit 

hypothesis in applying the method of Hamiltonian optics is that the special gradient is 

supposed to be slow enough, so that light properties like group velocity can be locally 

defined. The first Hamiltonian’s equation in (2.1) can be rewritten in Newtonian form 

by taking the second order of the differential of the position r  in related to the ‘time’ 

parameter σ : 

   [ ] ( ) [ ]
2

2
: 1/ * :

d
H H m

dσ
= ∇ ∇ −∇ =k k r

r
F            ( 2.2) 

or:   ( )
2

*

2

d
H m

dσ
−∇ = =r

r
F               (2.3) 

where the reciprocal effective mass tensor [ ]1/ *m  depends on the position in real and 

reciprocal spaces. This shows that Eq. (2.2) is an equation of motion in which the 

gradient of Hamiltonian H  is equivalent to a force F acting on ray path [19, 22]. 

 The Hamiltonian H is related to the dispersion relation of the studied structure, 

particularly the photonic band structure in case of photonic crystal media. An 

important question is the relation between H and ( )ω k . It should be noted that the 

structure in GPhCs changes point by point, meaning that the photonic band structure 

depends on the position; ( )ω k  thus becomes ( ),ω k r . From Eq. (2.1), it is shown 

that the light propagation ensures: 

   

( ) ( ). .

. . 0

dH grad H d grad H d

d d
d d

d dσ σ

= +

= − =

k rk r

r k
k r

             (2.4) 
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 Eq. (2.4) shows that the Hamiltonian H is constant and that if we want to use 

the Hamiltonian optics method to describe light propagation at a given frequency ω , 

we need to choose the Hamiltonian H related to ω  in such a way that dH=0 implies 

dω =0. Thus, the main point in applying this method is to know the photonic band 

structure ω(k,r) and to choose a proper Hamiltonian H related to ω(k,r). This problem 

is presented in the next section. 

 

2.2. Hamiltonian optics for graded photonic crystals 

 As mentioned in Chapter 1, light propagation in photonic crystal structures can 

be classified into two regimes: 

• the long-wavelength regime (homogeneous regime) where the wavelength of 

propagating light is much larger than the lattice periodicity ( 1/ <<λa ) usually 

met for low frequencies of the first photonic band; and, 

• the short-wavelength regime (diffraction regime) in which 2.0/ >λa  

(typically), corresponding to frequencies near the first band edge or at higher 

photonic band. 

 For the study of light propagation in graded photonic crystals using the 

method of Hamiltonian optics, we consider these two regimes just hereafter. 

 

2.2.1. Hamiltonian optics for graded photonic crystals operating in 

the homogeneous regime 

 In the homogeneous regime, the periodicity of photonic crystals does not have 

an important role and a graded photonic crystal can be presented as an effective 

(gradual) medium in space with a distribution of average refractive index ( ),n x y . 

The local band structure at each point of the gradual medium is given by: 

( )2 2 ,x yk k n x y
c

ω
= + =k              (2.5) 

where 
xk and 

yk are the two components of the wave-vector k , ( ),n x y  is the local 

average effective index, ω  the light frequency, and c the speed of light in vacuum. 

 Fig. 2.1 shows the schematic picture of problem under consideration in which 

the light path is being known through a parametric curve ( ) ( ),x yσ σ    and the 

question is how we can modulate the average refractive index ( ),n x y  of the gradual 

medium to support this given light path. Solving this problem is somehow similar to 

the one using the transformation optics approach for the design of photonic 

metamaterials working at optical frequencies [18]. The main common point of these 

two approaches is that a refractive index map is required to be designed appropriately 

to control the light propagation. 

 To apply the Hamiltonian optics method on manipulating light in a gradual 

homogenizable medium, there are several possible choices for the Hamiltonian H  in 
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relation with the local band structure ( )ω k . It can be straightforwardly chosen 

( )H ω= k  because if 0dω =  then 0dH = . However, this is not a convenient choice 

in most cases, since the calculation and combining of the partial differentials of 

( )( )H ω= k  is not easy. Another choice for H can be: 

    
( )

2 22

2 2 ,

x y
k k

H
c n x y

ω +
= =               (2.6) 

 

 

 

Figure 2.1: Schematic picture of the problem under consideration: light path being known 

through a parametric curve ( ) ( ),x yσ σ   ; Hamiltonian optics propagation is considered 

to derive the required in-plane refractive index distribution ( )yxn , . 

 

 Given this choice, equation (2.1) becomes: 

2

2

2

( , )

2

( , )

x

x

y

x

kdx H

d k n x y

kdy H

d k n x y

σ

σ

∂
= =

∂

∂
= =

∂

           ( 2.7a) 

( )

( )

2 2

3

2 2

3

( , ) 1
2

( , )

( , ) 1
2

( , )

x
x y

y

x y

dk H n x y
k k

d x x n x y

dk H n x y
k k

d y y n x y

σ

σ

∂ ∂
= − = +

∂ ∂

∂ ∂
= − = +

∂ ∂

          (2.7b) 

 For a given light path ( ) ( ),x yσ σ    and the in-plane refractive index profile 

( ),n x y , the relationship (2.7a) can be reformulated as: 
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( )

( )

2

2

,

2

,

2

x

y

n x y dx
k

d

n x y dy
k

d

σ

σ

=

=

              (2.8) 

 These expressions show that the wave-vector ( ),
x y

k k k=  along light path has 

to follow a prescription given by the group velocity-like ( )/ , /G dx d dy dσ σ=V . At 

the same time, the variation of the local wave-vector ( )/ , /
x y

dk d dk dσ σ  values have 

to be consistent with the tangential wave-vector conservation law, i.e. must obey to 

relationships (2.7b). 

 Eliminating xk  and yk  in the two sides of (2.7b) using equation (2.8) gives the 

final following result: 

   

( )( )
( )

( ) ( )

( )( )
( )

( ) ( )

2

2

2 2

2

2

2 2

ln ,

ln ,

d x
n x y d

x dx dy

d d

d y
n x y d

y dx dy

d d

σ
σ

σ σ
σ σ

σ
σ

σ σ
σ σ

∂
=

∂    
+   

   

∂
=

∂    
+   

   

            (2.9) 

 

 Equation (2.9) is a direct formulation of the required bi-dimensional refractive 

index distribution to make light follow a prescribed trajectory [23]. Contrary to other 

approaches making use of numerical calculations, an analytical expression for 

( ),n x y  can be deduced from equation (2.9). 

 To present the validity of using Hamiltonian optics approach for controlling 

light in a gradual homogenizable medium, we consider a circular light bending 

governed by ( ) ( ).sinx Rσ σ= Ω  and ( ) ( ).cosy Rσ σ= Ω . Eq. (2.9) then becomes: 

     
( )( ) ( )( )

2 2 2 2

ln , ln ,
,

n x y n x yx y
and

x x y y x y

∂ ∂
= − = −

∂ + ∂ +
         (2.10) 

then the required index map can be given by: ( )
2 2

,
C

n x y
x y

=
+

          (2.11) 

with C  is a constant. This index profile for a circular bending obtained by the 

Hamiltonian optics approach is exactly the same as the one reported in [VAS-10] by 

using the method of transformation optics. However, noted that a circle can be 

described as 2 2 2x y R+ = , then Eq. (2.10) also becomes: 

( )( ) ( )( )
2 2

ln , ln ,
,

n x y n x yx y
and

x R y R

∂ ∂
= − = −

∂ ∂
         (2.12) 
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Then, the index profile needed to support the circular bend is:  

( )
2 2

0 2
, .exp

2

x y
n x y n

R

 +
= − 

 
               (2.13) 

in which 
0n  is a constant index. 

 This index profile can be approximated by a 2D planar square lattice PhC 

medium made of circular air holes in which the filling factor f is given by f=π(r/a)
2
; 

and r is the hole radius and a  the PhC lattice parameter on SOI wafer. The air hole 

radius profile that approximately matches the index profile in Eq. (2.13) is then given 

by: 

( )

2 2

2
.exp

21
,

slab slab

slab hole

x y
n n

Rr
x y

a n nπ

 +
− − 

 =
−

          (2.14) 

in case of considering a SOI slab PhCs with nslab=2.95, the effective refractive index 

for slab waveguide with a thickness of silicon layer of 260nm  at wavelength 

1,55µmλ =  in TE polarization, and  
2 1.0holen n= = . 

 Figure 2.2(a) shows the dielectric permittivity of the related square lattice 

graded photonic crystal structure made of air holes with a radius profile presented in 

Eq. (2.14) in a SOI slab and for the case R=40a. Hole radius is limited to 0.5a to 

prevent overlapping between neighbouring holes. Figure 2.2(b) shows the steady-state 

field obtained at normalized frequency a/λ=0.13, meaning a lattice parameter around 

200nm for an optical wavelength near λ=1.5µm (≈7.5a), when a Gaussian beam with 

a beam waist of 0 5W a=  is injected into the GPhCs medium. It can be seen from Fig. 

2(b) that light is bended by 90
o
 as predicted by the analytical calculation using 

Hamiltonian optics. 

 

                                       (a)                                                                                   (b) 

Figure 2.2: (a) Dielectric permittivity diagram and (b) field steady state at frequency 

/ 0.13aω λ= = the considered 90°-circular-turn graded photonic crystal structure of square 

lattice made of a filling factor profile presented in Eq. (2.14) (2D FDTD simulation)  
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 A gradual homogenizable medium made by scattering elements with sub-

wavelength periodicity makes difficult the practical fabrication if one want to work at 

optical wavelengths (the periodicity is then normally smaller than 200nm). Moreover, 

the in-plane refractive index has no strong dependence with wavelength so that light 

path will not vary much with the variation of frequency. This gives an advantage of 

broadband operation, but also a disadvantage since no path sensitivity is obtained. In 

other words, no benefit is taken from the unusual dispersive effects of periodic media 

such as superlens, superprism or self-collimation properties. 

 In this PhD, attention has been thus more focused on GPhCs working mainly 

in the diffractive regime. 

 

2.2.2. Hamiltonian optics for graded photonic crystals in the 

diffractive regime 

 The schematic picture of light propagation inside a perfect periodic medium is 

given in Fig. 2.3(a), where a light ray of frequency ω  is injected into the PhC 

medium from a homogeneous medium. The condition for light to be coupled into and 

propagate inside the photonic crystal medium has been discussed in section 1.1.4 of 

Chapter 1. 

 The method of Hamiltonian optics can be applied in this case for the 

description of the propagation of a light ray. However, only the first equation in Eq. 

2.1 ( )( )/ ,d d H grad Hσ = ∇ =k kr k r  is used, since the band structure is constant 

everywhere in a perfectly periodical medium. Then, a light ray has a straight 

trajectory following the direction of the group velocity of the excited Bloch wave that 

is normal to the photonic crystal equi-frequency surface at frequency ω , as can be 

seen in Fig. 2.3(a). 

 But it is not the case for the propagation of a light ray inside a graded photonic 

crystal (GPhC) where the photonic band structure spatially varies point by point. It 

makes varying the local band structure and probably introducing new virtual 

interfaces, thus making the parallel wavevector 
/ /k  tuned along the light path. Light 

path propagating in the GPhC medium can thus be represented in Fig. 2.3(b). 

Homogeneous

medium

PhC

k//

ωωωω

Homogeneous

medium

PhC

k//

ωωωω

PhC

k//

ωωωω

 

(a) 

Homogeneous

medium

GPhC

vG ( )

( )

( , )

( , )

k

r

dr
grad k r

d

dk
grad k r

d

ω
σ

ω
σ

=

= −

GPhCs

ωωωω

Homogeneous

medium

GPhC

vG ( )

( )

( , )

( , )

k

r

dr
grad k r

d

dk
grad k r

d

ω
σ

ω
σ

=

= −

GPhCs

ωωωω

 

(b) 

Figure 2.3: Light propagation in (a) periodic structure (photonic crystal) and (b) non-

uniform periodic structure (graded photonic crystal) 
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 The first conditions of frequency in the allowed energy band and the matching 

of parallel wave-vector 
//k  at the interface between the homogeneous medium and 

GPhC medium are the same as in the PhC case. But since the parallel wave-vector / /k  

is changed along the light path, the group velocity which determines the direction of 

propagation is then varied too, resulting in a non-straight light path. This shows the 

possibility of manipulating light propagation inside the GPhC medium “at will” by 

introducing some variation of PhC parameters. 

 It was presented in [6] that the Hamiltonian optics method can be applied for 

the study of light propagation inside non-periodic photonic structures and for the 

calculation of beam width along the light path. This work relied on a numerical 

calculation of Bloch wave dispersion relationships locally at each position of the 

structure and the dispersion relationship being known, Hamiltonian’s equations could 

be used to calculate the beam path or the propagation of a light ray. Yet, the problem 

of seeking for a gradual photonic crystal medium to support a desired light path was 

not mentioned. 

 To try getting the connection between desired light paths and required 

artificial media using the Hamiltonian approach, it is convenient to define analytically 

the dispersion relationship ω(k,r), or in other words, to have an analytical description 

of EFSs as a function of varied parameters of the GPhC medium. 

 

2.2.2.1. Calculation of EFSs 

 To get all EFSs in the reciprocal space of a photonic crystal lattice, first, the 

band structure is calculated for every point inside the first Brillouin zone. Then, EFSs 

of one particular frequency can be plotted by projecting the surface of the band 

diagram on the ( ),
x y

k k  space (as seen in Chapter 1). The main question is to find the 

analytical relationship of the wave-vector k  as a function of lattice parameters of that 

graded photonic crystal structure. 

 It has been presented in [22] that the analytical calculation of EFSs can be 

approximately accessible by reducing drastically the number of partial plane waves in 

the Bloch wave expansion near the photonic crystal band edge. It is necessary to 

highlight here that this work addressed the calculation of EFSs around the high 

symmetric point (M point for the square lattice and K point for the triangular lattice) 

of the first Brillouin zone. Using this method, the dispersion relation has the form: 

           

   ( ) ( )
ϑδ

κκ
ϑδδ

−
−

++=
x

xy

K

2

3/42
3

2
22            (2.15) 

in the case of the triangular lattice photonic crystal and the form of:  

   ( ) ( ) 22
2

22 22/22/ κδϑϑδδ +±+= xxy           (2.16) 

for a square lattice photonic crystal, in which xδ , yδ  are the displacement of EFS 

curve ( yx kk , ) from the vertices (M or K points) of the first Brillouin zone, and κ  and 
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ϑ  denote the coupling constant and the dephasing constant, respectively, which are 

related to the average wave-vector 
c

nk
ω

00 =  in the structure and to the lattice vectors. 

 However, the two parameters κ  and ϑ  were only qualitatively introduced, 

giving no strong basis for the design of practical structures. 

 Another approach can be started directly from the dispersion band structure 

( ),x yk kω  of photonic crystal geometries obtained by the Plane Wave Expansion 

method (PWE). With this approach, the analytical expression of EFSs as function of 

chirped parameters can be achieved in some cases. 

 

2.2.2.2. Analytical extraction of EFSs for one particular case 

 As mentioned in Chapter 1, there are many degrees of freedom to make vary 

the lattice parameters of photonic crystal geometries to obtain a GPhC medium. These 

parameters are mainly the two basis vectors 1a , 2a , the aspect ratio /2 1a a , the 

angle between the two basis vectors ( ),latticeθ = 1 2a a , and the normalized radius ar /  

or the filling factor of lattice elements. For the analytical extraction of EFSs, we 

firstly considered a common and simple case: the square lattice photonic crystal made 

of air holes with a= =1 2a a , ( ), 90o

latticeθ = =1 2a a , and made the filling factor ar /  

vary. Doing this, we obtained a GPhC medium made of a square lattice with a spatial 

filling factor profile. 

 Assuming this consideration, we calculate here the relationship between the 

PhC EFSs near the band edge as a function of the air hole filling factor. To do that, it 

is necessary to have first all dispersion diagrams of square lattice photonic crystals 

made of different filling factors. 

 

a2

a1

r

θθθθlattice

a2a2

a1a1

r

θθθθlattice

δδδδδδδδ

 

                                (a)                                                                                 (b) 

Figure 2.4: (a) Dielectric diagram of a 2D square lattice photonic crystals made of air holes 

3.0/ =ar  on silicon on insulator wafer and (b) Equi-frequency surface diagram of the first 

TE band of that lattice and EFSs near the M point (inset figure). 
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 Fig. 2.4(a) shows the dielectric diagram of a square lattice photonic crystal 

made of air holes of normalized radius 3.0/ =ar  in a silicon on insulator (SOI) host 

material, and Fig. 2.4(b) presents the EFS diagram of the first TE band obtained by 

considering an effective refractive index of the slab waveguide 2.95slabn =  (this value 

is obtained as the refractive index of a slab waveguide of 260nm-thickness silicon on 

insulator at the wavelength 1.55µmλ = ). 

 Within the first Brillouin zone (zone limited by ( )5.0,5.0−xk  and 

( )5.0,5.0−yk ), each point on the EFS curves is associated with a unique travelling 

Bloch wave and each wave-vector in the first Brillouin zone has an infinite number of 

associated wave-vectors in each higher order Brillouin zone. Thus the full wave-

vector diagram is obtained by tiling the first Brillouin zone to cover all of wave-

vectors in space as can be seen in Fig. 2.4(b). 

 We can see in Fig. 2.4(b) that EFSs at low frequencies have a circle shape 

centred at the Γ  point. This frequency range is called the homogenizable regime as 

mentioned in Chapter 1. Due to the strong periodic corrugation, above the 

homogenizable regime, EFSs are square then depart to circles shape. Close to the M 

points (normalized frequencies a/λ>0.26), EFSs tend to disappear for increasing 

normalized wavelengths, and simultaneously recover the shape of small circles 

centred at M points in k-space. It is proposed here to approximate this behaviour by 

the following relationship: 

 ( )2 2 2 2 2

0x y
δ δ η ω ω+ = −            (2.17) 

where ( ) ( )
yxyx kk −±−±== 5.0,5.0,δδδ  designates the wave-vector component shift 

from M points to the considered EFSs of ( yx kk , ), and η  and 0ω are two introduced 

parameters. 

 In spite of a similar linear relationship between the wave-vector square and 

frequency square 222 ωnk = , the difference is two-fold in comparison with the 

dispersion relationship of a homogeneous or a homogenized optical material. First, 

the concavity of the band is downwards, i.e. the amplitude of shifted wave-vector δ  

decreases with the increase of frequency. Second, EFSs are not centred at Γ point, but 

at M points which are vertices of the first Brillouin zone. In analogy with 

semiconductor physics, it can be said that the related dispersion relationship is similar 

to what would be obtained with the effective mass theory close to a valence energy 

band minimum centred at some nonzero wave-vector. 

 Equation (2.17) gives the relationship of ( ),δ ω  or ( ),ωk  in an analytical 

form in which there are two unknown quantities 
0ω  and η . The next use of 

Hamiltonian optics to describe light propagation in case of a gradual medium thus 

requires estimating these quantities as a function of the chirped lattice parameter. This 

means that, in the considered case, 
0ω  and η  are needed to be estimated as a function 

of the normalized hole radius /r a . 

 The first unknown parameter 0ω is the maximum value of frequency of the 

first TE band where the displacement from the EFS of this frequency to M point of 

the first Brillouin zone is around 0. A close inspection to EFSs given in Fig. 2.4(b) 
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near the M points shows that 
0ω is around 0.26 for / 0.3r a = . Increasing the 

normalized radius /r a  of air holes makes the effective in-plane index decrease, so 

that frequencies of PhC dispersion bands tend to increase, thus makes 0ω  increased. 

Varying the value of filling factor ar /  from 0.20 to 0.35, results of PWE calculations 

using the MPB software showed that a parabolic approximation can be applied for the 

relation of 
0ω  as a function of the varied air-hole filling factor as following: 

2

0
0.2792 0.3862 1.068

r r r

a a a
ω    = − +   
   

          (2.18) 

 The filling factor range [0.2; 0.35] considered here is chosen for the purpose 

of practical feasibility in forthcoming fabrication steps, since the periodicity of the 

photonic crystal is around 400nm. 

 The dependence of η  is a little bit more complicated, as for a given /r a  

value, EFS curves depend on the chosen frequency ω below ω0 (see the inset of 

Fig.2.4(b). This means that the parameter η  both depends on the filling factor /r a  

and the frequencyω . For each frequency ω , η  could be fitted by a linear relationship 

in the form: 
1 2

r

a
η γ γ = + 

 
. Numerical results showed that 1γ  and 2γ  can be fitted by 

a parabolic law with respect to frequencies ω  that are lower than the maximum 

frequency 
0ω . The final result obtained is: 

2 2
, 2170.4 1158.5 155.7 673.1 355.4 46.1

r r

a a
η ω ω ω ω ω     = − + + − + −      

    (2.19) 

 

 As a whole, the overall analytical dispersion relationship of the considered 

GPhC is given by equations (2.17), (2.18) and (2.19). The main advantage of such a 

form is that the effect of the air hole chirp can be directly related to the band diagram 

( ),k ω  relationship for some frequencies ω  and at some ( ),x y  location where /r a  is 

known. It has been used in most of ray tracing calculations performed in forthcoming 

sections and has induced most of results presented in Chapter 3 and Chapter 4. 

 

2.2.2.3. Hamiltonian optics-assisted ray tracing in the chosen GPhC operating in 

the diffractive regime near the photonic bandgap 

 The dispersion relationship extracted previously and summarized by equation 

(2.17-19) is applied here for the study of light propagation using the method of 

Hamiltonian optics. We chose the Hamiltonian H as following: 

2

22

2

0

2

η

δδ
ωω yx

H
+

−==             (2.20) 

 Given this choice, Hamiltonian’s equations in (2.1) are rewritten as: 
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( )
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−=
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            (2.21) 
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          (2.22) 

 In Eqs. (2.21-2.22), the quantities ( )ar // ∂∂η  and ( )ar //0 ∂∂ω  are known 

(from Eq. 2.17, 2.18), the only unknown quantities are ∂(r/a)/∂x and ∂(r/a)/∂y which 

describe the filling factor profile considered for a graded photonic crystal medium to 

support the light trajectory defined by ( ) ( ),x yσ σ   . 

 Propagation of rays can be implemented using the Eqs. (2.21-2.22) with the 

initial conditions: ( ) 00 xx ==σ  and ( ) 00 yy ==σ . It should be noted here that the 

arbitrary bi-dimensional chirped filling factor distribution ( )yxar ,/  considered for 

the graded medium is in the validity range of 35.0/22.0 ≤≤ ar , the range that we 

considered for the analytical calculation of EFSs. 

 To validate the application of Hamiltonian optics method for light propagation 

in graded photonic crystals in the diffractive regime, we chose a typical 2D in plane 

filling factor profile presented by the Gaussian function: 

           

    ( )
2 2

2
, 0.35exp

2

r x y
x y

a R

 +
= − 

 
          (2.23) 

and we limited minimum value of 22.0/ =ar  for every points having a distance from 

the (0,0) point above 0.96R. 

 The dielectric permittivity map of the GPhC configuration expressed by      

Eq. (2.23) is shown in Fig. 2.5(a). Air holes with radius law given in Eq. (2.23) are 

considered for 0≥x , etched in a SOI wafer with the effective index of the slab 

waveguide 95.2=slabn at nm1550=λ . With this filling factor profile, it can be seen 

that the maximum value of air hole radius is at the point (0,0). The interface between 

the slab waveguide and the GPhC medium is along the Χ−Γ  direction. 
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Figure 2.5: (a) Dielectric permittivity diagram of proposed GPhC configuration made with a 2D-chirp of 

filling factor given by Eq. (2.23); (b) Conservation wave vector law at the interface between the slab 

optical waveguide and the GPhC. Group velocity of the excited Bloch wave within the PhC area is 

depicted, (c) Propagation of a light ray in the GPhC at normalized frequency 25.0/ == λω a  for input 

point 8/3;0 Ryx == using equations of Hamiltonian optics and PhC analytical dispersion relationship 

(contours of iso-hole radius are presented), and (d) Light propagation in the same conditions using FDTD 

simulation (dotted path with arrow corresponds to the ray propagation in (c)). 

 The propagation of light at frequency 25.0/ == λω a  was first studied by 

Hamiltonian optics propagation presented previously with the following chosen initial 

conditions. First, the initial incident point is located at ( ) 00 ==σx  and 

( ) 8/30 0 Ryy ===σ . Second, the initial wave-vector is chosen as: 

( ) ( )

( ) ( ) ( )00

5.0sin5.00

222

0

2

//

=−−−==

−=−==

σδωωησδ

θωσδ

yx

islaby nk
         (2.24) 

in which the parameters 0,ωη  are given by Eqs. (2.19), (2.20), and iθ  is the incident 

angle from the slab waveguide into the GPhC medium. The incident angle iθ  is then 

chosen to lead to an initial parallel wave-vector 5.0// =k , meaning that o

i 7,42=θ . 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 38 

 Fig. 2.5(c) presents the trajectory of a light ray in the considered GPhC 

medium with the above chosen initial parameters. It can be seen that, light path is 

curved around the central region with high value of air hole radius (smaller long-

range averaged refractive index region). This phenomenon illustrates a key difference 

with the propagation of light in the homogeneous regime presented in Section 2.2.1 

where light path is bended towards the high “long-range” refractive index region. 

 FDTD simulation was also carried out as a comparison (validation). A 

Gaussian source 25.0/ == λω a  of beam width aW 7=  was injected from the slab 

waveguide into the GPhC medium with an incident angle o

i 7,42=θ . We can see the 

good agreement on the light propagation (light path) realized by the Hamiltonian 

optics method and the FDTD simulation when comparing the two figures Fig. 2.5(c) 

and Fig. 2.5(d). This agreement shows that the extraction of the analytical dispersion 

relationship of the graded photonic crystal presented in section 2.2.2.2 and its 

application to describe the propagation of a ray is a good basis to describe the 

propagation of light in the considered graded photonic crystal. 

 

2.3 Conclusion 

 The Hamiltonian optics approach for ray tracing in GPhCs employed in this 

thesis has been presented in this chapter for both the homogenizable and the 

diffractive regimes of photonic crystals. In all cases, the Hamiltonian is related to the 

dispersion relation of the photonic crystal medium. It is simple in the case of the 

homogenizable regime since the graded photonic crystal medium can be considered as 

an effective medium with a two-dimensional profile of refractive index. For the case 

of our interest – GPhCs in the diffraction regime – the photonic dispersion 

relationship varies in a more complicated feature in the plane of light propagation. 

The analytical dispersion relationship of graded photonic crystals in this case is useful 

for the study of light propagation. One particular case made of a square lattice 

photonic crystal with a variable filling factor was considered for that, and an 

analytical extraction of the related dispersion relationship as a function of the varied 

parameter was done. Hamiltonian optics method and FDTD simulation have been 

performed separately and a good agreement between the two approaches was 

obtained, meaning that the analytical extraction of the dispersion relationship is a 

powerful tool for the study of light propagation in graded photonic crystals. 

 The analytical extraction of photonic crystal EFSs in the particular case 

presented in this chapter, together with the Hamiltonian optics approach, will be used 

in the next chapter to see how light propagates inside 2D-filling factor-chirped graded 

photonic crystals and evaluate the possibility of utilizing their properties for the 

realization of integrated optical functions. 
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Chapter 3 

 

Modeling and Simulation of Graded 

Photonic Crystals 

 

 

 

Modeling and simulation of graded photonic crystals (GPhCs) will be presented in 

this chapter. As demonstrated in the last section of chapter 2, a proof-of-concept 

configuration of a GPhC made of a square lattice with a 2D-profile of air hole filling 

factor has been proposed for the validation of using the involved method to study the 

propagation of light in GPhCs. In this chapter, we also choose this profile of filling 

factor for the simulations of graded photonic crystal structures to propose several 

devices amenable to fabrication and experimental demonstrations. 

 Modeling of light propagation in GPhCs will be realized using the method of 

Hamiltonian optics-assisted ray tracing as well as FDTD simulation. 

 We will, in the first section, see the mirage effect in the studied GPhC 

structure and also the correlated results obtained by the two simulation methods. 

 The sensitivity to wavelength of the studied structures will be presented in the 

second part, showing the possibility of using them for wavelength demultiplexing. 

 Finally, the third part of this chapter is devoted to the study of the polarization 

properties of the considered GPhC structures. 

 

3.1. Mirage and superbending effect in the considered 

square-lattice GPhC 

 The mirage effect, in nature, can be observed due to the modification of the air 

optical index induced by the atmosphere temperature. The modification of the optical 

index makes light rays to be curved along bended trajectories according to the Snell’s 

law, i.e towards to high optical index regions. This results in the fact that we observe 

the distorted and displaced images of distant objects with a small angle below or 

above the horizontal plane of view through the atmosphere. An example of the natural 
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optical mirage effect can be seen in Fig. 3.1(a), where the driver sees the false image 

of a palm below the ground. 

  

ρρρρ=dy/dx

(a)

(b) (c)

ρρρρ=dy/dxρρρρ=dy/dx

(a)

(b) (c)
 

Figure 3.1: (a) An example of natural optical mirage caused by the modification of optical index 

induced by the atmosphere temperature, (b) An example of artificial optical mirage effect in a 

two-dimensional graded photonic crystal [21] and (c) operation principle of the mirage effect in 

this graded photonic crystal configuration. 

 An example of the artificial mirage effect has been theoretically proposed in 

[21] in a configuration of a graded photonic crystal containing a one dimensional 

chirp of lattice periodicity of a rectangular lattice photonic crystal as can be seen in 

Fig. 3.1(b). The incident light beam, after penetrating into the GPhC structure, is 

bended and then exits the configuration making a curved trajectory. The direction of 

the light path at each point can be determined by the Bloch wave group velocity 

which is normal to the deformed EFS due to the gradient of lattice periodicity as 

presented in Fig. 3.1(c). The mirage effect in this GPhC occurs at frequencies in the 

2
nd

 band, in TE polarization, and has also been experimentally demonstrated in [24] at 

microwave frequencies using a similar configuration. 

 Restarting directly from the desired light paths, we have proposed in section 

2.2.1 of chapter 2 a mirage-like beam effect. We introduced for this that light is 

bended to form a quarter circle path (Fig. 2.2) by propagating in a square lattice 

graded photonic crystal configuration operating in the long-wavelength regime of 

light propagation and described by the two-dimensional profile of average refractive 

index mentioned in Eq. 2.13. 

 Later in section 2.2.2 of chapter 2, we introduced a GPhC configuration which 

is in fact the reference GPhC structure of the manuscript. As a starting point for light 
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bending, the two-dimensional index profile ),( yxn given by Eq. 2.13 was simply 

transposed into a similar air-hole radius profile ),(/ yxar  given by Eq. 2.22. And this 

led to the structure that is described in the next sub-section. 

 

3.1.1 Structure design 

 The overview of the dielectric permittivity of the proposed reference GPhC 

configuration of GPhC is illustrated in Fig. 3.2(a). 

 

GPhC area
ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

R=160a

x

y
GPhC area

ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

GPhC area
ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

R=160a

x

y

A
ir h

o
le fillin

g
 facto

r (%
)

A
ir h

o
le fillin

g
 facto

r (%
)

(a) (b)

GPhC area
ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

R=160a

x

y
GPhC area

ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

GPhC area
ρρρρ

r/a (ρ)=0.35exp(-ρ2/2R2)

r/a=0.35 r/a=0.31

r/a=0.27

r/a=0.22

R=160a

x

y

A
ir h

o
le fillin

g
 facto

r (%
)

A
ir h

o
le fillin

g
 facto

r (%
)

(a) (b)
 

Figure 3.2: (a) Dielectric permittivity diagram of a graded photonic crystal configuration made 

of a 45°-rotated square lattice photonic crystal with a Gaussian-like air hole radius profile 

described by Eq. (3.1). The GPhC area is limited by 0, 0x y≥ ≥  and air hole radius is limited 

to the minimum value / 0.22r a =  for all positions in (x,y) plane that are farther to the zero 

point than 0.96R, and (b) The air hole radius (blue curve) and the filling factor (green curve) 

profiles along the distance 2 2x yρ = + (in lattice unit a) 

 It is characterized by the following parameters: 

• It is made of a air hole square lattice photonic crystal, rotated by 45°, 

forming the MΓ − interface. This rotation angle is chosen to ease the problem 

of light coupling from a slab waveguide into the GPhC medium. It enables to 

have an incident angle of zero degree for light excitation with an initially 

horizontal group velocity. 

• The normalized air hole radius profile is described by: 

     ( )
2

2
0.35exp

2

r

a R

ρ
ρ

 
= − 

 
             (3.1) 

where 2 2x yρ = + is the distance from the ( )0,0  point, R is the radius of light 

bending curvature. Here, R is chosen 160R a=  (corresponds to an area of 

61 61µmx µm ) to ensure a slow-enough in-plane variation of the air hole radius, 

provided that the minimum value of air hole radius is limited to / 0.22r a =  for 

every lattice points that are farther than 0.96R from the (0,0) point. 
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 The air hole radius (blue curve) and the air hole filling factor (green curve) 

profiles of the square lattice photonic crystals along the distance ρ  (in lattice unit a) 

from the GPhC left-bottom corner are presented in Fig. 3.2(b). It is shown that the 

filling factor of air (or the average emptiness of the medium) at different points inside 

the considered configuration varies from 38.5% (at the bottom left) down to 15.2% 

(corresponding to air hole radius 0.35 down to 0.22, respectively) as the distance 

increases. This average emptiness of the medium is one of the parameters to take into 

account to analyze the effects that will be presented in the simulation results in the 

following section. 

 Simulations of light propagation in the proposed GPhC configuration have 

been performed based on a SOI wafer with the silicon layer thickness of 260nm, the 

effective index of the slab waveguide being 2.95slabn =  at the wavelength 

1550nmλ =  in transverse electric (TE) polarization. 

 

3.1.2. Circular 90°-bending GPhC structure 

 We started with the proposed GPhC configuration with the aim to design a 

circular 90°-bending light path. As we have seen in Fig. 2.5(c) of chapter 2, light 

beam can be bended in the proposed GPhC configuration (but not necessarily along a 

circular light trajectory). In this section, in order to find the desired light trajectory in 

this configuration, we first investigate the location of the appropriate incident point of 

the light beam. The estimation of losses as well as the way to enhance the 

transmission coefficient of the proposed GPhC configuration by adjusting 

input/output tapering regions are also presented in this section. 

 

3.1.2.1. Study of the incident point to inject light into GPhC 

configuration 

 The proper position of light injection has been studied by adjusting the 

incident point ( )0y  from R to 0 using Hamiltonian optics-assisted ray propagation. 

 A light ray at frequency / 0.25aω λ= =  (corresponding to the wavelength 

of 1550nmλ = ) was considered to be injected into the GPhC area at different incident 

points ( 0=x , y=0 to R) with the incident angle 0inθ = ° . This frequency excites a 

Bloch wave with the initial parallel wave-vector 
/ / 0k = . The trajectory of this light 

ray in the proposed configuration can be then solved by the Hamiltonian’s equations 

with the analytical dispersion relationship of the graded photonic crystal medium 

expressed by the set of three equations Eqs. (2.18), (2.19) and (2.20) presented in 

chapter 2. 

 For illustration, different light paths of light rays injected into the proposed 

GPhC configuration at 11 different values of ( )0y  are presented in Fig. 3.3(a). 
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 It can be estimated from the Eq. (2.18) that the maximum frequency value of 

the first band is around 
_1 0.2453maxω =  for the lattice at the input point y(0)=R, and 

_1 0.2472maxω =  for the lattice at the incident point y(0)=0.9R. The value of 
_1maxω  

only starts to be superior to _1 0.25maxω =  for (0) 0.8y R≤ . This explains why two 

straight lines are adjacent to the homogeneous medium-GPhC interface, meaning that 

no value of _1maxω  can be found to satisfy the condition _1maxω ω< , and thus that light 

cannot enter the GPhC area. 

 The bending effect occurs from the incident point y(0)=0.8R, forming light 

paths with different curvatures. The variation of the air hole radius along each of these 

light paths is illustrated in Fig. 3.3(b). Among those, there is only one curve that 

shows a nearly-invariant air hole radius along the light trajectory, corresponding to 

the incident point y(0)=0.5R. The invariant air hole radius (around the value of 

r/a=0.31) proves that all points on the light trajectory have the same distance with 

respect to the origin. 
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Figure 3.3: Study of the influence of the light incident point at the slab/GPhC interface: (a) 

Different light ray trajectories inside the considered GPhC configuration at frequency 

/ 0.25aω λ= =  obtained by adjusting the incident point from (0)y R= to (0) 0y =  and (b) 

Normalized air hole radius along these obtained trajectories. 

 These simulation curves lead to the three following conclusions: 

1) Light paths are sensitive to the incident point. 

2) Light injected at the incident point ( )0y R=  does not propagate in a circular 

90°-bending light path, while this incident point is the condition to obtain a 

quarter circle bending light path in the average-index-profile GPhC 

configuration in the homogenizable regime as mentioned in section 2.2.1. 

 In order to get the circular 90°-bending in the studied GPhC configuration, the 

input point should be chosen at ( )0 0x =  and ( )0 / 2y R=  in the present 

configuration. 

 Hereinafter, simulations of the proposed GPhC configuration will be 

considered with a TE light beam at the incident point )2/)0(,0)0(( Ryx == . 
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3.1.2.2. Light propagation in circular 90°-bending GPhC structure 

 Light propagation in the proposed circular 90°-bending GPhC structure was 

simulated by both ray tracing and FDTD methods. The air hole radius profile of the 

studied configuration is color-graphically showed in Fig. 3.4(a). The EFS diagram in 

the first TE band of the square lattice photonic crystal (with r/a=0.31) at the incident 

point is figured out in Fig. 3.4(b). It can be seen that the maximum value of frequency 

in the first TE band is around 0.255. 

(a) (b)

(c)
(d)

r/a contours

(a) (b)

(c)
(d)

(a) (b)

(c)
(d)

r/a contours

 

Figure 3.4: (a) Air hole radius map of the considered graded photonic crystal medium. The 

profile of air hole radius is governed by Eq. (3.1), the maximum value is / 0.35r a =  at the 

bottom-left corner (illustrated by dark red color) and limited to the minimum value of 

/ 0.22r a = (illustrated by blue color) for every point further from the ( )0, 0  point than 0.96R ; 

(b) Equi-frequency surface diagram of the first TE band of the 45-rotated square lattice photonic 

crystal with / 0.31r a = ; (c) Propagation of a light ray at normalized frequency 

/ 0.25aω λ= = in TE polarization, injected at the initial point 0; / 2x y R= = , with an 

incident angle 0
in

θ = °  in the studied GPhC medium using Hamiltonian optics simulation and 

(d) The related steady-state field of a TE Gaussian beam in the studied at normalized frequency 

/ 0.25aω λ= =  with the same conditions used in Hamiltonian optics simulation. 
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 The circular light path of the injected light ray at frequency 0.25ω =  is 

illustrated Fig. 3.4(c) together with the iso-radius contours of the configuration in 

(x,y) plane. The steady-state electric field of a TE polarized Gaussian light source 

with a beam waist of 7a  at frequency 0.25ω =  injected into the studied GPhC 

structure can be observed in Fig. 3.4(d) using 2D-FDTD simulation. 

 The steady-state field map of the TE light beam at frequency 25.0=ω also 

visually shows that the optical losses of light propagating inside the considered GPhC 

configuration are quite low. We see only some small diffraction beams at the input 

and output of the configuration, as shown in Fig. 3.4(d). However, it is worth to 

estimate it quantitatively. This point is presented in the upcoming sub-section. 

 

3.1.2.3. Estimation of losses and bandwidth in the 90°-bending GPhC 

structure 

 To estimate the overall losses as well as the transmission efficiency of the 

studied configuration after a 90°-bending, two sensors with the same size of 160a as 

the GPhC area have been placed at the input and output of the GPhC simulation area, 

as can be seen in Fig. 3.4(d). The input source was a TE polarized Gaussian pulse 

centred at 25.0=ω with the bandwidth of 1.0=∆ω . The source is directed onto the 

GPhC configuration as usual at the incident point ( 2/,0 Ryx == ). The sensor placed 

at the output is for measuring the transmission flux, and the one placed at the input is 

for measuring the reflection flux of light. By analyzing these fluxes, the transmission, 

reflection, as well as losses can be estimated. 

 Fig. 3.5(a) shows the overall calculated transmission (T - blue line), reflection 

(R-pink line) and the loss (1-T-R - red line) spectra of the GPhC area. As can be seen, 

the bending effect occurs in the normalized frequency range extending from 0.22 to 

0.26. For normalized frequency ω=a/λ below 0.22, the bending effect of the GPhC is 

lost. The same phenomenon happens for frequencies above 0.26, which introduce a 

high reflection coefficient. 

 The power spectra obtained in Fig 3.5(a) can be explained by associating them 

with the photonic band structure. Within the proposed configuration, the photonic 

band-structure varies with the local point in space due the two-dimensional graduality 

of the structure. However, we care here mainly for the photonic band-structure of the 

photonic crystal lattice near the incident point where light is injected into the GPhC 

medium. 

 Figs 3.5(b), and 3.5(c) show the calculated band structure of the photonic 

crystal lattice at the incident point of light (where the air hole radius r/a is around 

0.31) in TE light polarization and the calculated overall power transmission as a 

function of normalized frequency /a λ , respectively. As it can be seen in Fig. 3.5(b), 

there exists a local photonic bandgap of 0.02ω∆ =  between the first (
1 0.26ω = ) and 

the second (
2 0.28ω = ) band at the point M (edge corner of the first Brillouin zone). 

Since light is injected into the studied structure along the Γ-M direction, it is totally 

reflected for frequencies inside the photonic bandgap. A good agreement is obtained 

between the dispersion diagram and the calculated transmission that drops in the 

frequency range 0.26 / 0.28a λ< < . 
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Figure 3.5: (a) Transmission spectrum of light propagating though the considered GPhC 
configuration, (b) TE band structure of the square lattice photonic crystal at the incident point 

(r/a=0.31), and (c) Frequency – Transmission intensity relationship in comparison with the 

photonic band structure.  

  

 Referring to Fig. 3.5(a), we see that the frequency range for which light is 

bended by 90° roughly extends from 0.23ω ≈  to 0.257 (i.e 1500nm to 1690nm). 

Frequencies higher than ω>0.26 (λ<1490nm) lie in the local photonic bandgap 

between the first band and the second band of the photonic crystal, which explains the 

drop in transmission. Transmission after the 90°-turn also drops for ω<0.22 

(wavelengths above λ=1700nm) because we then enter the long-wavelength 

homogenization approximation of the periodic medium, and light then propagates 

across the corrugated graded medium mostly in the straight direction (the 

transmission of light in the straight direction will be discussed again in the last section 

of this chapter). 

 The 90°-bending transmission coefficient ranges from 78% (-1.5 dB) to 40% 

(-4 dB). The insertion loss level of the graded photonic crystal region is thus quite 

low. This characteristic is due to the fact that light enters the GPhC at normal 

incidence angle. Highly dispersive regions of strictly periodic PhCs have often to be 

excited with specific input angles that make light injection into the PhC rather low. 

This drawback is circumvented here as light enters the gradually corrugated medium 

with a horizontal group velocity and is bended only after. 
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 In spite of this interesting feature, there still remains two points to be 

improved: 

• The insertion loss can be further minimized by eliminating the diffraction that 

can be seen in the Fig. 3.4(d). 

• The transmission is not constant in the frequency range of the bending effect. 

These two points will be considered to improve the transmission efficiency in the 

90°-bending GPhC structure in the following sub-section. 

 

3.1.2.4. Enhancement of the transmission efficiency in the 90°-

bending GPhC structures 

 It is to be reminded that in the simulated configuration (as well as in the real 

fabricated configuration soon mentioned in the next chapter), light is coupled into the 

GPhC area from a slab waveguide that presents an impedance mismatch for incoming 

electromagnetic waves at the slab/photonic crystal interface. To enhance the 

transmission efficiency in the studied GPhC structure, it is possible to improve the 

light coupling efficiency into the GPhC area. To do it, the use of input/output tapers 

can be considered as shown in Fig. 3.6. 

 The underlying idea of these intermediate tapering regions is using a gradual 

interface in order to minimize the impedance mismatch for incoming electromagnetic 

waves at the slab/photonic crystal interface [25]. This approach experimentally 

proved to be efficient in case of Bloch wave excitation in the first PhC band [26]. A 

strong difference with previous situations is yet related to the fact that the PhC opto-

geometrical properties are not constant over the slab/PhC interfaces, i.e. along the 

(x=0,y≥0) and (x≥0,y=0) half-lines. 

 As these considered input and output gradual tapers being identical, attention 

is essentially focused here on the input one. The input taper contains a linear increase 

in 20 steps of the air hole radius from r = 85nm (r/a = 0.22) to the hole radius value at 

the current point along the input interface of the GPhC area (varying itself from 136 

to 85nm along the (x=0,y>0) and (x>0,y=0) interfaces according to the r/a(ρ) = 

0.35.exp(-ρ
2
/2R

2
) law). By itself, the reduction of r is responsible for the decrease of 

the band-edge frequency of the PhC band 1, leading to strong reflection in the 

considered normalized frequency range around 0.25. A linear increase of the lattice 

period was thus simultaneously considered to maintain the normalized frequency a/λ 

below the band-edge limit. In practice, a linear increase of lattice periodicity a  from 

305nm to 390nm at the input of the GPhC area was considered. 

 As a whole, the designed input and output tapers are thus made of a two-

dimensional chirp of the air hole radius and a one-dimensional chirp of the lattice 

period. 

 The related tapers are shown in two insets in Fig. 3.6. 
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Figure 3.6: Dielectric permittivity of graded photonic crystal configuration with tapering regions 

at the input and output to minimize the impedance mismatch between the incoming and 
outcoming waves with respect to GPhC medium.  
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Figure 3.7: (a) Steady-state field of a light beam at frequency / 0.25aω λ= =  inside the 

proposed GPhC medium with input and output tapers; and (b) Comparison of the transmission 

spectra in two cases: with and without input and output tapers. 
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 The propagation of the 7a-beam width Gaussian beam in the studied GPhC 

configuration with I/O tapers is presented in Fig. 3.7(a). 

 It can be seen that the diffraction beams are lower at the input and output if 

compared with the case without these two tapering regions. The enhancement of the 

transmission efficiency is shown in Fig. 3.7(b). The transmission bandwidth is quite 

the same but the transmission is about 2dB higher in case of GPhC with I/O tapers (up 

to 95%) than in the case of the GPhC configuration without I/O tapers (78%). 

 Because of this enhancement, in the following simulations, we will utilize the 

proposed configuration with I/O tapers. 

 

3.1.3. Other configurations for light bending effect 

 In the latest section, we have seen the possibility of achieving a 90°-bending 

of light in the proposed GPhC configuration. In the following, we will present the 

possibility to combine several blocks of the proposed structure for bending light with 

different bending shapes, in particular, the 180°-bending and the 270°-bending 

configurations. 

 

3.1.3.1. 180°-bending GPhC structure 

 To form a 180°-bending configuration using the proposed GPhC configuration 

presented in 3.1.2.2, it is possible to combine two blocks of that configuration, 

provided that its air hole radius profile is governed by the Eq. (3.1) in the area limited 

by 0x ≥ . The configuration is also composed of two input and output tapering 

regions as proposed in the previous section. We can see the dielectric permittivity 

diagram of the 180°-bending configuration in Fig. 3.8(a). 
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Figure 3.8: (a) Dielectric permittivity diagram of GPhC configuration for 180
o
-bending effect 

and (b) Light path of a Gaussian beam of a7  beam width in 180-bending GPhC structure at 

frequency 25.0/ == λω a . 
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 As usual, the mirage effect in this configuration is simulated using two 

methods: Hamiltonian optics (Fig. 3.8(b)) and FDTD (Fig. 3.8(c)) simulations. A light 

ray at the frequency 0.25ω =  is bended inside the present GPhC configuration, 

making a half-circle-light-path, i.e a curvature of 180 degrees as shown in Fig. 3.8(b). 

The comparative result can be observed in Fig. 3.8c for the Gaussian beam of 7a-

beam waist at frequency 0.25ω = . It worth to remind that, in this configuration, we 

still inject light into GPhC area at the incident point 0, / 2x y R= = . 

3.1.3.2. 270°-bending GPhC structure 

 A 270°-bending GPhC structure can be also constructed by combining three 

blocks of the 90°-bending GPhC configuration presented in 3.1.2.2. The diagram of 

dielectric permittivity of this 270°-bending GPhC structure is presented in Fig. 3.9(a). 

The first two blocks in the right are the same as in the configuration of the 180°-

bending, the third block in the bottom left is formed by rotating the proposed 90°-

bending block with an angle of -90° and shifting the (0,0) point to (0,-R). 
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Figure 3.9: (a) Dielectric permittivity diagram of GPhC configuration for 270-bending effect; 

and (b) Trajectory of a light ray; and (c) Light path of a Gaussian beam of a7  beam width in 

180-bending GPhC structure at frequency 25.0/ == λω a . 
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 Again, a good agreement between the two methods of simulation for a single 

light ray and a Gaussian light beam at frequency 0.25ω =  is obtained. 

 The mirage effect presented in the two (180°- and 270°-) bending structure 

proves that the proposed configuration for 90°-bending can be flexibly combined and 

utilized for curving and shaping the light beam propagating inside graded photonic 

crystals. 

 In addition, hereinbefore, we mentioned and proposed only one profile of r/a, 

thus there is a richness of configurations that could be used for the purpose of 

controlling light beams inside graded photonic crystals. 

 

3.2. Wavelength dispersion sensitivity of graded photonic 

crystals 

 In all of the above simulations on graded photonic crystal configurations 

described in this chapter, we have mentioned and considered only one single 

frequency 0.25ω = (corresponding to the wavelength 1550nmλ = ). Yet, we can see 

that the mirage effect can be observed in different configurations and in a bandwidth 

of 0.04ω∆ = . Due to the deformation of EFSs of frequencies in this band (as can be 

seen in Fig. 3.4(b), the proposed configuration is predicted to be sensitive to 

wavelength. 

 Thus, in this section, we study the possibility of the proposed GPhC 

configuration to deflect light beams by tuning the optical frequency (light 

wavelength) within this bandwidth. Doing this, we exploit the short-wavelength light 

propagation regime characterizing the studied GPhC configuration. 

 

3.2.1. Sensitivity to wavelength 

 The expected frequency range for exploring the sensitivity to wavelength of 

the studied GPhC structure is the range in which light is bended while propagating in 

the medium. For this, we tuned the input wavelengths from 1500nm to 1700nm with 

an increasing step of 10nm. The evolution of light paths for these wavelengths in the 

studied configuration obtained by the Hamiltonian optics propagation method is 

presented in Fig. 3.10(a). The input and output points are now indicated in µm. We 

observe that longer wavelengths propagate with longer trajectories and that a shift of 

about 40 mµ  is obtained for the considered wavelength range. 

 The outputs of the longer wavelengths (low frequencies) are collected at 

farther positions from the ( 0, 0)x y= =  point in comparison with those related to 

short wavelengths (high frequencies). 

 Near the incident point, all light rays of different wavelengths indeed 

experience the same air hole filling factor r/a (meaning the same _1maxω ) but different 

η (since this value depends on both r/a and ω: see Eq. (2.19)) due to the different 

values of ω. As a consequence, the different light paths begin to split, meaning that 

different values of hole filling factor are seen afterwards, and thus different values of 
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both of 0ω  and η, which reinforces the splitting effect between the different 

wavelength-dependent rays. As a whole, it can be said that the different rays cross 

“different optical periodic media”, as shown in Fig. 3.10(b). In the plane of light 

propagation considered here and presented in the Fig. 3.10(b), it can be seen that the 

hole radius is roughly constant around r/a=0.31 along ray path for nm1550=λ  

(ω=0.25) due to the nearly circular trajectory, while it decreases down to the 

minimum value r/a=0.22 for the wavelength nm1700=λ  (ω=0.228). The two 

dispersion PhC parameters 0ω  and η vary consistently. 

(a) (b)

(c)

(a) (b)

(c)
 

Figure 3.10: (a) Light paths for different wavelengths from 1500nm to 1700nm, using 

Hamiltonian optics simulation; and (b) Values of air hole radius along the different ray 
trajectories, and (c) Wavelength dispersion sensitivity of the studied configuration of graded 

photonic crystal 

Fig. 3.10(c) shows the relationship between the output position and the tuning 

input wavelength. A sub-linear relationship is obtained for the tuning frequency range 

from 1500nm to 1700nm, introducing a dispersive coefficient of 0.2µm (output-

shift)/nm (wavelength tuning). 

To prove the sensitivity to wavelength of the studied configuration, FDTD 

simulations were realized for different frequencies. We show here the case of two 

frequencies ω=0.25 (1550nm) and ω=0.24 (1616nm). The different optical trajectories 

and the shifted output positions of these two frequencies can be seen in Fig. 3.11. 
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(a) (b)

 

(a) (b)
 

Figure 3.11:  Light paths of two Gaussian beam with beam waist 7a inside the considered graded 

photonic crystal configuration at two frequencies (a) 
1

0.25ω = and (b) 
2

0.24ω =  using FDTD 

simulation. 

 

3.2.2. Two-channel demultiplexing 

 With a wavelength dispersion of 0.2µm/nm as mentioned in the previous sub-

section, it is possible to utilize this configuration of GPhC for demultiplexing. We 

first present here this possibility for two channels. 
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Figure 3.12:  (a), (b), (c) Three sets of light paths inside the proposed graded photonic crystal 

configuration (0.2545; 0.245), (0.25; 0.24); (0.2545; 0.24) for the purpose of wavelength 

demultiplexing; (d), (e), (f) Dielectric permittivity diagrams of three two-channel 

demultiplexing devices based on the studied graded photonic crystal configuration. Two output 

channels are placed at proper positions using the calculation results presented in Fig. 3.10(c). 
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 Three sets of two different frequencies (0.2545; 0.245), (0.25; 0.24), and 

(0.2545; 0.24) have been chosen to be simulated by FDTD in order to provide a 

sufficient separation (more than 12µm) at the outputs, as can be seen in Figs. 3.12(a), 

(b) and (c). 

 The dielectric permittivity diagrams of three basic two-channel demultiplexers 

corresponding to three sets of light paths of two frequencies given in Fig. 3.12(a), (b) 

and (c) are illustrated in Figs. 3.12(d), (e) and (f), respectively. Strip waveguides have 

been additionally considered at the input and output of the graded PhC area to inject 

and collect the light into and from the graded photonic crystal area. The two output 

waveguides of each demultiplexing configuration are placed at proper positions based 

on the prediction by Hamiltonian optic propagation and FDTD simulations. An 

optical source with a waist of 7a served to excite electromagnetic fields within the 

structure and sensors were placed at right locations to calculate power transmissions 

at two channels: channel 1 (T1) and channel 2 (T2). 

 Fig. 3.13 shows the optical transmission spectra of the three proposed GPhC 

structures presented in Fig. 3.12. Results show that two centred wavelengths of each 

demultiplexer are well separated and collected at the two output channels with a low 

loss (0.5dB) and low crosstalk (less than -20dB) levels. 

CrosstalkCrosstalk
CrosstalkCrosstalk

CrosstalkCrosstalk

(a) (b)

(c)

CrosstalkCrosstalk
CrosstalkCrosstalk

CrosstalkCrosstalk

(a) (b)

(c)
 

Figure 3.13: Operation of three considered 2-channel demultiplexing devices (a) Channel 1 

1
0.25ω =  (

1
1550nmλ = ) and Channel 2 

1
0.24ω =  (

1
1616nmλ = ); (b) Channel 1 

1
0.2545ω =  (

1
1526nmλ = ) and Channel 2 

1
0.24ω =  (

1
1616nmλ = ); and (c) Channel 1 

1
0.2545ω =  (

1
1526nmλ = ) and Channel 2 

1
0.245ω =  (

1
1585nmλ = ) 
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 Beyond the possible operation of these devices as basic demultiplexers, the 

obtained results once again prove that the light paths within the proposed and studied 

GPhC area are sensitive to wavelength tuning. 

 

3.2.3. Four-channel demultiplexing 

 These above demultiplexing configurations were chosen based on a simple 

configuration (90°-bending structure) with a square lattice and one particular air hole 

profile, for two-wavelength channel structures. To improve their operation and add 

several channels, we come back here to the 270
o
-bending structure which was 

presented in Fig. 3.9. 
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Figure 3.14: Dielectric permittivity diagram of a four-channel demultiplexing device based on 

270°-bending graded photonic crystal configuration; (b) Ray trajectories obtained for four 

frequencies 
1

0.2545ω = , 
1

0.25ω = , 
1

0.245ω = , and 
1

0.24ω = , (c), (d), (e) and (f) Light 

paths of a Gaussian beam of 7a beam waist at four frequencies 
1

0.2545ω = , 
1

0.25ω = , 

1
0.245ω = , and 

1
0.24ω = , respectively, inside the studied device simulated using the FDTD 

method. 
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 This structure was simulated using FDTD simulation. Input/output 

waveguides were considered (Fig. 3.14(a)) and placed at the predicted positions 

obtained from Hamiltonian optic simulation. Fig. 3.14(b) presents light trajectories of 

four frequencies 2545.01 =ω , 25.02 =ω , 245.03 =ω , and 24.04 =ω  obtained by 

Hamiltonian optics propagation method, while Figs. 3.14(c), (d), (e) and (f) show the 

steady-state fields obtained for the four chosen wavelengths using FDTD simulation. 

The demultiplexing operation is visible by the left to right shift of the beam for 

decreasing normalized frequencies. 

 Fig. 3.15 shows the calculated transmission spectra for the proposed four-

channel demultiplexing in the 0.240 to 0.2545 frequency range. The overall insertion 

loss is around -3dB for each of the four channels, while inter-channel crosstalk is 

around -10dB. 

 

Figure 3.15: Demulitplexing operation of the proposed four-channel demuliplexing device 

 Simulation results on the properties of wavelength-sensitivity of the proposed 

GPhC configuration as well as the possibility of applying this property into 

demultiplexing purpose are the preparation basis for the fabrication and 

characterization steps that will be introduced in chapter 4. We also see that, even with 

a particularly simple profile of the GPhC filling factor, we already have some richness 

on controlling light in the configuration. 

 

3.3. Polarization properties of graded photonic crystals 

 Polarization properties and managing the light polarization in photonic circuits 

are important issues in the on-going development of integrated silicon photonics. The 

aim consists in separating, managing the two polarizations of light (polarization 

splitting) and/or converting one polarized light to the other one (polarization 

convertion). In the context of polarization beam splitting, polarization modal 
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birefringence property in SOI waveguides, which is due to the strong index contrast 

between the waveguide core (Si) and cladding (air or SiO2), is mostly used. This 

property has been exploited for the design of various polarization beam splitters 

(PBS) based on directional couplers (DCs), which coupling gaps and lengths were 

optimized to drop only one polarization on the DC cross port [27, 28]. One drawback 

of this approach is related to the tight required control of inter-waveguide gaps, 

coupling lengths, and waveguide cross-sections to ensure reasonable bandwidth, low 

inter-polarization crosstalk, and low insertion loss [29]. 

 Another approach to design PBS is based on the use of planar photonic 

crystals (PhCs) which are known to have strongly birefringent properties. Several 

solutions have been explored in this direction, including the use of the superprism 

effect [30], polarization-dependent refraction [31], and bandgap frequency sensitivity 

to light polarization [32, 33]. As mentioned in Ref. [33], the straightforward 

implementation of this concept for the design of PBS proved to be ineffective. The 

reason for this is due to in-plane diffraction frequently occurring due to the grating-

like interface between the optical slab waveguide and the 2D PhC area. In addition to 

this, optical beams tend to significantly spread into the corrugated medium. The most 

effective adopted approach to circumvent these drawbacks was to consider PhC 

heterostructures with all PhCs operating in self-collimating regime in addition to the 

bandgap property for TE/TM splitting [32, 33]. 

 With respect to our work, as presented so far in the thesis, we have already 

considered the propagation of light in graded photonic crystals and also their 

wavelength dispersion properties. Yet, for all of those, results have been presented for 

only one polarization of light where the electric field is on the x-y plane, and the 

magnetic field is perpendicular to it (TE polarized light). Since the considered GPhC 

structures are also based on the SOI platform, we are sure that the configuration 

would also be sensitive to the polarization of light and with some potential interest for 

TE/TM polarization splitting. In the following, the study and exploration of 

polarization properties of the considered GPhC configuration is presented. 

 We started with the band diagrams for the two polarizations (red lines for TE 

polarization and blue dash lines for TM polarization) calculated using the MIT 

Photonic Band (MPB) software, as shown in Fig. 3.16a. The calculations were 

performed for a 2D square lattice with normalized radius of air hole r/a=0.31 in SOI 

material with effective refractive indices of 2.95 and 2.267 for TE and TM 

polarizations, respectively. 

 As well known, we can see in Fig. 3.16(a) the difference on frequency ranges 

between the first bands of TE and TM polarized light. The maximum frequency of the 

first TM band is much higher than the maximum frequency of the first TE band. 

 Figs. 3.16(b) and 3.16(c) show more clearly this difference by presenting the 

EFSs in the 1st Brillouin zone of the first TE and the first TM bands, respectively. As 

can be seen, EFSs of the first band for the two light polarizations are nearly circular 

close to M-points and turn to square shapes as farther to the M-point. The difference 

here is that frequencies having circular-shape EFSs are higher in the case of TM 

polarization (around ω=0.31) in comparison with those of TE polarization (around 

ω=0.255). 
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 As the group velocity of light is normal to the EFSs, this difference in band 

diagrams will make light of the different polarizations at that range of frequencies 

propagate with different trajectories. 
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Figure 3.16: Equi-Frequency Surfaces of the first band in (a) TE light polarization and (b) TM 

light polarization of a square lattice photonic crystal made of air holes with normalized radii 

r/a=0.31 in a 2.95 (for TE) and 2.267 (for TM) effective index slab waveguide. 

 It was shown that this configuration makes TE polarized light beam bended by 

90° in a frequency range of 0.22-0.26. As can be seen in the EFSs map for the first 

TM band, in this range of frequencies, the concavity of the EFSs is different from the 

one of the TE polarized waves (the concavity being positive in case of TM 

polarization whereas negative in case of TE polarization). It is thus predicted that TM-

polarized light goes straight forward while TE-polarized light is bended to make a 

curvature path. 

 To verify the above prediction, the propagation of TM light beam in the 

proposed GPhC configuration was simulated using FDTD simulation. Figs. 3.17(a), 

(b) and (c) show the EFS diagram for the first TE and TM band, respectively. 

Figs.3.17(d) and (e) show the simulated energy distribution within the GPhC structure 

excited by TE and TM polarized Gaussian beams at same frequency ω=0.25 

(λ=1550nm), respectively. It is shown that TE and TM light are separated into two 

different paths with a separation angle of 90°: TE light is bended towards the center 

point, while TM light goes straightly to the right. Hereinafter, we call the output for 

collecting bended light beam being the bended channel and the straight channel 

referring to the output on the right. 
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Fig. 3.17: (a), (b) and (c) EFS diagram of the first TE and TM band of the square lattice photonic 

crystal considered at the incident point y(0)=R/2. FDTD simulation of the propagation of TE-TM 

polarized light in the considered graded photonic crystal configuration with input/output tapers: 

(d) propagation of TE light and (e) propagation of TM light at ω=0.25 (λ=1552nm). 

 Transmission and reflection spectra for both polarizations are presented in Fig. 

3.18. As figured out in Fig. 3.18(a), the blue and the green curves stand for power 

transmission of TE polarized light at the bended channel and at the straight channel, 

respectively. 

 One can see that at the bended channel power transmission of TE polarized 

light is as high as 95% in the frequency range ω=0.22 to 0.26. In case of TM 

polarization, light can be transmitted and collected at the straight channel with high 

transmission (power transmission is almost 100%) in the frequency range of ω=0.2-

0.28 whereas at higher frequencies, transmission of TM light at the straight channel 

drops and can be collected at both two channels. This result is in good agreement with 

the above discussion, i.e. at high frequencies (i.e near M-point, and EFSs for TM 

polarization transform to circles), TM light is bended with the same principle as TE 

light polarization at lower frequencies (around 0.25). 

 The result shows that the proposed 90
o
-bending GPhC configuration can serve 

as a polarization beam splitter. 
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Figure 3.18: Polarization sensitivity of the proposed GPhC structure (a) Transmission of TE 

mode and (b) Transmission of TM mode of the proposed GPhC structure 

 

Usable bandwidth for TE-TM 

polarization splitting

Usable bandwidth for TE-TM 
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Figure 3.19: Crosstalk between TE-TM polarized lights in the proposed polarization beam 

splitting configuration. 

 The quality of a polarization beam splitter is decided by not only the high 

power transmission for both polarizations but also the low crosstalk of one 

polarization on the channel of the other one. We can see in Fig. 3.19, the insertion 

losses for both polarizations at two channels are lower than 0.5dB for the wavelength 

range of 1500nm-1680nm. And in this wavelength range, the crosstalk of TM 

polarization on bended channel is smaller than -30dB and the crosstalk of TE 

polarization on the straight channel lower than -22dB. This shows that this 
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configuration can probably operate with high efficiency in a large bandwidth of 

180nm. 

 Beside the polarization splitting property, there is an interesting information 

contained in the transmission spectra of TE and TM light polarization of the proposed 

configuration presented in Fig. 3.18: the two light polarizations can be independently 

collected at the two output channels (straight and bended channels) with similar 

intensities (nearly 50%/50%). It is around the frequency ω=0.225 for TE light 

polarization and ω=0.295 for TM light polarization. These frequencies are the 

thresholds at which the configuration roughly transits from the homogenizable regime 

to the diffractive regime for each of the two polarizations. We will come back later 

and discuss this point in chapter 4. 

 

3.4. Conclusion 

 Pursuing the approach presented in chapter 2, modeling and simulations of 

light propagation in graded photonic crystal structures have been realized in this 

chapter. 

 Simulations have been restrictively applied to one single simple case: a 2D-

chirp (Gaussian profile) of the air hole filling factor of a square lattice photonic 

crystal operating in the first band. Despite its simplicity, this configuration is already 

rich in the potential it brings to shape electromagnetic fields at optical frequencies. 

 Light propagation in given configurations was simulated using the method of 

Hamiltonian optics and then verified using FDTD simulation, showing an excellent 

agreement between the simple ray propagation and the full electromagnetic 

computation, meaning that ray propagation relying on analytical dispersion 

relationships is a powerful method to predict electromagnetic mechanisms in 

complicated configurations. 

 Sensitivity of light paths to optical wavelength was studied, and 

demultiplexing issues were also explored. A possible structure using the studied 

square lattice GPhC has a typical surface 160a-length (61µmx 61µm) with two output 

wavelength channels was proposed to operate at wavelengths around 1550nm. A 

configuration for four-wavelength demultiplexing was also proposed. 

 The polarization properties of the studied graded photonic crystal 

configuration have been also explored. Simulation results show that the two 

polarizations of light are well separated by 90° after propagating through the studied 

graded photonic crystal configuration. The proposed polarization beam splitter 

designed on a silicon on insulator platform with high power transmission for two both 

polarizations (i.e. low insertion loss) and low crosstalk can be seen as an efficient 

polarization splitter. 

 These interesting properties inside a simple configuration of graded photonic 

crystal shows the possibility to envisage in future works more complicated 2-D chirps 

of PhC parameters using the same method to produce more advanced functions. 

 These simulations are the first step that enables us to design and fabricate 

devices based on the proposed GPhC configuration. The contents on design, 

fabrication and characterisation of GPhC devices are presented in chapter 4. 
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Chapter 4 

 

Fabrication and Characterization of 

Graded Photonic Crystals 

 

 

 

This chapter is devoted to the presentation of the fabrication and the experimental 

investigation of graded photonic crystal structures proposed in last chapters and 

achieved during this thesis. 

 With the aim of experimentally investigate the simulation results on the super-

bending effect, and the dispersive and polarization-dependency properties of the 

considered GPhC configurations, the fabrication process has been first realized in the 

CTU IEF/Minerve clean room of the Institute of Fundamental Electronics (IEF) 

laboratory with the great involvement of Xavier Le Roux. Then, the characterization 

phase has been performed at two different places including the Micro-

Nanophotonique group (MINAPHOT) IEF group and the Groupe de Champ Proche 

Optique, Laboratoire Inter-disciplinaire Carnot de Bourgogne (ICB). 

 The fabrication of GPhC samples will be presented in the first part of this 

chapter. It was done using e-beam lithography (EBL) and Reactive Ion Etching (RIE) 

technologies. In this process, we carefully took into account the proximity effects in 

the design and e-beam exposing stages, which were previously presented in the PhD 

manuscript of Damien Bernier, a former PhD student of the MINAPHOT group. 

During this thesis, we pursued these technological efforts for the fabrication of GPhC 

structures in which photonic crystal parameters slowly and gradually vary. SEM 

images of GPhC samples prove that our technical parameters are reasonable to well 

define the GPhC structures in the range of this thesis. 

 Various samples have been designed and fabricated including: 

• A normalization-sample without GPhC area in order to evaluate the 

transmission efficiency and insertion losses of light propagating though 

the sample from the input to the output fibers of the butt-coupling 

experimental setup, including the full strip waveguide circuitry. 

• Samples of GPhC configurations with the air-hole filling factor profile 

mentioned earlier in chapter 3 and with and without input/output tapering 
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regions. These samples were prepared for testing the light bending effect 

in GPhC structures. 

• Samples of the several GPhC configurations with several output 

waveguides for investigating the demultiplexing performances of the 

studied GPhC configurations. 

 The second part of this chapter is to present the obtained experimental results 

from the fabricated GPhC devices. First, far field measurements using an optical 

bench were utilized to investigate the GPhC transmission efficiency and to 

experimentally investigate the super-bending effect at optical frequencies. This stage 

was carried out using the facilities in MINAPHOT group of IEF. The second method – 

based on Scanning Near-field Optical Microscopy (SNOM) was performed at ICB 

and allowed providing the direct observation of the light bending effect in the studied 

GPhCs, as well as the analysis of GhC dispersive properties and the possible 

observation of the transition between the homogenizable and dispersive regimes of 

light propagation in the investigated GPhC structures. 

 

4.1. Description of fabrication process of considered GPhC 

structures 

 The techniques used for the fabrication of GPhC structures are presented in 

this section. The fabrication objective was to define precisely photonic crystal 

elements with lattice period around 400nm. In microelectronics, the technique of 

lithography is often used for the reproduction of a pattern onto a support. Several 

lithography technologies can be used to define photonic crystal structures, mainly 

including deep UV Optical lithography (DUV) and Electron Beam Lithography 

(EBL). EBL was chosen since it provides the reasonable necessary resolution and a 

versatility in designing the structures since it does not require a physical mask. 

 Our main technique was based on the electron beam lithography process using 

the RAITH150 system available in the CTU IEF-Minerve clean room. 

 The fabrication process of each GPhC structure contained generally three main 

stages: 

1) First, an electronic mask was designed and created (based on the 

parameters mentioned in chapter 3) that was loaded into the RAITH150 

system to serve as a mask in order to define the structure pattern onto a 

SOI wafer. 

2) The second stage was the lithography process to insolate the structure by a 

scanning of an electron beam controlled by the equipment system. 

3) The last stage was the etching step to transfer the structure pattern into the 

SOI substrate. 

 The detailed steps of the employed fabrication process will be figured out in 

the last part of this section after the general introduction of the fabrication techniques. 
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4.1.1. Mask design 

 GPhC samples were designed based on the proposed configuration of GPhC 

mentioned in chapter 3 with a maximum normalized air hole filling factor of r/a=0.35 

and a minimum normalized air hole filling factor of r/a=0.22. In practice, the lattice 

parameter was chosen as nma 390≈ . Thus, the variation of air hole size ranged from 

r=136 nm down to r=85nm, as figured out in Fig. 4.1. The photonic crystals have 

been fabricated by starting with a SOI wafer with a silicon layer of 260nm thickness 

and a 2µm thick buried oxide layer. 

 

Figure 4.1: Schematic diagram of the main min/max dimensions of the air hole GPhCs 

 In practical point of view, we intended to use the optical bench facilities in our 

group for the characterization of the fabricated GPhC structures. This optical bench 

will be introduced in detail in the following section. In brief, we will adopt the butt-

coupling technique where the input light is injected into the fabricated samples 

through a lensed-fiber. Then, output light is collected at the other side of the sample. 

This practical employment led to the following requirement parameters: 

• The sample (chip) needs to have a 3mm to 4mm length, 

• Input and output waveguides are needed for the injection and collection of 

light, respectively. 

 Taken these conditions into account, we have designed the GPhC samples 

which are amenable to characterization as shown in Fig. 4.2 and Fig. 4.3.  As can be 

seen in Fig. 4.2(a), the window is referred to the overall sample of 3mmx4mm (width 

x length) size. We have added strip waveguides into the considered GPhC 

configuration (blue area). The strip waveguide circuitry was chosen to provide the 

lowest possible losses and operate mainly on the waveguide fundamental mode. Its 

parameters were optimized as following: 

• For the purpose of injecting and collecting light into/from the GPhC 

structures, we needed first the access (input) and output waveguides. They 

were chosen as strip waveguides of 3µm width. 

• To filter out high order optical modes and guarantee, as best as possible, 

the single-mode excitation of the final waveguide enlightening the GPhC, 

a waveguide of 400nm width was included into the photonic circuit. 

• To excite the Bloch modes of the GPhC structures, the access waveguide 

close to GPhC area was chosen with a width of 15µm. 

• Various strip waveguides were introduced, with width varying from 

400nm to 15µm. Some tapered waveguides were thus introduced in order 

to connect these waveguides. The length of each tapered waveguide was 

chosen to minimize the optical losses. 
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Figure 4.2: Dimensions of GPhCs structure present on the designed mask: (a) Overall view of the 

fabricated GPhC structure with input and output waveguides, (b) Dimension of the GPhC part and (c) 

dimension of the GPhC part in case of adding input and output tapering regions to the graded photonic 

crystal. This design is aimed to characterize the overall transmission of the GPhC configuration.  

• Since the butt-coupling technique is used for the optical characterization of 

samples, input and output waveguides needed to be oriented horizontally 

with respect to the lensed-fiber. That is the reason why we chose the 

design of sample with the overall shape presented in Fig. 4.2(a). From 

simulation results presented in the last chapter, we expected to collect light 

power after the bending effect, which is the output 3 as figured out in the 

figure. To do that, a bending waveguide of 3µm width with a curvature of 

R=55µm was inserted. Hereinafter, we will call this output the bended 

channel since it corresponds to the light collection output after light 

propagation and bending through GPhC area. Output 2 is the straight 

channel to collect light that goes straight forward after entering into the 

GPhC area. To verify if unexpected phenomena could also occur, an 

upward output channel was also considered in the design (output 1). 

 Figs. 4.2(b) and (c) show the dimensions of the GPhC area containing the 

“reference” GPhC configuration in the cases of without or with tapering photonic 
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crystal regions, respectively. This GPhC structure was intended to investigate the 

overall power transmission out of the bended channel. 

 For the study of the dispersion properties of the GPhCs, other GPhC samples 

were designed as shown in Fig. 4.3. 
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Figure 4.3: (a) Schematic diagram of the GPhC samples to be fabricated and characterized with 

two-wavelength channels corresponding to two output waveguides, and (b) Dimensions of the 

GPhC part and of the two output channels. 

 Two bended output waveguides (or two bended channels) were added to 

replace the only bended channel previously collecting the overall transmission as 

mentioned in Fig. 4.2. These two bended channels were placed at the proper positions 

relying on the calculations and predictions reported in chapter 3 using the ray tracing 

Hamiltonian optics- assisted and FDTD simulation methods. 

 These parameters were included in an electronic file defining the structures 

being fabricated, ready to be loaded into the RAITH150 system for the next stage. 
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4.1.2. Fabrication process in CTU clean room 

4.1.2.1. Overview of fabrication process of the GPhC sample 

 The process we employed for the fabrication of the studied GPhC structures is 

schematically presented in Fig. 4.4. 
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Figure 4.4: Overview of fabrication process of studied GPhC structure: (a) starting from a SOI 

wafer with 260nm-thick silicon and 150nm SiO2 on top, (b) to (f) Reproduction of the SiO2 mask 

for waveguide system, (g) to (k) Reproduction process of the SiO2 mask for photonic crystal area, 

(l) Transfer the structure pattern onto silicon layer, and (m) Cleaving the edge to get the GPhC 

sample ready for characterization 

 

 We started with a SOI wafer of diameter Φ=6inches, with a 260nm of silicon 

(Si) layer and a 2µm buried silica (SiO2). The wafer was treated to have a SiO2 layer 

of 150nm-thick on top of the Si layer. This SiO2 layer was used as a hard mask to 

transfer the pattern of studied configuration onto the Si layer as seen in Fig. 4.4. 

 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 

 69 

 The fabrication of GPhC sample (with the strip waveguide circuitry mentioned 

above) was achieved as following: 

1) First, strip waveguides were defined using the RAITH150 e-beam process 

using the negative resist ma-N2403 as following (Fig. 4.4(b) to (f)): 

• Deposition of ma-N2403 (Fig. 4.4(b)) on SOI wafer using a spin-

coating technique in t=30s, with the rotation speed v=3000rpm. The 

wafer was then placed on a hot plate of 90
o 

in 90s. It then had a ma-N 

resist layer of 400nm thick. 

• Insolation of the designed pattern of the waveguide circuitry and of the 

overall GPhC area using the RAITH150 e-beam lithography system. 

(Fig. 4.4(c)) 

• Development of the studied structure in AZ726MIF solvent in 30s (Fig. 

4.4(d)). 

• The photoresist pattern was then transferred to the 150nm thick top 

silica layer using a reactive ion etching system (Fig. 4.4(e)). 

• Cleaning the sample using H2SO4:H2O2 and O2 plasma (Fig. 4.4(f)). 

2) The photonic crystal structure was then separately insolated by means of a 

lithography process with the positive resist ZEP520A (Fig. 4.4(g) to (k)): 

• Deposition of ZEP520A (Fig. 4.4(g)) on the sample using a spin-

coating technique in t=30s, with the rotation speed v=5000rpm. The 

wafer was then placed on a hot plate of 170
o 

during 3 minutes. The 

sample then had a positive resist layer of around 300nm thick. 

• Insulation of the designed pattern of GPhC using the RAITH150 

e-beam lithography system. (Fig. 4.4(h)). 

• Development of the studied structure in the ZED-N50 solvent during 

40s, then in MIPK/IPA (1:3) solvent in 30s (Fig. 4.4(i)). 

•  The photoresist pattern was then transferred to the 150nm thick top 

silica layer using a reactive ion etching system to define the hard mask 

for the forthcoming etching of the GPhC area (Fig. 4.4(j)). 

• Cleaning the sample using H2SO4:H2O2 and O2 plasma (Fig. 4.4(k)). 

3) The silicon film was etched through a SF6/O2 anisotropic etching process (Fig. 

4.4(l)). 

4) After the cleavage step, the sample was ready for the optical characterization 

(Fig. 4.4(m)). 

 In the lithography process, the interaction of electrons with the resist and the 

substrate is responsible for several phenomena that disperse them in a wider area than 

that of the incident beam [34]. This leads to the so-called proximity effects that need 

to be considered and corrected in the lithography step. To overcome these effects, the 

exposure dose as well as the designed size on the mask are carefully taken into 

account. 

 Proximity effects in photonic crystal structures have been studied in the work 

of Damien Bernier during his PhD in the MINAPHOT group. During the present 

thesis, we pursed this task to allow the correct fabrication of structures in which 

photonic crystal parameters slowly and gradually vary in space. 

 In the following, we detail the related study of proximity effects in the 

fabricated GPhCs. 
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4.1.2.2. Proximity effecs in e-beam lithography process 

 We focused in the EBL process on the correction of proximity effects. To do 

this, we studied the factor of dose that is suitable for the optimization of the air hole 

photonic crystal diameter all over inside the GPhC area. Fig. 4.5 shows the result of 

this optimization process. 
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f.dose 0.85
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f.dose 0.95
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(a) (b)
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Figure 4.5: Study of the proximity effects in the fabrication process of GPhC areas: (a) Sample 

structure overview on the mask; (b) Image of GPhC area after the exposure of e-beam 

lithography process with the factor of dose 0.75 and with a dose correction (c), and (d) Effect of 

different studied dose factors. 

 Then, the sizes of the air holes in the different samples were characterized 

through SEM images by using the Alicona software. The measured values of 

difference GPhC fabricated with these above dose factors were compared with the 

designed sizes of the air holes on the mask. 

 Fig.4.6 shows the SEM images taken different regions (see the inset figure) of 

GPhC area fabricated with the dose factor of 0.75. The measured values of air holes 

are indicated in each Figs. 4.6(a) to (d). 
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Figure 4.6: SEM images at different regions in the fabricated GPhC area with the factor of dose 

0.75 with measured values of air hole radii: (a) zone of fabricated air-holes of 92nm after 

correction on the mask, (b) zone of fabricated air-holes of 111nm, (c) zone of fabricated air-holes 

of 134nm, (d) zone of fabricated air-holes of 147nm.  

  

 

 Fig. 4.7 presents the relationship between the designed values of air hole on 

the mask and the measured ones. It can be seen that the difference between measured 

and designed values is linear when employing a factor of dose 0.75 with a shift 

around 14nm. 

 From this result, we reduced the designed sizes on the GDSII mask by 10nm 

(due to the ±2nm resolution of Alicona measurement software) in order to get the 

expected sizes of air holes and match with the air hole profiles deduced from the 

simulation of GPhC structures presented earlier in this manuscript. This made 

possible the comparison between experimental results, which will be presented in the 

next section, and the simulation results already presented in chapter 3. 
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∆=14nm∆=14nm

 

Figure 4.7: Relationship between the measured air hole radius (of different GPhC sample 

fabricated with dose factors of 0.7, 0.72 and 0.75) and the designed values on the mask. A linear 

relationship was obtained in the range of 90nm-130nm when employing the dose factor of 0.75.  

4.2. Description of characterization benches 

 To characterize the fabricated devices, two methods were used: the far-field 

(butt-coupling injection/collection of light) and the near-field (SNOM) techniques 

which provided us an estimation of the transfer function of light as well as a visual 

evidence of super-bending effect inside our fabricated GPhC devices, respectively. In 

the following, the experimental setups employed in these two measurement methods 

will be described. 

4.2.1. Experimental setup for the far-field measurement 

 Our first experimental characterization of fabricated devices was the far-field 

measurements which allowed the estimation of the optical transfer function of the 

GPhC structures. The optical bench setup for this measurement is shown 

schematically in Fig. 4.8. As described in the figure, first, light from a laser diode 

(namely Wavelength Tunable Laser Diode) with a broad wavelength range from 

1390nm to 1620nm) was used as the source. Light from the laser diode was then 

injected into the MT9820 All-Band Optical Component Tester via an optical fiber, 

enabling the optical transmission measurement to be performed over the operating 

wavelength range with the chosen wavelength resolution of 8pm. From the output of 

the Optical Component Tester, signal was guided to a polarization controller to 

provide either TE or TM polarized light and then coupled into the fabricated GPhC 

device through an input strip waveguide of 3µm width by a taper-lensed fiber. 
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Figure 4.8: Schematic view of the optical bench (in MINAPHOT, IEF) for optical transmission 

measurement. 

 The fabricated GPhC device was placed on a holder in a photonic alignment 

system which provided the precise sample positioning, and the possibility to view the 

surface of the sample and the tip of the taper-lensed fiber on the screen by a 

microscope camera placed vertically above the sample. 

 Light at the output facet of the fabricated GPhC device was then collected by a 

microscope objective, then an afocal system and finally a detector. The signal 

received from the detector was subsequently sent to the MT9820 All-Band Optical 

Component Tester through a single mode optical fiber in order to measure the optical 

transfer function. This optical transfer function was determined by comparing the 

intensity of the input signal received from the tunable laser diode (the source) to the 

intensity of the signal received at the detector. The acquisition of the transmission 

spectra of the testing GPhC device was finally observed by a computer with 

LABVIEW software which is connected to both the laser source (tunable laser diode) 

and the optical measuring device (All-band Optical Component Tester). 

 

4.2.2. Experimental setup for the near field measurement 

 The above mentioned far-field measurement setup enabled us to investigate 

the transfer function of light in the fabricated GPhC samples but not to visualize the 

flow of light inside the samples. Before my thesis, our group had been in 

collaboration with the research group of Frédérique de Fornel in Dijon which masters 

in Scanning Near-Field Optical Microscopy (SNOM). The collaboration results have 

provided a direct experimental observation of the beam propagation inside a photonic 

crystal superprism [35]. It was a precious chance for me to get in this collaboration to 

explore the property of our fabricated GPhC samples.  
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Figure 4.9: Overview of the Hyperspectral SNOM experimental setup (at ICB). The spectrum of 

light collected by the near-field probe during the surface scanning process was recoded at each 

pixel to provide a 3D hyperspectral matrix over the broad spectral range (1200nm-1650nm). 

  

 SNOM measurements were performed in the Laboratoire Interdisciplinaire 

Carnot de Bourgogne (ICB) by developing a hyperspectral scanning near-field optical 

microscope (Hyp-SNOM) using a broadband illumination and detection as proposed 

at visible wavelengths in plasmonics. It enabled the direct observation of light 

dispersion (here is the mirage effect) within our fabricated GPhC devices operating at 

optical wavelengths. The spectral and spatial dispersion could be also experimentally 

quantified from this measurement. 

 The experimental setup of the Hyp-SNOM measurement is schematically 

overviewed in Fig. 4.9. A supercontinuum laser source with an output power up to 

0.1mW/nm was used as an intense broadband excitation over the spectral range of 

400nm-1700nm. The evanescent decay of the light guided inside the GPhC sample 

was collected by a near-field probe made of a tapered single mode silica fiber placed 

at 4nm above the sample’s surface. A free space spectrometer was then used to 

disperse the collected light and the spectra were recorded synchronously with the 

probe scan every 50ms on a cooled InGaAs camera for near-infrared wavelengths or 

on an intensified charge coupled device (iCCD) for visible operations. 

 In practical point of view, for silicon based materials, only near-infrared 

wavelengths above the Silicon electronic bandgap can propagate inside the SOI chip 

and thus in SNOM measurement, the near-field detection is restricted to the 1200-

1650nm spectral range. The spectra of light guided inside the fabricated GPhC device 

which are collected by the near-field probe and recorded on each pixel provides a 3D 

hyperspectral matrix over a broad spectral (as shown on the right of Fig. 4.9). 

 Results obtained from these two methods were then analyzed and will be 

discussed and presented in the next section. 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 

 75 

4.3. Results and discussions 

4.3.1. SEM images of fabricated structures 

 Fig. 4.10 shows the detailed scanning electron microscope (SEM) images of a 

fabricated GPhC sample. We can see the overall structure of GPhC sample in 

Fig. 4.10(a), and several detailed SEM images from which the gradual profile in the 

GPhC area can be guessed (as in Fig. 4.10(b)). 

 

 

(a)

(b)

(c) (d)

(a)

(b)

(c) (d)
 

Figure 4.10: SEM images of a fabricated GPhC structure: (a) Overview of the fabricated sample, 

(b) GPhC area in fabricated sample, (c) and (d) Detailed views of tapering regions of the GPhC. 

 

 SEM images of the photonic lattice were also taken at different positions in 

the GPhC area, as seen in Fig. 4.10. These images show that the fabrication process at 

IEF was successful to define the considered GPhC configuration. 
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Figure 4.11: SEM images of the air hole photonic crystal lattice at different points of the 

fabricated GPhC area. 

 

4.3.2. Experimental investigation of the optical mirage and super-

bending effect in GPhCs 

 Using the experimental setup shown in Fig. 4.8, we first measured the 

transmission powers of TE polarized light through our three fabricated samples: 

1) Sample of GPhC without any I/O taper, 

2) sample of GPhC with I/O tapers, 

3)  and a normalization sample which is the same as the two above ones, but 

without any GPhC. 

 Signals from the outputs of the two samples with GPhC configurations were 

then normalized by the signal obtained at the output of the normalization sample to 

give the normalized transmission powers of the two GPhC samples. The normalized 

light transmission powers (for TE polarized light) through the fabricated GPhC 

devices (without and with input/output tapers) obtained at the bended channel by far-

field measurement are shown in Fig. 4.12(a), in which the red and blue curves are for 

GPhC samples without I/O taper and with I/O taper, respectively. These curves can be 

compared with the theoretical results presented in Fig. 3.7(b) in chapter 3. Ripples 

observed in these two curves are due to Fabry-Perot resonances at the two edges of 

the whole sample. 

 Reminding that in our manipulation the transmitted light were collected at the 

bended output, it means that light is 90
o
-bended and transmitted through the GPhC 

area, as can be seen from Fig. 4.12(a), with a low loss level. Although the 
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electromagnetic exploited modes are situated below the light line whatever the beam 

position is within the GPhC area, out-off-plane optical losses may arise due to the in-

plane two-dimensional chirp of the photonic crystal filling factor. The low loss shown 

in these two curves is an experimental confirmation that out-off-plane losses remain at 

a small level in our fabricated GPhC samples. The insertion losses are slightly smaller 

for the GPhC sample with I/O tapers than for the GPhC sample without I/O tapers. 

This result is in good agreement with the prediction presented in chapter 3 and 

experimentally shows that the use of tapering PhC regions at the input and output of 

the GPhC area can enhance the light power transmitting through it. 

λλλλ=1460nm

λλλλ=1620nm

λλλλ=1550nm

λλλλ=1400nm

(a)

(b) (c)

(d) (e)

Bended channel

λλλλ=1460nm

λλλλ=1620nm

λλλλ=1550nm

λλλλ=1400nm

(a)

(b) (c)

(d) (e)

Bended channel

 

Figure 4.11: (a) Experimental transmission spectra of fabricated GPhC samples without 

input/output tapers (red line) and with input/output tapers (blue line), respectively, obtained by 

using the optical bench for far field measurement. 

(b), (c), (d) and (e) SNOM image showing the electromagnetic intensity map obtained for TE 

polarized light at wavelength λ=1400nm, 1460nm, 1550nm and 1620nm, respectively. 

 If compared with the theoretical transmission curves (Fig. 3.7(b) in chapter 3), 

we can see that the experimental bandwidth (from 1460nm to 1620nm) is smaller, and 

that light bending occurs at slightly shorter wavelengths. This wavelength shift and 

spectrum small compression can be understood by the fact that 2D simulation was 

performed with the effective index approximation. Experimental transmission curves 

show that light starts to be bended in the fabricated GPhC device roughly at the 
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wavelength λ=1460nm. Four SNOM images in Fig. 4.12 (b) to (d) observed at 

different considered wavelengths (indicated on the experimental transmission curve) 

showing the electromagnetic intensity map of TE polarized light inside the GPhC area 

provide the direct evidence for the optical mirage and superbending effect in our 

fabricated GPhC samples. At λ=1400nm, we see that almost no light can enter the 

GPhC area (the green frame), since at this wavelength light is in the photonic bandgap 

between band 1 and band 2 of the photonic crystal lattice at the input point of the 

GPhC area. Starting from the wavelength λ=1460nm, TE light can enter into and 

begins to be bended inside GPhC area. It is visible that the intensity as well as the 

light path shape at each considered wavelength are different. The sensitivity of light 

trajectories inside our fabricated GPhC area will be considered in more detail in the 

next section, which is devoted to the dispersive properties of the considered GPhC 

configuration. 

 

4.3.2. Dispersion properties of the GPhC configuration 

 After the transmission estimation by far field measurement, the study on light 

propagation and dispersion behavior inside fabricated GPhC samples were performed 

for TE polarized light by SNOM measurement. For this, a hyperspectral matrix of 

electromagnetic field was recorded over the total spectral range (1200nm-1650nm) 

with a spectral resolution of 1nm, with a 290nm spatial resolution in x and y directions 

over a 45µmx90µm image. This hyperspectral matrix enabled to emphasize the spatial 

and the spectral properties of the fabricated GPhC area by choosing a representation 

of it at a selected position or a selected wavelength, respectively. 

 

4.3.2.1. Dispersion properties of the considered GPhC configuration 

 Fig. 4.13(a) presents the hyperspectral SNOM image obtained by mimicking 

the classical representation of light dispersion through a glass prism [24], then 

plotting on a single “white” image by using a color-coded scale over the spectral 

range of 1400nm-1650nm where the mirage effect takes place. It thus shows the 

behavior of light propagating inside the fabricated GPhC area simultaneously for 

different wavelengths in this spectral range, whereas figs. 4.12 (b), (c), (d) and (e), 

obtained separately at four selected wavelength 1460nm, 1500nm, 1555nm and 

1610nm, respectively, provide an experimental visualization of light propagation 

inside the GPhC sample and the dispersion property of the proposed GPhC 

configuration. 

 The extraction from the obtained hyperspectral matrix shows that for 

wavelengths shorter than 1400nm, TE polarized light cannot penetrate into the PhC 

area but is reflected at the GPhC interface since it is in the TE photonic bandgap 

(between the first and the second bands) of the photonic crystal lattice at the input 

point of the configuration. Then, the mirage effect takes place for longer wavelengths 

than 1400nm, and remarkably in the 1460nm-1650nm range. In this range, the 

chromatic dispersion of this effect is clearly evidenced by the progressive penetration 

of the light beam within the fabricated GPhC area and the displacement of its 

curvature while increasing the wavelength (from position X1 to X4 for λ=1460nm to 
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λ=1650nm, respectively). Another feature that is clearly visible here is the absence of 

spatial beam spreading over a main part of the spectrum. This directly proves that 

light beam is nearly-collimated all along the curved trajectories. 
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Figure 4.13: (a) Hyperspectral SNOM images providing the visualization of the dispersive 

behavior of the fabricated GPhC structure, (b), (c), (d), and (e) SNOM images showing EM 

intensity maps obtained for TE polarized light at wavelength λ=1460nm, 1500nm, 1555nm, and 

1610nm, respectively. 

 From the figure, we can see the displacement of the light beam at the output of 

the GPhC area for the different wavelengths. To quantitatively estimate this 

dispersion property, we directly resorted to the analysis of the hyperspectral matrix 

not only for only four points as indicated in Fig. 4.13 but all along the output interface 

of the GPhC area (namely along the x-axis in the figures). Four snapshots of the 

spectra at different positions corresponding to the X1 to X4 point in Fig. 4.13(a) are 

plotted in Figs. 4.13 (b), (c), (d) and (e). Each spectrum was then fitted by a Gaussian 

function to estimate its central wavelength as well as its spectral full width at half 

maximum (FWHM). Repeating this protocol all along the x-axis permitted to extract 

the dispersion relationships which are plotted in Figs. 4.14(b) and (c). 

 Fig4.14 (b) and (c) show the light beam position along the output interface of 

the fabricated GPhC area with respect to the excitation wavelength. For each position, 
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the spectral (Fig.4.14(b)) and spatial (Fig.4.14(c)) FWHMs of the light beam are 

superimposed by horizontal and vertical segments, respectively. From this analysis, it 

is found that the output beam shifts almost linearly with a slope of 0.25µm/nm in the 

1470-1600nm spectral range without noticeable spatial or spectral spreading (blue 

square points presented in the two figures). This dispersion value is comparable to 

that one achievable thanks to the PhC superprism effect [35] over almost the same 

propagation length, about 0.4µm/nm, but the strong beam spreading inherent to the 

superprism effect appears here drastically reduced. 

(a)

(b) (c)

(a)

(b) (c)

 

Figure 4.14: Quantitative estimation of the wavelength dispersion properties of the fabricated 

GPhC structures using Hyp-SNOM measurements: a) Spectral profiles recorded at the different 

coordinates depicted in Figs. 4.13(b) to (e). Position of the centre of the output optical beam 

along the x-axis as a function of light wavelength: filled blue squares corresponds to Hyp-

SNOM measurements (b) with horizontal segments showing the beam FWHM spectral size, (c) 

with vertical segments showing the beam FWHM spatial size. 

In the two last sub-figures, the red circles correspond to ray beam propagation results 

using Hamiltonian Optics calculations and based on the GPhC local bandstructure 

extracted using 3D-PWE calculations 

 These experimental results were also compared to the numerical predictions 

presented in chapter 3 (red circle points in the two figures Figs. 4.14(b) and (c). A 

quantitative agreement between Hyp-SNOM experimental results and 3D-PWE-

assisted Hamiltonian Optics (HO) ray beam propagation was clearly obtained. This 

whole consistency shows that near-field measurements can successfully probe 

electromagnetic phenomena in artificial optical materials made of GPhCs. It also 
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experimentally proves that modeling the light propagation using the local 

bandstructure in the approximation of a slow variation of opto-geometrical parameters 

inherent to the HO formalism (presented in chapter 3 of this thesis) is valid here. In 

addition, these results also experimentally show that non-homogenizable GPhCs can 

be used to reconfigure the light path by changing the light wavelength. Optical beams 

operating at different wavelengths see different local parameters of the PhC lattice 

like the hole radius, and do not see the same photonic crystal bandstructure all along 

the propagation as predicted in [36]. 

 

4.3.2.1. Wavelength demultiplexing devices based on the considered GPhC 

configuration 

 Continuing the characterization steps of the dispersion properties of the 

fabricated samples, we here present some experimental results on the possibility to 

use this configuration as basic demultiplexing devices. 

 

(a) 

 

(b) 

Figure 4.15: SEM images of a fabricated GPhC sample for wavelength demultiplexing purpose:        

(a) Overall view of the two-channel demultiplexing device, and (b) A zoomed view of this 

device. 

 Fig. 4.15(a) and (b) are SEM images of the GPhC sample fabricated for the 

purpose of two-channel demultiplexing. For this, the output waveguide to collect the 

overall transmission power at GPhC output was replaced by two output waveguides 

placed at the proper estimated positions obtained from the numerical calculation of 

the structure dispersion properties presented in chapter 3. 

 The fabricated sample was then measured by the use of the optical bench in 

MINAPHOT group. To do this, the optical source with a 1390nm-1620nm spectral 

range was still employed. 

 Figs. 4.16(a),(b), and (c) show the experimental optical transmission powers of 

three different fabricated GPhC samples (which were designed to present two 

wavelength demultiplexing channel around λ = 1550nm) in comparison with the 

numerical results obtained by 2D-FDTD simulation. In these figures, dashed lines 

stand for simulation transmission and rippled lines represent experimental results 

(reminding that related experimental transmission spectra have been normalized by 

the transmission power spectrum of a sample without the GPhC but having the same 

photonic circuit to input and collect the light). 
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Figure 4.16: Operation of three fabricated GPhC-based  two-channel demultiplexing devices (a) 

channel 1: λ1 = 1552nm and channel 2: λ2 = 1616nm; (b) channel 1: λ1 = 1510nm and channel 

2: λ2 = 1600nm; and (c) channel 1: λ1 = 1510nm and channel 2: λ2 = 1590nm. 

 

 Results show a correct agreement between experiments and simulation with a 

wavelength blue-shift just like already pointed out in 4.3.2 and due to the 2D feature 

of the performed FDTD simulations. 

 As can be seen from the results, two centered wavelength channels of each 

demultiplexer are well separated and then collected at two outputs with low loss 

(<2dB) and low crosstalk (less than −20dB) levels. 

 

4.3.3. Polarization-dependency of the GPhC configuration 

 As theoretically presented and studied in section 3.3 of chapter 3, the proposed 

GPhC configuration is sensitive to light polarization and it is predicted that the 

configuration can be used for a polarization beam splitting purpose. To 

experimentally prove this prediction, the fabricated GPhC samples were characterized 

using the experimental SNOM setup. 

 Light paths for TE and TM polarized beams inside the fabricated GPhC 

sample were directly visualized by using a Scanning Near-field Optical Microscope 

operating in collection mode. The experimental SNOM images recorded at λ=1550nm 

for the two polarization are presented in Figs. 4.17(a) and 4.17(b). As predicted earlier, 

the TE-beam is bended inside the GPhC while the TM-beam goes straight. Since the near-

field probe is selectively sensitive to the components of the electric field transverse to 

the probe axis, the TM-beam (major E-field parallel to the probe axis) is measured 

experimentally with a significantly lower signal to noise ratio compared to the TE-
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beam. This does not prevent from the qualitative demonstration of the polarization 

splitting effect but this implies that attempts to quantitatively compare the data 

recorded for the TE and TM beams are hazardous. 

 

Figure 4.17: (a) SNOM image obtained at λ=1550nm for a TE polarized light at the input. (b) 

SNOM image obtained at λ=1550nm for a TM polarized light at the input, (c) to (f)  Hyp-

SNOM images obtained at λ=1450nm, 1500nm, 1550nm, and 1600nm, with a non-polarized 

light source. The beam splits into a TE and a TM polarized beams. Over a broadband of 150nm, 

TE-beam is bended while TM-beam goes straight. 

 To provide a direct evidence of the beam splitting effect over the spectrum, an 

unpolarized supercontinuum laser source was injected into the GPhC and the light 

spectrum was collected by the probe on each pixel. The SNOM snapshots of the 

hyperspectral measurement at λ=1450nm, 1500nm, 1550nm, and 1600nm, 

respectively, are plotted in Fig. 4.17(c) to (f). As can be seen, the predicted beam 

splitting effect is evidenced over the full 150nm spectral range, while, due to the 

probe collection efficiency, the TE-beam is more intense than the TM-beam. We also 

note that the TM-beam remains almost unchanged over the spectrum while the TE-

beam bending depends on the wavelength resulting in a variation of its output 

position. One could take benefit from this feature to combine the beam splitting effect 

with a wavelength division demultiplexing. Otherwise, an inverted tapered waveguide 

could be used to collect the TE-beam and cancel this dispersive effect. 

 

4.3.4. Transition between homogenizable regime and PhC regime 

 As discussed earlier in chapter 1 and chapter 2, light propagation in photonic 

crystal structures can be classified into two regimes: the long-wavelength regime 

(LWR or homogenization regime) and the short-wavelength regime (SWR or 

dispersive regime). The terminology of short-wavelength regime refers to a frequency 

range close to the photonic bandgap where the optical fields are strongly influenced 

by the interference pattern between forward and backward waves. Given the classical 

Bragg relationship, this condition corresponds to a normalized frequency ω, defined 

as the ratio of the lattice parameter a and the vacuum wavelength λ, given by 
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ωB=1/2n, with n the optical effective index to be considered. With values of n in the 

range 1.7-3 for most of planar two-dimensional (2D) PhCs fabricated within 

semiconductor technologies, ωB is typically comprised between 0.2 and 0.3 and is 

frequently around 0.25. In this regime, numerous interesting phenomena have been 

reported over the years like photonic bandgap effects leading to photon confinement 

in nanoscale optical cavities [37] and “slow light” effects [38], or unusual dispersive 

phenomena in allowed dispersion bands like the negative refraction, superprism, self-

collimation or superlensing phenomena [39, 40].  

 The other region which is well below the photonic bandgap (ω<<ωB), is called 

the long-wavelength regime (LWR) or the homogenization regime. A large number of 

works devoted to the theory of homogenization of periodic and composite materials 

was published [41-44]. Basically, in this regime the wavelength being much larger 

than the lattice period, light then “feels” a homogeneous-like medium. In the most 

general case, 2D PhCs then behave as anisotropic biaxial optical media, which can 

give rise to interesting physical properties like unusually large in-plane anisotropy in 

comparison with natural crystals [45]. 

 Using a rotationally symmetric lattice cell unit, defined by both the Bravais 

lattice and the geometry of the inclusions, PhCs with long-wavelength in-plane 

isotropic behaviours can be defined, then reducing the homogenized index tensor to a 

single scalar value. This index can be evaluated by considering for ω→0 the square 

root of the PhC dispersion curve slope. It is known that TE and TM modes have 

different slopes [44]. Whereas, the effective long-range index for TE-modes does not 

have an analytic expression, it is given by the following relationship for TM-modes 

[44, 45]: 

   ( ) 22
1 dielholerangelong nfnfn ×−+×=−             (4.1) 

   , with f the PhC filling factor, and nhole and ndiel the indices of the hole and 

surrounding dielectric media, respectively. 

Such a homogenized index approach has recently received a strong attention 

for the implementation at optical frequencies of concepts inherited from the field of 

metametarials designed using the formalism of spatial coordinate transforms. It was 

for example applied to the practical realization of electromagnetic invisibility devices 

or Luneburg lensing structures [17, 46]. 

 The two long and short wavelength regimes have been separately explored, 

yet the gap between them has not received much attention. Starting from this point 

and motivated by the previous obtained results, we try investigating the study on the 

transition between these two regimes in the GPhC fabricated structures. Due to 

experimental (available reachable wavelength range) and theoretical reasons (more 

convenient homogenization of periodic media in TM polarization), attention was 

concentrated on the TM polarization of light. 

 EFS of band 1 in TM polarization of infinitely periodic PhC square lattices 

made of air holes with filling factors of r/a=0.2, r/a=0.275, and r/a=0.35, 

respectively, are shown in Fig. 4.18 (all over opto-geometrical parameters are the 

same as in previous chapters and sections). In the three cases, the transition between 

the LWR and the SWR is visible by the progressive deformation of the EFS from 

positively curved circular shapes centered on Γ to square shapes centered on the M 

points close to the Brillouin area and having thus a negative curvature with respect to 
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Γ. Yet, the limit between the two regimes shifts with the considered r/a value, 

meaning that, at one given frequency, light propagation within the GPhC may (LWR 

propagation) or may not (SWR propagation) follow a classical behaviour in the sense 

of homogenized media. Any abrupt change of the light beam direction within the 

GPhC is thus likely to be the signature of the transition between the LWR and SWR. 

This principle is the basis of the experimental method that was applied to investigate 

the transition between the two regimes. 

55

 

                            (a)                                                 (b)                                                           (c) 

Figure 4.18: Equi-Frequency Surfaces in TM light polarization of a 2D square photonic crystal 

of lattice period a and cylindrical air holes (n=1) of normalized radius r/a etched in a 

surrounding optical medium of 2.26 index: (a) r/a=0.2, (b) r/a=0.275, (c) r/a=0.35 

 The fabricated GPhC sample (presented in Fig. 4.10(a)) was characterized by 

employing the Hyp-SNOM experimental setup which allowed us to tune light 

wavelength from λ=1650nm (ω=0.230) to 1300nm (ω=0.292) in order to explore the 

normalized frequency range of interest (0.23-0.29) and monitor the related spatial and 

spectral properties of the GPhC. Figure 4.18 shows the SNOM image measured at 

ω=0.2675 (λ=1420nm), which is characteristic of the observed phenomena, at least 

from λ=1350nm to 1440nm (0.264≤ω≤0.281). 

λλλλ=1420nmTMInput

TM light

λλλλ=1420nmTM λλλλ=1420nmTMInput

TM light

 

Figure 4.19: Optical near-field image of the light optical intensity propagation through the 

structure in TM polarization at λ=1420nm (ω=a/λ≈0.2675 given a≈390nm) 

 As seen in Fig. 4.19, light propagation is first characterized by a slightly 

upward bended path towards the region of smaller air hole radii (higher long range 

index), whereas the last part of the light trajectory is directed downward towards the 

region of larger air holes (lower long range index). Moreover, the transition between 

these two behaviors is interestingly fairly abrupt and occurs at a specific location 

(xth,yth) within the GPhC area that can be easily estimated from the SNOM image. The 

beginning upward bending of the light path can be easily related to conventional 
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mirage effect in the LWR regime, in exact analogy with the atmospheric mirage effect 

where light trajectory is bended towards high index regions of graded index media. 

The monitored abrupt downward bending effect is thus the signature of a non-

conventional mirage effect meaning that light propagation has then entered the SWR 

at the threshold position (xth,yth). Qualitatively, it is understandable that λ/nlong_range 

decreases along the first part of the light path, as the long range index first 

progressively increases, and that below a given “λ/n” value, the approximation of 

homogenization fails. 

 By exploiting the images collected for different frequencies other than 

ω=0.2675 and repeating the estimation of (xth,yth) in the full frequency range under 

investigation, we extracted the local PhC filling factor for each (xth,yth) threshold 

point, and then estimated the local long range index using equation (4.1) as a function 

of light wavelength using ndiel=2.26. 

 

(a) 

 

(b) 

Figure 4.20: Experimental investigation of the criterion characterizing the transition between the 

long-wavelength and short-wavelength regimes of light propagation within the graded photonic 

crystal area: (a) Evolution of “λ/n” using a homogenized PhC index at the threshold position 

between the conventional the conventional and unconventional mirage effects typically shown 

in Figure 4.18b,  and (b) Reformulation of the experimentally estimated “λ/n” quantity in term 

of normalized wavevector amplitude (2π/a units) following the classical notation of PhCs. 

 The related experimental ratio λ/(nlong_range) threshold, which describes the 

transition between the LWR and the SWR, is reported in Figure 4.20(a). In the 

1300nm-1490nm wavelength range, λ/(nlong_range) threshold is estimated to 677.4nm, 

i.e. only 1.78 times the lattice period a, with a standard deviation as low as 4.4nm. 

This “invariant” quantity can be converted into wavevector modulus as the dispersion 

relationship “k=n.2π/λ” holds for each wavelength up to the threshold point with 

n=nlong-range. Doing this and rescaling the wavector into 2π/a normalized units to 

match with the conventional PhC notation, the threshold wavevector amplitude 

kthreshold depicted in Figure 4.20(b) is obtained. The obtained average value is 0.573 

[2π/a] (with a standard deviation of 0.0038), which can be superimposed on the EFS 

in reciprocal wavevector space. As shown in Fig. 4.18, the experimental LWR/SWR 

threshold condition seems to correspond to the region in k-space where a change of 

the EFS curvature sign occurs with respect to Γ. 
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 In order to analyze these experimental data and understand the modification of 

the light propagation direction, we came back to the theoretical condition for the 

possible homogenization of PhCs. As shown in previous works, Bloch waves in PhCs 

can be decomposed in an infinite series of plane waves in the form [47]: 

   ( ) ( ) ( )rGHGrkrH 0

G

k .iexp)(h.iexp ∑=             (4.2) 

 In this equation, H0 is the field amplitude, k is the wavevector, hG(k) are the 

dimensionless Fourier coefficients of the Bloch field periodic part. The contribution 

rates ηG(k) to the global Bloch wave energy of each plane wave at point k 

characterized by a G shift with respect to the Γ is obtained (0<ηG<100%) as [47]: 

     
2

)(h)(ηG Gk k=                         (4.3) 

 As mentioned in Ref. [44], the long-wavelength limit of PhC can be 

understood as the situation when the Fourier expansion of the field of Eq. (4.2) 

reduces to only one plane wave due to a condition of the form hk(G≠0)<<hk(G=0) 

when ω→0. To go beyond this qualitative statement, we calculated the contribution 

rates ηj, 0≤j≤4 of the first five dominant plane waves along the ΓM segment in 

reciprocal space where the previously reported change of the EFS curvature sign 

occurs. For this, the PhC eigenvalue/eigenvector Hemholtz equation was solved for an 

infinitely periodic square PhC characterized by a given value of r/a using a H 

formulation of the Helmoltz master equation using a truncated plane wave basis with 

289 components. Using the wavelength/wavevector relationship in band 1 along the 

ΓM segment, we then estimated the contribution rates ηj, 0≤j≤4 as a function of ω. 

Fig. 4.21 shows the obtained result for r/a=0.31, corresponding to the air hole 

normalized radius close to the injection point within the GPhC area, i.e. in a situation 

of strong index corrugation in which the PhC homogenization hypothesis is more 

challenging than for smaller air hole filling factors. 

 
Figure 4.21: Theoretical investigation of the relative contribution rates (0≤ηj≤1) of the five 

dominant partial waves (0≤j≤4) of the PhC Bloch modes excited for wavevectors ranging in the 

Γ-M in the reciprocal space of the considered square lattice PhC (see Figure 4.17) 
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 To guide the eye, a vertical line is added at ω=0.275, corresponding the 

frequency of beam collimation between the two situations of EFS with opposite 

curvature signs with respect to Γ. For ω→0, the principal plane wave characterized by 

G=0 clearly carries most of the Bloch wave energy, but its contribution is still above 

70% up to ω=0.275 and then suddenly drops due to the influence of the photonic 

bandedge. This result suggests that the inversion of the EFS curvature can be 

interpreted as a sharp decrease of the main plane (G=0) contribution in the Bloch 

wave decomposition. In the same time, this analysis provided by following the 

wavevector along the ΓM segment does not directly take into account the possible 

exit of the primary wavevector path out of the first Brillouin area. 

 Considering the closed shapes of the EFS around the M points for ω>0.25, let 

us here consider for this a excitation k point given by k=0.45b1+0.55b2, with b1,b2 the 

two PhC primary vectors in reciprocal space. Due to the translational shift of any k 

points by G=l1b1+l2b2, with l1,l2 two integers, contributions to the Bloch wave energy 

can arise, as previously, from components located in all Brillouin zones. The 

minimum number of “dominant” plane waves is then only three, but four ones are 

considered here to include the contributions from around the four M points. 

 Figure 4.22 shows the obtained situation in reciprocal space, with the 

contribution rates in % of the four dominant plane waves, as well as arrows having 

sizes related to their phase velocities defined as vphase(l1,l2)=(ω/|l1b1+l2b2|
2
).(l1b1+l2b2), 

the Bloch wave group velocity being then given as a whole by 

vgroup(k)=∑|hk(l1b1+l2b2)|
2
.vphase(l1,l2) [47]. 

 

Figure 4.22: Analysis of the physical origin of the “λ/n” invariant experimentally evidenced in 

Fig. 4.20 by the decomposition of the PhC Bloch wave characterized by a wavevector slightly 

lying out of the first Brillouin area on a closed round EFS centred on the M points (as shown in 

Figure 4.17 for ω>0.25) and given by k=0.45b1+0.55b2 with b1,b2 the two PhC primary vectors 

in reciprocal space. Indications about the contribution rates of the main four plane waves as well 

as well as about their individual phase velocities are also given. 
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 The main partial contribution to the Bloch wave now corresponds to hk(G=-b2) 

and not hk(G=0). As it carries more than 73% of the Bloch wave energy, its 

downward phase velocity is dominating the group velocity expansion as a sum of 

weighted phase velocities. This result means that the transition between the LWR and 

SWR is not necessarily accompanied by a strong power transfer from the dominant 

partial plane wave to the others provided that the operating wavevector does not 

approach the M points too closely. In the situation considered here, |k-kM| is already 

as low as 0.05|b2-b1|=0.05√2≈0.071 [2π/a]. 

 Considering this, an interpretation of the transition between the LWR and 

SWR light propagation in the studied GPhC configuration can be proposed by 

considering the wavevector path in reciprocal space corresponding to the light beam 

trajectory depicted in Fig. 4.18. Fig. 4.22 shows a schematic representation of the 

related EFS deformation and successively obtained group velocities. Homogenization 

of the PhC medium can be considered as a valid approach up or close to the crossing 

between the primary wavevector path and the first Brillouin area limit. At this 

position, the first plane wave strength is maintained but a sudden shift of wavevector 

occurs to maintain the dominant plane wave in the first Brillouin area, corresponding 

to a change of the form hk(G=0)>>hk(G≠0) => hk(G=-b2)>>hk(G≠-b2). The 

experimentally evidenced invariant quantity characterizing the transition between the 

LWR and SWR can be attributed to the nearly independent wavevector path for 

wavelengths in the range of interest, thus inducing a nearly constant threshold 

wavevector amplitude kth around 0.573. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Schematic picture of the wavevector path, EFS deformations, and excited light 

group velocities corresponding to the transition between the LWR and SWR of light propagation 

observed in the GPhC studied structure using Hyp-SNOM measurements. 
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4.4. Conclusion 

 The fabrication of GPhC samples has been presented in this chapter. E-beam 

lithography with correction of proximity effects of the exposure dose has been 

successfully employed in the employed fabrication process. Various samples have 

been designed and fabricated in order to evaluate the transmission efficiency and 

investigate the demultiplexing performances of the studied GPhC configuration. SEM 

images of GPhC samples have proved that our technical parameters are reasonable to 

well define the GPhC structures in the range of this thesis. 

 Results on experimental investigation of fabricated GPhC samples have been 

also presented by using two measurement methods: near-field and far-field 

measurements. Results obtained from these two methods have proved the presence of 

the mirage effect at optical wavelengths. 

 The considered GPhC configuration was presented to be sensitive to the 

wavelength tuning. Its dispersive coefficient around 0.25µm/nm allows the possibility 

of utilizing this configuration for wavelength demultiplexer devices with relatively 

low loss and low level of crosstalk between demultiplexing channels. 

 The polarization properties as well as the transition from the homogenizable 

regime to the diffraction regime presented through experimental results will be 

interesting for the realization of high efficient polarization beam splitters and the 

realization of GPhC devices that can work in both homogenizable and non-

homogenizable regimes. 
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Conclusion and Perspectives 

 

 

 

 

The works presented in this thesis manuscript have been motivated by the 

possible exploitation of electromagnetic artificial materials at optical frequencies to 

shape optical beams and propose optical functionalities such as wavelength-sensitive 

or polarization-sensitive structures. They rely on the use of graded photonic crystals 

(GPhCs) made of a two-dimensional variation of opto-geometrical parameters of a 

planar photonic crystal lattice. 

Due to the large number of degrees of freedom to define GPhCs structures by 

modulating the lattice parameters (filling factor, basic vector orientation, aspect ratio 

between two basic vectors or a combination those variation) and to the wish that we 

had to try fabricating and experimentally characterizing practical structures, the 

choice was made to focus most of efforts on a first simple configuration. A fairly 

general modeling methodology based on the description of the propagation of light 

from the local photonic band structure using a ray tracing approach was developed but 

essentially applied to the chosen "reference structure" made of a planar air hole 

graded photonic crystal of square lattice with a variable filling factor and operating in 

the first photonic band. The related methodology was presented in chapter 2, which 

also showed a good agreement of this approach with numerical simulations made 

using Finite Difference Time Domain (FDTD) calculations. 

The optical properties of the considered GPhC structures have been then 

studied in chapter 3. A particular Gaussian-like air hole filling factor was chosen to 

enable a 90°-like light bending with low insertion loss due to the use of input/output 

tapers between the periodically corrugated area and surrounding slab regions. The 

structure dispersion properties, namely the light beam deflection in °/nm or µm/nm 

was numerically estimated, as well as its properties with respect to the TE/TM light 

polarization. 

Experimental results about the fabrication techniques, the methods of optical 

characterization, and the optical structure properties have been presented in chapter 4. 

The employed fabrication process using Electron Beam Lithography (EBL) with a 

careful correction of proximity effects proved to bring a reasonable approach for the 

correct fabrication of silicon on insulator (SOI) GPhC structures. The far-field 

experiments carried out in the near infra-red around λ=1.5µm led to the demonstration 

of the predicted light bending effect and provided the practical level of the structure 

insertion losses below 2dB. The exploitation of the scanning near-field optical 

microscope (SNOM) images obtained by the research group of Frédérique De Fornel 
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in Dijon also allowed the experimental visualization of the predicted electromagnetic 

phenomena and brought interesting results about the dispersion and polarization 

properties of the GPhC samples. A quantitative agreement was obtained between the 

monitored structure wavelength dispersion and the achieved ray tracing propagation 

modeling exploiting three-dimensional Plane Wave Expansion calculations for the 

extraction of the local photonic bandstructure. This overall consistency was a 

satisfying point, both in regards to the ability of the SNOM hyperspectral developed 

setup to characterize optical artificial optical materials and to the employed modeling 

methodology and fabrication process. Additionally, the performed measurements 

provided a nearly-linear beam deflection of 40µm in a 150nm optical bandwidth for a 

60µm square photonic crystal structure, i.e. close to what is usually obtained with 

photonic crystal superprisms but without noticeable spectral and spatial beam 

spreadings. 

The TE/TM beam splitting effect was also clearly observed using the 

employed near-field setup. The quantitative measurements from this approach of the 

polarization crosstalk was not possible due to the difference between the SNOM 

probe sensitivities in TE and TM polarizations, respectively, but the predicted 

bandwidth around 160nm was experimentally confirmed. Last, the performed 

experiments in a broad wavelength range allowed experimentally investigating the 

transition between the homogeneous and diffraction regimes of light propagation in 

GPhCs. The study of the SNOM images collected from the wavelength of 1300nm 

and 1440nm in TM polarization led to the experimental observation of an invariant 

quantity characterization the transition between the two regimes quoted above and to 

the interpretation of the observed physical phenomenon in connection with the 

photonic crystal Equi-Frequency Surfaces in reciprocal space. 

 As a whole, the research presented in this manuscript is mostly restricted to a 

single graded photonic crystal configuration and has led to the experimental 

observation of the light bending effect predicted in previous works and to the 

investigation of the structure dispersion and polarization properties. 

 More complicated two-dimensional chirps of the photonic crystal parameters 

can be envisaged in forthcoming works as well as the exploitation of other frequency 

bands.te
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CONTRIBUTION A L’EXPLORATION DES 

PROPRIETES DISPERSIVES ET DE POLARISATION 

DE STRUCTURES A CRISTAUX PHOTONIQUES 

GRADUELS 
 

 

CONTRIBUTION TO THE EXPLORATION OF 

DISPERSIVE AND POLARIZING PROPERTIES OF 

GRADED PHOTONIC CRYSTAL STRUCTURES 
 

 

Ce résumé en français est une courte synthèse des travaux de thèse détaillés plus 

amplement dans le reste du manuscrit rédigé en anglais. 

 

1. INTRODUCTION 

 Ce travail de thèse s’inscrit dans le contexte des travaux de recherche effectués 

depuis quelques années autour du thème des matériaux artificiels pour l’optique, en 

particulier pour l’optique guidée. L’idée sous-jacente est de pouvoir définir des 

matériaux aux propriétés ajustables conduisant à des phénomènes électromagnétiques 

originaux (invisibilité, lentilles de Luneberg, Maxwell's fish-eye) et/ou à la possibilité 

de réaliser de fonctions optiques pour la transmission (guidage, multiplexage, …) ou 

le traitement (modulation, commutation, …) de signaux optiques. 

 Le domaine étudié est connexe de celui des métamatériaux photoniques, 

naturellement adaptés à cette problématique. Des phénomènes emblématiques, tels 

que le « cloaking » ou la réfraction négative, ont été d’abord étudiés puis démontrés 

expérimentalement dans la gamme des fréquences micro-ondes, typiquement dans la 

période 2000-2006. Parmi les articles les plus marquants dans ce domaine figure 

notamment [Sch-06]. La transposition directe des concepts utilisés aux longueurs 

d’ondes RF au domaine des longueurs d’onde optiques dans le proche infra-rouge 

(λ∼1,5µm) s’est en fait avérée assez difficile en raison des contraintes technologiques 

posées par la fabrication de ‘méta-atomes’ de dimensions très sub-longueur d’onde 

(en pratique ∼50nm) et des pertes induites par l’utilisation des métaux aux fréquences 

optiques. Sur le plan théorique, une adaptation des outils de transformation de 

coordonnées d’espace a été nécessaire afin de prendre en compte la nécessité d’une 

utilisation de matériaux aux propriétés quasi-isotropes usuellement rencontrés en 

optique (principaux semiconducteurs dont le silicium, oxydes, etc). Ceci s’est traduit 

par la proposition effectuée en 2008 d’une nouvelle transformation conforme [Li-08]. 

Ces travaux théoriques ont contribué à des avancées, mais n’ont pas permis de 

résoudre tous les problèmes, la conception de métamatériaux photoniques non-réduits 

à des cartes d’indice (comme dans [Gab-09,Lip-09]) restant basées sur l’utilisation de 
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métaux, donc à pertes. Une autre caractéristique de l’ensemble de ces travaux tient 

également à l’utilisation du principe d’homogénéisation, conduisant à un 

fonctionnement très large bande, perçu en général comme un avantage. 

 Sur ces deux points, pertes optiques et fonctionnement large bande (donc non-

dispersif), nous avons cherché, dans ce travail de thèse, à nous démarquer de ces 

travaux, et notre choix s’est ainsi plutôt tourné vers l’utilisation de cristaux 

photoniques graduels [Rus-99], [Jia-04],[Cen-05] obtenus par un ajustement 

« lentement variable » des propriétés opto-géométriques du réseau d’un cristal 

photonique (facteur de remplissage, forme de la maille, etc). L’utilisation de 

matériaux semiconducteurs (silicium) ou diélectriques (silice, air) permet de diminuer 

le niveau des pertes optiques. Par ailleurs, le choix très souple du rapport 

période/longueur d’onde (a/λ) permet également d’envisager a priori un 

fonctionnement dans deux types de régimes : régime d’homogénéisation pour 

a/λ<<0.5, et régime diffractif pour a/λ>0.25 typiquement, ce dernier offrant la 

possibilité de reconfigurer les trajectoires des faisceaux optiques se propageant dans 

le milieu graduel par modification de la longueur d’onde et ainsi d’exploiter les effets 

dispersifs des cristaux photoniques. 

 Des études préliminaires ont été menées pour étudier les effets de 

déformations opto-géométriques de la maille des cristaux photoniques par des calculs 

de décomposition en ondes planes (Plane Wave Expansion), en considérant la 

possibilité d’un facteur de remplissage graduel, d’une orientation graduellement 

variable des vecteurs élémentaires du réseau périodique, et du rapport d’amplitude 

entre ces deux vecteurs élémentaires. Elles ont permis de dégager des tendances 

qualitatives intéressantes et de préparer les perspectives à ce travail de thèse. Cela dit, 

devant la richesse et la complexité des possibilités offertes par un gradient bi-

dimensionnel arbitraire de ces paramètres ou d’une combinaison d’entre eux, nous 

avons fait le choix de restreindre les études menées dans cette thèse au cas d’un cristal 

photonique de maille carrée et à facteur de remplissage graduel. Les résultats résumés 

ci-après ont été obtenus pour ce type de structures. 

 

2. PRINCIPAUX RESULTATS DE SIMULATION-MODELISATION : 

 

a) Etape préalable : Modélisation de la propagation de la lumière par extraction 
de la structure de bandes photonique et utilisation des lois 

de l’optique Hamiltonnienne 

 Afin de pouvoir dimensionner les structures graduelles à cristaux photoniques 

et prévoir leur comportement, voire, dans certains cas, les concevoir en fonction de 

telle ou telle propriété visée, nous avons commencé par mettre en place une 

méthodologie de modélisation. La direction de propagation des modes de Bloch 

propagatifs d’un cristal photonique étant bien décrite par la notion de courbe iso-

fréquence extraite du diagramme de dispersion [Lou-09], nous nous sommes appuyés 

sur une description de ce type, que nous avons couplée aux équations de l’optique 

Hamiltonienne [Rus-99]. Cette dernière approche consiste à propager un ou plusieurs 

rayons lumineux selon deux équations maîtresses décrivant l’évolution de la position 

r et du vecteur d’onde k de chaque rayon en fonction du gradient en k et en r d’un 

Hamiltonien H(r,k) dépendant de la structure de bandes photonique locale. 
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 Cette approche a été appliquée au cas d’un cristal photonique planaire 

constitué d’un réseau de maille carrée de trous d’air de rayon r gravés dans un film 

mince de silicium d’épaisseur h=260nm,, de paramètre de maille a (=380nm), et de 

facteur de remplissage f=π(r/a)
2
 graduel dans le plan d’un substrat silicium sur isolant 

(SOI). Dans ces structures, le confinement vertical est obtenu par guidage réfractif 

dans un guide plan asymétrique SiO2 (substrat)/Si (h=260nm) / air (superstrat). 

 Afin de modéliser la propagation de la lumière dans ce type de cristal 

photonique graduel, nous avons extrait des expressions analytiques des courbes de 

dispersion iso-fréquences de la première bande photonique au voisinage des extrema 

de la zone de Brillouin (points M : voir Fig. RF1), qui ont été couplées aux deux 

équations de l’optique Hamiltonienne, permettant de décrire la propagation de la 

lumière dans le cas d’un profil bi-dimensionnel du facteur de remplissage arbitraire, 

soit f=f(x,y), x et y représentant les deux coordonnées d’espace du plan des couches. 

 

 

  (a)           (b) 

Figure RF1 : (a) Vue de principe du réseau direct d’un cristal photonique de maille carrée 

constituée de trous cylindriques d’air de rayon normalisé 3.0/ =ar  perçés dans une 

matrice de haut indice,(b) Courbes iso-fréquences de la première bande photonique en 

polarisation TE (paramètres complets : [Cas-11a]). 

  

 Une comparaison de cette approche avec des simulations FDTD (Finite 

Difference Time Domain Simulation) a permis d’en montrer la validité (voir Fig. 
RF2), indiquant ainsi la pertinence de ce modèle simple de propagation de la lumière 

pouvant conduire à une discussion physique aisée (connaissance de la bande 

photonique excitée, suivi des paramètres opto-géométriques du cristal photonique 

graduel le long des trajectoires) et à une optimisation beaucoup plus rapide des 

facteurs de remplissage en trous ou du point d’excitation de la structure graduelle 

depuis un guide plan qu’une simulation numérique complète. Ces différents aspects 

ont été détaillés dans [Cas-11a]. 
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(a) 

 

(b) 

 

 

(c) 

Figure RF2 : (a) Carte de permittivité diélectrique de la structure proposée de cristal photonique 

planaire dont la loi d’évolution du rayon normalisé des trous d’air est donnée par : r/a=0.35.exp(-

(x
2
+y

2
)/(2R

2
)) ; 

(b) Propagation d’un rayon lumineux à la fréquence normalisée ω=a/λ=0.25 injecté dans le cristal 

photonique graduel au point (x=0;y=3R/8) ; (c) Propagation de la lumière dans les mêmes conditions à 

l’aide du logiciel de FDTD MEEP, la flèche en traits pointillés représentant le trajet du rayon lumineux 

du (b). 

 

b) Principaux résulats de modélisation : 

 La méthodologie de modélisation développée a permis d’étudier les propriétés 

du cristal photonique graduel à maille carrée considéré dans la thèse. Les principaux 

résultats de modélisation obtenus peuvent être classés en trois points. 
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    i) Effet de courbure des faisceaux optiques 

 Nous avons identifié les conditions d’excitation (orientation du cristal 

photonique à 45°, caractéristiques des faisceaux excitateurs : angle d’incidence, 

largeur des faisceaux, choix de la localisation du point d’injection, etc) permettant 

d’observer un effet de courbure ou de superbending de la lumière [Cen-06] au sein du 

cristal photonique vers les régions à fort facteur de remplissage en trous d’air (c’est-à-

dire de plus bas indice de réfraction au sens de l’homogénéisation des milieux 

optiques). Une optimisation des entrées/sorties du cristal photonique graduel a par 

ailleurs été effectuée, se traduisant par la conception de zones d’adapation 

d’impédance électromagnétique (« tapers »). Ces résulats sont résumés en Fig. RF3. 

 

 

Figure RF3 : Effet de courbure de la lumière par le cristal photonique graduel considéré 

(maille carrée, facteur de remplissage graduel) (détail des paramètres : [Do-12] : (a) 

Optimisation du point d’entrée au sein du cristal photonique par propagation d’un rayon à 

l’aide de la structrure de bandes photoniques locales, (b) Résultat de simulation FDTD de 

l’effet de mirage optique à λ=1550nm, (c) Détail du résultat de l’optimisation des tapers 

d’entrée/sortie permettant de diminuer les pertes d’insertion globales de la structure à cristal 

photonique graduel. 

 

(a) (b) 

(c) 

(c) 
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ii) Dispersion en longueur d’onde 

 Bien que de conception relativement simple, inspirée du profil d’indice de 

réfraction déduit d’un calcul analytique valable en régime d’homogénéisation [Cas-

11b], la structure de cristal photonique graduelle proposée s’est avérée présenter des 

propriétés de dispersion en longueur d’onde assez intéressantes. 

 L’origine physique de cette dispersion tient au fait que les courbes iso-

fréquences du milieu graduel au sein duquel se propage la lumière dépendent à la fois 

de la position locale au sein de la structure mais également de la fréquence. En 

conséquence, deux faisceaux optiques de longueurs d’ondes différentes mais injectés 

au même point du cristal photonique suivent des trajectoires différentes, ce qui 

permet, en principe, de les séparer si la distance des points de sortie de ces deux 

faisceaux est supérieure à leur extension latérale. 

 Une dispersion assez comparable à celles de dispositifs de type 

« superprisme » à cristaux photoniques a ainsi été obtenue, autour des 0,25°/nm. Par 

rapport à ces dernières, les deux avantages suivants sont apparus : 

� la divergence par diffraction des faisceaux s’est avérée très faible lors de la 

propagation, ceci étant lié à la forme des courbes iso-fréquences graduelles 

exploitées, 

� la dispersion spatiale (°/nm) s’est avérée linéaire dans une gamme spectrale de 

l’ordre de 200nm. 

 Ces résultats, qui font actuellement l’objet d’une soumission à des revues à 

comités de lecture, sont décrits davantage dans la partie 3) de ce résumé. 

 

iii) Sensibilité à la polarisation de la lumière 

 Les cristaux photoniques planaires sont connus pour être très sensibles à la 

polarisation de la lumière, c’est-à-dire présenter une forte biréfringence TE/TM. 

Intuitivement, il doit en être de même pour les cristaux photoniques graduels. 

Curieusement, ces derniers n’ont pas été étudiés dans la littérature pour leurs 

propriétés vis-à-vis de la polarisation. Sans aborder cette question dans sa généralité, 

ce qui serait plutôt à classer parmi les perspectives à ce travail de thèse, nous avons 

restreint ici notre étude à celle du comportement de la « structure-type » considérée 

dans cette thèse (Fig. RF3 (b)). La Fig. RF4 résume les principaux résulats de 

modélisation obtenus. 
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(e) 

 
Figure RF4 : Effet de séparation des polarisations TE et TM par la structure-type de cristal 

photonique : a),b)  Courbes iso-fréquences, c),d) Cartes de champ obtenues par simulation FDTD, e) 
Transmission de la structure sur les canaux direct et à 90° faisant apparaître les pertes d’insertion et la 
diaphotie inter-canaux. 

 
 Un effet très net de séparation des deux polarisations TE et TM est ainsi obtenu. 

Physiquement, cet effet est lié à la biréfringence d’indice TE/TM qui conduit, à même 
longueur d’onde, à faire opérer le cristal photonique graduel en régime d’homogénéisation 
pour la polarisation TM et en régime diffractif pour la polarisation TE. Ceci conduit à induire 
une trajectoire assez rectiligne pour les faisceaux en polarisation TM, tandis qu’une forte 
courbure à 90° est obtenue pour les faisceaux en polarisation TE en raison de l’inversion de 
concavité des courbes iso-fréquences en bord de zone de Brillouin par rapport à un ‘milieu 
ordinaire’. 

te
l-0

07
88

68
3,

 v
er

si
on

 1
 - 

15
 F

eb
 2

01
3



 106 

 D’un point de vue fonctionnel, les avantages de cette structure par rapport à celles 
proposées jusqu’ici sont de : 

� permettre une injection/collection à incidence normale par rapport à l’interface guide 

plan/cristal photonique graduel, ce qui permet de limiter les pertes d’insertion de la 

structure, 

� séparer les fonctions d’injection de la lumière et de séparation des polarisations, 

� d’opérer par une « séparation douce » des polarisations liée à la gradualité de la 

structure. 

 

3.  PRINCIPAUX RESULTATS EXPERIMENTAUX 

 Des résultats expérimentaux ont été obtenus sur les trois volets décrits dans la 

section 2). 

 Les structures ont été fabriquées à l’Institut d’Electronique Fondamentale 

(UMR CNRS 8622) par lithographie électronique et gravure ICP. Une attention 

particulière a été portée à la correction des effets de proximité, essentielle pour la 

définition de motifs graduels au sein d’un cristal photonique. La contribution de 

Xavier LE ROUX, ingénieur salle blanche/process à l’IEF, a été essentielle sur 

l’ensemble de ces aspects. La Fig. RF5 rassemble quelques images prises au 

microscope électronique à balayaye (MEB) d’un dispositif réalisé. 

 

       

       
 

Figure RF5 : Photos MEB d’une structure fabriquée à l’IEF : 
GAUCHE : Détails du cristal et vue du détail de la gradualité d’un « taper » d’entrée 
DROITE : Vues d’ensemble de la structure-type de cristal photonique graduel et sous deux 

incidences 
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 La Fig. RF6 donne, quant à elle, deux vues différentes d’une autre structure 

présentant un guide d’entrée et deux guides ruban de sortie, orientée vers la réalisation 

d’un démultiplexeur en longueur d’ondes élémentaire. 

 

 
Figure RF6 : Photos MEB d’une autre structure fabriquée à l’IEF : 

 

Concernant les mesures, deux types principaux en ont été effectués (Fig. RF7) : 

� Des mesures de transmission ont été effectuées sur les bancs de mesure de 

l’opération Minaphot (http://silicon-photonics.ief.u-psud.fr/) de l’IEF. La 

lumière est couplée par la tranche au moyen de fibres lentillées positionnées 

correctement, puis collectée en sortie d’échantillon, soit au moyen d’une fibre, 

soit d’un objectif de microscope. Une mesure du spectre optique en 

transmission est alors possible en quelques secondes grâce à l’instrumentation 

du banc. 

� Des mesures en champ proche optique (SNOM) ont également été effectuées. 

Nous avons eu le plaisir pour cela de collaborer avec le groupe de champ 

proche optique dirigé à l’Institut Inter-disciplinaire Carnot de Bourgogne 

(ICB) par Frédérique de Fornel. Ce type de mesures a apporté une 

visualisation directe des phénomènes de courbure de la lumière et de 

sensibilité à la longueur d’onde et à la polarisation. Les séries d’images prises 

dans une plage spectrale assez large (typiquement 1300nm<λ<1650nm => 

Hyp-SNOM) se sont également avérées un outil d’analyse très riche pour la 

compréhension des phénomènes de propagation apparaissant dans les CP 

graduels. 
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Figure RF7 : Environnement et méthodes de mesures : 
GAUCHE : Mesures champ lointain de la transmission des échantillons (IEF) 
DROITE : Mesures hyperspectrales en champ proche optique, ou Hyp-SNOM (ICB) 

 

i) Effets de courbure des faisceaux optiques et de sensibilité à la longueur d’onde 

 La Fig. RF8 donne la carte de champ hyperspectrale obtenue 

expérimentalement par Hyp-SNOM, l’extension spectrale mesurée en plusieurs points 

de sortie de la structure à CP graduel, le décalage du point de sortie du faisceau 

(directement lié à la dispersion en longueur d’onde), ainsi que des indications 

concernant l’élargissement spatial et l’élargissement spectral des faiscaux se 

propageant au sein de la région structurée par des trous d’air de diamètres variables. 

 

 

Figure RF8 : Mesure de l’effet de courbure et de l’effet de dispersion de la structure-type : Mesure 
par Hyp-SNOM  
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Figure RF9 : Mesure de l’effet de courbure et de l’effet de dispersion de la structure-type : 
 a) largeur spectrale en plusieurs points, b) et c) dispersion en longueur d’onde 

(bleu : SNOM ; rouge : calculs PWE-3D et propagation de rayons) 

 

Les résultat expérimentaux obtenus ont démontré : 

� l’effet de courbure de la lumière prédit par plusieurs travaux antérieurs mais 

encore non mesuré jusque là aux longueurs d’ondes optiques, 

� une forte sensibilité à la longueur d’onde du décalage du faisceau de sortie 

(40µm environ pour une plage spectrale de l’ordre de 150nm), 

� une quasi-linéarité de cette dispersion en longeur d’onde, 

� un accord quantitatif avec les résultats des modélisations effectuées par 

extraction de la structure de bandes photonique locale et propagation de 

rayons optiques (des simulations PWE-3D avec prise en compte de l’asymétrie 

de la membrane verticale ont néanmois été nécessaires pour cela). 

 Ces effets dispersifs ont également été relevés par des mesures en champ 

lointain effectuées à l’IEF sur des structures telles que celle présentée en Fig. RF6. La 

Fig. RF10 donne les spectres ainsi collectés sur les deux canaux, indiquant un accord 

correct avec les modélisations FDTD (les écarts constatés sont liés au caractère 2D 

des expériences numériques), des pertes d’insertion faible (<-1,5dB), et des niveaux 

de diaphotie intercanal de l’ordre de -20dB. 

 
Figure RF10 : Spectres de transmission obtenus expérimentalement pour le dispositif présenté en 

Fig. RF6. 
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ii) Sensibilité à la polarisation de la lumière 

 Cette effet a été relevé lors des mesures en champ lointain effectuées à l’IEF, 

puis par la technique de champ proche optique développée à l’ICB. La Fig. RF11 en 

donne une illustration. 

 
Figure RF11 : Caractérisation par champ proche optique hyper-spectral de l’effet de séparation des 

polarisations TE/TM 

 

4. CONCLUSION ET PERSPECTIVES 

 Cet aperçu rapide des résultats de la thèse résume les principales contributions 

du travail qui a été mené pendant trois ans. 

 L’accent a été mis sur une méthodologie de modélisation assez générale, basée 

sur la description de la propagation de la lumière à partir de la structure de bandes 

photonique locale, mais elle a été très essentiellement appliquée à une « structure-

type » simple constituée d’un cristal photonique planaire à réseau carré, de facteur de 

remplissage variable, et fonctionnant en bande 1. 

 La motivation pour cette approche a découlé : 

� d’une part de la très grande richesse des « chirps bi-dismensionnels » possibles 

pour la définition de cristaux photoniques graduels (facteur de remplissage, 

vecteurs du réseau direct en orientations et en normes, forme et orientation du 

motif élémentaire, bande photonique exploitée, ou une combinaison de ces 

paramètres) qui rendait difficile une analyse des propriétés générales des 

cristaux photoniques graduels avant l’étude détaillée d’une structure 

particulière, 

� et d’autre part de notre souhait de démontrer expérimentalement un certain 

nombre de résultats avant de nous consacrer à d’autres types de CP graduels. 
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Nous n’avons pas laissé ces aspects de côté ; ils font en effet l’objet de nos 

perspectives. 

La « structure-type » qui a été étudiée, bien que simple, s’est finalement avérée assez 

riche. Elle a permis de démontrer expérimentalement l’effet de courbure de la lumière 

dans un CP graduel par des mesures effectuées en champ lointain [Do-12], mais 

également par des mesures de champ proche optique effectuées dans le cadre d’une 

collaboration active avec l’Institut Inter-disciplinaire Carnot de Bourgogne (ICB) 

[soumis]. Ont également été démontrés, quantifiés, et interprétés les effets de 

dispersion en longueur d’onde et de sensibilité à la polarisation de la lumière. 

Les perspectives à ce travail sont nombreuses. Nous les avons évoquées ci-dessus. Le 

potentiel des cristaux photoniques graduels n’a en effet, selon nous, pas encore été 

exploité compte tenu notamment du manque d’approche et de méthodologie générale 

pour l’étude de ces matériaux optiques artificiels fonctionnant en régime diffractif et 

ne pouvant donc pas être facilement décrits par les méthodes de transformations 

spatiales de coordonnées applicables aux métamatériaux photoniques. Nous espérons 

pouvoir contribuer à l’avenir à cet objectif. 
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