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Universal localization of triangular matrix rings

Desmond Sheiham

Abstract

If R is a triangular matrix ring, the columns, P and Q, are projec-

tive R-modules. We describe the universal localization of R which makes

invertible an R-module morphism σ : P → Q, generalizing a theorem of

A.Schofield. We also describe universal localization of R-modules.

1 Introduction

Suppose R is an associative ring (with 1) and σ : P → Q is a morphism between
finitely generated projective R-modules. There is a universal way to localize R
in such a way that σ becomes an isomorphism. More precisely there is a ring
morphism R → σ−1R which is universal for the property that

σ−1R⊗R P
1⊗σ
−−−→ σ−1R⊗R Q

is an isomorphism (Cohn [7, 9, 8, 6], Bergman [3, 5], Schofield [17]). Al-
though it is often difficult to understand universal localizations when R is non-
commutative1 there are examples where elegant descriptions of σ−1R have been
possible (e.g. Cohn and Dicks [10], Dicks and Sontag [11, Thm 24], Farber and
Vogel [12] Ara, González-Barroso, Goodearl and Pardo [1, Example 2.5]). The
purpose of this note is to describe and to generalize some particularly interesting
examples due to A.Schofield [17, Thm 13.1] which have application in topology
(e.g. Ranicki [16, Part 2]).

We consider a triangular matrix ring R =

(
A M
0 B

)
where A and B are

associative rings (with 1) and M is an (A,B)-bimodule. Multiplication in R is
given by (

a m
0 b

) (
a′ m′

0 b′

)
=

(
aa′ am′ +mb′

0 bb′

)

for all a, a′ ∈ A, m,m′
∈ M and b, b′ ∈ B. The columns

(
A
0

)
and

(
M
B

)
are

projective left R-modules with

(
A
0

)
⊕

(
M
B

)
∼= R.

General theory of triangular matrix rings can found in Haghany and Varadara-
jan [13, 14].

April 16, 2008
1If R is commutative one obtains a ring of fractions; see Bergman [5, p68].
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We shall describe in Theorem 2.4 the universal localizationR → σ−1R which
makes invertible a morphism

σ :

(
A
0

)
→

(
M
B

)

Such a morphism can be written σ =

(
j
0

)
where j : A → M is a morphism

of left A-modules. Examples follow, in which restrictions are placed on A, B,
M and σ. In particular Example 2.8 recovers Theorem 13.1 of Schofield [17].
We proceed to describe the universal localization σ−1N = σ−1R ⊗R N of an
arbitrary left module N for the triangular matrix ring R (see Theorem 2.12).

The structure of this paper is as follows: Definitions, statements of results
and examples are given in Section 2 and the proofs are collected in Section 3.

I am grateful to Andrew Ranicki, Aidan Schofield and Amnon Neeman for
helpful conversations.

2 Statements and Examples

Let us first make more explicit the universal property of localization:

Definition 2.1. A ring morphism R→ R′ is called σ-inverting if

id⊗σ : R′
⊗R

(
A
0

)
→ R′

⊗R

(
M
B

)

is an isomorphism. The universal localization iσ : R → σ−1R is the initial
object in the category of σ-inverting ring morphisms R → R′. In other words,
every σ-inverting ring morphism R → R′ factors uniquely as a composite R →

σ−1R → R′.

Definition 2.2. An (A,M,B)-ring (S, fA, fM , fB) is a ring S together with
ring morphisms fA : A→ S and fB : B → S and an (A,B)-bimodule morphism
fM : M → S.

A
fA

// S B
fB

oo

M

fM

OO

It is understood that the (A,B)-bimodule structure on S is induced by fA and
fB, so that fA(a)fM (m) = fM (am) and fM (m)fB(b) = fM (mb) for all a ∈ A,
b ∈ B and m ∈M .

A morphism (S, fA, fM , fB) → (S′, f ′
A, f

′
M , f ′

B) of (A,M,B)-rings is a ring
morphism θ : S → S′ such that i) θfA = f ′

A, ii) θfM = f ′
M and iii) θfB = f ′

B.

Definition 2.3. Suppose p ∈ M . Let (T (M,p), ρA, ρM , ρB) denote the initial
object in the category of (A,M,B)-rings with the property ρM (p) = 1. For
brevity we often write T = T (M,p).
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The ring T can be explicitly described in terms of generators and relations
as follows. We have one generator xm for each element m ∈M and relations:

(+) xm + xm′ = xm+m′

(a) xapxm = xam

(b) xmxpb = xmb

(id) xp = 1

for all m,m′
∈M , a ∈ A and b ∈ B. The morphisms ρA, ρM , ρB are

ρA : A→ T ; a 7→ xap

ρB : B → T ; b 7→ xpb

ρM : M → T ;m 7→ xm

Suppose σ :

(
A
0

)
→

(
M
B

)
is a morphism of left R-modules. We may write

σ

(
1
0

)
=

(
p
0

)
for some p ∈M . Let T = T (M,p).

Theorem 2.4. The universal localization R → σ−1R is (isomorphic to)

R =

(
A M
0 B

) ( ρA ρM

0 ρB

)

−−−−−−→

(
T T
T T

)
.

Example 2.5. 1. Suppose A = B = M and multiplication in A defines the
(A,A)-bimodule structure on M . If p = 1 then T = A and ρA = ρM =
ρB = idA.

2. Suppose A = B and M = A⊕ A with the obvious bimodule structure. If
p = (1, 0) then T is the polynomial ring A[x] in a central indeterminate
x. The map ρA = ρB is inclusion of A in A[x] while ρM (1, 0) = 1 and
ρM (0, 1) = x.

The universal localizations corresponding to Example 2.5 are

1.

(
A A
0 A

)
→

(
A A
A A

)
;

2.

(
A A⊕A
0 A

)
→

(
A[x] A[x]
A[x] A[x]

)
.

Remark 2.6. One can regard the triangular matrix rings in these examples as
path algebras over A for the quivers

1. • // • 2. •
&&

88 •

The universal localizations R → σ−1R are obtained by introducing an inverse
to the arrow in 1. and by introducing an inverse to one of the arrows in 2. See
for example Benson [2, p99] for an introduction to quivers.
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The following examples subsume these:

Example 2.7. 1. (Amalgamated free product; Schofield [17, Thm 4.10])
Suppose iA : C → A and iB : C → B are ring morphisms and M =
A ⊗C B. If p = 1 ⊗ 1 then T is the amalgamated free product A⊔

C
B and

appears in the pushout square

C
iA

//

iB
��

A
ρA

��

B ρB

// T

The map ρM is given by ρM (a⊗ b) = ρA(a)ρB(b) for all a ∈ A and b ∈ B.
We recover part 1. of Example 2.5 by setting A = B = C and iA = iB = id.

2. (HNN extension) Suppose A = B and i1, i2 : C → A are ring morphisms.
Let A ⊗C A denote the tensor product with C acting via i1 on the first
copy of A and by i2 on the second copy. Let M = A ⊕ (A ⊗C A) and
p = (1, 0 ⊗ 0). Now T = A ∗C Z[x] is generated by the elements in A
together with an indeterminate x and has the relations in A together with
i1(c)x = xi2(c) for each c ∈ C. We have ρA(a) = ρB(a) = a for all
a ∈ A while ρM (1, 0 ⊗ 0) = 1 and ρM (0, a1 ⊗ a2) = a1xa2. If C = A and
i1 = i2 = idA we recover part 2. of Example 2.5.

The following example is Theorem 13.1 of Schofield [17] and generalizes
Example 2.7.

Example 2.8. 1. Suppose p generates M as a bimodule, i.e. M = ApB.
Now T is generated by the elements of A and the elements of B subject
to the relation

∑n
i=1 aibi = 0 if

∑n
i=1 aipbi = 0 (with ai ∈ A and bi ∈ B).

This ring T is denoted A ⊔

(M,p)
B in [17, Ch13]. The maps ρA and ρB are

obvious and ρM sends
∑

i aipbi to
∑

i aibi.

2. Suppose M=ApB⊕N for some (A,B)-bimodule N . Now T is the tensor
ring over A ⊔

(M,p)
B of

(A ⊔

(M,p)
B) ⊗A N ⊗B (A ⊔

(M,p)
B).

We may vary the choice of p as the following example illustrates:

Example 2.9. Suppose A = B = M = Z and p = 2. In this case T = Z
[
1
2

]

and ρA = ρB is the inclusion of Z in Z
[

1
2

]
while ρM (n) = n/2 for all n ∈ Z.

Example 2.9 can be verified by direct calculation using Theorem 2.4 or de-
duced from part 1. of Example 2.5 by setting a0 = b0 = 2 in the following more
general proposition. Before stating it, let us remark that the universal prop-
erty of T = T (M,p) implies that T (M,p) is functorial in (M,p). An (A,B)-
bimodule morphism φ : M → M ′ with φ(p) = p′ induces a ring morphism
T (M,p) → T (M ′, p′).
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Proposition 2.10. Suppose A and B are rings, M is an (A,B)-bimodule and
p ∈M . If a0 ∈ A and b0 ∈ B satisfy a0m = mb0 for all m ∈M then

1. The element ρM (a0p) = xa0p = xpb0 is central in T (M,p).

2. The ring morphism φ : T (M,p) → T (M,a0p) = T (M,pb0) induced by
the bimodule morphism φ : M → M ;m 7→ a0m = mb0 is the universal
localization of T (M,p) making invertible the element xa0p.

Since xa0
p is central each element in T (M,a0p) can be written as a fraction α/β

with numerator α ∈ T (M,p) and denominator β = xr
a0p for some non-negative

integer r.
Having described universal localization of the ring R in Theorem 2.4 we

may also describe universal localization σ−1R⊗R N of a left R-module N . For
the convenience of the reader let us first recall the structure of modules over a
triangular matrix ring.

Lemma 2.11. Every left R-module N can be written canonically as a triple

(NA, NB, f : M ⊗B NB → NA)

where NA is a left A-module, NB is a left B-module and f is a morphism of
left A-modules.

A proof of this lemma is included in Section 3 below. Localization of modules
can be expressed as follows:

Theorem 2.12. If N = (NA, NB, f) then the localization σ−1N = σ−1R⊗RN

is isomorphic to

(
T (M,p) ⊗A NA

T (M,p) ⊗A NA

)
with σ−1R = M2(T (M,p)) acting on the

left by matrix multiplication.

3 Proofs

The remainder of this paper is devoted to the proofs of Theorem 2.4, Proposi-
tion 2.10 and Theorem 2.12.

3.1 Localization as Pushout

Before proving Theorem 2.4 we show that there is a pushout diagram

(
Z Z

0 Z

)
//

α

��

(
Z Z

Z Z

)

��

R // σ−1R

5



where α

(
1 0
0 0

)
=

(
1 0
0 0

)
, α

(
0 0
0 1

)
=

(
0 0
0 1

)
and α

(
0 1
0 0

)
=

(
0 p
0 0

)
.

Bergman observed [4, p69] that more generally, up to Morita equivalence every
localization R → σ−1R appears in such a pushout diagram.

It suffices to check that the lower horizontal arrow in the pushout

(
Z Z

0 Z

)
//

α

��

(
Z Z

Z Z

)

θ

��

R
i

// S

is i) σ-inverting and ii) Universal among σ-inverting ring morphisms.

i) The map id⊗σ : S ⊗R

(
A
0

)
→ S ⊗R

(
M
B

)
has inverse given by the

composite

S ⊗R

(
M
B

)
⊂ S ⊗R R ∼= S

γ
−−−−→ S ∼= S ⊗R R ։ S ⊗R

(
A
0

)

where γ multiplies on the right by θ

(
0 0
1 0

)
.

ii) If i′ : R → S′ is a σ-inverting ring morphism then there is an inverse

ψ : S′
⊗R

(
M
B

)
→ S′

⊗R

(
A
0

)
to id⊗σ. It is argued shortly below that there

is a (unique) diagram

(
Z Z

0 Z

)
//

α

��

(
Z Z

Z Z

)

θ

�� θ′

��

R
i //

i′
--

S

$$

S′

(1)

where θ′ sends

(
0 0
1 0

)
to ψ

(
1 ⊗

(
0
1

))
∈ S′

⊗R

(
A
0

)
⊂ S′. Since S is a

pushout there is a unique morphism S → S′ to complete the diagram and so i′

factors uniquely through i.
To show uniqueness of (1), note that in S′ multiplication on the right by

θ′
(

0 1
0 0

)
must coincide with the morphism

(
0 0

id⊗σ 0

)
: S′

⊗

(
A
0

)
⊕ S′

⊗

(
M
B

)
−→ S′

⊗

(
A
0

)
⊕ S′

⊗

(
M
B

)

6



so multiplication on the right by θ′
(

0 0
1 0

)
coincides with

(
0 ψ
0 0

)
. Now 1 ∈ S′

may be written

(
1 ⊗

(
1
0

)
, 1 ⊗

(
0
1

))
∈ S′

⊗R

(
A
0

)
⊕ S′

⊗R

(
M
B

)

so θ′
(

0 0
1 0

)
= ψ

(
1 ⊗

(
0
1

))
. The reader may verify that this formula demon-

strates existence of a commutative diagram (1).

3.2 Identifying σ
−1

R

Proof of Theorem 2.4. It suffices to show that the diagram of ring morphisms

(
Z Z

0 Z

)
//

α

��

(
Z Z

Z Z

)

��(
A M
0 B

)
ρ

//

(
T T
T T

)

is a pushout, where T = T (M,p), ρ =

(
ρA ρM

0 ρB

)
and α is defined as in

Section 3.1. Given a diagram of ring morphisms

(
Z Z

0 Z

)
//

α

��

(
Z Z

Z Z

)

��
θ

��

(
A M
0 B

)

ρ′

,,

ρ
//

(
T T
T T

)

γ

!!

S

(2)

we must show that there is a unique morphism γ to complete the diagram. The
map θ induces a decomposition of S as a matrix ring M2(S

′) for some ring S′

and any morphism γ which makes the diagram commute must be of the form
γ = M2(γ

′) for some ring morphism γ′ : T → S′ (e.g. Cohn [9, p1] or Lam [15,
(17.7)]). Commutativity of the diagram implies that ρ′ also respects the 2 × 2
matrix structure and we may write

ρ′ =

(
ρ′A ρ′M
0 ρ′B

)
:

(
A M
0 B

)
−→

(
S′ S′

S′ S′

)

7



with ρ′M (p) = 1. Since ρ′ is a ring morphism, one finds

(
ρ′A(aa′) ρ′M (am′ +mb′)

0 ρ′B(bb′)

)
=

(
ρ′A(a)ρ′A(a′) ρ′A(a)ρ′M (m′) + ρ′M (m)ρ′B(b′)

0 ρ′B(b)ρ′B(b′)

)

for all a, a′ ∈ A, b, b′ ∈ B and m,m′
∈ M . Hence the maps ρ′A : A → S′ and

ρ′B : B → S′ are ring morphisms and ρ′M is a morphism of (A,B)-bimodules.
By the universal property of T there exists a unique morphism γ′ : T → S′ such
that M2(γ

′) : M2(T ) →M2(S
′) = S completes the diagram (2) above.

Proof of Proposition 2.10. 1. In T (M,p) we have xa0pxm = xa0m = xmb0 =
xmxpb0 = xmxa0p for all m ∈M .
2. The map φ : M →M ;m→ a0m induces

φ : T (M,p) → T (M,a0p) (3)

xm 7→ xa0m

In particular φ(xa0p) = xa2

0
p ∈ T (M,a0p) and we have

xa2

0
pxp = xa0(a0p)xp = xa0p = 1 = xpb0 = xpxpb2

0

= xpxa2

0
p

so φ(xa0p) is invertible.
We must check that (3) is universal. If f : T (M,p) → S is a ring morphism

and f(xa0p) is invertible, we claim that there exists unique f̃ : T (M,a0p) → S

such that f̃φ = f .
Uniqueness: Suppose f̃φ = f . For each m ∈M we have

f̃(xa0m) = f̃φ(xm) = f(xm).

Now f(xa0p)f̃(xm) = f̃φ(xa0p) = f̃(xa0(a0p)xm) = f̃(xa0m) = f(xm) so

f̃(xm) = (f(xa0p))
−1f(xm). (4)

Existence: It is straightforward to check that equation (4) provides a definition

of f̃ which respects the relations (+),(a),(b) and (id) in T (M,a0p). Relation
(b), for example, is proved by the equations

f̃(xm)f̃(xa0pb) = f(xa0p)
−1f(xm)f(xpb) = f(xa0p)

−1f(xmb) = f̃(xmb)

and the other relations are left to the reader.

3.3 Module Localization

We turn finally to the universal localization σ−1R⊗R N of an R-module N .

Proof of Lemma 2.11. If N is a left R-module, set NA =

(
1 0
0 0

)
N and set

NB = N/NA. If m ∈ M and nB ∈ NB choose a lift x ∈ N and define the

8



map f : M ⊗NB → NA by f(m⊗ nB) =

(
0 m
0 0

)
x. Conversely, given a triple

(NA, NB, f) one recovers a left R-module

(
NA

NB

)
with

(
a m
0 b

) (
nA

nB

)
=

(
anA + f(m⊗ nB)

bnB

)

for all a ∈ A, b ∈ B, m ∈M , nA ∈ NA, nB ∈ NB.

Proof of Theorem 2.12. Let T = T (M,p). We shall establish an isomorphism
of left T -modules

(
T T

)
⊗R

(
NA

NB

)
∼= T ⊗A NA (5)

and leave to the reader the straightforward deduction that there is an isomor-
phism of σ−1R-modules

σ−1R⊗R N =

(
T T
T T

)
⊗R

(
NA

NB

)
∼=

(
T ⊗A NA

T ⊗A NA

)
.

Let α : T⊗ANA →
(
T T

)
⊗R

(
NA

NB

)
be given by α(t⊗n) =

(
t 0

)
⊗R

(
n
0

)
.

Let β :
(
T T

)
⊗R

(
NA

NB

)
→ T ⊗A NA be given by

β

((
t t′

)
⊗R

(
nA

nB

))
= t⊗ nA + t′ ⊗ f(p⊗ nB).

It is immediate that βα = id. To prove (5) we must check that αβ = id or in
other words that

(
t t′

)
⊗

(
nA

nB

)
=

(
t 0

)
⊗

(
nA

0

)
+

(
t′ 0

)
⊗

(
f(p⊗ nB)

0

)
.

This equation follows from the following three calculations:

(
t 0

)
⊗

(
0
nB

)
=

(
t 0

)(
1 0
0 0

)
⊗

(
0
nB

)
= 0;

(
0 t′

)
⊗

(
nA

0

)
=

(
0 t′

) (
0 0
0 1

)
⊗

(
nA

0

)
= 0;

(
0 t′

)
⊗

(
0
nB

)
=

(
t′ 0

) (
0 p
0 0

)
⊗

(
0
nB

)
=

(
t′ 0

)
⊗

(
f(p⊗ nB

0

)
.
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