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Abstract
In the classic p-median problem, it is assumed that each point of demand will be served
by his or her closest located facility. The p-median problem can be thought of as a
‘‘single-level’’ allocation and location problem, as all demand at a specific location is
assigned as a whole unit to the closest facility. In some service protocols, demand
assignment has been defined as ‘‘multilevel’’ where each point of demand may be
served a certain percentage of the time by the closest facility, a certain percentage
of the time by the second closest facility, and so on. This article deals with the case
in which there is a need for ‘‘explicit’’ closest assignment (ECA) constraints. The
authors review past location modeling work that involves single-level ECA constraints
as well as specific constraint constructs that have been proposed to ensure single-
level closest assignment. They then show how each of the earlier proposed ECA con-
structs can be generalized for the ‘‘multilevel’’ case. Finally, the authors provide com-
putational experience using these generalized ECA constructs for a novel multilevel
facility interdiction problem introduced in this article. Altogether, this article pro-
poses both a new set of constraint structures that can be used in location models
involving multilevel assignment as well as a new facility interdiction model that can
be used to optimize worst case levels of facility disruption.
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Introduction

Over the past four decades, a number of location models have been developed to

optimize service and logistics systems. One of the key issues is the form in which

demands for service and product are allocated and handled across a system of

facilities. In many industrial settings, this allocation is based on the minimization

of transport costs, represented as a classic transportation problem or a multicom-

modity flow problem. For public service systems, however, it is often assumed

that users or clients will be served by their closest facility, which is called closest

assignment. Closest assignment (CA) may be an inherent feature of a problem.

For example, the classic p-median problem involves the location of a set of

p facilities across a network to serve a number of demands positioned at the vertices

or nodes of a network. Each node has an assigned weight that represents some form

of need, such as the number of people being served. The objective of this problem

is to place the facilities so that the total weighted distance of serving all demand is

minimized. Since it is assumed each facility has the capacity to serve whatever is

assigned to it, the optimal solution to the p-median problem will involve the assign-

ment of each demand to their closest located facility, whether it is required or not.

In a ‘‘public fiat’’ system (Wagner and Falkson 1975), users can be arbitrarily

assigned to facilities to achieve the optimal system objective. This means that certain

users may be assigned to far away or inconvenient facilities. It is clear that such a

system policy is only possible when services are delivered to users or when the insti-

tutional environment warrants such an assignment policy. However, in most location

problems for public facilities, customers can choose which facilities to use. In a user-

oriented system, users will not sacrifice their own self-interest for system objectives

by going to faraway facilities and the model should allocate users to the closest or

most preferred available facility.

It is unfortunate that in many circumstances, CA will not occur without special

constraints to enforce it, like the ‘‘public fiat’’ system of Wagner and Falkson.

This issue was first encountered by Rojeski and ReVelle (1970) in the develop-

ment of the budget-constrained median problem. Without special constraints,

Rojeski and ReVelle found that users were assigned to ‘‘cost-convenient’’ facili-

ties, rather than ‘‘customer-chosen’’ facilities. Since the development of the bud-

get constrained median problem, there have been many models that have been

proposed that require specific constraints to force CA to facilities. One of the lat-

est examples of this is the r-interdiction median problem (RIM) of Church, Sca-

parra, and Middleton (2004), where the objective is to maximally disrupt an

existing system of p facilities by striking or destroying r of the p facilities. This

problem represents the point of view of an interdictor or attacker, so the objective

is to disrupt the system the most with a limited amount of resources. Specifically,
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the objective is to maximize total weighted distance by removing r facilities,

assuming that each demand will travel to or be served by their closest remaining

facility. Modeling this problem requires explicit closest assignment (ECA)

constraints.

There are a number of alternative explicit constraint structures that have been

proposed and used to force CA within a location model construct (Gerrard and

Church 1996). Even though a number of single-level ECA constraint forms have

been proposed in the literature, there exists the need for a generalized form

that can address multilevel assignments. The concept of multiple levels of CA

was first proposed by Weaver and Church (1985) in the development of the

Vector Assignment p-median Problem (VAPMP). In their original model, they

assumed that only a certain percentage, for example, 70 percent of users, will

go to their first closest facility, 20 percent will go to their second closest facilities,

and so on. They called this a vector of assignments. They proved that when the

assignment vector percentages are nonincreasing in terms of the order of first clo-

sest, second closest, and so on, the VAPMP model will automatically allocate the

specified percentage of a given demand to the first closest facility, the second clo-

sest facility, and so on, without needing to explicitly enforce CA constraints.

Church and Weaver (1986) also demonstrated that the VAPMP was a very gen-

eral model form that could be used to solve a wide variety of multilevel covering

problems as well. The VAPMP construct has subsequently been used and

extended in a number of location models involving backup service (Narasimhan,

Pirkul, and Schilling 1992), reliable service (Snyder and Daskin 2005) and

franchise expansion (Kolli and Evans 1999). However, similar to the original

VAPMP model, these models do not explicitly use CA constraints and rely

instead on the nature and structure of the specific models to ensure CA at each

level. Up to this point in time, no workable constraint structure1 has been

proposed for the case when the assignment vector is not monotonically decreas-

ing or for the general case when explicit constraints are needed to enforce CA

when multiple levels are involved.

The goal of this article is to present several generalized constructs of ECA con-

straints in terms of multiple levels of closeness that can be used in the general form

of the vector assignment median problem and related problems. These new con-

structs are potentially useful in modeling contexts for a wide variety of problems

in which the closest facilities are not always available due to various reasons such

as, busyness and capacity limits, the coexistence of spatial and nonspatial prefer-

ences, random facility failure, hostile interdiction by an enemy, and so on. Under

such circumstances, certain users have to go to their second closest or even the lth

closest facility for service. We also test the proposed constructs in solving a new

form of the RIM model.

In the next section, we will give a brief review of past work on ECA constraints.

Following that we will discuss the use of multiple-level assignment in location

modeling. Next, we will show how previously proposed single-level ECA

Lei and Church 341

 at PENNSYLVANIA STATE UNIV on May 12, 2016irx.sagepub.comDownloaded from 

http://irx.sagepub.com/


constraints can be generalized to apply to the multiple-level case. In a subsequent

section, we will present a new model called the r-Interdiction Vector Assignment

Location (RIVAL) problem, which requires multilevel CA constraints. This problem

is a realistic extension of the RIM problem. Following that, we will present compu-

tational experience in solving the RIVAL model and compare the efficacy of each of

the generalized constraint forms. Finally, we will conclude with a summary of the

results and point out possible future work.

Background on CA Constraints

Location-allocation models involve the location of one or more facilities and the

allocation of facility-provided services to a set of demand points. A major issue in

model development is the form in which the allocation is to be accomplished. As

discussed in the introduction, many models have been developed where it is

assumed that each demand will be assigned to their closest facility. The classic

p-median problem is an example where it is assumed that each user will be served

by his or her closest facility, and this can be accomplished without explicit con-

straints enforcing CA. In more complicated contexts, CA constraints must be

specified explicitly in the formulation. For example, if there are high variable

costs associated with using specific facilities, it may be profitable from a system

optimal perspective to shift the assignment of demand from a nearby highly used

facility location to less frequently used sites to lower total variable cost. In fact,

the earliest proposed CA constraint was developed by Rojeski and ReVelle (1970)

when they expanded the p-median problem by considering a more general

resource limit that includes fixed and variable costs for opening and using facil-

ities. They argued that one consequence of expressing the more general problem is

that customers are no longer automatically assigned to their closest facilities with-

out explicit constraints. To describe the Rojeski and ReVelle construct, consider

the following notation:

i ¼ an index to represent demand points, where i ¼ 1; 2; 3; ::; n and i 2 I

j¼ an index to represent potential facility sites where j ¼ 1; 2; 3; . . . ;m and j 2 J

dij ¼ the shortest distance between i and j

Cij ¼ fq 2 J jdiq < dij or diq ¼ dij when q < jg, the set of facility sites that are closer

to demand i than facility j or are equidistant to i with facility j but having a

lower site index than j

xij ¼
1; if demand at i assigns to a facility at j

0; otherwise

�

yj ¼
1; if a facility is located at site j

0; otherwise

�
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Virtually all single-level models (e.g., the classic p-median problem) maintain

that each demand must assign to a facility. This is established in the following

assignment constraint: X
j2J

xij ¼ 1; for each i 2 I ð1Þ

This constraint forces each demand to assign exactly once, to some located facility.

In the remainder of this section, we will assume that this constraint is required in the

problem being solved. From the above notation, we can formulate the Rojeski–

ReVelle (1970) ECA constraint as follows:

xij � yj �
X
q2Cij

yq for each i 2 I and each j 2 J ð2Þ

Constraint (2) ensures that a given demand i will assign to the closest located facility

to i. Suppose that the closest facility to i is located at site j, which means that yj ¼ 1

and
P

q2Cij

yq ¼ 0. For this case, constraint (2) equals to xij � 1, which means that

i must assign to j. If one or more facilities are located closer than j, thenP
q2Cij

yq � 1 and then the left-hand side of constraint (2) will be zero or negative,

allowing xij ¼ 0. Thus, demand i is forced by constraint (2) to assign to its closest

located facility. There is one nuance that is important to discuss that was originally

raised in Gerrard and Church (1996). This pertains to the case when a site q exists

that is equidistant to demand i as facility site j (i.e., dij ¼ diq). When this case occurs,

we can arbitrarily define the site with the lowest index to be closer, so that any ties in

closest distance are broken. Without this condition being added to the definition of

set Cij, then set Cij ¼ Ciq and this means that sites j and q cannot be simultaneously

selected for facilities as constraint (2) will force assignment to both facilities, which

violates condition (1).

Wagner and Falkson (1975) proposed several location models aimed at maximiz-

ing social welfare or consumer surplus. In one of their models for a ‘‘serve-all-comer’’

setting, they stated that system economic efficiency may lead to the assignment of

users to non-closest facilities and developed a second distinct form of CA constraints

to prohibit non-closest assignment. This is structured as follows:

yj þ
X
q=2 �Cij

xiq � 1 for each i 2 I and each j 2 J ð3Þ

where �Cij ¼ q 2 J jdiq < dij or diq ¼ dij and q � j
� �

. �Cij represents the set of sites

that are strictly closer to i than site j, plus site j itself. That is, �Cij ¼ Cij þ jf g. This

constraint forces all assignments to more distant facilities to equal zero when a facil-

ity has been located at j (i.e., yj ¼ 1). Thus, an assignment must be to a site that is as

close or closer than j when yj ¼ 1. Whereas, the Rojeski–ReVelle (R–R) constraint

Lei and Church 343

 at PENNSYLVANIA STATE UNIV on May 12, 2016irx.sagepub.comDownloaded from 

http://irx.sagepub.com/


(2) ensures that demand assignment will be to the closest located facility, the

Wagner–Falkson (W–F) constraint will not without adding constraints that limit

assignment to only sites that have been selected for facility placement:

xij � yj for each i 2 I and each j 2 J ð4Þ

This type of constraint is called a Balinski (1965) constraint. Thus, when solving a

model requiring CA constraints, the form proposed by Rojeski and ReVelle requires

considerably fewer constraints than that proposed by Wagner and Falkson.

A third form of ECA constraint was formulated by Church and Cohon (1976)

when they developed a set of models for locating regional energy facilities. In one

of their formulations, they proposed that perceived safety associated with a nuclear

power plant was a function of the distance to the closest located plant. Maximizing

safety was then based on maximizing the weighted distances that population centers

were from their closest located nuclear power plant. Without ECA constraints, an

optimization model for this problem setting will assign each demand center to their

farthest nuclear facility. However, it is the closest facility that actually creates the

highest negative impact on an inhabitant, and therefore the assignment should

be made to the closest noxious facility. They did this by imposing the following type

of constraint:

X
q2 �Cij

xiq � yj for each i 2 I and each j 2 J ð5Þ

If a given site has been selected for a facility, yj ¼ 1, then this constraint forces an

assignment for demand i to be made that is either to the facility at j or to a closer

facility. Like the Wagner and Falkson ECA constraint, it is necessary to include a

form of the Balinksi constraints (4) for this constraint to work appropriately. If

assignments can be made to only those sites selected for facilities, then the above

type of constraint will force the assignment to be to the closest located facility for

a given demand. It is interesting to note that Hanjoul and Peeters (1987) proposed

the same form of ECA constraints as Church and Cohon for an expanded version

of the Simple Plant Location Problem (SPLP) that incorporated user’s preferences

in assignment, which may or may not be a function of distance or cost. Another

example of a semi-obnoxious facility is that of a fire station, where it is beneficial

to be close but not too close to avoid the noise of sirens, and so on (see Church and

Roberts 1983; Murray et al. 1998). Church and Roberts used the same form of ECA

constraints to ensure that impacts and benefits were appropriately accounted for in

each neighborhood.

In an entirely different setting, Dobson and Karmarkar (1987) investigated the

problem of locating facilities in a competitive environment where a company has

enough resources to locate facilities so that it would be unprofitable for any entering

competing company to establish new facilities. They assumed that customers will
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choose to go to their closest facility. In their model, Dobson and Karmarkar

proposed a fourth type of ECA constraints:

xij þ yq � 1 for each i 2 I ; j 2 J and q 2 Cij ð6Þ

This constraint specifies that demand i cannot assign to a facility at j if a closer site,

q has been selected for a facility. This type of constraint does not prevent an assign-

ment to j if no closer facilities have been located, even when site j has not been

selected. Thus, like the W–F and Church–Cohon constructs, this form also requires

the use of the Balinski constraints (4). It is also important to state that the number of

Dobson–Karmarkar (D–K) constraints is considerably larger than the numbers of

other types of ECA constraints proposed in the literature. Overall, there are four

basic forms of ECA constraints for discrete assignment that have been proposed

in the literature to force CA. Table 1 summarizes each of the constraint forms, which

will be referred to by abbreviation in subsequent sections.

Multilevel CA

It is possible during system operation that a given facility may not be available due

to a variety of circumstances (Daskin 1983). This possibility was first explored

within the p-median problem structure by Weaver and Church (1985) in a problem

dealing with ambulance location. Suppose that ambulances are placed at dispatching

posts across a city. When a call for service is generated, it is common to dispatch the

closest available vehicle as some may be busy handling prior service calls. For

example, suppose that a given demand might be served 70 percent of the time by its

closest ambulance dispatch post, 20 percent of the time by its second closest dispatch

post, and 10 percent of the time by its third closest dispatch post, then it is necessary

to track assignments to not only the closest dispatch post but the second closest post

and the third closest post. To handle such a case, Weaver and Church (1985) formu-

lated the VAPMP, where each demand i has an associated assignment vector, for

example, [0.7, 0.2, 0.1], which represents the fraction of the time that a demand is

served by its first closest facility, second closest facility, and so on. These fractions

(or percentages) may reflect the unavailability of servers or user preferences and

they can be determined from empirical data, by simulation or analytically (Weaver

Table 1. Summary of Existing Explicit Closest Assignment Constraints

Abbreviation Reference
Equation #

in Text
Balinski Type

Constraint Required

R–R Rojeski and ReVelle(1970) 2 No
W–F Wagner and Falkson(1975) 3 Yes
C–C Church and Cohon (1976) 5 Yes
D–K Dobson and Karmarkar (1987) 6 Yes
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and Church 1985). The VAPMP problem is a generalized form of the p-median

problem, where the assumption of CA has been relaxed, and is now represented

by multiple levels of assignment in terms of closest, second closest, and so on.

The construct of multilevel assignment has since been investigated in a number of

applications. Pirkul and Schilling (1989) developed a capacitated maximal covering

model with backup and used two sets of assignment variables, one for primary cov-

erage and one for backup coverage. Narasimhan, Pirkul, and Schilling (1992)

extended the work of Pirkul and Schilling by adding the capability of handling mul-

tiple levels of backup. For example, if the primary facility is unavailable, the user is

then served by the first backup facility, and if the first backup is unavailable, the user

is served by the second backup and so forth. From a different perspective, Snyder

and Daskin (2005) proposed a location model where some facilities may be unreli-

able and not always available and other facilities are always reliable. Suppose for the

sake of explanation that all facilities are unreliable and can fail and be unavailable

for service with a failure probability of q. This would mean that a demand can be

served by its closest facility ð1� qÞ fraction of the time. The probability that the

l � 1 -closest facilities fail can be computed as ql�1. Thus, the chance that a demand

will be served by his or her lth closest unreliable facility is ql�1ð1� qÞ. Snyder and

Daskin incorporated the probabilities of being unavailable into a p-median frame-

work using multiple levels of assignment. The objective was to minimize expected

travel distances or costs.

While locating franchise branches, Kolli and Evans (1999) argued that the frac-

tion of demand from a neighborhood that shops at a specific store depends on geo-

graphic proximity as well as non-geographic factors such as price, economic status,

and travel patterns (e.g., trip chaining, shop on the way home from work, etc.). They

made an assumption that only a certain percentage of customers or all customers a

certain percentage of the time will go to their closest store, at other times they will

travel to a second closest store, and so on. In fact, this is a basic tenet in the gravity

model that has been used for customer assignment in retail location (Huff 1964).

Even though multilevel assignment has been used in a number of location model

constructs, a question left open is how to efficiently enforce these constraints/con-

ditions. The models that have appeared in the literature so far rely on certain prop-

erties of the problem such as the sense of the objective function and the value of

assignment weights, so that explicit constraints are not necessary. For example,

Snyder and Daskin (2005) did not use constraints to enforce multilevel CA when

unreliable facilities fail, as second closest, third CA, and so on, will occur in the

appropriate order as long as the weights or probabilities associated with farther

assignments decreases as the order of closeness increases. This same issue is true for

the VAPMP of Weaver and Church (1985) when the assignment vector values

decrease with increasing closest order (1st, 2nd, 3rd, etc.). Weaver and Church did

acknowledge that when the vector was not monotonically decreasing with increasing

order, explicit constraints are necessary to enforce appropriate order. Although past

346 International Regional Science Review 34(3)

 at PENNSYLVANIA STATE UNIV on May 12, 2016irx.sagepub.comDownloaded from 

http://irx.sagepub.com/


work involving multilevel assignment has focused on cases where ECA constraints

are not necessary, a number of problem settings do exist where explicit constraints

are necessary (e.g., obnoxious, retail, and interdiction), regardless of the probabil-

ities of assignment. For example, consider the simple RIM problem where the objec-

tive is to maximize the total travel distance by interdicting or removing r facilities. In

such a context, the objective function no longer encourages CA without explicit con-

straints (Church, Scaparra, and Middleton 2004). If this problem were cast within a

multilevel assignment context, then constraints would be necessary to enforce CA

for multiple levels of closeness as well. In the next section, we will show how struc-

tures that have been developed to enforce single-level CA can be generalized to

enforce multilevel CA.

Formulating Multilevel CA Constraints

Past research on multilevel assignment has focused on cases where ECA constraints

have not been necessary. For all practical purposes, no workable multilevel ECA

constraints have been proposed. We show here that the four single-level forms can

each be generalized to one or several multilevel forms. Testing of these generalized

forms will be given in a subsequent section. To start, we need to expand our notation

somewhat to address multiple assignment cases:

l ¼ an index that represents the level of CA where l ¼ 1; 2; 3; . . . L

L ¼ the maximum number of levels being considered in the model

xl
ij ¼

1; if demand i assigns to facility j as the lth closest open facility

0; otherwise

�

Consider the basic case where each demand must assign to a set of facilities in order

of closeness. Regardless of the exact model, we need to require a discrete assignment

be made to a facility for each level of closeness. This can be defined as follows:

X
j2J

xl
ij ¼ 1 for each i 2 I and each l ¼ 1; 2; 3; . . . ; L ð7Þ

This type of constraint can be viewed as a general form of constraint (1). We also

need to ensure that a given demand assigns at most once to a specific facility across

all orders. This can be accomplished with the following set of conditions:

XL

l¼1

xl
ij � yj for each i 2 I and each j 2 J ð8Þ

This constraint is a generalized form of the Balinski constraint (5) and ensures that a

given demand assigns to a facility at most once in terms of closeness order (Weaver

and Church 1985). Except for a few cases as noted below, we will assume that these

two constraints are used to require assignment at each level, prevent an assignment
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to only sites chosen for facilities, and prevent a facility from serving a demand for

more than one assignment order.

Generalizing the Rojeski and ReVelle Constraint Form

We can generalize the R–R constraint given in equation (2) into the following form:

xl
ij � yj �

X
q2Cij

yq þ
X
s<l

X
q2Cij

xs
iq �

X
s<l

xs
ij; for each i 2 I ; j 2 J ; ð9Þ

and l ¼ 1; 2; 3; . . . ; L

Constraint (9) forces xl
ij to be 1, that is, j to be the lth closest facility with respect to

demand i, when the following factors are true:

i. a facility is open at site j, that is, yj ¼ 1

ii. all open facilities that are closer than facility j (where the sum
P

q2Cij

yq represents

how many facilities are located closer than j) are matched up exactly by assign-

ments to these closer facilities for assignment levels s where s < l ð
P
s<l

P
q2Cij

xs
iqÞ,

and

iii. demand i has not already been assigned to site j as something closer than the lth

closest open facility (this means that
P
s<l

xs
ij ¼ 0).

It is important to note that the generalized Balinski constraint (8) will prevent

any assignments to site j unless a facility has been located at that site (i.e.,

yj ¼ 1). Constraint (9) itself acts in the same manner for the first closest facility

assignment as the original R–R constraint (2). Consider the case where the first

CA has been made. The constraint forces assignment to the next closest facility as

the second closest, when l ¼ 2 as the right-hand side of the condition will equal

1, which represents the net of: 1� 1þ 1� 0 ¼ 1. This net sum represents the sum

of the location selection variables minus the number of locations selected that are

located closer than this site plus the number of closer assignments that have been

made (up to but not including level l) minus the number of assignments already made

to site j. This net sum will never exceed 1 and will equal 1 only when site j is the 2nd

closest (and in general the lth closest) facility to demand i. Note2, that it is required to

have one constraint for each i; j pair and each level l. We will refer to this generalized

form as R–R13.

It is also possible to generalize the R–R constraint form in a more compact

manner as follows:

XL

l¼1

ðLþ 1� lÞxl
ij � L � yj �

X
q2Cij

yq; for each i 2 I and j 2 J ð10Þ
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Note that this constraint (called R–R2) works with one constraint for all assignment

levels for a given i; j pair. Consider the case when L ¼ 3 for a given demand i and

facility site j:

3x1
ij þ 2x2

ij þ x3
ij � 3yj �

X
q2Cij

yq; for each i 2 I and j 2 J ð11Þ

It is easy to see the above constraint is only effective when yj ¼ 1, otherwise the

left-hand side would at most be zero in value. Let Q ¼
P

q2Cij

yq, the number of open

facilities that are closer than j. Recall that by constraint (8), at most one of the xl
ij can

be 1 over all values of l. When Q ¼ 0, it can be easily verified that only x1
ij can be 1.

When Q ¼ 1, some facility k closer than j must have been assigned as the first

closest, that is, x1
ik ¼ 1. By assignment constraint (7), j cannot be another first closest

facility, thus x1
ij ¼ 0. So, the constraint nicely reduces to (given yj ¼ 1and j is not the

first closest site):

2x2
ij þ x3

ij � 3yj � 1 ¼ 2 ð12Þ

So, if j is the second closest site, then the above constraint would then force x2
ij ¼ 1.

Similarly, when Q ¼ 2, there must have been some facilities k and t, such that

x1
ik ¼ 1 and x2

it ¼ 1. Again, only x3
ij can equal 1 as demand i has already assigned

to its first and second closest sites. The effective form of the constraint reduces to

x3
ij � 3yj � 2 which forces x3

ij ¼ 1 when yj ¼ 1. The nice advantage of this second

form is that it requires only one constraint for each i; j pair, which is L times smaller

than the form of R–R1.

There is a third alternative in which to generalize the R–R constraints for a multi-

level CA problem. This can be accomplished as a cascading set of constraints similar

to R–R2 (10) for all values of l from 1 to L:

Xl

s¼1

ðl þ 1� sÞ � xs
ij � l � yj �

X
q2Cij

yq; for each i 2 I ; j 2 J and l ¼ 1; 2; 3; . . . ; L ð13Þ

This will be designated as the R–R3 form. As an example to help demonstrate how

such constraints work, consider the above constraint form written for cases l ¼ 1, 2,

and 3 as follows:

x1
ij � yj �

X
q2Cij

yq; for each i 2 I and each j 2 J ð13aÞ

2x1
ij þ x2

ij � 2yj �
X
q2Cij

yq; for each i 2 I and j 2 J ð13bÞ

3x1
ij þ 2x2

ij þ x3
ij � 3yj �

X
q2Cij

yq; for each i 2 I and j 2 J ð13cÞ
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Consider for any given set of open facilities F ¼ fjjyj ¼ 1; j 2 Jg, the first

constraint (13a) will ensure that the first closest facility j will force x1
ij � 1. If j is

the closest site and x1
ij ¼ 1, then all higher ordered conditions (13b) and (13c) will

automatically be met for site j. This is due to the fact that the coefficient for the vari-

able x1
ij is large enough to satisfy conditions (13b) and (13c) when x1

ij ¼ 1. By con-

straint (7), all other facilities k that are not the closest to i will have a first CA of

x1
ik ¼ 0. Let us suppose that site j is the second closest facility to demand i. Then

yj ¼ 1 and
P

q2Cij

yq ¼ 1. Note that constraint (13a) will have a right-hand side value

of 0, so there is no requirement on first CA. Also note, the assignment constraint (7)

restricts the number of first CAs to be only one, so x1
ij must be zero. Thus, the remain-

ing conditions boil down to:

x2
ij � 2yj �

X
q2Cij

yq ð13b0Þ

2x2
ij þ x3

ij � 3yj �
X
q2Cij

yq ð13c0Þ

Then constraint (13b0) boils down to x2
ij � 1 as the right-hand side will equal

2� 1 ¼ 1. The minus 1 is associated with the subtraction of the sum of facilities that

have been sited which are closer than j is to demand i. Equation (13c0) will be met

when x2
ij ¼ 1. Thus, if site j is the second closest, the constraints will force a second

CA to j. The logic is similar in showing that if site j is the third closest site; then

condition () will force as (13a) and (13b) will be met by the previously constrained

first and second CAs. Thus, the ‘‘cascading set’’ of constraints will force a demand to

assign to facilities in order of first closest, second closest, third closest, and so on.

Obviously, this cascading set (13) has L times more ECA constraints than constraint

(10). But the reward is that this reduction does not rely on the existence of the gen-

eralized Balinski constraint (8).

As discussed in Gerrard and Church (1996), when the original R–R ECA con-

straint (2) is used with assignment constraint (1), Balinski constraints (4) are redun-

dant. In a similar fashion, it is easy to show that if we use the cascaded form (13),

constraint (8) becomes redundant. It can also be verified that the R–R1 constraint

set (9) can also be combined with the assignment constraint (7) to force xl
ij � 1 with-

out needing constraint (8) to prevent an assignment to a location that has not been

selected for a facility.

It is well known that Balinski constraints are integer friendly. While adding them

increases the size of the model, they sometimes improve the integer friendliness for

the whole model when using a general purpose integer programming software pack-

age. Another property of ECA constraints discussed by Gerrard and Church (1996) is
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whether the constraint automatically forces the assignment variable to be 0, 1

integer. It is not difficult to verify that constraints (9), (10), and (13) force xl
ij � 1

for the appropriate facilities and that the generalized assignment constraint (7) forces

other xl
ik to be 0. Therefore, the generalized constraints (9), (10), and (13) also

enforce full assignment.

Generalizing the Wagner and Falkson Constraint Form

The original W–F ECA constraint (3) basically prevented assignments farther than a

sited facility to a given demand. Since the constraint associated with the closest

facility to a given demand prevented assignments to any site that was farther than

this closest facility, and since Balinski constraints (4) were included, assignment

would be forced to the closest facility. This type of property can be generalized

as follows:X
q2Cij

yq þM �
X
q=2Cij

xl
iq � M þ l � 1 for each i 2 I ; j 2 J ; and for l ¼ 1; 2; 3; . . . ; L

ð14Þ

where M is a sufficiently large number (e.g., M ¼ Cij

�� ��). Similar in principle to

original W–F constraint, this generalized constraint (14) states that if l or more

facilities are already located closer than or equidistant with j to demand i, any

site beyond j cannot be assigned as the lth closest facility. Here the generalized

Balinski constraints (8) are needed to ensure that an assignment is made to

only those sites selected for facilities. What is important to realize is that for

each value of l, the most restrictive constraint for demand i is associated with the

lth closest facility to that demand. Such a restriction, in concert with constraints

(7) and (8) force the lth CA to the lth closest facility. One should recognize

that these constraints may not be very ‘‘integer friendly,’’ since the value of

M may tend to yield fractional assignments in the relaxed problem, which might

require that branch and bound be used to a greater extent in solving a problem with

IP software.

Generalizing the Church and Cohon (C–C) Constraint Form

The C–C constraint (5) is based on the premise that either an assignment of demand

i must be made to a facility sited at j or that the assignment is made to a facility that is

even closer. The most constraining factor for a given demand will occur associated

with the closest facility to that demand. Again, Balinski constraints are needed to

ensure that assignments are made only to those sites selected for facilities. One can

think of the W–F and C–C constraints as being opposites: one forces assignment of a

demand to a site that is as close or closer to a given facility and the other prevents
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assignments that are farther away than a given located facility. We can generalize the

Church-Cohon ECA constraints as follows:X
q2Cij

xl
iq þ ðxl�1

ij þ . . .þ x1
ijÞ � yjfor each i 2 I ; j 2 J and each l ¼ 1; 2; 3; . . . ; L

ð15Þ

This constraint ensures that if a facility is located at j and j is not the

1st; 2nd; . . . ; ðl � 1Þst
closest facility, then either j or some site closer than j is the

lth closest. Observe that Balinski constraints (8) are needed to prevent the assign-

ment of demand i to sites in Cij that have not been selected for facility placement.

Generalizing the Dobson and Karmarkar Constraint Form

The original Dobson and Karmarkar (1987) constraints (6) were based on a ‘‘pair-

wise’’ property: either an assignment could be made for demand i to a facility at site

j or a facility had been located at site q, which was closer to i than j. The D–K con-

straints can be generalized as follows:X
q2Cij

yq þM � xl
ij � M þ l � 1 for each i 2 I ; j 2 J and each l ¼ 1; 2; 3; . . . ; L ð16Þ

where M is a sufficiently large number (e.g., M ¼ jCijj). Constraint (16) sates that if l

facilities have been located between demand i and site j, then demand i cannot assign

to site j as the lth closest facility assignment.

Gerrard and Church (1996) presented a detailed review of single-level CA con-

straints and the properties of each ECA constraint form. From the previous discus-

sion, we can see that many of the properties of single-level ECA constraints

discussed in Gerrard and Church extend to multilevel forms. For the ease of compar-

ison, detailed results similar to those in Gerrard and Church (1996) are summarized

below in Table 2.

Table 2. Properties of the Generalized Multilevel Explicit Closest Assignment (ECA)
Constraints

Generalization # of Constraints
PL
l¼1

xl
ij � yj Necessary xl

ij Always 0,1

R–R1 (9) L � n2 No Yes

R–R2 (10) (non-cascaded) n2 Yes Yes

R–R3 (13) (cascaded) L � n2 No Yes

W–F (14) L � n2 Yes No

C–C (15) L � n2 Yes Yes

D–K (16) L � n2 Yes No
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The r-Interdiction Vector Assignment Location (RIVAL)
Problem

In this section, we present an application that requires multilevel ECA

constraints. This application allows us to test the efficacy of the generalized mul-

tilevel ECA constraints that were developed in the last section. Although there are

several possible problems in which we can test the multilevel ECA constraints,

including the general form of VAPMP, we have chosen as a candidate a general

form of the RIM problem (see Church, Scaparra, and Middleton 2004; Church

and Scaparra 2007; Scaparra and Church 2008). The RIM problem is defined as

follows:

Identify the set of r facilities that, if removed from a system of p facilities, results in the

highest level of weighted distance, assuming that each demand is served by their clo-

sest remaining facility.

The major difference between an RIM problem and a p-median problem is that the

p-median problem involves designing an efficient system whereas the interdiction

problem involves maximally disrupting a system (in short minimize weighted

distance by locating p facilities vs. maximize weighted distance by removing

r facilities). For the RIM problem, ECA constraints are necessary. If ECA con-

straints are not used a model will assign each user to the farthest facility possible

rather than the closest open facility after interdiction. Suppose that on the average,

a demand is served by its closest facility 80 percent of the time and a second

closest facility 20 percent of the time or some other set of percentages to closest

facility, second closest, and so on. To address this within the context of interdic-

tion, we can extend the RIM problem definition to include multilevel assignments

as follows:

Identify the set of r facilities that, if removed from a system of p facilities, results in the

highest level of weighted distance, assuming that each demand is served by their clo-

sest remaining facility a certain percentage of the time, by its second closest remaining

facility a certain percentage of the time, and so on.

We will call this the RIVAL problem. To formulate the RIVAL problem, we need to

introduce some additional notation:

ai ¼ a measure of demand at i

bil ¼ the fraction of time that demand at i will travel to or be served by their lth

closest Facility

dij ¼ the distance between demand i and facility j.

F ¼ the set of existing facilities.

�yj ¼
1; if site j remains after interdiction

0; otherwise

�
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We can then define the RIVAL model as follows:

Max Z ¼
XL

l¼1

X
i2I

X
j2F

ai dij bil xl
ij ð17Þ

Subject to:X
j2F

xl
ij ¼ 1 for each i 2 I and each l ¼ 1; 2; 3; . . . ; L ð18Þ

X
j2F

�yj ¼ p� r ð19Þ

plus constraints that ensure multilevel CA.

The objective function maximizes the total weighted distance after interdiction

assuming that each demand will be served a certain fraction of the time by their

closest remaining facility, a certain fraction of the time by their second closest

remaining facility, and so on. If r facilities are interdicted, then p� r facilities

remain after interdiction. Here the problem is posed in terms of which p� r facilities

should be left open instead of which r facilities are to be removed to disrupt weighted

distance the most. The first constraint (18) is the assignment constraint, which

ensures that each demand assigns to a facility for each level of closeness. The second

constraint (19) states that only p� r facilities will remain after interdiction. Finally,

it is necessary to append to this formulation multilevel ECA constraints. We can

potentially use any of the multilevel ECA constraints presented in Table 2 (including

generalized Balinski constraints (8) when needed). Since the �yj is essentially a loca-

tion selection variable (identifying those sites kept open), all of the constraints in the

previous section can be employed using the �yj variable instead of a yj variable with-

out any loss of generality.

One caveat in using the generalized Balinski constraint (8) is worth attention. In

general, constraint (8) is required for most multilevel assignment location problems

to prevent a demand from being assigned to an unopened facility. For example, if the

Balinski constraint is removed in solving the vector assignment p-median location

problem, the generalized C–C constraint (15) may well allow demand i to assign

to an unopened facility that is closer than j. In fact, the objective of the vector assign-

ment median problem will encourage the closest possible assignments, even to sites

not selected for facilities unless constraints (8) are used. However, in the RIVAL

problem, the objective function encourages assignments to the farthest possible

facilities. Therefore, assignments to closer but unopened facilities are discouraged

and will not occur in an optimal solution to a RIVAL model. In addition, more than

one multilevel assignment to a given facility will not occur, even without the

Balinski constraint (8), because total weighted distance will be higher by not doing
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so for the RIVAL problem. Therefore, Balinski constraints (8) can be omitted and

the model will still be able to force the demand to assign to the correct facility. It

should be noted that when distance ties are present in the data set for a given

demand, the model, without Balinski constraints, may erroneously assign a demand

to an unopened but equidistant facility. In this case, the model will compute the cor-

rect objective function value but may assign to unopened facilities. Unless otherwise

stated, model results in the next section will be based on using both ECA and gen-

eralized Balinski constraints.

Computational Experiments

In this section, we will investigate the efficacy of the six generalized multilevel ECA

constraint forms in solving the RIVAL problem. We believe that these experiments

will not only demonstrate which type of multilevel ECA constraint performs best in

solving the RIVAL problem, but that it will help identify which form of the multi-

level ECA constraint is likely to outperform the others when used on other problems

that require multilevel ECA constraints.

We tested RIVAL under a variety of parameter settings. The model was imple-

mented in ILOG OPL 5.5 and CPLEX11, and run on an Intel 2.0GHz Xeon CPU

with 5Gbytes of memory. All models were implemented according to (17)–(19) plus

a specific generalized ECA constraint. In addition, the assignment variables, xl
ij, are

constrained to be integer (i.e., zero-one) only when the ECA constraints do not force

full assignment (as noted in the last column of Table 2). We used two data sets in our

experiments. The first is a forty-nine city data set comprised of the biggest city

(based on population) in each state of the contiguous forty-eight states, plus

Washington, DC (Figure 2 and Appendix). The demand weight of each city is given

as the population according to U.S. Census. Intercity Euclidean distances were esti-

mated in km. on a contiguous U.S. conic-equidistant projection (using ESRI ArcGIS

9.3 software). The second data set is comprised of 150 U.S. cities taken from a data

set used by Scaparra, Liberatore, and Daskin (2008).

We solved the RIVAL model on both data sets for a range of r varying from 1 to

7, and with two different assignment vectors of [0.7, 0.2, 0.1] and [0.6, 0.4]. The

existing facilities for both problem sets ranged from 10 to 25 and were selected

by solving a vector assignment median model with the same assignment vector.

Most of the results given here are confined to the p ¼ 15 case to keep the number

of tables to a manageable level and size and since the computational trends associ-

ated with the p ¼ 15 results are representative of the other tests. For the vector

assignment median problem, each city served as both a demand and a potential

facility site. Each RIVAL problem associated with a specific assignment vector and

r value was solved six times, one for each of the ECA generalizations. The running

statistics for the RIVAL model tests on the forty-nine city data set are given in

Tables 3 and 4. Table 3 presents the RIVAL problem using the assignment vector
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of [0.7, 0.2, 0.1] and Table 4 presents computational results for the assignment

vector of [0.6, 0.4]

From the above tables, we can see with few exceptions that the R–R2 generaliza-

tion is faster than other ECA formulations and the R–R1, R–R3, and C–C multilevel

generalizations are somewhat close to the R–R2 in computation time. The other two

generalized forms, W–F and D-K, are notably more difficult to solve, especially for

r values exceeding 4 where computation times were between 8 and 20 times longer

than the R–R2 model form. In addition, note that the W–F and D-K constraint forms

require integer restrictions on the xl
ij variable when solving RIVAL and these addi-

tional conditions may be responsible for the increase in running times. Comparing

across Tables 3 and 4, one can see that solving with an assignment vector of [0.7,

0.2, 0.1] takes more time than solving problems with an assignment vector of

[0.6, 0.4]. This is quite likely due to the fact that the three component problem has

Table 3. Computational Times in Solving RIVAL on the Forty-Nine City Data Set with
Assignment Vector [0.7, 0.2, 0.1] and p ¼ 15

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 7.6681436e9 0.25 0.06 0.19 0.25 0.06 0.56
2 9.539833e9 1.11 1.03 1.58 20.55 14.56 1.81
3 1.555025e10 1.28 1.22 2.18 11.76 16.08 1.61
4 1.8379373e10 2.07 1.51 3.65 19.94 62.77 1.61
5 2.10066e10 3.92 2.82 5.77 29.13 78.27 2.53
6 2.55659e10 4.04 3.68 5.79 126.75 83.91 4.07
7 3.1855745e10 3.18 2.70 5.10 67.67 33.10 3.07
Ave. n/a 2.26 1.86 3.46 39.43 41.25 2.18

Note: The column for each form of explicit closest assignment (ECA) gives the computation times in sec-
onds. The average time for a given constraint structure is given in the row labeled Ave.

Table 4. Computational Times in Solving RIVAL on the Forty-Nine City Data Set with
Assignment Vector [0.6, 0.4] and p ¼ 15

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 9.392304e9 0.11 0.05 0.11 0.14 0.05 0.16
2 1.5861786e10 0.34 0.25 0.39 1.28 1.75 0.62
3 1.9176632e10 0.45 0.40 0.50 6.79 5.21 0.69
4 2.0995402e10 0.75 0.76 0.95 6.68 10.31 1.04
5 2.5832415e10 0.89 0.77 1.12 11.25 12.00 1.03
6 3.1648756e10 0.92 0.87 1.17 10.14 21.45 1.03
7 3.5090354e10 1.14 1.19 1.40 12.20 17.16 1.22
Ave. n/a 0.66 0.616 0.806 6.926 9.706 0.82

Note: The column for each form of explicit closest assignment (ECA) gives the computation times in
seconds. The average time for a given constraint structure is given in the row labeled Ave.
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an addition level as compared to the two component one, as more levels require

more variables and constraints in general (except for R–R2).

To see how the formulations scale up in terms of problem size, we also solved the

RIVAL model on the larger 150 city data set. We used the same two assignment

vectors. The running times are shown in Tables 5 and 6 for the fifteen facility problem.

From Tables 5 and 6, we can observe that the generalized ECA constraints of

C–C, R–R1, R–R2, and R–R3 tend to outperform the generalized D–K and W–F

ECA constraints for the larger problem as well. Within the former group, the

generalized C–C constraints appear to yield faster times on the average than the

generalized R–R constraints. Up to this point, we have presented results for only

fifteen facilities. As another example in demonstrating the efficacy of each con-

straint form, Table 7 presents results for the p ¼ 25 case on the 150 node problem

Table 5. Computational Times in Solving RIVAL on the 150 City Data Set with Assignment
Vector [0.7, 0.2, 0.1] and p ¼ 15

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 1.1585537e10 1.81 0.39 1.53 1.73 0.44 4.31
2 1.4164068e10 8.21 7.78 14.52 215.80 195.72 17.68
3 1.861333e10 12.18 12.34 24.49 223.78 156.84 17.69
4 2.5777545e10 14.38 24.17 39.84 164.00 189.57 25.57
5 3.1364794e10 26.19 23.07 51.04 126.80 359.07 28.56
6 3.4557084e10 32.32 69.59 113.40 1821.70 4029.27 24.57
7 3.9903592e10 81.78 180.81 309.52 860.94 2661.41 47.55
Ave. n/a 25.26 45.45 79.19 487.82 1084.61 23.704

Note: The column for each form of explicit closest assignment (ECA) gives the computation time in
seconds. The average time for a given constraint structure is given in the row labeled Ave.

Table 6. Computational Times in Solving RIVAL on the 150 City Data Set with Assignment
Vector [0.6, 0.4] and p ¼ 15

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 1.2970882e10 0.81 0.27 0.72 0.91 0.25 1.40
2 1.8062303e10 2.67 2.43 3.73 27.08 20.75 5.54
3 2.0889012e10 4.43 4.55 6.41 39.23 51.54 4.79
4 2.4546777e10 6.66 7.93 11.62 146.78 88.39 10.19
5 3.0709574e10 8.38 10.94 17.16 67.16 217.67 10.64
6 3.7794513e10 11.29 12.64 21.68 115.07 205.31 8.97
7 4.1446834e10 41.78 35.07 47.46 105.43 550.76 11.76
Ave. n/a 10.86 10.55 15.54 71.66 162.09 7.61

Note: The column for each form of explicit closest assignment (ECA) gives the computational times in
seconds. The average time for a given constraint structure is given in the row labeled Ave.
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using the assignment vector [0.7, 0.2, 0.1]. In Table 7, we can see that R–R1, R–R2,

R–R3, and C–C outperform W–F and D–K. Furthermore, we can see that the C–C

constraint tends to outperform R–R1, R–R2, and R–R3 for higher values of r, which

is basically the same trend that can be observed in Tables 5 and 6. Overall, the C–C

advantage tends to increase with increasing problem size, increasing values of r, and

increasing values of p; however, R–R1, R–R2, and R–R3 are usually competitive

with C–C for small values of r.

Past work has shown that Balinski constraints are integer friendly and may help

tighten a location model (Morris 1978; ReVelle 1993). To investigate the effect of the

trade-off between adding ‘‘integer friendly conditions’’ at the expense of adding redun-

dant constraints, we solved the RIVAL model for each of the formulations without the

generalized Balinski constraints (8) on the 150 city data set where the assignment vec-

tor is [0.7, 0.2, 0.1]. The results are shown in Table 8 for the fifteen facility problem.

Comparing Table 8 with Table 5, we can observe that without the generalized

Balinski constraints, the running times when using the R–R1, R–R2, R–R3, and

C–C constraints are actually shorter in general. However, the running time for the gen-

eralized W–F and D–K constraints are significantly longer and in many instances take

longer than the 3-hour time limit we set for solving any specific problem. This suggests

that the former group of generalized constraint formulations are already relatively

‘‘tight’’ and that the Balinski constraint does not appreciably help in speeding up the

solution process while for the latter group (W–F and D–K) generalized Balinski con-

straints assist in significantly reducing overall computational times in solving RIVAL.

Next, we investigated the solutions on the forty-nine city data set to get a deeper

understanding of the characteristics of the RIVAL model. In Tables 9 and 10, we list

the main characteristics of each of the solutions generated for the forty-nine city data

set. Table 9 presents the solutions for the assignment vector of [0.7, 0.2, 0.1] and

Table 7. Computational Times in Solving RIVAL on the 150 City Data Set with Assignment
Vector [0.7, 0.2, 0.1] and p ¼ 25

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 7.5659433e9 4.91 0.87 3.95 2.25 0.22 31.67
2 8.549814e9 32.34 24.35 54.04 1115.13 311.88 63.04
3 1.0970256e10 49.55 78.84 166.05 1536.30 2,443.18 86.75
4 1.3565471e10 137.91 115.18 240.13 798.19 6,172.30 116.50
5 1.4777703e10 254.45 256.28 539.40 3,830.28 10,800.1* 115.02
6 1.7277186e10 470.56 406.18 813.17 2617.81 10,800.2* 140.25
7 2.0427323e10 581.29 445.88 1142.32 3758.50 10,800.1* 245.66
Ave. n/a 218.72 189.65 422.72 1951.21 5,904.01 114.13

Note. The column for each form of explicit closest assignment (ECA) gives the computational times in
seconds. The existing facility configuration is [1, 2, 3, 4, 5, 6, 7, 8, 12, 14, 16, 23, 26, 32, 35, 40, 52, 55,
56, 70, 83, 98, 115, 129, and 145]. The cells with * indicates that the optimal solution had not been found
within the time limit; the average time for a given constraint structure is given in the row labeled Ave.
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Table 10 presents the solutions for the assignment vector of [0.6, 0.4]. For each

interdiction value of r ¼ 0,1,2, . . . ,7, we give the objective value as well as present

lists of which sites are open and which sites are closed. Note that the case of r ¼ 0

represents the base set of facilities before interdiction. Table 9 indicates that the base

case of weighted distance before any interdiction is approximately 6.14 billion

(people-kilometers) and for the case of r¼ 3, sites 41, 42, and 43 are interdicted with

a weighted distance of over 15 billion (people-kilometers).

Figure 1 presents a plot of the solutions in Tables 9 and 10 in terms of weighted

distance versus the level of interdiction, r. It is interesting to note that even though

weighted distance increases with each successive strike, the marginal level of

increases tends to fluctuate. For example, the r ¼ 3 solution for [0.7, 0.2, 0.1] has a

higher average weighted distance per interdicted facility than the r¼ 2 solution (notice

the abrupt change in slopes between segments r ¼ 1 to r ¼ 2 and r ¼ 2 to r ¼ 3).

Table 8. Computational Times in Solving RIVAL on the 150 City Data Set without Balinski
Constraints with Assignment Vector [0.7, 0.2, 0.1] and p ¼ 15

r Objective R–R1 R–R2 R–R3 W–F D–K C–C

1 1.1585537e10 1.14 0.20 0.91 0.47 0.08 13.28
2 1.4164068e10 6.86 2.62 10.61 983.17 6,901.80 16.25
3 1.861333e10 10.61 5.38 22.73 6,581.09 4,234.01 19.20
4 2.5777545e10 12.37 21.25 17.18 2,615.82 10,800.01* 27.97
5 3.1364794e10 17.18 38.06 32.79 10,800.04* 2,759.81 20.30
6 3.4557084e10 26.63 44.54 64.71 10,800.04* 10,800.04* 24.88
7 3.9903592e10 51.31 78.87 86.35 10,800.01* 10,800.11* 25.26
Ave. n/a 18.01 27.27 33.61 6,082.95 6,613.69 21.02

Note: The column for each form of explicit closest assignment (ECA) gives the computational times in
seconds. The cells with *indicate that the optimal solution had not been found within the time limit; The
average time for a given constraint structure is given in the row labeled Ave.

Table 9. Site Selections for the Forty-Nine City Data Set with Assignment Vector [0.7, 0.2,
0.1] and p ¼ 15

r Open Sites Closed Sites Objective

0* 1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 None 6.1428756e9
1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 1 7.6681436e9
2 2 7 9 14 15 20 25 30 31 36 41 42 43 1 3 9.539833e9
3 1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 1.555025e10
4 1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 1.8379373e10
5 1 2 3 7 9 14 15 20 25 31 30 36 41 42 43 2.10066e10
6 1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 2.55659e10
7 1 2 3 7 9 14 15 20 25 30 31 36 41 42 43 3.1855745e10

Note: r ¼ 0, represents the no interdiction case, that is, the original vector assignment median solution
for the associated assignment vector of [0.7, 0.2, 0.1].
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To understand the spatial interplay between different solutions, we have chosen to

plot three of the patterns in Figures 2–4 taken from Tables 9 and 10. In each figure,

cities are depicted as a dot along with the city names. Cities that house facilities are

depicted with triangles and cities with interdicted facilities are depicted with squares.

Figure 2 depicts an optimal RIVAL solution for the forty-nine city data set with the

assignment vector [0.7, 0.2, 0.1] where two facilities are interdicted out of fifteen

existing locations. As the figure shows, Los Angeles and Las Vegas in the Southwest

are interdicted while none of the sites in the East and Midwest are interdicted. This is

probably due to the fact that there is a denser cluster of existing facilities in the North-

east and interdicting a portion of the Northeast facilities does not affect weighted dis-

tance as much as interdicting two of the three facilities in the Southwest. The tables

turn when the interdiction resources are increased to three as the optimal RIVAL solu-

tion for three is concentrated on the dense northeast cluster of facilities and abandons

the facilities that were selected in the southwest for the r ¼ 1 and r ¼ 2 patterns.

Figure 3 shows a more intense interdiction involving the same data set as Figure

2, where seven facilities have been interdicted instead of two. Figure 3 shows that

when interdiction resources are increased to seven, the optimal interdiction pattern

is concentrated principally in the Midwest and Northeast with one city in the South

(Atlanta). Virtually all existing facilities in the Northeast region are interdicted,

leaving a number of high populated cities, for example, New York, served at great

distances. In fact, in all the solutions for r ¼ 1, . . . , 7, interdiction either happens in

the western half (for r ¼ 1, 2) or in the eastern half (for r > 2) but never both at the

same time. This makes sense because the population is somewhat divided between

the East and the West. Concentrating interdiction resources on one of these two

regions will effectively leave the closest open facility for a large populated region

to be at a great distance away.

Figure 4 depicts the optimal interdiction pattern for r¼ 2 and b¼ [0.6, 0.4]. Note

that in this example, the set of existing facilities is different than that given in Figures

Table 10. Site Selections for the Forty-Nine City Data Set with Assignment Vector [0.6, 0.4]
and p ¼ 15

r Open Sites Closed Sites Objective

0 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 None 6.1980856e9
1 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 9.392304e9
2 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 1.5861786e10
3 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 1.9176632e10
4 1 2 3 5 7 9 14 15 20 25 33 31 35 42 43 2.0995402e10
5 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 2.5832415e10
6 1 2 3 5 7 9 14 15 20 25 31 33 35 42 43 3.1648756e10
7 1 2 3 5 7 9 14 20 15 25 31 33 35 42 43 3.5090354e10

Note: r ¼ 0, represents the no interdiction case, that is, the original vector assignment median solution
for the associated assignment vector of [0.6, 0.4].
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2 and 3 because they were based on a different assignment vector. Observe that only

two facilities instead of three are located near New York in contrast with the pattern

given in Figure 2. Consequently, the optimal r¼ 2 interdiction pattern is also differ-

ent. With fewer existing facilities near New York, it then becomes an effective area

to strike even when the resources for interdiction are low. Actually, all optimal pat-

terns for b ¼ [0.6, 0.4] concentrate interdiction in the eastern half of the United

States. The results of the RIVAL model indicate that the solutions are sensitive to

the assignment vector values. Thus, it is reasonable to assume that interdiction may

be sensitive to different logistics protocols as well.

Summary and Conclusions

This article presents a detailed background on constraints that have been proposed to

force CA in a number of different location model settings, including budget con-

strained problems, competitive facilities location, obnoxious/noxious facilities loca-

tion, and facility interdiction. We have also reviewed developments where

Figure 1. Total weighted distance versus number of facilities interdicted.
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Figure 2. The RIVAL solution with r ¼ 2, and assignment vector b ¼ [0.7,0.2,0.1].

Figure 3. The RIVAL solution with r ¼ 7, and assignment vector b ¼ [0.7, 0.2, 0.1].
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assignments to facilities other than the closest need to be considered (called

multilevel assignment, in terms of the order of closest facilities). Even though there

are a number of cases where multilevel ECA constraints are necessary, past work has

completely overlooked this need or concentrated on specific problem cases where

explicit CA constraints are not required. The main objective of this article was to

show how single-level constraint structures can be generalized to a multilevel form.

We also presented a new general form of a location interdiction problem which

requires the use of multilevel ECA constraints (called RIVAL). We used the RIVAL

model to test the efficacy of the six different generalized forms of multilevel ECA

constraints. Although virtually all constraint forms, when used in conjunction with

generalized Balinski constraints could be solved in a reasonable amount of compu-

tational effort, the generalized constraints based on single-level constraints of

Rojeski and ReVelle (1970) and Church and Cohon (1976) are clearly more efficient

in solving the RIVAL problem. We expect that the use of these constraints in other

multilevel assignment/location-allocation model settings will have similar and com-

parable results. For the largest problems, it should be noted that the generalized form

of Church and Cohon appeared to stand out as the best constraint form. Overall, we

have expanded the application domain for multilevel CA location models by propos-

ing constraints that are effective in forcing multilevel CA. There are a number of

location problems (e.g., franchise, noxious, and unreliable) that should be reviewed

within the context of this work and a logical next step is to apply this modeling

framework in vulnerability analysis.

Figure 4. The optimal RIVAL solution with r ¼ 2 and assignment vector of b ¼ [0.6, 0.4].
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The RIVAL model is a new location interdiction-based construct, which can be

used for analyzing worst case circumstances in the loss of one or more facilities. This

model is appropriate for systems that do not adhere to CA in operation and is based

on relaxing the CA assumptions of the r-interdiction problem of Church, Scaparra,

and Middleton (2004).

Appendix
The Forty-Nine City Data Set

ID X Y City Population Name

1 �2,043,462.893 �290,066.7787 3,485,398 Los Angeles
2 �1,483,679.242 �474,513.6537 983,403 Phoenix
3 �1,708,838.126 �129,378.6687 258,295 Las Vegas
4 �963,415.4015 �374,720.6983 384,736 Albuquerque
5 �2,054,846.435 1,028,692.267 437,319 Portland
6 �1,331,227.857 313,885.4926 159,936 Salt Lake City
7 59,699.7336 �1,023,804.44 1,630,553 Houston
8 �1,615,855.854 691,515.5401 125,738 Boise
9 �1,965,920.403 1,243,843.692 516,259 Seattle
10 �754,974.9423 122,022.2354 467,610 Denver
11 �136,921.4531 �390,951.4457 444,719 Oklahoma City
12 �733,439.8643 273,601.9657 50,008 Cheyenne
13 588,338.6587 �971,488.5205 496,938 New Orleans
14 �117,844.8259 �144,838.7678 304,011 Wichita
15 545,728.8432 �723,760.4974 196,637 Jackson
16 �973,510.3521 821,416.347 81,151 Billings
17 332,983.5045 �468,041.1579 175,795 Little Rock
18 544,318.6218 �414,296.5325 610,337 Memphis
19 124,509.0271 14,567.1828 435,146 Kansas City
20 �1,003.7491 251,377.1036 335,795 Omaha
21 852,490.3108 �564,177.4582 265,968 Birmingham
22 �58,887.0268 504,908.5823 100,814 Sioux Falls
23 197,754.3258 288,703.4888 193,187 Des Moines
24 1,381,114.824 �852,460.7801 635,230 Jacksonville
25 1,068,336.078 �513,232.8859 394,017 Atlanta
26 �62,585.588 875,304.4698 74,111 Fargo
27 891,637.4098 �35,852.6093 269,063 Louisville
28 215,577.1279 665,426.8201 368,383 Minneapolis
29 1,386,966.571 �435,292.9495 98,052 Columbia
30 837,998.6639 131,515.3329 731,327 Indianapolis
31 686,693.8746 346,361.0187 2,783,726 Chicago
32 1,370,412.553 �307,779.8474 395,934 Charlotte
33 651,509.6186 479,965.5594 628,088 Milwaukee
34 1,244,199.831 26,132.0034 57,287 Charleston

(continued)
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(continued)

ID X Y City Population Name

35 1,101,682.07 188,526.8383 632,910 Columbus
36 1,054,549.574 450,379.0274 1,027,974 Detroit
37 1,760,118.359 �57,565.1668 393,069 Virginia Beach
38 1,625,946.31 159,300.9441 606,900 Washington
39 1,650,892.104 209,552.7069 736,014 Baltimore
40 1,730,655.215 276,711.0674 71,529 Wilmington
41 1,756,665.486 313,615.8226 1,585,577 Philadelphia
42 1,817,214.993 409,929.3886 275,221 Newark
43 1,837,386.41 408,669.6128 7,322,564 New York
44 1,884,194.951 479,558.2791 141,686 Bridgeport
45 2,008,746.41 585,703.4695 160,728 Providence
46 1,791,132 834,350.9786 39,127 Burlington
47 2,021,428.629 650,526.3755 574,283 Boston
48 1,972,416.516 709,536.5859 99,567 Manchester
49 2,044,297.453 807,365.9802 64,358 Portland
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Notes
1. Technically, a proposed ECA constraint can be found in Weaver and Church (1985); how-

ever, it was incomplete and does not apply to general multilevel assignment problems.

2. It should be recognized here that all estimates given are upper limits on the number of con-

straints necessary to enforce CA, as some constraints can be eliminated as not being appli-

cable or redundant. For example, the absolute closest site to a given demand will never be a

candidate for a second CA for that demand. That is, the absolute closest site will either be

selected for a facility and then must be assigned to as a first closest or not selected and not

assigned to. Thus, the number of constraints pertaining to the closest site will be associated

with the first level, not other levels. Similar reductions are possible for the absolute second
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closest site, and so on, but in general, these reductions are somewhat small in terms of the

overall size of the problem for a given set size of I, J, and number of levels L.

3. Some of the generalized constraint forms in this section were presented by Richard Church

at the 2008 NARSC Conference, New York, NY.
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