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Abstract

Recently we developed a theory for fast flows of entangled polymer melts which includes the processes of
reptation, convective and reptation-driven constraint release, chain stretch and contour length fluctuations. The
theory is derived from a stochastic microscopic equation of motion of the chain inside the tube and of the tube itself.
As a result we obtain a partial differential equation for the tube tangent correlation function, the solution of which
requires quite intensive calculations. At the same time the application of this theory to realistic flows (which is
anything other than the laboratory rheometer) requires a simple and less computationally intensive set of equations
for the stress tensor similar to the Giesekus, PTT, Larson or Pom—Pom equations. In particular, the last was derived
from molecular theory for a generic type of branched polymer. In this paper we demonstrate that molecular tube
theory can also provide a route to constructing a family of very simple differential constitutive equations for linear
polymers. They capture the full model quite well and therefore can be used in flow solving software to model
spatially inhomogeneous flows. We present a comparison of the proposed equations with our full model and with
experimental data.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of entangled polymer melts are described most successfully by the tube model of Doi
and Edward$1]. In this theory the main mechanism or stress relaxation in the linear regime is assumed
to be reptation out of the original tube. Important additional mechanisms, such as the self-consistent
constraint release (CR) and contour length fluctuations (CLF), make significant, though sub-dominant,
contributions to the rheology observed in monodisperse linear materials (for the most recent review of
linear theory se?]).
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However in non-linear flows or large step strain experiments the situation changes: the main mechanism
of stress relaxation becomes convective constraint release (CCR), which was introduced by N&jtrucci
However, the other mechanisms still play an important role. As was shown in recent work on CCR theories
[4-8], a successful theory must properly describe the delicate interplay between chain stretch inside the
tube, CCR and contour length fluctuations.

The aim of this short paper is to obtain a simple constitutive equation for fast flows of entangled polymer
melts from our full theonyf8]. This kind of simple “one-mode” equation is required for simulations of
complex flows, see for examp]®,10], where only the rheological response is required without needing
information about molecular structure. We will show that this method of derivation is promising and,
in particular, it suggests a new structure of single equation for the stress tensor with two relaxation
times—stretch relaxation and orientation relaxation.

This is in contrast to previous work where one had to decouple the stretch and orientation variables in
order to capture this characteristic behaviour of polymer melts. The main results of this paper were first
reported in11].

2. Thefull model

We start with a brief description of our full modg]. We introduce a stochastic variably(s, r)
which describes the vector position of the tube segment. The vasitdddels monomers inside the tube,
measured in entanglement segments from one end of the@haif, ... , Z, whereZ = N/N.andNgis
the number of monomers in entanglement segment) artime. Then we derive a stochastic equation of
motion for the tube through a microscopic consideration of the relaxation mechanisms discussed above

R A = R(s+ A at(e-R+22 g 1 R ROR
(s,t4+ At) = R(s + A&, 1) + t(lc + 2 1R +g(s,0) + 7, R? )
The first term describes reptation, the second represents deformation by theifldie velocity gradient
tensor), the third and fourth describe CCR, and the last term models retraction along the tube contour
due to the stretch relaxation. There are two terms in this stochastic equation that generate noise and fo
which we make assumptions concerning only their second moments Addeesthe random noise due
to reptation (A& AE®R)) = 2DS(t — 1), g(s, 1) is the random noise due to CCRy(s, g (s', 1)) =
Iva®s(s — s)8(t — t')/|R'|, wherel = Sqp 1S isotropic tensofo and g are Cartesian coordinates) and
v is the frequency of constraint release, which must be determined self-consistently from the motion of
the chain ends. The timescales are as followings the Rouse relaxation time of one entanglement
segment, and, = 1/(3Zn?te) is the reptation diffusion constant. This notation is described in detail in
our previous papgb].

From this stochastic equation we then derive a regular partial differential equation for the tangent
correlation function

0R, 0Rg
ds os' [’

faﬂ(sv S/a H= <

which contains information about both tube orientation and the chain stretch inside the tube (in fact the
local chain stretch is jusy/tr f (s, s)). This function contains full information about the average chain
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trajectories, which is enough to calculate the stress and structure factor. In particulpolyiineric
contribution to the stress tensor is

3Ge
Z

O’aﬂ =

z
/(; fap(s, s) ds. (1)

To proceed with the derivation of an evolution equation f@s, s', r) we use several decoupling approx-
imations. The net result is the following equation:

2
L be(ft ) S

ot as
v (o 1 0 0 1 0
? <£m£(f_feq)+g tr‘f(s/’s/)g(f_feq))
1 9 ! 9 9 / 9 o
+2n2re <£f(s,s)gln trf(s,s) + gf(s,s)gln trf(s,s)) , (2)

where fq(s, s") = ((Ia®)/3)8(s — ') is equilibrium tangent correlation function without flow. The
frequency of constraint release is defined from the retraction rate

1 19 /Z
v=c,|=—4—+ —— JVirf(s, s)ds ), 3
<3Z3Teﬂrcr az* 8t 0 f retr. ( )

where the first term is a constant contribution due to reptaiiyn is a constant of order unity) and the
second is the rate of change ofthe tube length due to retraction. The resttigi)do the time dependence

of f(s, s’) in Eq. (3) accounting for retraction process only, is achieved by compadjjftg with only the
lastterminEqg. (2) HereZ* = fOZ VI f (s, s) ds is the new number of entanglements under stretclrand

is a dimensionless parameter of order one, regulating relative “strength” of constraint release. Note that
Eqg. (2)is different from our non-stretching thed®j only by the last term and by several renormalizations
of CCR terms due to stretch. Details can be fourf@]rbut are not important for the following derivation.
We also developed the concept of a position-dependent diffusion coeffiziénts’) to describe contour
length fluctuations and choog® (s, s') and B, in a way that our non-linear theory agrees well with the
more precise linear theory §2]. These details also do not impact the derivation of a simple one-mode
equation.

3. Single mode equation

There are several ways of deriving a one-mode equation from the full moHgl ¢2) One is to neglect
all s-dependence of (s, s"). Another is to perform a Fourier transformation analogo(sjt@nd to assume
that all Fourier components are unperturbed by the flow except for the first. This method is described
in Appendix A The third way is to develop a dumbbell CCR model, which contains terms analogous
to CCR terms irEqg. (2) Fortunately all three methods lead to equations of the same structure, which
we give below inEq. (4) Each method generates slightly different form for the “transition functions” in
Eq. (4) frer and foor. In particular, it can be easily seen that if we neglect-alependencies of (s, s') in



4 AE. Likhtman, R.S. Graham/ J. Non-Newtonian Fluid Mech. 114 (2003) 1-12

Eqg. (2)and associate it with thaolymer contribution to the stress in units of G (seeEq. (1), we will
get an equation of the form

‘3—‘; =Kk-0+0 -k — t—ldw —1I) — fren(tro)o — fea(tro) (o — D), (4)
where frerr(x) and fer(x) are some scalar functions describing retraction and CCRJaad is the
equilibrium value of the stress tensor in these ulkitg. (4has a transparent physical interpretation: the
reptation term (withy) is a single time relaxation towards equilibrium, the CCR termis also a relaxation
towards the equilibrium, but with the rate dependent on the amount of stretclarid retraction is
relaxation to zero, also with the rate dependent on tr

The second and the third methods of derivation of a simple equation provide slightly different expres-
sions for the functionge and ficr, but with the same asymptotic behaviourAppendix Awe discuss
Fourier transform derivation. However, this behaviour may be derived from some general physical argu-
ments that we will use here. We must consider two regimes: small streteh3r« 1 and large stretch
tro — 3 > 1, which occur when the deformation is correspondingly slower or faster than the stretch or
Rouse relaxation timergr = Z?7e. In the first regime retraction must be proportional to the amount of
stretch, i.e.frer(tro) ~ tro — 3, so that retraction relaxesstrto its equilibrium value of 3. Since the
typical relaxation time is the Rouse time, we may writg(tro) ~ (tre — 3)/tr. The CCR ratey, in
this regime must be proportional to the retraction rate (if one neglects reptation constraint release, see
Eq. (3). Therefore we writef o (tro) ~ B(tro — 3)/1r, Whereg is CCR coefficient analogous tq in
our full theory and to the coefficierftintroduced by Marrucci in his original CCR padét.

In the limit of large stretch we recall that, in the absence of any other mechanisms, retraction in
a one-mode approximation should lead to the following simple relaxation for the stretetl, e-

—(» — 1)/1r. This form was used in both the Pom—P¢h2] and MLD models[4]. In our model
A = /tro /3, and therefore we conclude that only the chofeg(tre) — 2/t in this limit will lead to
the desired result. Indeed if we have ftlr = —2(o — I)/r, then taking trace of this equation will lead
to di/dr = —) /R for largex, as required.

The CCR term at large stretch can, however, depend on the stretch. In particular, if one assumes
constant tube diameter, we expect an effective suppression of CCR because the number of entanglemen
per chain increases, and also because one needs more CR events to move the same number of monom
compared to a unstretched chain. We therefore assumédidto) ~ B(tro /3)°/tr, wheres is some
negative power, which can be obtained by fitting to our full theory. If one wants to model the effect of the
tube diameter changing with stretch, bofh, and f..; could be further modified. We summarize their
asymptotic behaviour once again

2(tro — 3 2B(trc — 3
L, tro —3«1 ¥, tro —3«1
R R
Srew(tro) = ; Seer(tro) = .
2 2B(tra /3)°
il tro —3> 1 PWo/IT e 31
TR TR

Our final step is choosing suitable interpolation functions between two regimes. We propose to use
frew(tro) = 2(1 — /3/tre)/tr and feo(tro) = 2B(tro)’(1 — /3/tra)/tr. The form without square
roots also has the correct asymptotes, but it provides slightly less accurate agreement with the full theory.
The particular choice of transition functions and prefactors was motivated by the equation for the stretch
relaxation d./dr = — (A — 1)/1r, Which is satisfied b¥eq. (5)in all regimes.
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This leads to our main result

——— 8
d_a:K.g+g.,cT—Tl(a—I)—2(l_ T(S/tra)) (G—i—ﬂ(tr—G) (G—I))’ (5)
d R

dr 3

which we call the Rolie—Poly constitutive equation, standing for ROuse Llnear Entangled POLYmers
(the reference to Rouse is appropriate—the tube of entanglements becomes a Rouse-like object under the
operation of CCR).

It is possible to take the limit ofr — 0, which corresponds to the old non-stretching theory. This

limit exists becaus(al — «/3/tro) goes to zero as fast ag keeping the ratio constant. Thus by taking
tro = 3+ A in the non-stretching limit and assuming that—> 0 astg — 0 we obtain

2(1 — J(@/tre)) 2

— étr(lc -0), aswgr— 0,

TR

and therefore we get the following non-stretching version of Rolie—Poly equation:

do + 1 2
—=k-0+0-k ——(—I)— =tr(k -o)(0 + B(o — I)). (6)
dr Td 3

One can regroup terms as
do to kT - (o~ D) — 2tk o) = o)
—=k-06+0-k' ——( —1I)— =tr(k - 0)0; — = — + =ptr(k - o),
dr rgff 3 rgﬂ g 3

which now looks very similar to the original Marrucci equati@. The difference is, however, that our
derivation provides a natural introduction of stretch into the system, obtaining a non-stretch equation as
a limiting case of a more general equation. In contrast, the generalizatiem ¢6)to the stretching case
is not unique.

We now discuss the properties of the obtained equation in comparison with the full model and exper-
iment. Fig. 1 shows steady-state shear predictions of the full th¢®8and the Rolie—Poly equation.
The full theory predictions are fd = 20 andc, = 0.1, which are the typical values used to describe
experimental data. The Rouse time was the same for both versions of the geddl approximately
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Fig. 1. Steady-state shear predictions of the full model (symbols) and Rolie—Poly equation (lirnes} f20.
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corresponds to, = 0.1 and§ = —0.5 is the optimal value to fit both transient and steady-state predic-
tions of the full theory. To fixGe and 4, we fitted the terminal region of the linear spectrarh G”,
produced by our linear theofg]. One can see that the single mode Rolie—Poly equation has qualitatively
similar behaviour to that of the full theory. In particular, it has three regimes as a function of shear rate:
linear regimey < ', CCR regimer;* < y < tx', and CCR+ stretch regimey > ', The largest
guantitative disagreement is at high rates, where the single mode equation produces faster stress growt
compared to the full theory. The reason is that the full theory contains a spectrum of stretch relaxation
times, reflecting different stretch of different parts of the chain, whereas the single mode equation as-
sumes uniform stretch. The discrepancy can be reduced by introducing finite extensibility, for example
by replacingrr — (1 — (tro/312,,,)). We do not consider it here for two reasons: one is that a change

of spring constant would require appropriate change in the stress definition, and therefore new terms in
Eqg. (5) The second reason is that for the 7% polybutadiene solutions which we discuss later, the finite
extensibility parametekmay, iS €xpected to be very large and therefore should not be relevant under shear.
This is, of course, not true for polymer melts or extensional measurements. The smoother crossover of the
full theory from the first to the second regime is also explained by the broad spectrum of linear relaxation
of the full theory due to contour length fluctuations.

However, fitting steady-state stresses is a much simpler task than fitting transient data, as was alsc
noted in[13]. This is illustrated inFig. 2, where we compare the transient predictions for start-up of
shear flow for the full theory and the single mode Rolie—Poly equation with the same parameters as in
Fig. 1L One can see that, although the overshoots have the same qualitative behaviour, the agreement |
not satisfactory mainly because of a large discrepancy in the linear regime.

To improve the situation, we add several faster modes to the main mode, describgd(by To do
this we fit the linear spectrunt;’ and G”, by a set of several modes (one per decade), up to the high
frequency crossover, i.e. up to abeut- ;1. This procedure gives a set 6f, andz}. Then we model
the slowest mode (and if necessary the second slowest—for extremely fast flow raies) by and all
faster modes b¥q. (6) Note that one can model all modes By. (5)with small Rouse times, but it
will require a very small timestep. We have to determine only one Rouse time, which is the Rouse time

of the slowest mode. This procedure result§ig. 3 where we used ' Y = ! ands = —0.5

10}

Eoo y1;=100 d
ro& y1.=10 AQQQQQ —
LEov e g
3 g
— © y1;=0.1 o7
._.: 01 < yri=0.01 8(,);:132/0-%\
O] SIS Y
= ‘,o@@g/w %0 N
I L o
0015 ,ﬁ 0000000
F oo
[
1E-3
1E-3 0.01 0.1 1 10 100 1000

t/t

R

Fig. 2. Transient start-up shear predictions of the full model (symbols) and Rolie—Poly equation (lirés} #20.
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Fig. 3. Transient start-up shear predictions of the full model (symbols) and multi-mode Rolie—Poly equation (liZes)26r

andg = 0.5. The agreement now is improved everywhere apart from the overprediction of steady-state
at very high shear rates discussed above.

Recently, the authors dfL.5] discovered some artifacts at high shear rates of the lanniruberto and
Marrucci model[7,13] with two separate equations for the stretch and orientation tensor. We checked
our model up to very high rates and found no such artifacts. Therefore we agree with auffi6i<iut
the artifacts are caused by decoupling of stretch and orientation, and in order to avoid them one has to
use the form of the Rolie—Poly equation. We note that the only difference between equation proposed in
[16] and our equation (proposed earlief1]) is that in the Rolie—Poly equation CCR does relax some
stretch(tro), in agreement with our full model.

Fig. 4shows comparison of the two theories for transient uniaxial elongation with the same parameters
asFig. 3. Apart from the fact that the Rolie—Poly equation has larger extension thinning, the agreement
is satisfactory. Note that neither theory has finite extensibility included, which would limit the degree of
strain hardening in the stretching regige- rgl.
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Fig. 4. Transient start-up elongational predictions of the full model (symbols) and multi-mode Rolie—Poly equation (lines) for
Z =20.
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10"
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Fig. 5. Start-up shear viscosity measurements for 7% PB solutidhuof=
multi-mode Rolie—Poly equation (lines).

350K, measured ifil4] (symbols) and fits by

In Figs. 5 and &ve demonstrate that the Rolie—Poly equation, in the multi-mode formulation described
above, is capable of fitting experimental transient shear data. We plot shear stress (left) and normal stres
difference (right) for two 7% polybutadiene solutiond\wi = 350K (Fig. 5 andMw = 813K (Fig. 6),
as reported iff14]. Using onlytr andpg as fitting parameters (we always et —0.5) we can fit the
whole dataset with sufficient precision for complex flow modeling. The fitting shows that the optimum
value of zg in the Rolie—Poly model is always 1.5-2 times smaller than those predicted by the linear
theory[2], and theB parameter must be chosen to be very small (it was set to zero for this particular
dataset). This does not mean of course that CCR is unimportant—the approximate one-mode theory is
not a tool to make such a conclusion. Here setfing 0 is just a technical trick in order to compensate
for the overprediction of steady-state stress at large rates-{getand discussion thereafter). Note that
the ratio of fitted Rouse times for two polymers is only 2.5, whereas in the full theory Rouse time scales
asM™* and we expect the ratio of Rouse times to be 5.4. This shows definite advantages of the full theory.
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o c 10
= it o
4 & ~
10 :Jr EE 4 6‘«1%
~~ 10
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103 sl 44l sl 4l L L L
0.1 1 10 100 0.1 1 10 100
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Fig. 6. Same abig. 5, but forMw = 813 K.
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Fig. 7. Damping function prediction of the full model (open circles), Rolie—Poly equationgvithO (triangles) ang8 = 1
(squares), compared with Doi—Edwards predictions with the independent alignment approximation (dashed line) and without it
(solid line).

Finally we present predictions of the Rolie—Poly equation and the full model for the step shear damping
functioni(y), which is effectively the fraction of the stress which is relaxed by slow processes (reptation)
in a step strain experimenEiQg. 7). The experimental data are known to be in very good agreement
with the original Doi—Edwards theoffit], and therefore any new theory should ensure that the damping
function predictions are not spoiled by the new relaxation mechanisms. The agreement of the full theory
with the Doi—Edwards predictions is very good, as well as the agreement with the Rolie—Poly equation
without constraint release. The later is quite surprising since our form of equation is much simpler than the
Doi—Edwards Q-tensor. We think that this agreement between the Rolie—Poly model and the Doi—Edwards
model is merely a fortuitous coincidence.

The addition of CCR to a Rolie—Poly equation spoils this agreement, which again suggests that in
practice one should use small value for the CCR paramgtdthe addition of faster modes in the
multi-mode version does not change the damping function predictions, but does help to eliminate a
maximum inoy,(y) plot. We note also that the presence of CCR in the full theory does not spoil the
agreement with the Doi-Edwards damping function, and the agreement,withl is even better than
with ¢, = 0.1.

In conclusion, we have proposed a very simple one-mode differential constitutive equation for the stress
tensor, which describes entangled linear polymers with sufficient accuracy yet simplicity of calculation
for complex flow modeling. Contrary to previous approaches, we have derived this equation from a more
detailed molecular theoiy], then justified the simplifications by comparison between the two theories.
To test this equation in the future one can compare complex flow simulations with experimental flow
visualization, as well as by purely viscometric experiments.
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Appendix A

One way of derivation of a one-mode equation from the full théeqy(2)is via its Fourier transform,
which can be introduced as

1 [% e nps , /
Cpqznz—pq/O /0 sm<7 sm( )(f(ss) feqls, s)) dsds'.

This transformdEq. (2)to a system of algebraic equations using similar approa#i to

' z 3v D\ 7*(p*+4°)
Cpq :K'Cpq+Cpq‘KT+m(’C+KT)_(?+E) —pZ q Cpq+8 Rmeq|Cm
DI (1 1 3Dn?
Tos2 <5qu + ;qu) +—3 Zm[ymemq + YgmCrpl, (A1)

where Ry is known constant matrixp = (kg7/Nelo) is the diffusion constant of one entanglement
segment,

Vap = /OZ In(tr £ (s, s)) (b cos(a—;s) cos(b—yzm) —asin (a—gs> sin (a—gs)> ds

V= C”lzi;D Z patrCoqg [p cos(p—m) sin (q—m> + ¢gsin <pm) cos<q—m)] . (A.2)
p.q

and

z Z Z Z

Now one can assume that all modes but the first@neare unperturbed. This is not true of course, but
it leads to correct functional form of a simple equation. We will therefore omit all prefactors and replace
C11 by the stresg — oeq, Whereoeq = I since the stress is measured in units of the plateau modulus.
The first line ofEq. (A.1)is easily transferred to

1
6=k-0+0-k —vo—-I—=(@—-D+---,
Td

where the term withy is CCR, and the term withy is reptation. Note that both effects relaxto its
equilibrium value.
To simplify the retraction part (second line B§. (A.1) we first evaluates ;.

Z
_ in? (% ars
yll_/o In (trCllsln <Z> + 1) cos( 7 ) ds = ItrCq),

where the functio(x) has the following asymptotes

—Ix, x<1
I'x) = .
-1, x>1
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Now the second line dEq. (A.1)simplifies to
. ---I(tre — 3o

R

The frequency of constraint releasanust be proportional to the rate of stretching reduction due to
retraction, and chain stretchis= /tro:

oA 1 Jr
v L 6oy = Y2 o — 3), (A.3)
Ot | retr Jire R

which leads to
1 1
o0 =ko+ok ——(c —I)— =I(tro —3)(6 + B/tro (o — I)).
Td R

This equation corresponds Ey. (5)with § = 1/2 within prefactors. If one includes CCR suppression
by stretch, the powetchanges to 0 or1/2 (se€[8] for details).
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