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Abstract

Recently we developed a theory for fast flows of entangled polymer melts which includes the processes of
reptation, convective and reptation-driven constraint release, chain stretch and contour length fluctuations. The
theory is derived from a stochastic microscopic equation of motion of the chain inside the tube and of the tube itself.
As a result we obtain a partial differential equation for the tube tangent correlation function, the solution of which
requires quite intensive calculations. At the same time the application of this theory to realistic flows (which is
anything other than the laboratory rheometer) requires a simple and less computationally intensive set of equations
for the stress tensor similar to the Giesekus, PTT, Larson or Pom–Pom equations. In particular, the last was derived
from molecular theory for a generic type of branched polymer. In this paper we demonstrate that molecular tube
theory can also provide a route to constructing a family of very simple differential constitutive equations for linear
polymers. They capture the full model quite well and therefore can be used in flow solving software to model
spatially inhomogeneous flows. We present a comparison of the proposed equations with our full model and with
experimental data.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of entangled polymer melts are described most successfully by the tube model of Doi
and Edwards[1]. In this theory the main mechanism or stress relaxation in the linear regime is assumed
to be reptation out of the original tube. Important additional mechanisms, such as the self-consistent
constraint release (CR) and contour length fluctuations (CLF), make significant, though sub-dominant,
contributions to the rheology observed in monodisperse linear materials (for the most recent review of
linear theory see[2]).
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However in non-linear flows or large step strain experiments the situation changes: the main mechanism
of stress relaxation becomes convective constraint release (CCR), which was introduced by Marrucci[3].
However, the other mechanisms still play an important role. As was shown in recent work on CCR theories
[4–8], a successful theory must properly describe the delicate interplay between chain stretch inside the
tube, CCR and contour length fluctuations.

The aim of this short paper is to obtain a simple constitutive equation for fast flows of entangled polymer
melts from our full theory[8]. This kind of simple “one-mode” equation is required for simulations of
complex flows, see for example[9,10], where only the rheological response is required without needing
information about molecular structure. We will show that this method of derivation is promising and,
in particular, it suggests a new structure of single equation for the stress tensor with two relaxation
times—stretch relaxation and orientation relaxation.

This is in contrast to previous work where one had to decouple the stretch and orientation variables in
order to capture this characteristic behaviour of polymer melts. The main results of this paper were first
reported in[11].

2. The full model

We start with a brief description of our full model[8]. We introduce a stochastic variableR(s, t)
which describes the vector position of the tube segment. The variables labels monomers inside the tube,
measured in entanglement segments from one end of the chain(s = 0, . . . , Z, whereZ = N/Ne andNe is
the number of monomers in entanglement segment) andt is time. Then we derive a stochastic equation of
motion for the tube through a microscopic consideration of the relaxation mechanisms discussed above:

R(s, t +
t) = R(s+
ξ, t)+
t
(

κ · R + 3

2

ν

|R′|R
′′ + g(s, t)+ 1

2π2τe

(R′′ · R′)R′

R′2

)
.

The first term describes reptation, the second represents deformation by the flow(κ is the velocity gradient
tensor), the third and fourth describe CCR, and the last term models retraction along the tube contour
due to the stretch relaxation. There are two terms in this stochastic equation that generate noise and for
which we make assumptions concerning only their second moments. Here
ξ is the random noise due
to reptation,〈
ξ(t)
ξ(t′)〉 = 2Dcδ(t − t′), g(s, t) is the random noise due to CCR,〈g(s, t)g(s′, t′)〉 =
Iνa2δ(s − s′)δ(t − t′)/|R′|, whereI = δαβ is isotropic tensor(α andβ are Cartesian coordinates) and
ν is the frequency of constraint release, which must be determined self-consistently from the motion of
the chain ends. The timescales are as following:τe is the Rouse relaxation time of one entanglement
segment, andDc = 1/(3Zπ2τe) is the reptation diffusion constant. This notation is described in detail in
our previous paper[5].

From this stochastic equation we then derive a regular partial differential equation for the tangent
correlation function

fαβ(s, s
′, t) ≡

〈
∂Rα

∂s

∂Rβ

∂s′

〉
,

which contains information about both tube orientation and the chain stretch inside the tube (in fact the
local chain stretch is just

√
trf (s, s)). This function contains full information about the average chain
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trajectories, which is enough to calculate the stress and structure factor. In particular, thepolymeric
contribution to the stress tensor is

σαβ = 3Ge

Z

∫ Z

0
fαβ(s, s)ds. (1)

To proceed with the derivation of an evolution equation forf (s, s′, t) we use several decoupling approx-
imations. The net result is the following equation:

∂f

∂t
= Dc

(
∂

∂s
+ ∂

∂s′

)2

f + κ · f + f · κT

+3ν

2

(
∂

∂s

1√
trf (s, s)

∂

∂s
(f − f eq)+

∂

∂s′
1√

trf (s′, s′)

∂

∂s′
(f − f eq)

)

+ 1

2π2τe

(
∂

∂s
f (s, s′)

∂

∂s
ln trf (s, s)+ ∂

∂s′
f (s, s′)

∂

∂s′
ln trf (s′, s′)

)
, (2)

wheref eq(s, s
′) ≡ ((Ia2)/3)δ(s − s′) is equilibrium tangent correlation function without flow. The

frequency of constraint release is defined from the retraction rate

ν = cν
(

1

3Z3τeβrcr
+ 1

aZ∗
∂

∂t

∫ Z

0

√
trf (s, s)ds

∣∣∣∣
retr

)
, (3)

where the first term is a constant contribution due to reptation(βrcr is a constant of order unity) and the
second is the rate of change of the tube length due to retraction. The restriction (|retr) to the time dependence
of f (s, s′) in Eq. (3), accounting for retraction process only, is achieved by computing∂f/∂t with only the
last term inEq. (2). HereZ∗ = ∫ Z

0

√
trf (s, s)ds is the new number of entanglements under stretch andcν

is a dimensionless parameter of order one, regulating relative “strength” of constraint release. Note that
Eq. (2)is different from our non-stretching theory[5] only by the last term and by several renormalizations
of CCR terms due to stretch. Details can be found in[8] but are not important for the following derivation.
We also developed the concept of a position-dependent diffusion coefficientDc(s, s

′) to describe contour
length fluctuations and chooseDc(s, s

′) andβrcr in a way that our non-linear theory agrees well with the
more precise linear theory of[2]. These details also do not impact the derivation of a simple one-mode
equation.

3. Single mode equation

There are several ways of deriving a one-mode equation from the full model ofEq. (2). One is to neglect
all s-dependence off (s, s′). Another is to perform a Fourier transformation analogous to[5], and to assume
that all Fourier components are unperturbed by the flow except for the first. This method is described
in Appendix A. The third way is to develop a dumbbell CCR model, which contains terms analogous
to CCR terms inEq. (2). Fortunately all three methods lead to equations of the same structure, which
we give below inEq. (4). Each method generates slightly different form for the “transition functions” in
Eq. (4)fretr andfccr. In particular, it can be easily seen that if we neglect alls-dependencies off (s, s′) in
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Eq. (2)and associate it with thepolymer contribution to the stressσ in units ofGe (seeEq. (1)), we will
get an equation of the form

dσ

dt
= κ · σ + σ · κT − 1

τd
(σ − I )− fretr(trσ )σ − fccr(trσ )(σ − I ), (4)

wherefretr(x) andfccr(x) are some scalar functions describing retraction and CCR, andI ≡ δαβ is the
equilibrium value of the stress tensor in these units.Eq. (4)has a transparent physical interpretation: the
reptation term (withτd) is a single time relaxation towards equilibrium, the CCR term is also a relaxation
towards the equilibrium, but with the rate dependent on the amount of stretch trσ , and retraction is
relaxation to zero, also with the rate dependent on trσ .

The second and the third methods of derivation of a simple equation provide slightly different expres-
sions for the functionsfretr andfccr, but with the same asymptotic behaviour. InAppendix Awe discuss
Fourier transform derivation. However, this behaviour may be derived from some general physical argu-
ments that we will use here. We must consider two regimes: small stretch trσ − 3 � 1 and large stretch
trσ − 3 � 1, which occur when the deformation is correspondingly slower or faster than the stretch or
Rouse relaxation time,τR = Z2τe. In the first regime retraction must be proportional to the amount of
stretch, i.e.fretr(trσ ) ∼ trσ − 3, so that retraction relaxes trσ to its equilibrium value of 3. Since the
typical relaxation time is the Rouse time, we may writefretr(trσ ) ∼ (trσ − 3)/τR. The CCR rate,ν, in
this regime must be proportional to the retraction rate (if one neglects reptation constraint release, see
Eq. (3)). Therefore we writefccr(trσ ) ∼ β(trσ − 3)/τR, whereβ is CCR coefficient analogous tocν in
our full theory and to the coefficientβ introduced by Marrucci in his original CCR paper[3].

In the limit of large stretch we recall that, in the absence of any other mechanisms, retraction in
a one-mode approximation should lead to the following simple relaxation for the stretch, dλ/dt =
−(λ − 1)/τR. This form was used in both the Pom–Pom[12] and MLD models[4]. In our model
λ = √

trσ/3, and therefore we conclude that only the choicefretr(trσ ) → 2/τR in this limit will lead to
the desired result. Indeed if we have dσ/dt = −2(σ − I )/τR, then taking trace of this equation will lead
to dλ/dt = −λ/τR for largeλ, as required.

The CCR term at large stretch can, however, depend on the stretch. In particular, if one assumes
constant tube diameter, we expect an effective suppression of CCR because the number of entanglements
per chain increases, and also because one needs more CR events to move the same number of monomers
compared to a unstretched chain. We therefore assume thatfccr(trσ ) ∼ β(trσ/3)δ/τR, whereδ is some
negative power, which can be obtained by fitting to our full theory. If one wants to model the effect of the
tube diameter changing with stretch, bothfretr andfccr could be further modified. We summarize their
asymptotic behaviour once again

fretr(trσ ) =




2(trσ − 3)

τR
, trσ − 3 � 1

2

τR
, trσ − 3 � 1

; fccr(trσ ) =




2β(trσ − 3)

τR
, trσ − 3 � 1

2β(trσ/3)δ

τR
, trσ − 3 � 1

.

Our final step is choosing suitable interpolation functions between two regimes. We propose to use
fretr(trσ ) = 2(1 − √

3/trσ )/τR andfccr(trσ ) = 2β(trσ )δ(1 − √
3/trσ )/τR. The form without square

roots also has the correct asymptotes, but it provides slightly less accurate agreement with the full theory.
The particular choice of transition functions and prefactors was motivated by the equation for the stretch
relaxation dλ/dt = −(λ− 1)/τR, which is satisfied byEq. (5)in all regimes.



A.E. Likhtman, R.S. Graham / J. Non-Newtonian Fluid Mech. 114 (2003) 1–12 5

This leads to our main result

dσ

dt
= κ · σ + σ · κT − 1

τd
(σ − I )− 2(1 − √

(3/trσ ))

τR

(
σ + β

(
trσ

3

)δ
(σ − I )

)
, (5)

which we call the Rolie–Poly constitutive equation, standing for ROuse LInear Entangled POLYmers
(the reference to Rouse is appropriate—the tube of entanglements becomes a Rouse-like object under the
operation of CCR).

It is possible to take the limit ofτR → 0, which corresponds to the old non-stretching theory. This
limit exists because

(
1 − √

3/trσ
)

goes to zero as fast asτR keeping the ratio constant. Thus by taking
trσ = 3 +∆ in the non-stretching limit and assuming that∆→ 0 asτR → 0 we obtain

2(1 − √
(3/trσ ))

τR
→ 2

3
tr(κ · σ ), asτR → 0,

and therefore we get the following non-stretching version of Rolie–Poly equation:

dσ

dt
= κ · σ + σ · κT − 1

τd
(σ − I )− 2

3
tr(κ · σ )(σ + β(σ − I )). (6)

One can regroup terms as

dσ

dt
= κ · σ + σ · κT − 1

τeff
d

(σ − I )− 2

3
tr(κ · σ )σ ; 1

τeff
d

= 1

τd
+ 2

3
βtr(κ · σ ),

which now looks very similar to the original Marrucci equation[3]. The difference is, however, that our
derivation provides a natural introduction of stretch into the system, obtaining a non-stretch equation as
a limiting case of a more general equation. In contrast, the generalization ofEq. (6)to the stretching case
is not unique.

We now discuss the properties of the obtained equation in comparison with the full model and exper-
iment. Fig. 1 shows steady-state shear predictions of the full theory[8] and the Rolie–Poly equation.
The full theory predictions are forZ = 20 andcν = 0.1, which are the typical values used to describe
experimental data. The Rouse time was the same for both versions of the model,β = 1 approximately
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Fig. 1. Steady-state shear predictions of the full model (symbols) and Rolie–Poly equation (lines) forZ = 20.
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corresponds tocν = 0.1 andδ = −0.5 is the optimal value to fit both transient and steady-state predic-
tions of the full theory. To fixGe andτd, we fitted the terminal region of the linear spectrumG′, G′′,
produced by our linear theory[2]. One can see that the single mode Rolie–Poly equation has qualitatively
similar behaviour to that of the full theory. In particular, it has three regimes as a function of shear rate:
linear regimeγ̇ < τ−1

d , CCR regimeτ−1
d < γ̇ < τ−1

R , and CCR+ stretch regimėγ > τ−1
R . The largest

quantitative disagreement is at high rates, where the single mode equation produces faster stress growth
compared to the full theory. The reason is that the full theory contains a spectrum of stretch relaxation
times, reflecting different stretch of different parts of the chain, whereas the single mode equation as-
sumes uniform stretch. The discrepancy can be reduced by introducing finite extensibility, for example
by replacingτR → τR(1− (trσ/3λ2

max)). We do not consider it here for two reasons: one is that a change
of spring constant would require appropriate change in the stress definition, and therefore new terms in
Eq. (5). The second reason is that for the 7% polybutadiene solutions which we discuss later, the finite
extensibility parameter,λmax, is expected to be very large and therefore should not be relevant under shear.
This is, of course, not true for polymer melts or extensional measurements. The smoother crossover of the
full theory from the first to the second regime is also explained by the broad spectrum of linear relaxation
of the full theory due to contour length fluctuations.

However, fitting steady-state stresses is a much simpler task than fitting transient data, as was also
noted in[13]. This is illustrated inFig. 2, where we compare the transient predictions for start-up of
shear flow for the full theory and the single mode Rolie–Poly equation with the same parameters as in
Fig. 1. One can see that, although the overshoots have the same qualitative behaviour, the agreement is
not satisfactory mainly because of a large discrepancy in the linear regime.

To improve the situation, we add several faster modes to the main mode, described byEq. (5). To do
this we fit the linear spectrum,G′ andG′′, by a set of several modes (one per decade), up to the high
frequency crossover, i.e. up to aboutω ∼ τ−1

e . This procedure gives a set ofGie andτid. Then we model
the slowest mode (and if necessary the second slowest—for extremely fast flow rates) byEq. (5), and all
faster modes byEq. (6). Note that one can model all modes byEq. (5)with small Rouse times, but it
will require a very small timestep. We have to determine only one Rouse time, which is the Rouse time
of the slowest mode. This procedure results inFig. 3, where we usedτRolie–Poly

R = τ full
R , andδ = −0.5
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Fig. 2. Transient start-up shear predictions of the full model (symbols) and Rolie–Poly equation (lines) forZ = 20.
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Fig. 3. Transient start-up shear predictions of the full model (symbols) and multi-mode Rolie–Poly equation (lines) forZ = 20.

andβ = 0.5. The agreement now is improved everywhere apart from the overprediction of steady-state
at very high shear rates discussed above.

Recently, the authors of[15] discovered some artifacts at high shear rates of the Ianniruberto and
Marrucci model[7,13] with two separate equations for the stretch and orientation tensor. We checked
our model up to very high rates and found no such artifacts. Therefore we agree with authors of[16] that
the artifacts are caused by decoupling of stretch and orientation, and in order to avoid them one has to
use the form of the Rolie–Poly equation. We note that the only difference between equation proposed in
[16] and our equation (proposed earlier in[11]) is that in the Rolie–Poly equation CCR does relax some
stretch(trσ ), in agreement with our full model.

Fig. 4shows comparison of the two theories for transient uniaxial elongation with the same parameters
asFig. 3. Apart from the fact that the Rolie–Poly equation has larger extension thinning, the agreement
is satisfactory. Note that neither theory has finite extensibility included, which would limit the degree of
strain hardening in the stretching regimeε̇ > τ−1

R .
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Fig. 4. Transient start-up elongational predictions of the full model (symbols) and multi-mode Rolie–Poly equation (lines) for
Z = 20.
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Fig. 5. Start-up shear viscosity measurements for 7% PB solution ofMw = 350 K, measured in[14] (symbols) and fits by
multi-mode Rolie–Poly equation (lines).

In Figs. 5 and 6we demonstrate that the Rolie–Poly equation, in the multi-mode formulation described
above, is capable of fitting experimental transient shear data. We plot shear stress (left) and normal stress
difference (right) for two 7% polybutadiene solutions ofMw = 350 K (Fig. 5) andMw = 813 K (Fig. 6),
as reported in[14]. Using onlyτR andβ as fitting parameters (we always setδ = −0.5) we can fit the
whole dataset with sufficient precision for complex flow modeling. The fitting shows that the optimum
value ofτR in the Rolie–Poly model is always 1.5–2 times smaller than those predicted by the linear
theory[2], and theβ parameter must be chosen to be very small (it was set to zero for this particular
dataset). This does not mean of course that CCR is unimportant—the approximate one-mode theory is
not a tool to make such a conclusion. Here settingβ = 0 is just a technical trick in order to compensate
for the overprediction of steady-state stress at large rates (seeFig. 1and discussion thereafter). Note that
the ratio of fitted Rouse times for two polymers is only 2.5, whereas in the full theory Rouse time scales
asMw2

and we expect the ratio of Rouse times to be 5.4. This shows definite advantages of the full theory.
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Fig. 6. Same asFig. 5, but forMw = 813 K.
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Fig. 7. Damping function prediction of the full model (open circles), Rolie–Poly equation withβ = 0 (triangles) andβ = 1
(squares), compared with Doi–Edwards predictions with the independent alignment approximation (dashed line) and without it
(solid line).

Finally we present predictions of the Rolie–Poly equation and the full model for the step shear damping
functionh(γ), which is effectively the fraction of the stress which is relaxed by slow processes (reptation)
in a step strain experiment (Fig. 7). The experimental data are known to be in very good agreement
with the original Doi–Edwards theory[1], and therefore any new theory should ensure that the damping
function predictions are not spoiled by the new relaxation mechanisms. The agreement of the full theory
with the Doi–Edwards predictions is very good, as well as the agreement with the Rolie–Poly equation
without constraint release. The later is quite surprising since our form of equation is much simpler than the
Doi–Edwards Q-tensor. We think that this agreement between the Rolie–Poly model and the Doi–Edwards
model is merely a fortuitous coincidence.

The addition of CCR to a Rolie–Poly equation spoils this agreement, which again suggests that in
practice one should use small value for the CCR parameterβ. The addition of faster modes in the
multi-mode version does not change the damping function predictions, but does help to eliminate a
maximum inσxy(γ̇) plot. We note also that the presence of CCR in the full theory does not spoil the
agreement with the Doi–Edwards damping function, and the agreement withcν = 1 is even better than
with cν = 0.1.

In conclusion, we have proposed a very simple one-mode differential constitutive equation for the stress
tensor, which describes entangled linear polymers with sufficient accuracy yet simplicity of calculation
for complex flow modeling. Contrary to previous approaches, we have derived this equation from a more
detailed molecular theory[8], then justified the simplifications by comparison between the two theories.
To test this equation in the future one can compare complex flow simulations with experimental flow
visualization, as well as by purely viscometric experiments.
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Appendix A

One way of derivation of a one-mode equation from the full theoryEq. (2)is via its Fourier transform,
which can be introduced as

Cpq = 1

π2pq

∫ Z

0

∫ Z

0
sin
(πps

Z

)
sin

(
πqs′

Z

) (
f (s, s′)− f eq(s, s

′)
)

ds ds′.

This transformsEq. (2)to a system of algebraic equations using similar approach to[5]

Ċpq = κ · Cpq + Cpq · κT + Z

6π2p2
(κ + κT)−

(
3ν

2
+ D

Z

)
π2(p2 + q2)

Z2
Cpq + 8

D

Z3
RpmRqlCml

+DI

2Z2

(
1

q
γpq + 1

p
γqp

)
+ 3Dπ2

Z3

∑
m

m[γpmCmq + γqmCmp], (A.1)

whereRpq is known constant matrix,D = (kBT/Neζ0) is the diffusion constant of one entanglement
segment,

γab =
∫ Z

0
ln(trf (s, s))

(
b cos

(aπs
Z

)
cos

(
bπs

Z

)
− a sin

(aπs
Z

)
sin
(aπs
Z

))
ds

and

ν = cν12π3D

Z4

∑
p,q

pq trCpq

[
p cos

(pπs
Z

)
sin
(qπs
Z

)
+ q sin

(pπs
Z

)
cos

(qπs
Z

)]
. (A.2)

Now one can assume that all modes but the first oneC11 are unperturbed. This is not true of course, but
it leads to correct functional form of a simple equation. We will therefore omit all prefactors and replace
C11 by the stressσ − σ eq, whereσ eq = I since the stress is measured in units of the plateau modulus.
The first line ofEq. (A.1)is easily transferred to

σ̇ = κ · σ + σ · κT − ν(σ − I )− 1

τd
(σ − I )+ · · · ,

where the term withν is CCR, and the term withτd is reptation. Note that both effects relaxσ to its
equilibrium value.

To simplify the retraction part (second line ofEq. (A.1)) we first evaluateγ11:

γ11 =
∫ Z

0
ln
(
trC11 sin2

(πs
Z

)
+ 1

)
cos

(
2πs

Z

)
ds ≡ Γ(trC11),

where the functionΓ(x) has the following asymptotes

Γ(x) =
{−1

4x, x � 1

−1, x � 1
.
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Now the second line ofEq. (A.1)simplifies to

σ̇ = · · ·Γ(trσ − 3)σ

τR

The frequency of constraint releaseν must be proportional to the rate of stretching reduction due to
retraction, and chain stretch isλ = √

trσ :

ν ∼ ∂λ

∂t

∣∣∣∣
retr

∼ 1√
trσ

trσ̇ |retr =
√

trσ

τR
Γ(trσ − 3), (A.3)

which leads to

σ = κσ + σκT − 1

τd
(σ − I )− 1

τR
Γ(trσ − 3)(σ + β√trσ (σ − I )).

This equation corresponds toEq. (5)with δ = 1/2 within prefactors. If one includes CCR suppression
by stretch, the powerδ changes to 0 or−1/2 (see[8] for details).
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