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Full Paper 

Kernel methods, like the well-known Support Vector Machine (SVM), have gained a growing 

interest during the last years for designing QSAR/QSPR models having a high predictive 

strength. One of the key concepts of SVMs is the usage of a so-called kernel function, which 

can be thought of as a special similarity measure. In this paper we consider kernels for 

molecular structures, which are based on a graph representation of chemical compounds. The 

similarity score is calculated by computing an optimal assignment of the atoms from one 

molecule to those of another one, including information on specific chemical properties, 

membership to a substructure (e.g. aromatic ring, carbonyl group, etc.) and neighborhood for 

each atom. We show that by using this kernel we can achieve a generalization performance 

comparable to a classical model with a few descriptors, which are a-priori known to be 

relevant for the problem, and significantly better results than with and without performing an 



automatic descriptor selection. For this purpose we investigate ADME classification and 

regression datasets for predicting bioavailability (Yoshida), human intestinal absorption 

(HIA), blood-brain-barrier (BBB) penetration and a dataset consisting of 4 different inhibitor 

classes (SOL). We further explore the effect of combining our kernel with a problem 

dependent descriptor set. We also demonstrate the usefulness of an extension of our method to 

a reduced graph representation of molecules, in which certain structural features, like e.g. 

rings, donors or acceptors, are represented as a single node in the molecular graph. 

 

1 Introduction 

Kernel methods, like the well-known Support Vector Machine (SVM) [2, 5, 6], have gained a 

growing interest during the last years for designing QSAR/QSPR models having a high 

predictive strength (e.g. [11]). One of the key concepts of SVMs is the usage of a so-called 

kernel function, which allows nonlinear classification and regression. A kernel function can 

be thought of as a special similarity measure with the mathematical properties of symmetry 

and positive definiteness [4]. Apart from the usual vectorial data, kernel functions can be 

defined between arbitrarily structured objects, like strings, trees or graphs (e.g. [13, 14, 35]).  

Classically, QSAR/QSPR models are designed by representing molecules by a large set of 

descriptors, i.e. by a high dimensional vector, and then applying some kind of Machine 

Learning method like Neural Networks, Decision Trees or, more recently, Support Vector 

Machines. A big problem is the question, which set of descriptors is suited best for the 

QSAR/QSPR problem at hand [1]. Sometimes it is known by expert knowledge that certain 

descriptors are relevant for the specific task (e.g. the polar surface area is important for human 

intestinal absorption [15]), but in general we cannot assume that we know all factors, which 

affect the physicochemical property we want to predict. One has to take into account that 

there is no universal best set of descriptors, which works well for all QSAR/QSPR problems, 



because this would lead to a contradiction to the No Free Lunch theorem [9, 10]. Hence, the 

selection of appropriate descriptors is a crucial point for the design of QSAR/QSPR models 

[1, 8, 16]. From a practical side this means one often has to compute a very high number of 

descriptors for each molecule first and then find out those, which are really relevant for the 

problem at hand. This involves the problem of descriptor selection, which in general is a NP-

complete task [3]. Thus only approximate solutions for higher dimensional data, like in 

QSAR/QSPR studies, are possible. All in all the computational burden for the calculation of 

thousands of descriptors, maybe followed by an expensive descriptor selection, is quite high. 

Hence, an appealing idea is to directly work on a graph representation of chemical compounds 

without explicitly calculating any descriptor information. An advantage of this method is that 

the problem of selecting an appropriate set of descriptors becomes irrelevant, because all 

computations are carried out directly on the molecular structures represented as labeled 

graphs. Atoms in a chemical molecule are represented as nodes in the graph and bonds as 

edges between nodes. Each atom and each bond has certain chemical properties. These 

properties can be represented as labels of the nodes and edges respectively. It is also possible 

to encode structural aspects into the labels, like the membership of an atom to a ring, to a 

donor, an acceptor, etc. The graph representation can give us a detailed description of the 

topology of a molecule without making any a-priori assumptions on the relevance of certain 

chemical descriptors for the whole molecule. It is clear that thereby a crucial point is to 

capture the characteristics of each single atom and bond by its chemical properties (e.g. 

electro-topological state [17], partial charge [18]), which are encoded in the labels (see 

experimental section for more detail).  

Based on the graph representation of molecules, it is possible to define a kernel function, 

which measures the degree of similarity between two chemical structures. In principle, each 

structure could be represented by means of its similarity to all other structures in the chemical 

space. Examples of such a coordinate-free coding [19] are e.g. atom-pair descriptors [20], 



feature trees [23] and maximum common substructure approaches [21]. However, kernel 

functions are a little bit different from these approaches as, in contrast to the previous 

methods, they implicitly define dot products in some space [4]. I.e. by defining a kernel 

function between two molecules we implicitly define a vector representation of them without 

the need to explicitly know it.  

The main advantage of a kernel function is that it can be put into a SVM to build a 

QSAR/QSPR model. This would not be possible with a similarity measure not representing a 

kernel function [4]. The intuition of our kernel function is that similarity between two 

molecules mainly depends on the matching of certain substructures, like e.g. aromatic rings, 

carbonyl groups, etc., and their neighborhoods (fig. 1). I.e. two molecules are more similar the 

better structural elements from both molecules fit together and the more these structural 

elements are connected in a similar way in both molecules. Thereby the chemical properties 

of each single atom and bond in both structures have to be considered.  

On an atomic level this leads to the idea to look for those atoms in both molecules, which 

have the best match with regard to structural and chemical properties. With structural 

properties of an atom we mean, whether the atom belongs e.g. to an aromatic system, but also 

the neighbor atoms and bonds leading to them. Thereby it is possible not to consider direct 

neighbors only, but also neighbors, which are farther away up to some maximal topological 

distance (fig. 2). We now want to assign each atom from one molecule to exactly one atom 

from another molecule such that the overall similarity is maximized. This problem of finding 

the optimal assignment of all atoms from one molecule to those of another one is an instance 

of a classical problem from graph theory, also known as the maximum weighted bipartite 

matching problem (fig. 3). There exist efficient algorithms to solve this problem (e.g. [49]) in 

O(n3) time, where n is the maximum of the number of atoms of both molecules. As a result 

from this algorithm we know for each atom in one molecule to which atom in the other 

molecule it matches best. This guarantees us an easy way of interpreting and understanding 



our kernel function. Besides the circumvention of the descriptor selection problem, we see 

here an additional advantage of our approach compared to classical descriptor based models, 

where certain descriptors, like e.g. Burden’s eigenvalues [17] represent aspects of the graph 

structure of a molecule, but lack a simple interpretation. At a first glance there are some 

parallels of our approach to the feature trees method by Rarey and Dixon [23]. However, in 

contrast to feature trees, firstly no conversion of the molecular graph into a tree representation 

is needed, secondly the computation of the similarity between molecules is directly carried 

out on the graph structure, and thirdly our method computes a positive definite and symmetric 

kernel function, which allows the usage in combination with Support Vector Machines and 

other kernel based learning algorithms [4, 36].  

 

 

Figure 1. Matching regions of two molecular structures.       

 

 

Figure 2. Direct and indirect neighbors of atom 3 in the left and atom 5 in the right molecule. 



 

A natural extension of our method is to represent each molecule not on an atomic level but in 

form of a reduced graph. Thereby certain structural motifs, like e.g. rings, donors, acceptors, 

are collapsed into one node of the molecular graph, whereas remaining atoms are removed. 

This allows us to concentrate on important structural features, where the definition of what an 

important structural feature actually is, is induced by the problem at hand and may be given 

by expert knowledge. This procedure is known as pharmacophore mapping [28]. 

Another extension is the incorporation of descriptor information known to be relevant for the 

problem at hand. We will demonstrate an easy way of dealing with this task by means of the 

sum of two kernel functions. 

 

 

Figure 3. Possible assignments of atoms from molecule 2 to those of molecule 1. The kernel function k measures 

the similarity of a pair of atoms including information on structural and chemical properties. The goal is 

to find the matching, which assigns each atom from molecule 2 to exactly one atom from molecule 1, such that 

the overall similarity score, i.e. the sum of edge weights in the bipartite graph, is maximized.  
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This paper is organized as follows: In the next section we first give a brief review of kernel 

functions, which is necessary to understand the rest of the paper. Afterwards we describe our 



method in detail. In section 3 we explain our extensions to the basic approach. In section 4 we 

experimentally evaluate our approach and compare it to classical descriptor based 

QSAR/QSPR models. Our experiments include prediction of human intestinal absorption 

(HIA) [7, 39, 40, 37, 38, 41, 42], blood-brain-barrier (BBB) penetration [24, 43], 

bioavailability [29], and grouping inhibitors in 4 different classes [25]. We show that by using 

our approach we achieve a generalization performance comparable to a descriptor based 

model, which includes only descriptors that are a-priori known to be relevant for the problem. 

At the same time our results are significantly better than a classical descriptor based model 

with and without automatic descriptor selection. Furthermore, we show that by combining our 

method with descriptors known to be relevant to the QSAR/QSPR problem at hand a further 

reduction of the prediction error is possible. We also demonstrate the good performance of the 

reduced graph representation. Section 5 contains a general conclusion of our work and points 

out directions of future research. 

      

2 Our Method 

2.1 Kernels Functions  – a Brief Review 

A kernel function is a special similarity measure k: X × X → ℜ between patterns lying in 

some arbitrary domain X, which represents a dot product in some Hilbert space H. [4]. I.e. for 

two arbitrary patterns x, x’ ∈ X it holds that k(x, x’) = 〈φ(x), φ(x’)〉, where φ: X → H is an 

arbitrary mapping of patterns from domain X into feature space H. In principle the patterns in 

domain X do not necessarily have to be vectors. They could be strings, graphs, trees, text 

documents or other objects. The vector representation of these objects is then given by the 

map φ. However, an important special case is when X is a vector space and φ a nonlinear map. 

A simple example thereof is the case X = ℜ2 and H = ℜ3, i.e. φ: ℜ2 → ℜ3. The map φ could 

for instances be calculated by taking all possible products between features x(1), x(2) of pattern 
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. The dot product k(x, 

x’) = 〈φ(x), φ(x’)〉 can then be computed efficiently in closed form as 〈φ(x), φ(x’)〉 = 〈x, x’〉2. 

That means, if we are only interested in the kernel value, the mapping φ: X → H does not 

have to be known at all. In fact, it is implicitly given by the kernel function. This is known as 

the kernel trick. In general any valid kernel function between arbitrary objects implicitly 

corresponds to a dot product in some feature space [4]. If we are defining kernel functions, we 

have thus to ensure that this property is fulfilled. Given a set of patterns x1, …, xn ∈ X one can 

show that this is exactly the case, if the so-called kernel matrix ( , ))i j ik x x=K

i

 is symmetric 

and positive definite, i.e. for all α ∈ℜ
i,j

0i j ijαα ≥it holds∑ K [4].  

Popular examples of kernel functions are the radial basis functions (RBFs) 
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x x'x x'   and the homogenous polynomial kernels 

( , ) , d
polyk =x x' x x' d N∈ ( ). An interesting property of kernels is the fact that products and 

sums of kernels are valid kernels again [4]. 

We now turn to the construction of our optimal assignment kernel as a positive definite and 

symmetric similarity measure for chemical structures. 

 

2.2 Optimal Assignment Kernels for Chemical Molecules 

Let us assume we have two molecules M and M’, which have atoms  and . 

Let us further assume we have some non-negative kernel function , which compares a pair 

of atoms  from both molecules, including information on their neighborhoods, 

membership to certain substructures (like aromatic systems, donors, acceptors, and so on) and 

other chemical properties (e.g. mass, partial charge [18], etc.). We now want to assign each 

atom of the smaller of both molecules to exactly one atom of the bigger one such that the 
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overall similarity score, i.e. the sum of kernel values between individual atoms, is maximized. 

Figure 3 illustrates this idea: Between any pair of atoms from the left and the right structure 

there is some similarity, which can be thought of as the edge weights of a bipartite graph. We 

now have to find a combination of edges such that the sum of edge weights is maximized. 

Thereby each edge can be used at most once. That means in the end exactly  out of 

 edges are used up. Mathematically this can be formulated as follows: Let 

min( , )n m

n m⋅ π  denote a 

permutation of an n -subset of natural numbers 1,…,m, or a permutation of an m -subset of 

natural numbers 1,…,n, respectively (this will be clear from context). Then we are looking for 

the quantity 
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As one can show [34],  indeed is a valid kernel function and hence a similarity measure for 

molecules. We call it an optimal assignment kernel. Implicitly it computes a dot product 

between two vector representations of molecules in some Hilbert space (section 2.1). Thereby 

calculations can be carried out efficiently in , e.g. by means of the well-known 

Kuhn-Munkres algorithm, also familiar as Hungarian method [22]. 
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In order to prevent larger molecules to achieve a higher kernel value than smaller ones, we 

should further normalize our kernel [4], i.e. 
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This normalization gives us a similarity score in [0, 1]. 

We now have to define the kernel . For this purpose let us suppose we have two RBF-

kernels  and k , which compare the atom and bond labels, respectively. The set of 

labels associated with each atom or bond can be interpreted as a feature vector. As the 
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individual features for an atom or a bond can live on different numerical scales, it is beneficial 

to normalize the feature vectors e.g. to length 1. Let us introduce the notation  now 

for the bond connecting atom a with its ith neighbor atom . Let us further denote by |a| 

the number of neighbors of atom a. We now define a kernel 

( )ia n a→

( )in a

0R , which compares all direct 

neighbors of atoms (a, a’) as the optimal assignment kernel between all neighbors of a and a’ 

and the bonds leading to them, i.e. 
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As an example consider the C-atom 3 in the left and the C-atom 5 in the right structure of 

figure 2: If our only features for atoms and bonds would consist of the element type and bond 

order, respectively, and  and k  would simply count a match by 1 and a mismatch by 

0, our kernel 

atomk

5' )

bond

0 3( ,R a a  would tell us that 2 of 3 possible neighbors of atom 3 in the left 

structure match with the neighbors of atom 5 in the right structure, i.e. R  calculates the 

fraction of matching neighbors of ( , . It is worth mentioning that the computation of 3a a 5' ) 0R  

can be done in constant time complexity as for chemical compounds |a| and |a’| can be upper 

bounded by a small constant (e.g. 4). 

Of course it would be beneficial not to consider the match of direct neighbors only, but also 

that of indirect neighbors and atoms having a larger topological distance. For this purpose we 

can evaluate 0R  not at (a, a’) only, but also at all pairs of neighbors, indirect neighbors and so 

on, up to some topological distance L. In our example that would mean we also evaluate 

 and so on. The mean of all these values 

corresponds to the average match of all indirect neighbors and atoms of larger topological 
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distance. Adding them to 0( , ') ( , ')atomk a a R a a+  leads to the following definition of the kernel 
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Here Rl  denotes the mean of all  evaluated at neighbors of topological distance , and l

)  is a decay parameter, which reduces the influence of neighbors that are further away and 

depends on the topological distance l  to (a, a’). It makes sense to set ( ) ( ) '( )p pγ =l l l , where 

 are the probabilities for molecules M, M’ that neighbors with topological distance 

 are considered.  

, '(p pl )l

A key observation is that  can be computed efficiently from 1R −l  via the recursive 

relationship 

 1( ( ), ( '))i jR n a n a−l  (5) 

I.e. we can compute k  by iteratively revisiting all direct neighbors of a and a’ only. Thereby 

for any finite L an O(1) time complexity for the calculation of  is guaranteed.  
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To briefly summarize, our approach works as follows: We first compute the similarity of all 

atom and bond features using the kernels  and . Having these results we can 

compute the match of direct neighbors 

om bondk

 for each pair of atoms from both molecules by 

means of (3). From 0R  we can compute LR  by iteratively revisiting all direct neighbors 

of each pair of atoms and computing the recursive update formula (5). Having  and atomk

..., LR  directly gives us , the final similarity score for each pair of atoms, which 

includes structural information as well as chemical properties. With  we can finally neik



compute the optimal assignment kernel between two molecules M and M’ using (1) and (2). 

Thereby (1) is calculated using the Hungarian method1. 

 

3 Extensions 

3.1 Reduced Graph Representation 

The main intuition of our method lies in the matching of substructures from both molecules. 

In the previous section we achieved this by using structural, neighborhood and other 

characteristic information for each single atom and bond, and computing the optimal 

assignment kernel between atoms of both molecules. A natural extension of this idea is to 

collapse structural features, like rings, donors, acceptors and others, into a single node of the 

graph representation of a molecule. Atoms not matching a-priori defined types of structural 

features can even be removed [28]. This allows us to concentrate on important structural 

elements of a molecule, where the definition of what an important structural element actually 

is, depends on the QSAR/QSPR problem at hand and could be given by expert knowledge e.g. 

in form of certain SMARTS2 patterns. The high relevance of such a pharmacophore mapping 

for QSAR/QSPR models is also reported e.g. in [26, 27].  If atoms match more than one 

SMARTS pattern, a structural feature consists of the smallest substructure that cannot be 

further divided into subgroups with regard to all patterns. That means in our reduced graph we 

may get a substructure node describing a ring only and another one describing both, a ring and 

an acceptor. Two principal problems have to be solved to implement the reduced graph: 

Firstly, if certain atoms are removed from the molecular graph, then we may obtain nodes, 

which are disconnected to the rest of the graph. They have to be reconnected by new edges 

again such that these new edges preserve the neighborhood information, i.e. if before we had 

                                                 
1 A C and Java source code of the Hungarian method can be found in the supplement of this paper as well as the 
class-files of our JAVA implementation of the optimal assignment kernel. 
2 Daylight Chemical Information Systems Inc., http://www.daylight.com 



1a → 2a 3a 3a and  and atom  is removed, we should obtain . These new edges 

should contain information on the topological and geometrical distance of the substructures 

connected by them. Thereby the topological distance between two substructures is calculated 

as the minimal topological distance between the atoms belonging to them, whereas the 

geometrical distance is computed between the centers of gravity in order to conserve 

information on the 3D structure of the substructures (fig. 4). Secondly, we have to define how 

the feature vectors for each single atom and bond included in a substructure can be transferred 

to the whole substructure. This can, for instance, be solved by recursively applying our 

method from the last section, if two substructures have to be compared. A principal advantage 

of the reduced graph representation lies in the fact that complete substructures and their 

neighbor substructures can be compared at once. From the computational side the reduced 

graph representation is especially attractive for larger molecules, because the effort for 

computing the optimal assignment is reduced. By means of SMARTS patterns in principle it 

is possible to define arbitrary structural features to be condensed in one node of the reduced 

molecular graph. That means in some sense one can change the “resolution” at which one 

looks at the molecule. This way one achieves an even higher flexibility as e.g. offered by 

feature trees, because rather than considering the average over atom and bond features 

contained in a substructure, substructure nodes are compared on an atomic level and hence 

less structural information is lost. Additionally, in contrast to feature trees we have the 

advantage of receiving a symmetric and positive definite kernel function, which can be used 

to train a kernel based learning algorithm. 

2a → 2a 1a →

 



 

Figure 4. Example of a conversion of a molecule into its reduced graph representation with edge labels 

containing the topological distances. 

 

3.2 Incorporation of Relevant Descriptor Information 

For some QSAR/QSPR problems it is known that certain molecular descriptors are crucial. 

E.g. for human intestinal absorption the polar surface area of molecules plays an important 

role [15]. In some sense these descriptors describe global properties of a molecule, whereas 

our kernel relies on the graph structure and hence on local properties of a molecule. It seems 

obvious that if a-priori knowledge on certain relevant descriptors is available, then it should 

be used for the QSAR/QSPR model. Naturally, descriptors of two molecules M and M’ can be 

compared using a RBF kernel . On the other hand using the graph structure of  M and M’ 

we receive an optimal assignment kernel  (1), (2). Using the results from section 2.1 both 

can simply be combined by taking the sum of them.  

RBFk

Ak

 

4 Experiments 

4.1 Datasets 

The HIA (Human Intestinal Absorption) dataset consists of 164 structures from different 

sources, which has been used in two earlier publications [16, 8] as a benchmark dataset for 

descriptor selection. The dataset is a collection of Wessel et al. [7] (82 structures), 



Gohlke/Kissel [37] (49 structures), Palm et al. [38] (8 structures), Balon et al. [39]  (11 

structures), Kansy et al. [40] (6 structures), Yazdanian et al. [41] (6 structures) and Yee [42] 

(2 structures). The molecules are divided into 2 classes “high oral bio-availability” (106 

structures) and “low oral bio-availability” (58 structures) based on a histogram binning [48]. 

After removing hydrogen atoms, the maximal molecule size was 57 and the average size 25 

atoms. We considered one known relevant descriptor, the polar surface area [15]. The 

descriptor information was calculated by means of the open source software JOELib3.  

 The Yoshida dataset [29] has 265 molecules that we divided into 2 classes “high bio-

availability” (bioavailability >= 50%,  159 structures) and “low bio-availability” 

(bioavailability < 50%, 106 structures). The maximal molecule size was 36 and the average 

size 20 atoms, after removing hydrogen.  

The BBB dataset [43] consists of 109 structures having a maximal molecule size of 33 and an 

average size of 16 atoms after removing hydrogen. The target is to predict the logBB value, 

which describes up to which degree a drug can cross the blood-brain-barrier. We calculated 

two descriptors (polar surface area and octane/water partition coefficient logP), which are 

known to be relevant [15]. Again, both descriptors were computed by means of JOELib. 

Finally, we investigated a set of 296 molecules published in [25] as a test dataset for the SOL 

project4. The dataset consists of 4 different classes of inhibitors: thrombin inhibitors (75 

molecules), serotonin inhibitors of the 5HT2 class (75 molecules), monoamine oxidase 

inhibitors (71 molecules) and 5-hydroxytryptamine oxidase (75 molecules). The goal is to 

learn the classification of the structures into these 4 categories. After removing hydrogen 

atoms, the maximal molecules size was 48 and the average 28 atoms. 

For comparison reasons for each dataset we computed a full descriptor model without making 

any a-priori assumptions on the relevance of certain descriptors. This simulates a typical 

                                                 
3 http://sourceforge.net/projects/joelib 
4 Search and Optimization of Lead Structures (SOL), German Federal Ministry of Education and Research 
(bmb+f),  contract no. 311681 



situation in which there exists no prior knowledge on the problem. This way for the HIA 

dataset we calculated 6603, for the Yoshida dataset 5867, for the BBB dataset 5607 and for 

the SOL dataset 5774 descriptors. Thereby each descriptor set consists of all descriptors 

available in MOE5 and JOELib. Besides others, the JOELib descriptors include the Radial 

Distribution Function descriptor, the Moreau-Broto autocorrelation, the Global Topological 

Charge Index and Burden’s Modified Eigenvalues [17]. Thereby the descriptors are based on 

the following atom properties: atom mass (tabulated), valence (calculated, based on graph 

connectivity), conjugated environment (calculated, SMARTS based), van der Waals volume 

(tabulated), electron affinity (tabulated), electro-negativity (tabulated, Pauling), graph 

potentials (calculated, graph theoretical), Gasteiger-Marsili partial charges (calculated, 

iterative), intrinsic state (calculated), electro-topological state (calculated), electro-

geometrical state (calculated). These atom properties were also used for the calculation of the 

optimal assignment kernel (see also table 1 in the appendix). 

Each dataset consists of energy-minimized structures using the MOE all-atom-pair force field 

method [44], and was tested for duplicate molecules. Missing values in descriptors were 

replaced by mean values, which corresponds to a maximum likelihood estimate.  

 

4.2 Results 

Before turning to the evaluation results, in figure 5 we show an optimal assignment calculated 

by our method for the two example molecules, which were taken from the HIA dataset. As 

one can see, the optimal assignment indeed nicely matches the ring atoms and the atoms of 

the carbonyl groups and thus implements the intuition explained in the introduction.  

                                                 
5 MOE – Molecular Operating Environment, Chemical Computing Group Inc., 2003 



  

Figure 5. Two molecules from the HIA dataset and the optimal assignment computed by our method. 

 

Let us now turn to the evaluation of our method. We compared the optimal assignment kernel 

(OA) from section 2 to a full descriptor model (DESC), a model where certain descriptors 

were automatically selected by means of a descriptor selection algorithm (DESCSEL) and, in 

case the corresponding information was available, a model based only on a few descriptors 

known to be relevant for the problem by expert knowledge (EXPERT). As the descriptor 

selection algorithm we chose the Recursive Feature Elimination (RFE) algorithm [30], which 

is a wrapper algorithm especially designed for Support Vector Machines (SVMs) and is 

known to give good results on QSAR/QSPR problems [16]. For the OA kernel the width of 

the RBF kernels  and  were both set to , as the distance between two feature 

vectors scaled to unit length can just be between 0 and 2. Furthermore, we explicitly set  

to 0, if the element type of two atoms was different. Formally, this corresponds to the 

multiplication with a so-called δ-kernel. The same was done for bonds, if one bond was in an 

aromatic system and the other not, or if both bonds had a different bond order. The 

probabilities  to reach neighbors with topological distance l  was set to 
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We used a SVM on the HIA, Yoshida and SOL classification datasets and a Support Vector 

Regression (SVR) [5, 6, 4] on the BBB regression problem trained either with our optimal 

assignment kernel for the graph based or a usual RBF kernel for the descriptor based 

representation. The prediction strength was evaluated by means of 10-fold cross-validation. 

Thereby on the classification problems we ensured that the ratio of examples from both 

classes in the actual training set was always the same (so called stratified cross-validation). 

On each actual training fold a model selection for the necessary parameters was  performed by 

evaluating each candidate parameter set by an extra level of 10-fold cross-validation. For the 

optimal assignment kernel the model selection included choosing the soft-margin parameter C 

from the interval [2 , and on the BBB dataset additionally the width of the 2 142 ] ε -tube from 

the interval [2 . For the descriptor based models we also tuned the width 'σ  of the RBF 

kernel in the range 'ˆ '/ 4,σ , where 'σ̂  was set such that  (D = 

dimensionality of the data). Furthermore, for the DESCSEL model we ran the RFE algorithm 

to select a good subset of descriptors from all ones. Thereby the number of selected 

descriptors was determined by an additional 10-fold cross-validation from {D, D/10, D/50, 

D/100} on each actual training set. All descriptor values (also the logBB value in case of the 

BBB dataset) were normalized to mean 0 and standard deviation 1 on each training fold, and 

the calculated scaling parameters were then applied to normalize the descriptor values in the 

actual testing set. Note that this is necessary to have strictly separate training and test sets. 

2'ˆexp( /(2 0.1D σ− ))ˆ =

 

Table 2. 10-fold cross-validation error ± std. error. For the HIA, Yoshida and SOL dataset the classification loss 

(%) is reported, for the BBB dataset we show the mean squared error × 10-2 and the mean squared correlation 

(r2) between predicted and correct values (second row in brackets). Significant wins of the OA/OARG kernels 



compared to the DESC or DESCSEL model at 10% significance level are marked by “*” and “**”, respectively; 

losses by “-“ and “—“.  

Method HIA Yoshida SOL BBB 

DESC 21.43±3.79 33.18±3.24 7.77±1.42 70.51±10.05 

(37.69±7.34) 

DESCSEL 19.01±3.17 32.8±3.64 7.77±1.42 68.39±10.22 

(39.38±7.36) 

EXPERT 15.33±2.55* -- -- 38.1±5.38*,** 

(65.28±6.08) 

OA kernel 15.37±3.12*,** 31.74±3.25 1.69±0.05*,** 39.44±6.58*,** 

(58.62±7.23) 

OARG kernel 14.67±3.79*,** 32.18±3.23 3.02±0.78*,** 41.12±7.13*,** 

(60.34±6.33) 

OA + EXPERT 12.76±2.07* -- -- 38.56±5.17*,** 

(58.18±7.64) 

OARG + EXPERT 13.35±1.94*,** -- -- 34.27±3.64*,** 

(65.74±5.84) 

LITERATURE 15.76±2.54 [16] 40.00 [29] -- 23.04 [43] 

(62.41)  

 

Table 2 shows the results we obtained. Using our OA kernel we outperformed the DESC and 

DESCSEL model statistically significant on all datasets except the Yoshida dataset, where we 

also achieved a lower error rate, but the difference was not statistically significant. Thereby 

statistical significance was tested by a two-tailed paired t-test at significance level 10%. 

Furthermore, the results using our OA kernel were comparable to the EXPERT model (HIA 



and BBB dataset), which demonstrates that our method already captures well the relevant 

chemical and biological aspects that determine the similarity of molecules without using any 

a-priori information. 

We also investigated the effect of the reduced graph representation (OARG kernel) from 

section 3. Thereby in the reduced graph representation only direct neighbors were considered 

to compute  (i.e. ), whereas for the comparison of nodes representing structural 

elements we used  as before. We considered the following pharmacophore features [47] 

defined by SMARTS patterns: ring ([R]), donor ([$([NH2]-c),ND1H3,ND2H2,ND3H1, 

ND2H1,$(Cl-[C,c]),$(Br-[C,c]),$(I-[C,c])]), donor or acceptor ([$([NH2]-C),$([OH]C), 

$([OH]-c)]), acceptor ([$(N#C-[C,c]),OD1X1,OD2X2,ND3X3, ND2X2]), terminal carbon 

([CH3,CD1H2,CD1H1]), positive ([+,++,+++]), negative ([-,--,---]).  Molecules, which did 

not contain any of these features and hence lead to an empty graph, were removed. This 

affected two molecules in the BBB dataset: N

neik ' 1L =

3L =

2 and C2HF3BrCl. As seen in table 2 the OARG 

kernel lead to similar error rates than the original OA kernel. Again differences to the 

DESC/DESCSEL models were significant. This shows that the reduced graph representation, 

although using less structural information than the original OA kernel, covers well the 

relevant biological and chemical aspects of the molecules in our data.  

Next we investigated the effect of combining our method with expert provided descriptor 

information. Thereby we just used a fixed width ˆ' 'σ σ=  for the RBF kernel for the 

descriptors. As shown in table 2 we obtained lower error rates for the OA and the OARG 

kernel when combined with relevant descriptor information than without the incorporation of 

this information (HIA and BBB dataset). However, the differences to the original OA/OARG 

kernel were not statistically significant, which again underlines that our kernel already 

contains most of the relevant information to guarantee state-of-the-art predictive performance. 

We would like to point out that during all our evaluations we tried as carefully as possible to 

estimate the true generalization performance of our QSAR/QSPR models reliably by using 



10-fold cross-validation and computing normalization parameters on the training folds only. 

Furthermore, we would like to emphasize the importance of statistical significance testing, 

because otherwise comparing algorithmic performances is just based on random data 

fluctuations. 

A direct comparison of our classification/regression results to others from literature is quite 

problematic, since first, not the same expert system to calculate descriptors is used, second, 

the model is often evaluated using a single splitting into training and test set only, and third, 

not the same learning algorithm to build the model is employed. We thus report these results 

just for the sake of completeness in the last row of table 2 (LITERATURE). The 

LITERATURE model on the HIA dataset is from one of our previous publications [16] using 

the same data base, an older version of JOELIB and a SVM as a learning algorithm trained on 

a set of 2929 descriptors. However, in contrast to here, normalization and model selection was 

performed as a preprocessing step on the whole dataset there and thus results are not directly 

comparable. In [29] the Yoshida dataset is handled as a 4 class problem. Doublets in the 

dataset are not removed. Adaptive least squares is taken as the learning algorithm, which is 

trained on a set of 232 molecules represented by 18 descriptors. The evaluation is done on a 

separate test set of 40 structures. A direct comparison to the results reported here is 

questionable. On the BBB dataset [43] the authors use a combined multiple linear regression 

and spline model trained on 78 molecules using modified logP and polar surface area 

descriptors and the molecular weight. Doublets in the dataset are not removed. The evaluation 

is done on two test sets consisting of 14 and 23 compounds, respectively, where only the 

second one was structurally diverse as the test sets used in our evaluation procedure. Hence, 

we only show the result on the second test set in table 2. Again, a direct comparison is very 

problematic, since no cross-validation was used and hence the reported estimate of the 

generalization performance of the model is much less reliable than ours. 

 



5 Conclusion 

We introduced a new similarity score for chemical compounds based on a representation of 

molecules as labeled graphs. This similarity score is a positive definite, symmetric kernel 

function, which can be plugged into any kernel based Machine Learning algorithm, like e.g. 

Support Vector Machines, Support Vector Regression, Kernel PLS [33] or others. The basic 

idea of our optimal assignment kernel is to compute an optimal assignment of the atoms of 

one molecule to those of another one, including information on neighborhood, membership to 

certain structural elements and other characteristics. The optimal assignment can be computed 

efficiently in O(n3) time. We showed how the inclusion of neighborhood information for each 

single atom can be done efficiently via a recursive update equation, even if not only direct 

neighbors are considered. Comparisons to a classical descriptor based approach showed a 

significant improvement to models with and without automatic descriptor selection. At the 

same time the performance is comparable to a model only containing descriptor information, 

which is a-priori known to be relevant for the QSAR/QSPR problem at hand. Thereby it is 

important to point out that in contrast to such an expert model, with our method we did not 

use any problem dependent knowledge, i.e. there was no data dependent adaptation. We think 

that this is a special benefit of our approach as it guarantees a unified, highly flexible, easy 

and fast way to obtain reliable QSAR/QSPR models. We would like to add the remark that the 

computation of the kernel function can be done very quickly: Using our JAVA 

implementation on a Pentium IV 3GHz desktop PC one kernel evaluation on the HIA dataset 

on average took 10±9 ms, on the Yoshida dataset 7±4 ms, on the SOL dataset 6±4 ms and on 

the BBB dataset 6±9 ms. 

We investigated two major extensions of our approach: the usage of a reduced graph 

representation, in which certain structural elements are collapsed into a single node of the 

molecular graph and hence allow to view molecules at different user-specified levels of 



resolution, and the incorporation of descriptor information known to be relevant to the 

QSAR/QSPR problem at hand. We showed that the latter in tendency leads to a further 

reduction of the prediction error rate, whereas the major benefit of the reduced graph 

representation lies in the fact that expert knowledge on important structural features can be 

included. 

There are several directions of future research concerning our optimal assignment kernels: 

Besides a more systematic investigation of methods to incorporate knowledge on relevant 

descriptors, e.g. by means of kernel CCA [31, 32] or semidefinite programming [12], one 

could use our kernel to deduce pharmacophores on a dataset. Especially for this purpose the 

reduced graph representation would be beneficial. The possibility of our method to use 

arbitrary atom and bond features opens a rich field of potential information, which could be 

incorporated. Thereby an important topic is the question how problem relevant atom and bond 

features can be automatically selected among a candidate set of features.  

All in all we think that the definition of kernel functions for chemical compounds opens a new 

perspective in QSAR/QSPR modeling via kernel based learning algorithms, which are today 

the state-of-the-art methods for data analysis. Rather than trying to find the most appropriate 

description for a single molecule, in our approach we concentrate on the definition of kernels 

between them. This is an important difference, because last but not least kernel based learning 

algorithms work by comparing objects, and hence having a good similarity measure is the key 

for getting high a predictive performance. 
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Appendix 

A Tabular Material 

Table 1. Atom and bond features chosen in our experiments. 

features nominal real valued 

atom element type, in donor, in acceptor, 

in donor or acceptor [47], in terminal 

carbon, in aromatic system [45], 

negative/positive, in ring [46], in 

conjugated environment, free 

electrons, implicit valence, heavy 

valence, hybridization, is chiral, is 

axial 

electro-topological state [17], 

Gasteiger/Marsili partial charge [18], mass, 

graph potentials [17], electron-affinity, van 

der Waals volume, electro-geometrical state 

[17], electro-negativity (Pauling), intrinsic 

state [17] 

bond order, in aromatic system [45], in 

ring [46], is rotor, in carbonyl/amide/ 

primary amide/ester group 

geometric length 

 

 

B Figure Captions 

Figure 1. Matching regions of two molecular structures.       

 

Figure 2. Direct and indirect neighbors of atom 3 in the left and atom 5 in the right molecule. 

 

Figure 3. Possible assignments of atoms from molecule 2 to those of molecule 1. The kernel function k measures 

the similarity of a pair of atoms including information on structural and chemical properties. The goal is 

to find the optimal assignment, which maximized the overall similarity score, i.e. the sum of edge weights in the 

bipartite graph, where each edge can be used at most once. 
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Figure 4. Example of a conversion of a molecule into its reduced graph representation with edge labels 

containing the topological distances. 

 

Figure 5. Two molecules from the HIA dataset and the optimal assignment computed by our method. 

 


