Chapter 10

Preemptive Priority-Based
Scheduling: An Appropriate
Engineering Approach

Alan Burns

Scheduling theories for fixed-priority scheduling are now sufficiently mature that a
genuine engineering approach to the construction of hard real-time systems is pos-
sible. In this chapter we review recent advances. A flexible computational model
is adopted that can accommodate periodic and sporadic activities, different lev-
els of criticality, process interaction and blocking, cooperative scheduling (deferred
preemption), release jitter, precedence constrained processes, arbitrary deadlines,
deadlines associated with specific events (rather than the end of a task’s execution),
and offsets. Scheduling tests for these different application characteristics are de-
scribed. This model can be supported by structured, object-oriented, or formal
development methods. The chapter also considers the issues involved in producing
safe and predictable kernels to support this computational model.

10.1 Introduction

Recent developments in the analysis of fixed-priority preemptive scheduling have
made significant enhancements to the models introduced by Lui and Layland in
their seminal 1973 paper [33]. These developments, taken together, now represent
a body of analysis that forms the basis for an engineering approach to the design,
verification, and implementation of hard real-time systems. In this chapter we
review much of this analysis in order to support the thesis that safety critical real-
time systems can, and should, be built using these techniques.

Preemptive priority-based scheduling prescribes a run-time environment in
which tasks, with a priority attribute, are dispatched in priority order. Priorities
are, essentially, static. Processes are either runnable, in which case they are held
on a notional (priority-ordered) run queue; delayed, in which case they are held

222



Sec. 10.1 Introduction 223

on a notional delay queue; or suspended, in which case they are awaiting an event
which may be triggered externally (via an interrupt) or internally (from some other
task).

Most existing hard real-time systems are implemented using a static table-
driven schedule (often called a cyclic executive). Priority-based scheduling has
many advantages over this static approach (see Locke [35] for a detailed discussion
of this issue). In essence these advantages all relate to one theme—increased flex-
ibility. However, in order to challenge the role of static scheduling as the premier
implementation model, priority-based scheduling must:

e provide the same level of predictability (of temporal behavior)
e allow a wide range of application characteristics to be accommodated

e enable dependable (safe) implementations to be supported.

All of these issues are addressed in this review, which is organized as follows. The
remainder of this introduction outlines a simple model of task attributes and shows
how worst-case response times can be calculated. Section 10.2 considers the neces-
sary run-time kernel and shows how its temporal characteristics can be accommo-
dated and its implementation can be made safe. Section 10.3 extends the simple
model to include a number of important application characteristics. One criticism
that is often made about scheduling work is that it is not well integrated with
other aspects of software production; in Section 10.4 we outline a computational
model that 1s amenable to timing analysis and software production. A structured,
an object-oriented, and a formal instantiation of this computational model are de-
scribed. Finally, in Section 10.5 we address another criticism of priority scheduling:
namely that it is too static. Methods of integrating soft and best-effort schedul-
ing into the framework provided by the static priority-based model are considered.
Section 10.6 presents our conclusions.

10.1.1 Calculating Response Times

We restrict our considerations to single-processor systems. The techniques are,
however, applicable in a distributed environment with static allocation [52]. The
processor must support a bounded, fixed number of tasks, N. The general approach
is to assign (optimally) unique priorities to these tasks and then to calculate the
worst-case response time, R, for each task. These values can then be compared,
trivially, with each task’s deadline, D). This approach is illustrated with the deriva-
tion of appropriate analysis for a simple computational model.

Each of the N tasks i1s assumed to consist of an infinite number of invocation
requests, each separated by a minimum time 7. For periodic tasks this value T'
defines its period, for sporadic tasks 7' is the minimum inter-arrival time for the
event that releases the task. Each invocation of the task requires ' computation
time (worst case). During this time the task does not suspend itself. Tasks are
independent of each other apart from their use of shared protected data. To bound
priority inversion a ceiling priority protocol is assumed (for access to the protected
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data) [10, 42]. This gives rise to a maximum blocking time of B (i.e., B; is the
maximum time task ¢ can be blocked waiting for a lower-priority task to complete
its use of protected data). Our simple model has the restriction that each task’s
deadline must be less than, or equal to, its inter-arrival time (i.e. D; < T; for all
i). We also assume that context switches, and so on, take no time (this optimistic
assumption is removed in Section 10.2). Each task has a unique priority, P.

For this simple model optimal priority assignment is easily obtained. Leung
and Whitehead [32] showed that deadline monotonic assignment is optimal, i.e. the
shorter a task’s deadline, the higher its priority (D; < D; => P > Fj).

The worst-case response time for the highest-priority task (assuming task 1
has the highest priority) is given by:

R, = (Cy + Bj.

For the other tasks it is necessary to calculate the worst- case interference suffered
by the task. Interference results from higher-priority tasks executing while the task
of interest is preempted. It can be shown, for this simple computational model,
that maximum interference occurs when all higher-priority tasks are released at
the same time as the task under consideration—this time i1s known as the critical
wnstant. This leads to the following relation:

Ri = Bi+Ci+ Y. [%Cj

jenp(iy ' Y

where hp(#) is the set of tasks of higher priority then task i.

As R; appears on both sides of this equation a simple solution is not possible
[27]. Rather, an iterative (recurrent) process is derived. Let w be a window (time
interval) into which we attempt to insert the computation time of the task. We
expand w until all of C; can be accommodated:

n
W= B+ G+ Y h{—w c;. (10.1)
jenpG) ' Y
The iteration can start with w? = C; (although more optimal start values can be
found). Tt is trivial to show that w?"’l > wl. If w? > D;, then task ¢ cannot
be guaranteed to meet its deadline. However, if w] = w?"’l, then the interaction
process has terminated and R; = w}.

The derivation of this result together with examples of its use can be found
in a number of publications [3, 4, 7, 27]. Note that w; is referred to by Lehoczky
[28] as the ¢ — level busy period since the “priority” of the processor does not fall
below that of task ¢ during this period. The following simple example shows how
response times are calculated using Equation (10.1). Consider the simple three-task
set given in Table 10.1. Let the blocking time be 2 units of computation for Task_1
and Task_2.

Task_1 has the highest priority and has a worst-case response time of 4 (i.e.,
its own computation time plus the blocking time). Task_2 has an earliest possible
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Table 10.1 Simple Task Set

Period | Computation | Priority | Deadline | Blocking

T Time, C P D Time, B
Task_1 8 2 1 6 2
Task_2 12 3 2 10 2
Task_3 20 7 3 20 0

response time of 3; putting this value into Equation (10.1) gives a right-hand-side
value of 7, 7 then balances the equation:

7
T =3 4+ 2 + [—-‘ 2.
8
For Task_3 the initial estimate is 7; the right-hand side of Equation (10.1) is thus
(note the blocking factor is zero):

AR

12 12
7 —12 —1 3.
- 5]+ [5]
This now yields a value of 14. A further iteration produces 17. Another iteration
then gives a value of 19; this value is stable (i.e., actually causes Equation (10.1)
to balance) and therefore the actual worst response time of Task_3 is 19. Hence all
tasks will complete before their deadlines.

In Section 10.3 we show how this simple model can be extended. But first we
must consider the implementation of preemptive priority-based scheduling.

This yields 12. Hence:

10.2 Safe and Predictable Kernels

It is undoubtedly true that the support needed to implement preemptive priority-
based dispatching is more complicated than static scheduling—although the differ-
ence is not as large as it would first appear. It should be noted that a full operating
system is not required, only a micro-kernel with efficient context switching and an
ample range of priorities [9].

The production of a correct kernel necessitates the development of a formal
specification of the interface to the kernel and its behavior following calls to that
interface. Formal notations such as Z [45] have been used to give precise definitions
to such kernels [13, 46].

The notion of a safety kernel was introduced by Rushby [36] to imply a kernel
that was not only built correctly but had a positive role in ensuring that various
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negative behaviors (of the application) were inhibited. A prototype run-time sup-
port system for a restricted subset of Ada9X has been built along these lines [20]. Tt
monitors all application tasks to make sure that they do not use more resources (in
particular, CPU processing time) than was assigned to them during the scheduling
analysis of the application. If a task attempts to run over its budget, it has an
exception raised to enable it to “clear up” (the exception handler also has a budget
defined).

In addition to engineering the kernel to an appropriate level of reliability, it is
also critically important for the timing characteristics of the kernel to be obtainable.
This is true both in terms of models of behavior and actual cost (i.e., how long each
kernel routine takes to execute). The following sections address these issues.

10.2.1 Predicting Overheads

Simple scheduling models ignore kernel behavior. Context switch times and queue
manipulations are, however, significant and cannot usually be assured to take negli-
gible time unless a purpose-built processor is used. For example, the FASTCHART
[49] processor can genuinely claim to have zero overheads.

Even if a dual processor is used to perform context switches (in parallel with
the application/host processor), there will be some context switch overhead. When
a software kernel is used, models of actual behavior are needed. Without these
models excessively pessimistic overheads must be assumed. The interrupt handler
for the clock will usually also manipulate the delay queue. For example (in one
implementation [20]), when there are no tasks on the delay queue, then a cost of
16 pus may be experienced. If an application has 20 periodic tasks that all share a
critical instant, then the cost of moving all 20 tasks from the delay queue to the
run queue may take 590 pus—i.e.; 37 times more.

Context switch times can be accounted for by adding their cost to the task
that causes the context switch. For periodic tasks, the cost of placing itself on
the delay queue (and switching back to the lower-priority task it preempted) is,
however, not necessarily a constant. It may depend on the potential size of the
delay queue (i.e., on the number of periodic tasks in the application).

To model adequately the delay queue manipulations that occur in the clock
interrupt handler (i.e., at one of the top priority levels), it is necessary to address
directly the overheads caused by each periodic task. It may be possible to model
the clock interrupt handler using two parameters: Corg (the overheads occurring
on each interrupt assuming that tasks are on the delay queue but that none are
removed), and Cprg (the cost of moving one task from the delay queue to the run
queue). Each periodic task now has a vfictitious task with the same period T but
with computation time Cpgr. Equation (10.1) thus becomes :

n+l  _ B: , w_ln . —w? w_ln
w; ; + Cp + Z ’77}-‘0] + ’VTCLK-‘ Cerx + Z ’VTf CpPER
JE€hp(i) fefpt
(10.2)

where fpt is the set of fictitious periodic tasks.
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Our analysis of kernels indicates that this model is itself overly simplistic and
hence too pessimistic. There is usually a cost saving when more than one task
has been transferred between the queues. A three-parameter model would hence
seem to be appropriate, (see Burns, Wellings and Hutcheon for a derivation of this
model).

In addition to supporting periodic behavior, the kernel will also have to accom-
modate interrupt handling and the release of sporadic tasks following an interrupt.
This again gives rise to parameters that must be established before full scheduling
analysis can be undertaken [17].

10.2.2 Tick-Driven Scheduling

In all the above analysis, periodic tasks are assumed to have periods which are
exact multiples of the clock period. They can thus be released (i.e., put on the run
queue) as soon as they arrive (i.e., are potentially runnable). If the release time
is not equal to the arrival time, then the task is said to suffer from release jitter.
Although it would usually be a poor engineering decision to have release jitter,
there are situations where it might be inevitable.

Sporadic tasks are also assumed to be released as soon as the event on which
they are waiting has occurred. A full tick-driven scheduler will, however, poll for
these events as part of the clock interrupt-handling routine. This has the advantage
of clearly defining the times at which new tasks can become runnable. It also allows
safety checks to be implemented that can ensure that sporadic tasks are not released
too often. With this implementation scheme, sporadic tasks are bound to suffer
release jitter.

Let J; represent the worst-case release jitter suffered by task ¢ (i.e., the maxi-
mum time between task arrival and release). Two modifications of Equation (10.1)
are now required. First, the calculated response time according to Equation (10.1)
is from release, not arrival. The true (desired) maximum response time is measured
from arrival:

RIBUVE  — R, + J;.

Second, the interference that this task has on lower-priority tasks is increased. This
is because two releases of the task can be closer together than the notional minimum
T;. If one arrival suffers maximum release jitter, but the next does not, then the two
releases have a time gap of only T; — J;. The interference factor in Equation (10.1)
must be modified to give [3]:

wit = B+ G+ Y [MTMW Cj. (10.3)
j€hp() !

10.2.3 Cooperative Scheduling

The kernels described above have all implemented true preemptive dispatching. In
this section an alternative scheme is outlined (the use of deferred preemption). This
has a number of advantages but can still be analyzed by the scheduling technique
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embodied in Equation (10.1). In Equation (10.1) there is a blocking term B that
accounts for the time a lower-priority task may be executing while a higher-priority
task is runnable. In the application domain this may be caused by the existence of
data that is shared (under mutual exclusion) by tasks of different priority. Blocking
can, however, also be caused by the kernel. Many systems will have the non-
preemptable context switch as the longest blocking time (e.g., the release of a
higher priority task being delayed by the time it takes to context switch to a lower
priority task-even though an immediate context switch to the higher-priority task
will then ensue).

One of the advantages of using the immediate ceiling priority protocol [10]
(to calculate and bound B) is that blocking is not cumulative. A task cannot be
blocked both by an application task and a kernel routine-only one could actually
be happening when the higher-priority task is released.

Cooperative scheduling exploits this non-cumulative property by increasing
the situations in which blocking can occur. Let BMAX be the maximum blocking
time in the system (using a convention approach). The application code is then split
into non-preemptive blocks, the execution times of which are bounded by BM4X .
At the end of each of these blocks the application code offers a “de-scheduling”
request to the kernel. If a high-priority task is now runnable, then the kernel will
instigate a context switch; if not, the currently running task will continue into the
next non-preemptive block.

Although this method requires the careful placement of de-scheduling calls,
these could be inserted automatically by the worst-case execution-time analyzer
which is itself undertaking a control flow analysis of the code.

The normal execution of the application code is thus totally cooperative. A
task will continue to execute until it offers to de-schedule. To give some level
of protection over corrupted (or incorrect) software, a safe kernel could use an
interrupt mechanism to abort the application task if any non-preemptive block
lasts longer than BMAX  The use of cooperative scheduling is illustrated by the
DIA architecture [44]. Here a kernel support chip deals with all interrupts and
manages the run queue. The de-scheduling call is a single instruction and has
negligible cost if no context switch is due.

The use of deferred preemption has two important advantages. It increases the
schedulability of the system, and it can lead to lower values of C'. In Equation (10.1),
as the value of w is being extended, new releases of higher-priority tasks are possible
that will further increase the value of w. With deferred preemption no interference
can occur during the last block of execution. Let F; be the execution time of the
final block, such that when the task has consumed C; — F;, the last block has (just)
started. Equation (10.1) is now solved for C; — F; rather than Cj:

w?“ = B, + C; — F; + Z F;—ZW Cj. (10.4)
jehp(i) ' Y

n

When this converges (i.e., w] = wl) the response time is given by:

K3
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Table 10.2 Kernel Attributes

Notation | Description

ct, Cost of context switch away from a periodic task—

may be a function of maximum size of delay queue
ch Cost of context switch to a task currently on the run queue
Cork Clock interrupt handler cost (no tasks being moved)
Terx Clock interrupt handler period
CprER Cost of moving one task from delay queue to run queue
cs, Cost of context switch away from a sporadic task—

when it suspends waiting for its next release
Csp Cost of releasing a sporadic (i.e., putting it on the run queue)
CInT Cost of an interrupt handler that just releases a sporadic task
Bx Maximum length of non-preemption in the kernel

In effect the last block of the task has executed with a higher priority (the highest)
than the rest of the task. Lehoczky has shown how increases in priority during the
execution of a task can lead to better schedulability [24].

The other advantage of deferred preemption comes from predicting more ac-
curately the execution times of a task’s non-preemptable basic blocks. Modern
processors have caches, prefetch queues,; and pipelines that all significantly reduce
the execution times of straight-line code. Typically, estimations of worst-case ex-
ecution time are forced to ignore these advantages and obtain very pessimistic
results because preemption will invalidate caches and pipelines. Knowledge of non-
preemption can, however, be used to predict the speedup that will occur in practice.
Zhang, Burns, and Nicholson have shown how a 20% reduction in worst-case ex-
ecution time (C') can be obtained by modeling the prefetch queue directly [54];
Harmon, Baker, and Whalley have shown how the pipeline on a 68020 can be an-
alyzed at the micro-code level [25]; and cache advantages can also be predicted. If
modern processors are to be used in real-time systems, then this type of analysis is
necessary.

Summary. A number of the parameters defined in the above discussion (for ex-
ample, J and F') are, in reality, attributes of the application’s task set. Others
relate to the kernel itself. Table 10.2 summarizes those that have been introduced
in this discussion. Their values are of key significance in determining the feasibility
of any application running on top of the kernel. It follows that any kernel used for
safety critical real-time systems will not only have to be instrumented but must
also allow these parameters to be verified.

If interrupt handlers differ in terms of their cost, then a single Cryr value
will not suffice.
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10.3 An Extendible Model

Application requirements rarely (if ever) fit the simple model described in the in-
troduction. An appropriate scheduling theory is one that can be extended to meet
the particular needs of newer application requirements. In this section we consider
a number of extensions to the basic model:

1. Variations in ' and T

Precedence Relations and Multi-Deadline Tasks

Arbitrary Deadlines (i.e., D > T)

Internal Deadlines (i.e., not all C' has to be completed by D)

Ot e W N

Offsets and Phased Executions

We then consider how priorities can be assigned optimally when the simple rate
monotonic or deadline monotonic policies do not apply.

10.3.1 Variation in Computation Time and Period

Where it can be shown that a task will not execute for its maximum time on each
release, 1t is pessimistic to assume that it does. For example, a periodic task may do
a small amount of data collection in each period but every, say, 10 periods analyses
this data using a much more expensive algorithm. This behavior can simply be
modeled, in Equation (10.1), as two tasks, one running every period (with a small
() and the other running every 107 (with a larger computation time).

Variations in period are also possible. Bursts of activity involving a number of
short periods are following by inactivity. Sporadic tasks released by interrupts can
behave in this manner. For example, a sporadic could have a worst-case (minimum)
arrival interval of 1 ms but have the restriction that no more than 5 releases can
occur within a 100 ms interval. If the worst-case arrival interval is very small, then
it is acceptable to collapse the 5 releases into a single task (with period of 100 ms).
However, a more accurate prediction of the interference this task will impose on
lower-priority tasks, in the window w, can be derived [3]. Let T' be the outer period
(e.g., 100 ms in the above example) and ¢ be the smaller period (e.g., 1 ms). Also
let n be the number of releases in the outer period (e.g., 5). Task j will have an
interference on lower-priority tasks (I} ) as follows:

0 = V;_J nj C; + min Ly Y . (10.5)
J

This can then be incorporated into Equation (10.1). The first term in Equa-
tion (10.5) gives the cost of complete cycles (outer period) contained within w?.
The second term gives the additional cost of minor cycles, this is upper bounded
by the cost of a complete burst, n;C;.
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Table 10.3 An Example Task Set

C D T P
I 2 5 20 2
Q 2 4 2 1
S 4 7 20 3

Table 10.4 Transformed Task Set

C D T P

I 2 5 20 1

QT 2 9 20 2
ST 4 16 20 3

10.3.2 Precedence Relationships and Multi-deadline Tasks

A common paradigm for structuring real-time software is as a set of tasks linked via
precedence relations (i.e., task B cannot start until task A has completed). Data is
often passed along these precedence links, but as the tasks involved never execute
together, mutual exclusion over this data need not be enforced.

For illustration, consider a simple straight-line “transaction” involving three
tasks: L, which must run before @, which runs before S. Table 10.3 contains the
given timing attributes for these tasks. Note that the periods of the three tasks are
identical and that the overall deadline is 16.

A naive application of, say, deadline monotonic analysis will assign priorities
(P) as given in the table. The schedulability test will then assume that all tasks
are released at the same time and deem the task set to be unschedulable.

The critical instant assumption (i.e., all tasks released simultaneously) is
clearly too pessimistic for precedence-constrained tasks. We know that they never
wish to execute together. Both ) and S require an offset. That, is they cannot
execute at the start of the period.

A simple transformation can be applied to tasks with offsets that share the
same period. We relate the deadlines of all tasks not to their start times but to
the start time of the transaction. This will not affect L but it will mean that ¢
and S have their deadlines stretched (we refer to the new tasks as @7 and S7).
Table 10.4 now has the new deadlines and priorities for the task set.

The priority model will now ensure that L executed first, then @7, and then
ST, Moreover, the new task set is schedulable and would actually allow other tasks
to be given priorities interleaved with this transaction. As the tasks share the same
period, only one of them will experience a block. Note, however, that task L (and
Q7)) must not undertake any external blocking, as this would free the processor to
execute QT (or ST) early.

This formulation results in tasks having lower priorities for later positions
down the precedence relationship (i.e., S lower than L). As indicated earlier, Har-
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bour, Klein, and Lehoczky have shown that by increasing the priority (and impos-
ing some mechanism to stop the later tasks starting too early) can result in greater
schedulability [24].

Finally, it should be noted that precedence relations can be implemented with
real offsets (i.e., @ not being released until time 5). This technique is considered in
Section 10.3.5.

The above approach for dealing with precedence-constrained tasks has a fur-
ther property that will enable multi-deadline tasks to be accommodated. Processes
can exist that have more than one deadline: they are required to complete part of
their computations by one time and the remainder by a later time. This can occur
when a task must read an input value very early in the period and must produce
some output signal at a later time.

To implement multi-deadline tasks it is necessary for the run-time system in-
terface to facilitate dynamic priority changes. The task is modeled as a precedence-
related transaction. Fach part of the transaction is thus assigned a priority (as de-
scribed above). The task actually executes in a number of distinct phases, each with
its own priority: for example, a high priority to start with until its first deadline is
met, then a lower priority for its next deadline.

10.3.3 Arbitrary Deadlines

To cater for situations where D; (and hence potentially R;) can be greater than
T;, we must adapt the analysis. The following outlines the approach of Tindell
[50, 53]. When deadline is less than (or equal) to period, it is only necessary to
consider a single release of each task. The critical instant, when all higher-priority
tasks are released at the same time, represents the maximum interference, and
hence the response time following a release at the critical instant must be the
worst-case. However, when deadline is greater than period, a number of releases
must be considered. We assume that the release of a task will be delayed until any
previous releases of the same task have completed. For each potentially overlapping
release we define a separate window w(q), where ¢ is just an integer identifying a
particular window (i.e., ¢ = 0,1,2,...). Equation (10.1) can be extended to have
the following form:

w?-l—l(q) = (¢+1)C; + B + Z ’VwZT@)-‘ Cj. (10.6)
j€hp(i) 7
For example with ¢ equal to 2, three releases of task ¢ will occur in the window.
For each value of ¢, a stable value of w(q) can be found by iteration—as in Equa-
tion (10.1). The response time is then given as

Ri(g) = wilg) — ¢Ti (10.7)
e.g., with ¢ = 2 the task started 27; into the window and hence the response time
1s the size of the window minus 27;.
The number of releases that need to be considered is bounded by the lowest
value of ¢ for which the following relation is true:
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Ri(q) < T (10.8)

At this point the task completes before the next release, and hence subsequent
windows do not overlap. The worst-case response time is then the maximum value
found for each g¢:

R, = hax R;i(q). (10.9)
Note that for D < T relation (10.8) is true for ¢ = 0 (if the task can be guaranteed),
in which case Equations (10.6) and (10.7) simplify back to the original equation.

10.3.4 Internal Deadlines

In a recent report, Gerber [23] argues that it is only meaningful to attach a deadline
to the last observable event of a task. Moreover, this last observable event may not
be at the end of the task’s execution; i.e., there may be a number of internal actions
after the last output event.

When the model for analysis is enhanced to include kernel overheads (as
described in Section 10.2), it is necessary to “charge” to each task the cost of
the context switch that allows it to preempt a lower-priority task plus the cost
of the context switch back to the preempted task once the higher-priority task
has completed. For realistic context switch times (i.e., not zero) it is meaningless
to attach the “deadline” to the end of the context switch. Figure 10.1 gives a
block representation of a task’s execution (excluding preemptions for higher-priority
tasks). Phase a is the initial context switch to the task, phase b is the task’s actual
execution time up to the last observable event, phase ¢ represents the internal
actions of the task following the last observable event, and phase d is the cost of
the context switch away from the task. The real deadline of the task is at the end
of phase b.

In the following we shall denote by CP the computation time required by the
real internal deadline (i.e., phases a + b only), and by C" the total computation
time of the task in each period (i.e., all four phases). Note that there is no require-
ment to complete CT by 7' as long as CP is completed by D. Hence an adaptation
of the arbitrary deadline model (see the previous section) is required.

If we include the two phases of computation into Equation (10.5), we get:

n wi ()
wite) = o0f + P + B+ ) [ - w cr. (10.10)
j€hp(i) !
This when combined with (10.7), (10.8), and (10.9) allows the worst-case response
time for CP to be calculated (assuming maximum C7, interference from early

releases of itself). Equation (10.6) could be used directly to calculate the response
time for C', but this value is not directly relevant to this formulation. It can be
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Figure 10.1 Four Phases of a Task’s Execution

Table 10.5 Gerber’s Task Set
Task T cP 7T D RP RT
1 1000 400 400 1000 | 400 400

2 1600 400 400 1600 [ 800 800
3 2500 493 653 2500 | 2493 2653

shown, trivially, that for utilization less than 100% there exists bounded response
times for all tasks.! What is important is that RP is less than D;.

The above analysis can be applied to the simple task set introduced and dis-
cussed by Gerber [23]. Table 10.5 shows the characterization of three tasks; note
that D = T for all entries, and that no task experiences blocking. With rate mono-
tonic analysis, task 3 cannot be guaranteed. Gerber shows that by transforming
this task, of the 653 units of computation only 493 are required to be completed by
the deadline. He then shows how an implementation scheme can be used to guar-
antee task 3. However, the above analysis furnishes a value for RY of 2493, which
is just before the deadline (and period). Hence standard preemptive priority-based
dispatching will satisfy the timing requirements of this task set. No transformation
is needed. Note, for completeness, that the worst-case response time of RZ is 2653.

10.3.5 Offsets and Phased Executions

Perhaps the most extreme restriction of the basic model is that it assumes that all
tasks could be released at the same time (the critical instant). This assumption
simplifies the analysis but it is not applicable on many occasions. Cyclic execu-

!Consider a set of periodic tasks with 100% utilization, all of which have deadlines
equal to the LCM of the task set; clearly, within the LCM no idle tick is used and no task
executes for more than it needs and hence all deadlines must be met.
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Table 10.6 Three Offset Tasks

Task Name Period | Computation | Offset | Priority | Deadline
Time
Command actuators 200 2.13 50 20 14
Request DSS data 200 1.43 150 19 17
Request wheel speeds 200 1.43 0 18 22

Table 10.7 Combined Task

Task Name Period | Computation | Offset | Priority | Deadline
Time

Combined task 50 2.13 0 18 14

tives (static scheduling), for example, explicitly use offsets to order executions and
obtain feasible schedules. Without offsets, priority-based systems are often too pes-
simistic; with offsets, equivalent behavior to cyclic executives can be obtained [8].
For example, a recent case study [18, 19] of the Olympus satellite AOCS (Attitude
and Orbital Control System), containing some 30 tasks, was deemed unschedulable
by the standard deadline monotonic test (i.e., Equation (10.1) modified to include
kernel overheads). On inspection it contained three tasks of identical period that
could not all be scheduled. Table 10.6 gives the details of these tasks.

The only requirements on these tasks were their periods (and deadlines); they
did not have to be released together. By giving “Command Actuators” an offset
of 50 ms and “Request DSS Data” an offset of 150 ms, their work was spread out.
From an analysis point of view it was possible to replace these three tasks by just
one (see Table 10.7). This task has a computation time requirement equal to the
greatest of the original three, and a deadline which is the shortest. The task set
(including this new one but not the originals) now passed the schedulability test.

Hence a simple transformation, that actually increases the overall load on
the system (as it notionally executes every 50 ms) can increase schedulability by
incorporating offsets.

In the more general case of arbitrary offset relationships it would be desirable
to have an exact feasibility test. One way of testing feasibility is just to simulate
the behavior of the system. Leung shows that the length of interval that should
be examined is twice the LCM of the task set plus the largest offset (assuming
tasks have been normalized to have offsets less than period) [31]. For task sets with
periods that are relative primes this implies a computationally infeasible test.

Recently, Tindell [8, 51] has developed a feasible but inexact test, using the
window approach outlined earlier for arbitrary deadlines. The resulting maximum
window size is only marginally greater than the one that would be obtained for
the full necessary and sufficient analysis. The derivation of this result is, however,
beyond the scope of this review.
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10.3.6 Priority Assignment

The formulations given in the last three sections (i.e., arbitrary deadlines, internal
deadlines, and offsets) have the common property that no simple algorithms (such
as rate or deadline monotonic) gives the optimal priority ordering. In this section we
reproduce Audsley’s algorithm for assigning priorities in these situations. Audsley
[1] proves the following theorem:

Theorem 10.3.1 If task 7 is assigned the lowest priority and is feastble, then if a
feasible priority ordering exists for the complete task set, an ordering exists with T
assigned the lowest priority.

If a 7 is found then a corollary of the theorem can be applied to the lowest-but-one
priority, and so on; hence a complete priority ordering is obtained (if one exists).

The following code in Ada implements the priority assignment algorithm; set
is an array of tasks that is notionally ordered by priority, set (1) being the highest
priority, set (N) being the lowest. The procedure task_test tests to see whether
task K is feasible at that place in the array. The double loop works by first swapping
tasks into the lowest position until a feasible result is found; this task is then fixed
at that position. The next priority position is then considered. If at any time the
inner loop fails to find a feasible task, the whole procedure is abandoned. Note that
a concise algorithm is possible if an extra swap is undertaken.

procedure assign_pri (set : in out process_set; N : natural;
OK : in out boolean) is
begin
for K in reverse 1..N loop
for next in reverse 1..K loop
swap(set,K,next);
task_test(set,K,0K);
set(K).P := K;
exit when OK;
end loop;
exit when not 0K;
end loop;
end;

If the test of feasibility is exact (necessary and sufficient), then the priority ordering
is optimal. Thus for arbitrary deadlines and internal deadlines (without blocking),
an optimal ordering is found. Where a non-exact test is used (for example, with
the offset test), the priority ordering reflects the quality of the test.

10.3.7 Summary

This section has reviewed a number of recent results that have taken simple schedu-
lability equations and extended them to cover a range of realistic and necessary
application features. Many variations of the basic equations have been given, but
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Table 10.8 Task Attributes

Notation | Description Default
T Minimum time between task releases (or burst releases)
D Deadline relative to start of any precedence relation T
O Release offset relative to start of a precedence relationship | 0
J Release jitter 0
n, Tt Characteristics of a bursty task, n in time 7' with
a minimum gap between inner cycles of ¢ 1,7,0
B Blocking time B
C or CT | Computation time
cP Computation time before last observable event C
F Final non-preemptive section of computation time 0
P Priority (calculated)
R Response time (calculated)

they can all be integrated together and implemented within some appropriate soft-
ware tool. Table 10.8 gives the attributes that are needed for each task if the full
analysis described in this review is to be applied; those attributes with a default
value can be omitted (i.e., the default can be assumed).

The overheads due to implementing fixed-priority scheduling do reduce pro-
cessor utilization, but the use of internal deadlines and offsets can move utilization
close to 100%. A final technique is worth noting for some tasks sets that still cannot
be scheduled by the fixed-priority approach. Even when 100% utilization is needed
it is not necessary to move to a fully earliest deadline approach [21, 33]. It has been
shown that a dual-priority scheme is adequate [15]. Here some low-priority tasks
are given an intermediate deadline at which their priority is raised (if they still have
work to do). This minimally dynamic scheme provides for optimal schedulability.

10.4 Computational Model

Scheduling work is often criticized for not addressing the broader problems of engi-
neering real-time systems. It is clear that attempting to apply scheduling analysis to
arbitrary software is doomed to failure. The interface between software development
and scheduling is the computational model. This model must be amenable to anal-
ysis but also be a natural end product of the development process. Moreover, the
computational model must be applicable to implementations on multi-processors
and distributed systems.

The computational model implicit in the scheduling analysis reviewed in this
chapter has the following properties:

o Tt consists of active entities (tasks) and protected shared data areas.

e The only communication between active entities is via the shared data ar-
eas; the only exception to this is when one active entity releases another for
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execution.
e Precedence relationships between active entities are allowed.

o Active entities have temporal attributes defined (such as deadline, offset, pe-
riod, minimal arrival rate, etc.).

e Shared data areas provide mutual exclusion but do not arbitrarily block
clients.

e Entities are allocated to single processing units.

e The allowable remote actions (in a distributed system) are a remote write to
a shared data area and the releasing of a remote active entity.

This simple model has sufficiently expressive power to allow systems to be designed,
allocated to distributed hardware, and analyzed for realistic worst-case behavior.
To support the view that it is sufficient for design work, three development methods
will be reviewed briefly.

(a) A traditional approach — MASCOT
(b) A formal method — TAM
(¢) An object-oriented approach — HRT-HOOD

It should be clear how the computational model leads to programs/systems that
can be analyzed. Note that the desire to reduce blocking will dictate the use of
simple shared data areas. The granularity of the active entities i1s also significant.
All three design methods encourage the use of decomposition rules that lead to
activities (modules) that are temporarily, as well as functionally, decoupled.

10.4.1 MASCOT

The MASCOT [11] method involves the production of a real-time network. Within
this network there are activities and IDAs (intercommunication data areas). For
hard real-time systems two forms of IDA are used : pools and signals. Pools provide
non-destructive non-blocking read and destructive non-blocking write; signals have
the same write characteristics, but the read is destructive and blocking. Hence
pools are used for simple mutual exclusion, while signals are employed to release
an activity that is waiting for data.

Recently, MASCOT has been extended to give full life-cycle support to the
production of real-time systems. An interesting feature of this DORIS (Data-
Oriented Requirements Implementation Scheme) technology is the use of algorithms
that provide non-blocking mutual exclusion. If pools are single-writer, then pool
I/O operations never block (for example, a read event will always return the most
recent completely written data-even if a write-to operation is concurrently updating
it). DORIS also advocates the use of the deferred preemption method described in
Section 10.2.2. However, the main use of MASCOT is as a design method. It is
used primarily in the safety-critical aerospace industry.
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10.4.2 TAM

Many formal development methods have a very synchronous computational model
that leads to difficult timing analysis. They often had to incorporate the extreme
assumption of maximum parallelism and zero cost for many activities. By compar-
ison, TAM (Temporal Agent Model) [39-41] is defined to support the development
(via refinement) of systems that can be analyzed accurately.

TAM is a wide-spectrum language consisting of specification statements and
concrete executable statements. As a system 1s being developed, specifications are
refined into more concrete forms (a refinement calculus is defined for TAM). An
executable program (i.e., one with no remaining specifications) consists of agents
and shunts. Shunts are single-writer multiple-reader shared data areas. Agents can
communicate only via shunts. All computations and communications take time,
and data passing through a shunt is time stamped. Agents can also be released by
the event of writing to a shunt.

First-order predicate logic has been extended (conservatively) to give the for-
mal basis to TAM. A simple form of temporal logic (and the introduction of timed
variables) is used to define period activities, deadlines and so on.

A number of case studies [2, 37, 38] have been written that indicate that real-
time systems can be specified, refined, and analyzed using the TAM formulation.

10.4.3 HRT-HOOD

HRT-HOOD [14, 16] (Hard Real-Time HOOD) is an adaptation of HOOD (Hierar-
chical Object-Oriented Design). A system is decomposed into terminal objects that
must be either cyclic, sporadic, or protected. Cyclic and sporadic objects contain
a single thread of control. Protected objects are required to provide mutual exclu-
sion (e.g., by ceiling priorities). Sporadic objects also have a single method used
to release them for execution. Rules of decomposition and usage force the terminal
system to match the computational model described earlier. Object attributes are
used to hold the timing characteristics and derived properties such as priority and
response time. HRT-HOOD is a structured method supporting a graphical rep-
resentation and a textual equivalent syntactical form. It has been used, together
with some of the scheduling analysis discussed in this chapter, on an extensive case
study [18].

One of the interesting features of the HRT-HOOD method is that it contains
systematic mapping from the object system to Ada 9X. This indicates that the
computational model is realizable in that language.

10.5 Slack Scheduling

It is possible to compare scheduling approaches by considering the range of tech-
niques that has at one extreme static scheduling (cyclic executives), and at the
other, best-effort scheduling [12]. Fixed-priority scheduling falls in the middle of
these extremes; and indeed is often criticized as being too static by the best-effort
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lobby, and too dynamic by the cyclic executive supporters. The value of fixed-
priority scheduling is that it does allow hard guarantees to be given, while allowing
flexibility and various levels of non-determinism to be accommodated. This short
section reviews the techniques that are available for allowing soft (non-guaranteed
tasks) to be combined with the hard tasks that make up the safety critical subsys-
tem being executed. The motivation of this section is to show that fixed priority
scheduling can be extended into the realms of best-effort scheduling.

When there is no need for a hard task to be executing, the system is said
to have slack available. This slack can be used to satisfy a number of application
needs:

e The execution of soft aperiodic tasks
e The execution of background tasks
e The early completion of sporadic tasks

e The execution of components that enhance the utility of the hard task set.

The last entry can itself be subdivided into a number of techniques that are collec-
tively known as imprecise computation [5, 6, 34, 43].

In general, best-effort scheduling [26] can be applied to collections of tasks
running in slack time. The amount of slack available 1s, of course, dependent on
the load exerted by the hard task set. This may vary in different modes of operation,;
so that, for example, a system that has lost processing resources may reduce its
hard load (and increase its soft) so as to switch over to best-effort scheduling. In the
extreme, a system could move to pure best-effort scheduling when the processing
resource level is below that assumed for the static analysis undertaken as part of
the fixed-priority approach.

More usually, there will be a mixture of hard and soft tasks to execute. Three
implementation approaches can be identified:

e execute soft tasks at low priorities
e execute soft tasks using a hard server

e execute soft tasks using optimal slack scheduling

The motivation behind all three schemes is to execute soft tasks as early as possi-
ble (commensurate with all hard tasks meeting their deadlines by some appropriate
safety margin). However, the schemes can also be compared by considering their
overheads and the added complexity they impose on the kernel’s design and behav-
ior.

If all soft tasks are given priorities lower than any hard tasks, then no changes
are needed in the kernel. Soft tasks are, however, executed only when the processor
would otherwise be idle.

A number of different server schemes have been published [30, 47, 48] (e.g.,
polling server, priority exchange, deferrable server, extended priority exchange, and
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sporadic server). Each attempts to define a capacity of work that can be assigned to
soft tasks (even when there are runnable hard tasks) without jeopardizing the hard
deadlines. As the servers all reserve enough capacity for the hard tasks, they are
often called bandwidith preserving. They make differing demands on the kernel; all
need task monitoring (i.e., CPU usage) and most require soft tasks to have quotas
defined and enforced.

Optimal slack scheduling takes into account the phasing, and actual execution
times, of tasks to calculate the maximum slack that can be made available at any
moment in time (and at each priority level). For purely periodic (D = T') hard task
sets, Lehoczky and RamosThuel give an optimal scheme that can be calculated
statically (i.e., off-line) [29]. For mixed periodic and sporadic task sets (and tasks
with arbitrary deadlines, release jitter, etc.) Davis ef al. have defined an optimal
scheme that requires on-line analysis. The scheme would be optimal if it had zero
cost and is executed frequently [22]. With realistic costs it is possible to define the
frequency of execution for maximum effect.

10.6 Conclusions

In this chapter simple scheduling models have been extended to include realistic
kernel features and necessary application requirements. The result is a flexible
computational model supported by a rich set of analysis techniques. We can con-
clude that fixed-priority scheduling now represents an appropriate (and arguably,
a mature) engineering approach. Although the many equations and relationships
must be embedded in trusted tools, this is no different from many other engineer-
ing disciplines. The real-time systems designer now has the techniques available to
engineer systems rather than just build them and then see if they meet their timing
requirements during extensive (and expensive) testing.
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