
Chapter 10Preemptive Priority-BasedScheduling: An AppropriateEngineering ApproachAlan BurnsScheduling theories for �xed-priority scheduling are now su�ciently mature that agenuine engineering approach to the construction of hard real-time systems is pos-sible. In this chapter we review recent advances. A exible computational modelis adopted that can accommodate periodic and sporadic activities, di�erent lev-els of criticality, process interaction and blocking, cooperative scheduling (deferredpreemption), release jitter, precedence constrained processes, arbitrary deadlines,deadlines associated with speci�c events (rather than the end of a task's execution),and o�sets. Scheduling tests for these di�erent application characteristics are de-scribed. This model can be supported by structured, object-oriented, or formaldevelopment methods. The chapter also considers the issues involved in producingsafe and predictable kernels to support this computational model.10.1 IntroductionRecent developments in the analysis of �xed-priority preemptive scheduling havemade signi�cant enhancements to the models introduced by Lui and Layland intheir seminal 1973 paper [33]. These developments, taken together, now representa body of analysis that forms the basis for an engineering approach to the design,veri�cation, and implementation of hard real-time systems. In this chapter wereview much of this analysis in order to support the thesis that safety critical real-time systems can, and should, be built using these techniques.Preemptive priority-based scheduling prescribes a run-time environment inwhich tasks, with a priority attribute, are dispatched in priority order. Prioritiesare, essentially, static. Processes are either runnable, in which case they are heldon a notional (priority-ordered) run queue; delayed, in which case they are held222

Sec. 10.1 Introduction 223on a notional delay queue; or suspended, in which case they are awaiting an eventwhich may be triggered externally (via an interrupt) or internally (from some othertask).Most existing hard real-time systems are implemented using a static table-driven schedule (often called a cyclic executive). Priority-based scheduling hasmany advantages over this static approach (see Locke [35] for a detailed discussionof this issue). In essence these advantages all relate to one theme|increased ex-ibility. However, in order to challenge the role of static scheduling as the premierimplementation model, priority-based scheduling must:� provide the same level of predictability (of temporal behavior)� allow a wide range of application characteristics to be accommodated� enable dependable (safe) implementations to be supported.All of these issues are addressed in this review, which is organized as follows. Theremainder of this introduction outlines a simple model of task attributes and showshow worst-case response times can be calculated. Section 10.2 considers the neces-sary run-time kernel and shows how its temporal characteristics can be accommo-dated and its implementation can be made safe. Section 10.3 extends the simplemodel to include a number of important application characteristics. One criticismthat is often made about scheduling work is that it is not well integrated withother aspects of software production; in Section 10.4 we outline a computationalmodel that is amenable to timing analysis and software production. A structured,an object-oriented, and a formal instantiation of this computational model are de-scribed. Finally, in Section 10.5 we address another criticism of priority scheduling:namely that it is too static. Methods of integrating soft and best-e�ort schedul-ing into the framework provided by the static priority-based model are considered.Section 10.6 presents our conclusions.10.1.1 Calculating Response TimesWe restrict our considerations to single-processor systems. The techniques are,however, applicable in a distributed environment with static allocation [52]. Theprocessor must support a bounded, �xed number of tasks, N . The general approachis to assign (optimally) unique priorities to these tasks and then to calculate theworst-case response time, R, for each task. These values can then be compared,trivially, with each task's deadline, D. This approach is illustrated with the deriva-tion of appropriate analysis for a simple computational model.Each of the N tasks is assumed to consist of an in�nite number of invocationrequests, each separated by a minimum time T . For periodic tasks this value Tde�nes its period, for sporadic tasks T is the minimum inter-arrival time for theevent that releases the task. Each invocation of the task requires C computationtime (worst case). During this time the task does not suspend itself. Tasks areindependent of each other apart from their use of shared protected data. To boundpriority inversion a ceiling priority protocol is assumed (for access to the protected

Sec. 10.1 Introduction 224data) [10, 42]. This gives rise to a maximum blocking time of B (i.e., Bi is themaximum time task i can be blocked waiting for a lower-priority task to completeits use of protected data). Our simple model has the restriction that each task'sdeadline must be less than, or equal to, its inter-arrival time (i.e. Di � Ti for alli). We also assume that context switches, and so on, take no time (this optimisticassumption is removed in Section 10.2). Each task has a unique priority, P .For this simple model optimal priority assignment is easily obtained. Leungand Whitehead [32] showed that deadline monotonic assignment is optimal, i.e. theshorter a task's deadline, the higher its priority (Di < Dj => Pi > Pj).The worst-case response time for the highest-priority task (assuming task 1has the highest priority) is given by:R1 = C1 + B1:For the other tasks it is necessary to calculate the worst- case interference su�eredby the task. Interference results from higher-priority tasks executing while the taskof interest is preempted. It can be shown, for this simple computational model,that maximum interference occurs when all higher-priority tasks are released atthe same time as the task under consideration|this time is known as the criticalinstant. This leads to the following relation:Ri = Bi + Ci + Xj2hp(i)�RiTj �Cjwhere hp(i) is the set of tasks of higher priority then task i.As Ri appears on both sides of this equation a simple solution is not possible[27]. Rather, an iterative (recurrent) process is derived. Let w be a window (timeinterval) into which we attempt to insert the computation time of the task. Weexpand w until all of Ci can be accommodated:wn+1i = Bi + Ci + Xj2hp(i)�wniTj �Cj: (10.1)The iteration can start with woi = Ci (although more optimal start values can befound). It is trivial to show that wn+1i � wni . If wni > Di, then task i cannotbe guaranteed to meet its deadline. However, if wni = wn+1i , then the interactionprocess has terminated and Ri = wni .The derivation of this result together with examples of its use can be foundin a number of publications [3, 4, 7, 27]. Note that wi is referred to by Lehoczky[28] as the i � level busy period since the \priority" of the processor does not fallbelow that of task i during this period. The following simple example shows howresponse times are calculated using Equation (10.1). Consider the simple three-taskset given in Table 10.1. Let the blocking time be 2 units of computation for Task 1and Task 2.Task 1 has the highest priority and has a worst-case response time of 4 (i.e.,its own computation time plus the blocking time). Task 2 has an earliest possible

Sec. 10.2 Safe and Predictable Kernels 225Table 10.1 Simple Task SetPeriod Computation Priority Deadline BlockingT Time, C P D Time, BTask 1 8 2 1 6 2Task 2 12 3 2 10 2Task 3 20 7 3 20 0response time of 3; putting this value into Equation (10.1) gives a right-hand-sidevalue of 7, 7 then balances the equation:7 = 3 + 2 + �78� 2:For Task 3 the initial estimate is 7; the right-hand side of Equation (10.1) is thus(note the blocking factor is zero):7 + �78� 2 + � 712� 3:This yields 12. Hence: 7 + �128 � 2 + �1212� 3:This now yields a value of 14. A further iteration produces 17. Another iterationthen gives a value of 19; this value is stable (i.e., actually causes Equation (10.1)to balance) and therefore the actual worst response time of Task 3 is 19. Hence alltasks will complete before their deadlines.In Section 10.3 we show how this simple model can be extended. But �rst wemust consider the implementation of preemptive priority-based scheduling.10.2 Safe and Predictable KernelsIt is undoubtedly true that the support needed to implement preemptive priority-based dispatching is more complicated than static scheduling|although the di�er-ence is not as large as it would �rst appear. It should be noted that a full operatingsystem is not required, only a micro-kernel with e�cient context switching and anample range of priorities [9].The production of a correct kernel necessitates the development of a formalspeci�cation of the interface to the kernel and its behavior following calls to thatinterface. Formal notations such as Z [45] have been used to give precise de�nitionsto such kernels [13, 46].The notion of a safety kernel was introduced by Rushby [36] to imply a kernelthat was not only built correctly but had a positive role in ensuring that various

Sec. 10.2 Safe and Predictable Kernels 226negative behaviors (of the application) were inhibited. A prototype run-time sup-port system for a restricted subset of Ada9X has been built along these lines [20]. Itmonitors all application tasks to make sure that they do not use more resources (inparticular, CPU processing time) than was assigned to them during the schedulinganalysis of the application. If a task attempts to run over its budget, it has anexception raised to enable it to \clear up" (the exception handler also has a budgetde�ned).In addition to engineering the kernel to an appropriate level of reliability, it isalso critically important for the timing characteristics of the kernel to be obtainable.This is true both in terms of models of behavior and actual cost (i.e., how long eachkernel routine takes to execute). The following sections address these issues.10.2.1 Predicting OverheadsSimple scheduling models ignore kernel behavior. Context switch times and queuemanipulations are, however, signi�cant and cannot usually be assured to take negli-gible time unless a purpose-built processor is used. For example, the FASTCHART[49] processor can genuinely claim to have zero overheads.Even if a dual processor is used to perform context switches (in parallel withthe application/host processor), there will be some context switch overhead. Whena software kernel is used, models of actual behavior are needed. Without thesemodels excessively pessimistic overheads must be assumed. The interrupt handlerfor the clock will usually also manipulate the delay queue. For example (in oneimplementation [20]), when there are no tasks on the delay queue, then a cost of16 �s may be experienced. If an application has 20 periodic tasks that all share acritical instant, then the cost of moving all 20 tasks from the delay queue to therun queue may take 590 �s|i.e., 37 times more.Context switch times can be accounted for by adding their cost to the taskthat causes the context switch. For periodic tasks, the cost of placing itself onthe delay queue (and switching back to the lower-priority task it preempted) is,however, not necessarily a constant. It may depend on the potential size of thedelay queue (i.e., on the number of periodic tasks in the application).To model adequately the delay queue manipulations that occur in the clockinterrupt handler (i.e., at one of the top priority levels), it is necessary to addressdirectly the overheads caused by each periodic task. It may be possible to modelthe clock interrupt handler using two parameters: CCLK (the overheads occurringon each interrupt assuming that tasks are on the delay queue but that none areremoved), and CPER (the cost of moving one task from the delay queue to the runqueue). Each periodic task now has a v�ctitious task with the same period T butwith computation time CPER. Equation (10.1) thus becomes :wn+1i = Bi + Ci + Xj2hp(i)�wniTj �Cj + � wniTCLK �CCLK + Xf2fpt �wniTf �CPER(10.2)where fpt is the set of �ctitious periodic tasks.

Sec. 10.2 Safe and Predictable Kernels 227Our analysis of kernels indicates that this model is itself overly simplistic andhence too pessimistic. There is usually a cost saving when more than one taskhas been transferred between the queues. A three-parameter model would henceseem to be appropriate, (see Burns, Wellings and Hutcheon for a derivation of thismodel).In addition to supporting periodic behavior, the kernel will also have to accom-modate interrupt handling and the release of sporadic tasks following an interrupt.This again gives rise to parameters that must be established before full schedulinganalysis can be undertaken [17].10.2.2 Tick-Driven SchedulingIn all the above analysis, periodic tasks are assumed to have periods which areexact multiples of the clock period. They can thus be released (i.e., put on the runqueue) as soon as they arrive (i.e., are potentially runnable). If the release timeis not equal to the arrival time, then the task is said to su�er from release jitter.Although it would usually be a poor engineering decision to have release jitter,there are situations where it might be inevitable.Sporadic tasks are also assumed to be released as soon as the event on whichthey are waiting has occurred. A full tick-driven scheduler will, however, poll forthese events as part of the clock interrupt-handling routine. This has the advantageof clearly de�ning the times at which new tasks can become runnable. It also allowssafety checks to be implemented that can ensure that sporadic tasks are not releasedtoo often. With this implementation scheme, sporadic tasks are bound to su�errelease jitter.Let Ji represent the worst-case release jitter su�ered by task i (i.e., the maxi-mum time between task arrival and release). Two modi�cations of Equation (10.1)are now required. First, the calculated response time according to Equation (10.1)is from release, not arrival. The true (desired) maximum response time is measuredfrom arrival: RTRUEi = Ri + Ji:Second, the interference that this task has on lower-priority tasks is increased. Thisis because two releases of the task can be closer together than the notional minimumTj. If one arrival su�ers maximumrelease jitter, but the next does not, then the tworeleases have a time gap of only Tj �Jj . The interference factor in Equation (10.1)must be modi�ed to give [3]:wn+1i = Bi + Ci + Xj2hp(i)�wni + JjTj �Cj: (10.3)10.2.3 Cooperative SchedulingThe kernels described above have all implemented true preemptive dispatching. Inthis section an alternative scheme is outlined (the use of deferred preemption). Thishas a number of advantages but can still be analyzed by the scheduling technique

Sec. 10.2 Safe and Predictable Kernels 228embodied in Equation (10.1). In Equation (10.1) there is a blocking term B thataccounts for the time a lower-priority task may be executing while a higher-prioritytask is runnable. In the application domain this may be caused by the existence ofdata that is shared (under mutual exclusion) by tasks of di�erent priority. Blockingcan, however, also be caused by the kernel. Many systems will have the non-preemptable context switch as the longest blocking time (e.g., the release of ahigher priority task being delayed by the time it takes to context switch to a lowerpriority task-even though an immediate context switch to the higher-priority taskwill then ensue).One of the advantages of using the immediate ceiling priority protocol [10](to calculate and bound B) is that blocking is not cumulative. A task cannot beblocked both by an application task and a kernel routine-only one could actuallybe happening when the higher-priority task is released.Cooperative scheduling exploits this non-cumulative property by increasingthe situations in which blocking can occur. Let BMAX be the maximum blockingtime in the system (using a convention approach). The application code is then splitinto non-preemptive blocks, the execution times of which are bounded by BMAX .At the end of each of these blocks the application code o�ers a \de-scheduling"request to the kernel. If a high-priority task is now runnable, then the kernel willinstigate a context switch; if not, the currently running task will continue into thenext non-preemptive block.Although this method requires the careful placement of de-scheduling calls,these could be inserted automatically by the worst-case execution-time analyzerwhich is itself undertaking a control ow analysis of the code.The normal execution of the application code is thus totally cooperative. Atask will continue to execute until it o�ers to de-schedule. To give some levelof protection over corrupted (or incorrect) software, a safe kernel could use aninterrupt mechanism to abort the application task if any non-preemptive blocklasts longer than BMAX . The use of cooperative scheduling is illustrated by theDIA architecture [44]. Here a kernel support chip deals with all interrupts andmanages the run queue. The de-scheduling call is a single instruction and hasnegligible cost if no context switch is due.The use of deferred preemption has two important advantages. It increases theschedulability of the system, and it can lead to lower values ofC. In Equation (10.1),as the value of w is being extended, new releases of higher-priority tasks are possiblethat will further increase the value of w. With deferred preemption no interferencecan occur during the last block of execution. Let Fi be the execution time of the�nal block, such that when the task has consumed Ci�Fi, the last block has (just)started. Equation (10.1) is now solved for Ci � Fi rather than Ci:wn+1i = Bi + Ci � Fi + Xj2hp(i)�wniTj �Cj: (10.4)When this converges (i.e., wn+1i = wni) the response time is given by:Ri = wni + Fi:

Sec. 10.2 Safe and Predictable Kernels 229Table 10.2 Kernel AttributesNotation DescriptionCPsw Cost of context switch away from a periodic task|may be a function of maximum size of delay queueCRsw Cost of context switch to a task currently on the run queueCCLK Clock interrupt handler cost (no tasks being moved)TCLK Clock interrupt handler periodCPER Cost of moving one task from delay queue to run queueCSsw Cost of context switch away from a sporadic task|when it suspends waiting for its next releaseCSP Cost of releasing a sporadic (i.e., putting it on the run queue)CINT Cost of an interrupt handler that just releases a sporadic taskBK Maximum length of non-preemption in the kernelIn e�ect the last block of the task has executed with a higher priority (the highest)than the rest of the task. Lehoczky has shown how increases in priority during theexecution of a task can lead to better schedulability [24].The other advantage of deferred preemption comes from predicting more ac-curately the execution times of a task's non-preemptable basic blocks. Modernprocessors have caches, prefetch queues, and pipelines that all signi�cantly reducethe execution times of straight-line code. Typically, estimations of worst-case ex-ecution time are forced to ignore these advantages and obtain very pessimisticresults because preemption will invalidate caches and pipelines. Knowledge of non-preemption can, however, be used to predict the speedup that will occur in practice.Zhang, Burns, and Nicholson have shown how a 20% reduction in worst-case ex-ecution time (C) can be obtained by modeling the prefetch queue directly [54];Harmon, Baker, and Whalley have shown how the pipeline on a 68020 can be an-alyzed at the micro-code level [25]; and cache advantages can also be predicted. Ifmodern processors are to be used in real-time systems, then this type of analysis isnecessary.Summary. A number of the parameters de�ned in the above discussion (for ex-ample, J and F) are, in reality, attributes of the application's task set. Othersrelate to the kernel itself. Table 10.2 summarizes those that have been introducedin this discussion. Their values are of key signi�cance in determining the feasibilityof any application running on top of the kernel. It follows that any kernel used forsafety critical real-time systems will not only have to be instrumented but mustalso allow these parameters to be veri�ed.If interrupt handlers di�er in terms of their cost, then a single CINT valuewill not su�ce.

Sec. 10.3 An Extendible Model 23010.3 An Extendible ModelApplication requirements rarely (if ever) �t the simple model described in the in-troduction. An appropriate scheduling theory is one that can be extended to meetthe particular needs of newer application requirements. In this section we considera number of extensions to the basic model:1. Variations in C and T2. Precedence Relations and Multi-Deadline Tasks3. Arbitrary Deadlines (i.e., D > T)4. Internal Deadlines (i.e., not all C has to be completed by D)5. O�sets and Phased ExecutionsWe then consider how priorities can be assigned optimally when the simple ratemonotonic or deadline monotonic policies do not apply.10.3.1 Variation in Computation Time and PeriodWhere it can be shown that a task will not execute for its maximum time on eachrelease, it is pessimistic to assume that it does. For example, a periodic task may doa small amount of data collection in each period but every, say, 10 periods analysesthis data using a much more expensive algorithm. This behavior can simply bemodeled, in Equation (10.1), as two tasks, one running every period (with a smallC) and the other running every 10T (with a larger computation time).Variations in period are also possible. Bursts of activity involving a number ofshort periods are following by inactivity. Sporadic tasks released by interrupts canbehave in this manner. For example, a sporadic could have a worst-case (minimum)arrival interval of 1 ms but have the restriction that no more than 5 releases canoccur within a 100 ms interval. If the worst-case arrival interval is very small, thenit is acceptable to collapse the 5 releases into a single task (with period of 100 ms).However, a more accurate prediction of the interference this task will impose onlower-priority tasks, in the window w, can be derived [3]. Let T be the outer period(e.g., 100 ms in the above example) and t be the smaller period (e.g., 1 ms). Alsolet n be the number of releases in the outer period (e.g., 5). Task j will have aninterference on lower-priority tasks (Iji) as follows:Iji = �wniTj � nj Cj + min8<:2666wni � jwniTj kTjtj 3777 ; nj9=;Cj: (10.5)This can then be incorporated into Equation (10.1). The �rst term in Equa-tion (10.5) gives the cost of complete cycles (outer period) contained within wni .The second term gives the additional cost of minor cycles, this is upper boundedby the cost of a complete burst, njCj.

Sec. 10.3 An Extendible Model 231Table 10.3 An Example Task SetC D T PL 2 5 20 2Q 2 4 20 1S 4 7 20 3Table 10.4 Transformed Task SetC D T PL 2 5 20 1QT 2 9 20 2ST 4 16 20 310.3.2 Precedence Relationships and Multi-deadline TasksA common paradigm for structuring real-time software is as a set of tasks linked viaprecedence relations (i.e., task B cannot start until task A has completed). Data isoften passed along these precedence links, but as the tasks involved never executetogether, mutual exclusion over this data need not be enforced.For illustration, consider a simple straight-line \transaction" involving threetasks: L, which must run before Q, which runs before S. Table 10.3 contains thegiven timing attributes for these tasks. Note that the periods of the three tasks areidentical and that the overall deadline is 16.A naive application of, say, deadline monotonic analysis will assign priorities(P) as given in the table. The schedulability test will then assume that all tasksare released at the same time and deem the task set to be unschedulable.The critical instant assumption (i.e., all tasks released simultaneously) isclearly too pessimistic for precedence-constrained tasks. We know that they neverwish to execute together. Both Q and S require an o�set. That, is they cannotexecute at the start of the period.A simple transformation can be applied to tasks with o�sets that share thesame period. We relate the deadlines of all tasks not to their start times but tothe start time of the transaction. This will not a�ect L but it will mean that Qand S have their deadlines stretched (we refer to the new tasks as QT and ST).Table 10.4 now has the new deadlines and priorities for the task set.The priority model will now ensure that L executed �rst, then QT , and thenST . Moreover, the new task set is schedulable and would actually allow other tasksto be given priorities interleaved with this transaction. As the tasks share the sameperiod, only one of them will experience a block. Note, however, that task L (andQT) must not undertake any external blocking, as this would free the processor toexecute QT (or ST) early.This formulation results in tasks having lower priorities for later positionsdown the precedence relationship (i.e., S lower than L). As indicated earlier, Har-

Sec. 10.3 An Extendible Model 232bour, Klein, and Lehoczky have shown that by increasing the priority (and impos-ing some mechanism to stop the later tasks starting too early) can result in greaterschedulability [24].Finally, it should be noted that precedence relations can be implemented withreal o�sets (i.e., Q not being released until time 5). This technique is considered inSection 10.3.5.The above approach for dealing with precedence-constrained tasks has a fur-ther property that will enable multi-deadline tasks to be accommodated. Processescan exist that have more than one deadline: they are required to complete part oftheir computations by one time and the remainder by a later time. This can occurwhen a task must read an input value very early in the period and must producesome output signal at a later time.To implement multi-deadline tasks it is necessary for the run-time system in-terface to facilitate dynamic priority changes. The task is modeled as a precedence-related transaction. Each part of the transaction is thus assigned a priority (as de-scribed above). The task actually executes in a number of distinct phases, each withits own priority: for example, a high priority to start with until its �rst deadline ismet, then a lower priority for its next deadline.10.3.3 Arbitrary DeadlinesTo cater for situations where Di (and hence potentially Ri) can be greater thanTi, we must adapt the analysis. The following outlines the approach of Tindell[50, 53]. When deadline is less than (or equal) to period, it is only necessary toconsider a single release of each task. The critical instant, when all higher-prioritytasks are released at the same time, represents the maximum interference, andhence the response time following a release at the critical instant must be theworst-case. However, when deadline is greater than period, a number of releasesmust be considered. We assume that the release of a task will be delayed until anyprevious releases of the same task have completed. For each potentially overlappingrelease we de�ne a separate window w(q), where q is just an integer identifying aparticular window (i.e., q = 0; 1; 2; :::). Equation (10.1) can be extended to havethe following form:wn+1i (q) = (q + 1)Ci + Bi + Xj2hp(i)�wni (q)Tj �Cj: (10.6)For example with q equal to 2, three releases of task i will occur in the window.For each value of q, a stable value of w(q) can be found by iteration|as in Equa-tion (10.1). The response time is then given asRi(q) = wni (q) � qTi (10.7)e.g., with q = 2 the task started 2Ti into the window and hence the response timeis the size of the window minus 2Ti.The number of releases that need to be considered is bounded by the lowestvalue of q for which the following relation is true:

Sec. 10.3 An Extendible Model 233Ri(q) � Ti: (10.8)At this point the task completes before the next release, and hence subsequentwindows do not overlap. The worst-case response time is then the maximum valuefound for each q: Ri = maxq=0;1;2;:::Ri(q): (10.9)Note that for D � T relation (10.8) is true for q = 0 (if the task can be guaranteed),in which case Equations (10.6) and (10.7) simplify back to the original equation.10.3.4 Internal DeadlinesIn a recent report, Gerber [23] argues that it is only meaningful to attach a deadlineto the last observable event of a task. Moreover, this last observable event may notbe at the end of the task's execution; i.e., there may be a number of internal actionsafter the last output event.When the model for analysis is enhanced to include kernel overheads (asdescribed in Section 10.2), it is necessary to \charge" to each task the cost ofthe context switch that allows it to preempt a lower-priority task plus the costof the context switch back to the preempted task once the higher-priority taskhas completed. For realistic context switch times (i.e., not zero) it is meaninglessto attach the \deadline" to the end of the context switch. Figure 10.1 gives ablock representation of a task's execution (excluding preemptions for higher-prioritytasks). Phase a is the initial context switch to the task, phase b is the task's actualexecution time up to the last observable event, phase c represents the internalactions of the task following the last observable event, and phase d is the cost ofthe context switch away from the task. The real deadline of the task is at the endof phase b.In the following we shall denote by CD the computation time required by thereal internal deadline (i.e., phases a + b only), and by CT the total computationtime of the task in each period (i.e., all four phases). Note that there is no require-ment to complete CT by T as long as CD is completed by D. Hence an adaptationof the arbitrary deadline model (see the previous section) is required.If we include the two phases of computation into Equation (10.5), we get:wn+1i (q) = qCTi + CDi + Bi + Xj2hp(i)�wni (q)Tj �CTj : (10.10)This when combined with (10.7), (10.8), and (10.9) allows the worst-case responsetime for CDi to be calculated (assuming maximum CTi , interference from earlyreleases of itself). Equation (10.6) could be used directly to calculate the responsetime for CTi , but this value is not directly relevant to this formulation. It can be

Sec. 10.3 An Extendible Model 234
a b c d

Last Observable Event

Release Completion

Figure 10.1 Four Phases of a Task's ExecutionTable 10.5 Gerber's Task SetTask T CD CT D RD RT1 1000 400 400 1000 400 4002 1600 400 400 1600 800 8003 2500 493 653 2500 2493 2653shown, trivially, that for utilization less than 100% there exists bounded responsetimes for all tasks.1 What is important is that RDi is less than Di.The above analysis can be applied to the simple task set introduced and dis-cussed by Gerber [23]. Table 10.5 shows the characterization of three tasks; notethat D = T for all entries, and that no task experiences blocking. With rate mono-tonic analysis, task 3 cannot be guaranteed. Gerber shows that by transformingthis task, of the 653 units of computation only 493 are required to be completed bythe deadline. He then shows how an implementation scheme can be used to guar-antee task 3. However, the above analysis furnishes a value for RD3 of 2493, whichis just before the deadline (and period). Hence standard preemptive priority-baseddispatching will satisfy the timing requirements of this task set. No transformationis needed. Note, for completeness, that the worst-case response time of RT3 is 2653.10.3.5 O�sets and Phased ExecutionsPerhaps the most extreme restriction of the basic model is that it assumes that alltasks could be released at the same time (the critical instant). This assumptionsimpli�es the analysis but it is not applicable on many occasions. Cyclic execu-1Consider a set of periodic tasks with 100% utilization, all of which have deadlinesequal to the LCM of the task set; clearly, within the LCM no idle tick is used and no taskexecutes for more than it needs and hence all deadlines must be met.

Sec. 10.3 An Extendible Model 235Table 10.6 Three O�set TasksTask Name Period Computation O�set Priority DeadlineTimeCommand actuators 200 2.13 50 20 14Request DSS data 200 1.43 150 19 17Request wheel speeds 200 1.43 0 18 22Table 10.7 Combined TaskTask Name Period Computation O�set Priority DeadlineTimeCombined task 50 2.13 0 18 14tives (static scheduling), for example, explicitly use o�sets to order executions andobtain feasible schedules. Without o�sets, priority-based systems are often too pes-simistic; with o�sets, equivalent behavior to cyclic executives can be obtained [8].For example, a recent case study [18, 19] of the Olympus satellite AOCS (Attitudeand Orbital Control System), containing some 30 tasks, was deemed unschedulableby the standard deadline monotonic test (i.e., Equation (10.1) modi�ed to includekernel overheads). On inspection it contained three tasks of identical period thatcould not all be scheduled. Table 10.6 gives the details of these tasks.The only requirements on these tasks were their periods (and deadlines); theydid not have to be released together. By giving \Command Actuators" an o�setof 50 ms and \Request DSS Data" an o�set of 150 ms, their work was spread out.From an analysis point of view it was possible to replace these three tasks by justone (see Table 10.7). This task has a computation time requirement equal to thegreatest of the original three, and a deadline which is the shortest. The task set(including this new one but not the originals) now passed the schedulability test.Hence a simple transformation, that actually increases the overall load onthe system (as it notionally executes every 50 ms) can increase schedulability byincorporating o�sets.In the more general case of arbitrary o�set relationships it would be desirableto have an exact feasibility test. One way of testing feasibility is just to simulatethe behavior of the system. Leung shows that the length of interval that shouldbe examined is twice the LCM of the task set plus the largest o�set (assumingtasks have been normalized to have o�sets less than period) [31]. For task sets withperiods that are relative primes this implies a computationally infeasible test.Recently, Tindell [8, 51] has developed a feasible but inexact test, using thewindow approach outlined earlier for arbitrary deadlines. The resulting maximumwindow size is only marginally greater than the one that would be obtained forthe full necessary and su�cient analysis. The derivation of this result is, however,beyond the scope of this review.

Sec. 10.3 An Extendible Model 23610.3.6 Priority AssignmentThe formulations given in the last three sections (i.e., arbitrary deadlines, internaldeadlines, and o�sets) have the common property that no simple algorithms (suchas rate or deadline monotonic) gives the optimal priority ordering. In this section wereproduce Audsley's algorithm for assigning priorities in these situations. Audsley[1] proves the following theorem:Theorem 10.3.1 If task � is assigned the lowest priority and is feasible, then if afeasible priority ordering exists for the complete task set, an ordering exists with �assigned the lowest priority.If a � is found then a corollary of the theorem can be applied to the lowest-but-onepriority, and so on; hence a complete priority ordering is obtained (if one exists).The following code in Ada implements the priority assignment algorithm; setis an array of tasks that is notionally ordered by priority, set(1) being the highestpriority, set(N) being the lowest. The procedure task test tests to see whethertask K is feasible at that place in the array. The double loop works by �rst swappingtasks into the lowest position until a feasible result is found; this task is then �xedat that position. The next priority position is then considered. If at any time theinner loop fails to �nd a feasible task, the whole procedure is abandoned. Note thata concise algorithm is possible if an extra swap is undertaken.procedure assign_pri (set : in out process_set; N : natural;OK : in out boolean) isbeginfor K in reverse 1..N loopfor next in reverse 1..K loopswap(set,K,next);task_test(set,K,OK);set(K).P := K;exit when OK;end loop;exit when not OK;end loop;end;If the test of feasibility is exact (necessary and su�cient), then the priority orderingis optimal. Thus for arbitrary deadlines and internal deadlines (without blocking),an optimal ordering is found. Where a non-exact test is used (for example, withthe o�set test), the priority ordering reects the quality of the test.10.3.7 SummaryThis section has reviewed a number of recent results that have taken simple schedu-lability equations and extended them to cover a range of realistic and necessaryapplication features. Many variations of the basic equations have been given, but

Sec. 10.4 Computational Model 237Table 10.8 Task AttributesNotation Description DefaultT Minimum time between task releases (or burst releases)D Deadline relative to start of any precedence relation TO Release o�set relative to start of a precedence relationship 0J Release jitter 0n; T; t Characteristics of a bursty task, n in time T witha minimum gap between inner cycles of t 1; T; 0B Blocking time BKC or CT Computation timeCD Computation time before last observable event CF Final non-preemptive section of computation time 0P Priority (calculated)R Response time (calculated)they can all be integrated together and implemented within some appropriate soft-ware tool. Table 10.8 gives the attributes that are needed for each task if the fullanalysis described in this review is to be applied; those attributes with a defaultvalue can be omitted (i.e., the default can be assumed).The overheads due to implementing �xed-priority scheduling do reduce pro-cessor utilization, but the use of internal deadlines and o�sets can move utilizationclose to 100%. A �nal technique is worth noting for some tasks sets that still cannotbe scheduled by the �xed-priority approach. Even when 100% utilization is neededit is not necessary to move to a fully earliest deadline approach [21, 33]. It has beenshown that a dual-priority scheme is adequate [15]. Here some low-priority tasksare given an intermediate deadline at which their priority is raised (if they still havework to do). This minimally dynamic scheme provides for optimal schedulability.10.4 Computational ModelScheduling work is often criticized for not addressing the broader problems of engi-neering real-time systems. It is clear that attempting to apply scheduling analysis toarbitrary software is doomed to failure. The interface between software developmentand scheduling is the computational model. This model must be amenable to anal-ysis but also be a natural end product of the development process. Moreover, thecomputational model must be applicable to implementations on multi-processorsand distributed systems.The computational model implicit in the scheduling analysis reviewed in thischapter has the following properties:� It consists of active entities (tasks) and protected shared data areas.� The only communication between active entities is via the shared data ar-eas; the only exception to this is when one active entity releases another for

Sec. 10.4 Computational Model 238execution.� Precedence relationships between active entities are allowed.� Active entities have temporal attributes de�ned (such as deadline, o�set, pe-riod, minimal arrival rate, etc.).� Shared data areas provide mutual exclusion but do not arbitrarily blockclients.� Entities are allocated to single processing units.� The allowable remote actions (in a distributed system) are a remote write toa shared data area and the releasing of a remote active entity.This simple model has su�ciently expressive power to allow systems to be designed,allocated to distributed hardware, and analyzed for realistic worst-case behavior.To support the view that it is su�cient for design work, three development methodswill be reviewed briey.(a) A traditional approach | MASCOT(b) A formal method | TAM(c) An object-oriented approach | HRT-HOODIt should be clear how the computational model leads to programs/systems thatcan be analyzed. Note that the desire to reduce blocking will dictate the use ofsimple shared data areas. The granularity of the active entities is also signi�cant.All three design methods encourage the use of decomposition rules that lead toactivities (modules) that are temporarily, as well as functionally, decoupled.10.4.1 MASCOTThe MASCOT [11] method involves the production of a real-time network. Withinthis network there are activities and IDAs (intercommunication data areas). Forhard real-time systems two forms of IDA are used : pools and signals. Pools providenon-destructive non-blocking read and destructive non-blocking write; signals havethe same write characteristics, but the read is destructive and blocking. Hencepools are used for simple mutual exclusion, while signals are employed to releasean activity that is waiting for data.Recently, MASCOT has been extended to give full life-cycle support to theproduction of real-time systems. An interesting feature of this DORIS (Data-Oriented Requirements Implementation Scheme) technology is the use of algorithmsthat provide non-blocking mutual exclusion. If pools are single-writer, then poolI/O operations never block (for example, a read event will always return the mostrecent completely written data-even if a write-to operation is concurrently updatingit). DORIS also advocates the use of the deferred preemption method described inSection 10.2.2. However, the main use of MASCOT is as a design method. It isused primarily in the safety-critical aerospace industry.

Sec. 10.5 Slack Scheduling 23910.4.2 TAMMany formal development methods have a very synchronous computational modelthat leads to di�cult timing analysis. They often had to incorporate the extremeassumption of maximumparallelism and zero cost for many activities. By compar-ison, TAM (Temporal Agent Model) [39{41] is de�ned to support the development(via re�nement) of systems that can be analyzed accurately.TAM is a wide-spectrum language consisting of speci�cation statements andconcrete executable statements. As a system is being developed, speci�cations arere�ned into more concrete forms (a re�nement calculus is de�ned for TAM). Anexecutable program (i.e., one with no remaining speci�cations) consists of agentsand shunts. Shunts are single-writer multiple-reader shared data areas. Agents cancommunicate only via shunts. All computations and communications take time,and data passing through a shunt is time stamped. Agents can also be released bythe event of writing to a shunt.First-order predicate logic has been extended (conservatively) to give the for-mal basis to TAM. A simple form of temporal logic (and the introduction of timedvariables) is used to de�ne period activities, deadlines and so on.A number of case studies [2, 37, 38] have been written that indicate that real-time systems can be speci�ed, re�ned, and analyzed using the TAM formulation.10.4.3 HRT-HOODHRT-HOOD [14, 16] (Hard Real-Time HOOD) is an adaptation of HOOD (Hierar-chical Object-Oriented Design). A system is decomposed into terminal objects thatmust be either cyclic, sporadic, or protected. Cyclic and sporadic objects containa single thread of control. Protected objects are required to provide mutual exclu-sion (e.g., by ceiling priorities). Sporadic objects also have a single method usedto release them for execution. Rules of decomposition and usage force the terminalsystem to match the computational model described earlier. Object attributes areused to hold the timing characteristics and derived properties such as priority andresponse time. HRT-HOOD is a structured method supporting a graphical rep-resentation and a textual equivalent syntactical form. It has been used, togetherwith some of the scheduling analysis discussed in this chapter, on an extensive casestudy [18].One of the interesting features of the HRT-HOOD method is that it containssystematic mapping from the object system to Ada 9X. This indicates that thecomputational model is realizable in that language.10.5 Slack SchedulingIt is possible to compare scheduling approaches by considering the range of tech-niques that has at one extreme static scheduling (cyclic executives), and at theother, best-e�ort scheduling [12]. Fixed-priority scheduling falls in the middle ofthese extremes; and indeed is often criticized as being too static by the best-e�ort

Sec. 10.5 Slack Scheduling 240lobby, and too dynamic by the cyclic executive supporters. The value of �xed-priority scheduling is that it does allow hard guarantees to be given, while allowingexibility and various levels of non-determinism to be accommodated. This shortsection reviews the techniques that are available for allowing soft (non-guaranteedtasks) to be combined with the hard tasks that make up the safety critical subsys-tem being executed. The motivation of this section is to show that �xed priorityscheduling can be extended into the realms of best-e�ort scheduling.When there is no need for a hard task to be executing, the system is saidto have slack available. This slack can be used to satisfy a number of applicationneeds:� The execution of soft aperiodic tasks� The execution of background tasks� The early completion of sporadic tasks� The execution of components that enhance the utility of the hard task set.The last entry can itself be subdivided into a number of techniques that are collec-tively known as imprecise computation [5, 6, 34, 43].In general, best-e�ort scheduling [26] can be applied to collections of tasksrunning in slack time. The amount of slack available is, of course, dependent onthe load exerted by the hard task set. This may vary in di�erent modes of operation;so that, for example, a system that has lost processing resources may reduce itshard load (and increase its soft) so as to switch over to best-e�ort scheduling. In theextreme, a system could move to pure best-e�ort scheduling when the processingresource level is below that assumed for the static analysis undertaken as part ofthe �xed-priority approach.More usually, there will be a mixture of hard and soft tasks to execute. Threeimplementation approaches can be identi�ed:� execute soft tasks at low priorities� execute soft tasks using a hard server� execute soft tasks using optimal slack schedulingThe motivation behind all three schemes is to execute soft tasks as early as possi-ble (commensurate with all hard tasks meeting their deadlines by some appropriatesafety margin). However, the schemes can also be compared by considering theiroverheads and the added complexity they impose on the kernel's design and behav-ior. If all soft tasks are given priorities lower than any hard tasks, then no changesare needed in the kernel. Soft tasks are, however, executed only when the processorwould otherwise be idle.A number of di�erent server schemes have been published [30, 47, 48] (e.g.,polling server, priority exchange, deferrable server, extended priority exchange, and

Sec. 10.6 Conclusions 241sporadic server). Each attempts to de�ne a capacity of work that can be assigned tosoft tasks (even when there are runnable hard tasks) without jeopardizing the harddeadlines. As the servers all reserve enough capacity for the hard tasks, they areoften called bandwidth preserving. They make di�ering demands on the kernel; allneed task monitoring (i.e., CPU usage) and most require soft tasks to have quotasde�ned and enforced.Optimal slack scheduling takes into account the phasing, and actual executiontimes, of tasks to calculate the maximum slack that can be made available at anymoment in time (and at each priority level). For purely periodic (D = T) hard tasksets, Lehoczky and Ramos-Thuel give an optimal scheme that can be calculatedstatically (i.e., o�-line) [29]. For mixed periodic and sporadic task sets (and taskswith arbitrary deadlines, release jitter, etc.) Davis et al. have de�ned an optimalscheme that requires on-line analysis. The scheme would be optimal if it had zerocost and is executed frequently [22]. With realistic costs it is possible to de�ne thefrequency of execution for maximum e�ect.10.6 ConclusionsIn this chapter simple scheduling models have been extended to include realistickernel features and necessary application requirements. The result is a exiblecomputational model supported by a rich set of analysis techniques. We can con-clude that �xed-priority scheduling now represents an appropriate (and arguably,a mature) engineering approach. Although the many equations and relationshipsmust be embedded in trusted tools, this is no di�erent from many other engineer-ing disciplines. The real-time systems designer now has the techniques available toengineer systems rather than just build them and then see if they meet their timingrequirements during extensive (and expensive) testing.AcknowledgmentsThe results presented in this chapter represent the work of many individuals withinthe Real-Time Systems Research Group at the University of York, UK. Thanksmust particularly be given to Neil Audsley, Ken Tindell, and Andy Wellings.References[1] N.C. Audsley. Optimal Priority Assignment and Feasibility of Static PriorityTasks with Arbitrary Start Times. Technical Report YCS 164, Department ofComputer Science, University of York, December 1991.[2] N.C. Audsley, A. Burns, M.F. Richardson, D.J Schole�eld, A.J. Wellings, andH.S.M. Zedan. Bridging the Gap between Formal Methods and Scheduling

References 242Theory. Technical Report YCS 195, Department of Computer Science, Uni-versity of York, March 1993.[3] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Ap-plying New Scheduling Theory to Static Priority Pre-emptive Scheduling. Soft-ware Enginnering Journal, September 1993.[4] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Hard Real-Time Scheduling: The Deadline Monotonic Approach. In Proceedings of the8th IEEE Workshop on Real-Time Operating Systems and Software, Atlanta,GA, May 1991.[5] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Incorporat-ing Unbounded Algorithms into Predictable Real-Time Systems. ComputerSystems Science and Engineering, 8(3):80{89, April 1993.[6] N.C. Audsley, A. Burns, and A.J. Wellings. Unbounded Algorithms, Pre-dictable Real-Time Systems and Ada 9X . In Proceedings of the IEEE Work-shop on Imprecise and Approximate Computation, pages 11{15, Phoenix, AZ,December 1992.[7] N.C. Audsley, A. Burns, and A.J. Wellings. Deadline Monotonic SchedulingTheory and Application. Control Engineering Practice, 1(1), 1993.[8] N.C. Audsley, K. Tindell, and A. Burns. The End of the Line for Static CyclicScheduling. In Proceedings of the 5th Euromicro Workshop on Real-Time Sys-tems, pages 36{41, Oulu, Finland, June 1993. IEEE Computer Society Press,New York.[9] N.C. Audsley, K. Tindell, A. Burns, M.F. Richardson, and A.J. Wellings. TheDrTee Architecture for Distributed Hard Real-Time Systems. In Proceedings ofthe 10th IFAC Workshop on Distributed Control Systems, Semmering, Austria,September 1991.[10] T.P. Baker. Stack-Based Scheduling of Realtime Processes. Journal of Real-Time Systems, 3(1), March 1991.[11] G. Bate. Mascot3: An Informal Introductory Tutorial. Software EngineeringJournal, 1(3):95{102, 1986.[12] A. Burns. Scheduling Hard Real-Time Systems: A Review. Software Engi-neering Journal, 6(3):116{128, 1991.[13] A. Burns and A.J. Wellings. Specifying an Ada Tasking Run-Time SupportSystem. Ada User, 12(4):160{186, December 1991.[14] A. Burns and A.J. Wellings. Designing Hard Real-time Systems. In Ada:Moving Towards 2000, Proceedings of the 11th Ada-Europe Conference, LNCS603, pages 116{127. Springer-Verlag, New York, 1992.

References 243[15] A. Burns and A.J. Wellings. Dual Priority Assignment: A Practical Method forIncreasing Processor Utilization. In Proceedings of the 5th Euromicro Work-shop on Real-Time Systems, pages 48{55, Oulu, Finland, June 1993. IEEEComputer Society Press, New York.[16] A. Burns and A.J. Wellings. HRT-HOOD: A Design Method for Hard Real-Time Ada. Real-Time Systems, 6(1):73{114, 1994.[17] A. Burns and A.J. Wellings. Implementing Analysable Hard Real-Time Spo-radic Tasks in Ada 9X. Ada Letters, 14(1):38{49, 1994.[18] A. Burns, A.J. Wellings, C.M. Bailey, and E. Fyfe. The Olympus Attitudeand Orbital Control System: A Case Study in Hard Real-Time System Designand Implementation. Technical Report YCS 190, Department of ComputerScience, University of York, 1993.[19] A. Burns, A.J. Wellings, C.M. Bailey, and E. Fyfe. The Olympus Attitude andOrbital Control System: A Case Study in Hard Real-Time System Design andImplementation. In Ada sans frontieres, Proceedings of the 12th Ada-EuropeConference, Lecture Notes in Computer Science. Springer-Verlag, New York,1993.[20] A. Burns, A.J. Wellings, and A.D. Hutcheon. The Impact of an Ada Run-time System's Performance Characteristics on Scheduling Models. In Adasans frontieres Proceedings of the 12th Ada-Europe Conference, Lecture Notesin Computer Science 688, pages 240{248. Springer-Verlag, New York, 1993.[21] H. Chetto and M. Chetto. Some Results of the Earliest Deadline SchedulingAlgorithm. IEEE Transactions on Software Engineering, 15(10):1261{1269,October 1989.[22] R.I. Davis, K.W. Tindell, and A. Burns. Scheduling Slack Time in Fixed Prior-ity Pre-emptive Systems. In Proceedings of the Real-Time Systems Symposium,pages 222{231, December 1993.[23] R. Gerber and S. Hong. Semantic-Based Compiler Transformations for En-hanced Schedulability. In Proceedings of the Real-Time Systems Symposium,pages 232{243, December 1993.[24] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Fixed Priority Schedulingof Periodic Tasks with Varying Execution Priority. In Proceedings of the 12thIEEE Real-Time Systems Symposium, San Antonio, TX, December 1991.[25] M.G. Harmon, T.P. Baker, and D.B. Whalley. A Retargetable Technique forPredicting Execution Time. In Proceedings of the 13th Real-Time SystemsSymposium, pages 68{77. IEEE Press, New York, December 1992.[26] E.D. Jenson, C.D. Locke, and H. Tokuda. A Time-Driven Scheduling Modelfor Real-Time Operating Systems. In Proceedings of the 6th IEEE Real-TimeSystems Symposium, December 1985.

References 244[27] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System.BCS Computer Journal, 29(5):390{395, October 1986.[28] J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets With ArbitraryDeadlines. In Proceedings of the 11th IEEE Real-Time Systems Symposium,pages 201{209, Lake Buena Vista, FL, December 1990.[29] J. P. Lehoczky and S. Ramos-Thuel. An Optimal Algorithm for SchedulingSoft-Aperiodic Tasks Fixed-Priority. In Proceedings of the Real-Time SystemsSymposium, pages 110{123, December 1992.[30] J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhancing Aperiodic Respon-siveness in Hard Real-Time Environment. In Proceedings of the 8th IEEEReal-Time Systems Symposium, San Jose, CA, December 1987.[31] J.Y.T. Leung and M.L. Merrill. A Note on Preemptive Scheduling of PeriodicReal-Time Tasks. Information Processing Letters, 11(3):115{118, 1980.[32] J.Y.T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Schedul-ing of Periodic, Real-Time Tasks. Performance Evaluation (Netherlands),2(4):237{250, December 1982.[33] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming ina Hard Real-Time Environment. Journal of the ACM, 20(1):46{61, 1973.[34] J.W.S. Liu, K.J. Lin, W.K. Shih, A.C.S. Yu, J.Y. Chung, and W. Zhao. Algo-rithms for Scheduling Imprecise Computations. IEEE Computer, pages 58{68,May 1991.[35] C.D. Locke. Software Architecture for Hard Real-Time Applications: CyclicExecutives vs. Fixed Priority Executives. Journal of Real-Time Systems,4(1):37{53, March 1992.[36] J. Rushby. Kernels for Safety? In Safe and Secure Computing Systems, pages310{320. Blackwell Scienti�c, Cambridge, MA, 1987.[37] D. J. Schole�eld. A Re�nement Calculus for Real-Time Systems. Departmentof Computer Science, University of York, 1992.[38] D. J. Schole�eld and H.S.M. Zedan. The Temporal Agent Model: Theoryand Practice. Technical Report YCS 163, Department of Computer Science,University of York, 1991.[39] D. J. Schole�eld and H.S.M. Zedan. A Standard for Finite TAM. Techni-cal Report YCS 206, Department of Computer Science, University of York,September 1993.[40] D. J. Schole�eld and H.S.M. Zedan. Real-Time Re�nement: Semantics andApplication. In Proceedings of MFCS '93, Gdansk (LNCS 711). Springer-Verlag, New York, 1993.

References 245[41] D. J. Schole�eld and H.S.M. Zedan. A Speci�cation Oriented Semantics forRe�nement of Rea-Time Systems. Theoretical Computer Science, 130, 1994.[42] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: AnApproach to Real-Time Synchronisation. IEEE Transactions on Computers,39(9):1175{1185, September 1990.[43] W.K. Shih, J.W.S. Liu, and J.Y. Chung. Algorithms for Scheduling ImpreciseComputations with Timing Constraints. In Proceedings of the 10th IEEE Real-Time Systems Symposium, December 1989.[44] H.R. Simpson. A Data Interactive Architecture (DIA) for Real-Time Embed-ded Multi-processor Systems. In Computing Techniques in Guided Flight RAeConference, April 1990.[45] M. Spivey. The Z Notation: A Reference Manual, 1989.[46] M. Spivey. Specifying a Real-time Kernel. IEEE Software, 7(5):21{28, Septem-ber 1990.[47] B. Sprunt, J. P. Lehoczky, and L. Sha. Exploiting Unused Periodic Timefor Aperiodic Service Using the Extended Priority Exchange Algorithm. InProceedings of the 9th IEEE Real-Time Systems Symposium, pages 251{258,December 1988.[48] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic Task Scheduling for HardReal-Time Systems. Journal of Real-Time Systems, 1:27{69, 1989.[49] F. Stanischewski. FASTCHART: Performance, Bene�ts and Disadvantages ofthe Architecture. In Proceedings of the 5th Euromicro Workshop on Real-TimeSystems, pages 246{250, Oulu, Finland, June 1993. IEEE Computer SocietyPress, New York.[50] K. Tindell. An Extendible Approach for Analysing Fixed Priority Hard Real-Time Tasks. Technical Report YCS189, Department of Computer Science,University of York, December 1992.[51] K. Tindell. Adding Time-O�sets to Schedulability Analysis. Technical ReportYCS 221, Department of Computer Science, University of York, January 1994.[52] K. Tindell, A. Burns, and A. Wellings. Allocating Real-Time Tasks (An NP-Hard Problem Made Easy). Journal of Real-Time Systems, 4(2):145{165, June1992.[53] K. Tindell, A. Burns, and A.J. Wellings. An Extendible Approach forAnalysing Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6(2):133{151, 1994.[54] N. Zhang, A. Burns, and M. Nicholson. Pipelined Processors and Worst CaseExecution Time. Real-Time Systems, 5(4):319{343, 1993.

