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Abstract—
Efficient implementation of block ciphers is critical to-

wards achieving both high security and high-speed process-
ing. Numerous block ciphers, including the Advanced En-
cryption Standard (AES), have been proposed and imple-
mented, using a wide and varied range of functional oper-
ations. Existing microprocessor architectures do not pro-
vide this broad range of support. However, the advent of
intellectual property (IP) processor cores presents the op-
portunity to augment existing datapaths with instruction
set extensions to add acceleration modules in the form of
new instructions. We will present a general purpose in-
struction set extension to a 32-bit SPARC V8 compatible
processor core that accelerates the performance of Galois
Field fixed field constant multiplication, a core element of
the AES algorithm. This extension will be shown to acceler-
ate AES encryption versus pure software implementations
at a small hardware cost. This matches the improvement
demonstrated in previously proposed AES-specific instruc-
tion set extensions while maintaining a generalized imple-
mentation format capable of supporting other algorithms
that use Galois Field fixed field constant multiplication.
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I. Introduction

With more than 188 million Americans connected to the
Internet [1], information security has become a top priority.
Many applications — electronic mail, electronic banking,
medical databases, and electronic commerce — require the
exchange of private information. For example, when engag-
ing in electronic commerce, customers provide credit card
numbers when purchasing products. If the connection is
not secure, an attacker can easily obtain this sensitive data.
In order to implement a comprehensive security plan for a
given network to guarantee the security of a connection,
Confidentiality, Data Integrity, Authentication, and Non-
repudiation must be provided [2], [3], [4].

Cryptographic algorithms used to ensure confidentiality
fall within one of two categories: private-key (also known as
symmetric-key) and public-key. Symmetric-key algorithms
use the same key for both encryption and decryption. Con-
versely, public-key algorithms use a public key for encryp-
tion and a private key for decryption. In a typical session,
a public-key algorithm will be used for the exchange of a
session key and to provide authenticity through digital sig-
natures. The session key is then used in conjunction with a
symmetric-key algorithm. Symmetric-key algorithms tend
to be significantly faster than public-key algorithms and as
a result are typically used in bulk data encryption [3]. The
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two types of symmetric-key algorithms are block ciphers
and stream ciphers. Block ciphers operate on a block of
data while stream ciphers encrypt individual bits. Block ci-
phers are typically used when performing bulk data encryp-
tion and the data transfer rate of the connection directly
follows the throughput of the implemented algorithm.

High throughput encryption and decryption are becom-
ing increasingly important in the area of high-speed net-
working. Many applications demand the creation of net-
works that are both private and secure while using pub-
lic data-transmission links. These systems, known as Vir-
tual Private Networks (VPNs), can demand encryption
throughputs at speeds exceeding Asynchronous Transfer
Mode (ATM) rates of 622 million bits per second (Mbps).
Increasingly, security standards and applications are de-
fined to be algorithm independent. Although context
switching between algorithms can be easily realized via
software implementations, the task is significantly more
difficult when using hardware implementations. The ad-
vantages of a software implementation include ease of use,
ease of upgrade, ease of design, portability, and flexibil-
ity. However, a software implementation offers only limited
physical security, especially with respect to key storage [3],
[5]. Conversely, cryptographic algorithms that are imple-
mented in hardware are by nature more physically secure
as they cannot easily be read or modified by an outside
attacker when the key is stored in special memory internal
to the device [5]. As a result, the attacker does not have
easy access to the key storage area and cannot discover or
alter its value in a straightforward manner [3].

When using a general-purpose processor, even the fastest
software implementations of block ciphers cannot satisfy
the required bulk data encryption data rates for high-end
applications [6], [7], [8], [9], [10]. As a result, hardware
implementations are necessary for block ciphers to achieve
this required performance level. Although traditional hard-
ware implementations lack flexibility with respect to algo-
rithm and parameter switching, configurable hardware de-
vices offer a promising alternative for the implementation
of processors via the use of IP cores in Application Spe-
cific Integrated Circuit (ASIC) and Field Programmable
Gate Array (FPGA) technology. To illustrate, Altera Cor-
poration offers IP core implementations of the Intel 8051
microcontroller and the Motorola 68000 processor in addi-
tion to their own Nios r©-II embedded processor [11]. Sim-
ilarly, Xilinx Inc. offers IP core implementations of the
PowerPC processor in addition to their own MicroBlazeTM

and PicoBlazeTM embedded processors [12]. ASIC and
FPGA technologies provide the opportunity to augment
the existing datapath of a processor implemented via an IP
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core to add acceleration modules supported through newly
defined instruction set extensions targeting performance-
critical functions [13], [14], [15]. Moreover, many licens-
able and extendible processor cores are also available for
the same purpose [16], [17], [18], [19].

The process to develop a Federal Information Processing
Standard (FIPS) was initiated by NIST to specify an Ad-
vanced Encryption Algorithm to replace the Data Encryp-
tion Standard (DES) which expired in 1998 [3]. In October
2000, NIST chose Rijndael as the AES Advanced Encryp-
tion Algorithm. One of the core operations of AES is a Ga-
lois Field fixed field constant multiplication, which is also
a core operation of other block ciphers, such as Magenta,
MISTY1, MISTY2, SHARK, SQUARE, and Twofish [20],
[21], [22], [23], [24], [25], [26]. Unfortunately, Galois Field
fixed field constant multiplication does not map well to
traditional processor instruction sets. However, moving the
execution of operations such as Galois Field fixed field con-
stant multiplication from software to hardware has been
demonstrated to have a significant impact upon perfor-
mance [27]. Most previous work examining fast and ef-
ficient AES implementation has targeted either hardware-
only or software-only implementations, with hardware im-
plementations outperforming software implementations by
an order of magnitude in terms of throughput. In con-
trast, the use of instruction set extensions follows the hard-
ware/software co-design paradigm to achieve the perfor-
mance and physical security associated with hardware im-
plementations while providing the portability and flexibil-
ity traditionally associated with software implementations
[28]. Moreover, when considering alternative solutions, in-
struction set extensions result in significant performance
improvements versus traditional software implementations
with considerably reduced logic resource requirements ver-
sus hardware-only solutions such as co-processors [27], [29],
[30], [31], [32], [33], [34], [35], [36].

What follows is a brief overview of previous work re-
garding implementations of AES via software, hybrid archi-
tectures, cryptographic co-processors, and instruction set
extensions. Implementations of fast and efficient Galois
Field fixed field constant multiplication will also be consid-
ered. Following this examination, a hardware architecture
that achieves efficient implementation of generalized Galois
Field fixed field constant multiplication will be presented.
The proposed implementation will be analyzed in terms of
system performance and resource utilization. The results
of this analysis will then be compared to the results of other
AES implementations using instruction set extensions.

II. Previous Work

As detailed in Section I, the flexibility of a software
implementation is often undermined by the performance
degradation evidenced when targeting a general purpose
processor whose instruction set cannot provide a fast and
efficient implementation. Conversely, custom hardware im-
plementations offer a significant performance advantage
versus software implementations but at increased system
cost with virtually no flexibility. This concept holds espe-

cially true in the case of the AES algorithm, where the bot-
tlenecks occur in the SubBytes and MixColumns transfor-
mations, one or both of which are usually implemented via
look-up tables [36], [37], [38], [39]. Often most of the AES
round transformations — SubBytes, ShiftRows, and Mix-
Columns — are combined into large look-up tables termed
T tables [40]. Such implementations require up to three
T tables whose size may be either 1 KB or 4 KB where
the smaller tables require performing an additional rota-
tion operation. The goal of the T tables is to avoid per-
forming the MixColumns and InvMixColumns transforma-
tions as these operations perform Galois Field fixed field
constant multiplication, an operation which maps poorly
to general purpose processors [36]. However, the use of T
tables has significant disadvantages. The T tables signif-
icantly increase code size, their performance is dependent
on the memory system architecture as well as cache size,
and their use causes key expansion for AES decryption to
become significantly more complex [28], [36].

As an alternative to the T tables implementation
method, it is also feasible to have the processor perform
all of the AES round transformations. Row-based imple-
mentations have been demonstrated to allow for greater
efficiency in the implementation of the MixColumns and
InvMixColumns transformations versus column-based im-
plementations [41]. However the SubBytes transformation
still remains as a bottleneck, requiring separate 256 byte
look-up tables for encryption and decryption [36].

Hybrid architectures comprised of a processor core com-
bined with reconfigurable function blocks are typically used
to accelerate the performance of a general purpose proces-
sor for specific applications. Reconfigurable function blocks
may support on-the-fly reconfiguration to provide more op-
timized implementations and further improve system per-
formance. The mapping of complex functions to adaptable
hardware reduces the instruction fetch and execute bottle-
neck common to a software implementation [42]. However,
the delay associated with communication between the pro-
cessor and the reconfigurable logic block often becomes the
bottleneck within the system [43]. This overhead can be
reduced by caching multiple configurations within the re-
configurable function blocks at the cost of more expensive
and less flexible hardware [44], [45], [46], [47]. Hybrid ar-
chitectures have been targeted at accelerating applications
such as symmetric-key cryptography, digital signal process-
ing, data compression, image processing, video processing,
multimedia, block matching, automated target recognition,
and wireless communications. Symmetric-key implemen-
tations targeting the ConCISe, Garp, and MorphoSys ar-
chitectures have all demonstrated significant performance
improvements by off-loading inefficient operations from the
processor to the reconfigurable logic blocks [43], [45], [48],
[49], [50]. The Garp architecture is of particular interest
in that it combines a standard single-issue MIPS processor
with a reconfigurable array used as a hardware accelerator
that attaches to the MIPS processor as a co-processor. The
reconfigurable array is composed of a matrix of logic blocks
whose configuration is controlled by the MIPS processor
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and accelerated by a configuration cache. The operation
of the reconfigurable array is implemented via extensions
to the MIPS instruction set. A theoretical implementation
of DES in the Garp architecture operating at 133 MHz
achieved a factor 24 speed-up versus an equivalent imple-
mentation on a 167 MHz Sun UltraSPARC 1/170. The
Garp implementation was able to directly implement the
S-Box look-up tables in parallel within the reconfigurable
array. By avoiding referencing external memory the cycle
count was greatly reduced [43], [49], [50].

Numerous other co-processors have been developed to
accelerate cryptographic algorithm implementations. The
CryptoManiac VLIW co-processor [51] was developed as a
result of instruction set extensions designed to accelerate
the performance of a number of the AES candidate algo-
rithms [30]. CryptoManiac features the execution of up to
four instructions per cycle and the use of instructions with
up to three operands to allow for the combination of short
latency instructions for single cycle execution. Similarly,
the Cryptonite co-processor is also VLIW based, with two
64-bit datapaths and special instructions combined with
dedicated memories to support AES implementations [52].
Both co-processors improve the performance of AES imple-
mentations versus implementations targeting general pur-
pose processors. The implementations in [53] and [54] cou-
ple an FPGA co-processor with a LEON-2 processor core.
The co-processors connect to the LEON-2 processor core
via either a dedicated interface or as a memory-mapped
peripheral and were able to significantly improve the per-
formance of AES implementations [53], [54].

Examples of instruction set extensions designed to im-
prove the performance of cryptographic algorithms include
those implemented to perform arithmetic over the Galois
Field GF(2m), usually targeting elliptic curve cryptography
(ECC) systems. Word-level polynomial multiplication was
shown in [55] to be the time-critical operation when target-
ing an ARM processor and a special Galois Field multipli-
cation instruction resulted in significant performance im-
provement. Instruction set extensions targeting a SPARC
V8 processor core were used to accelerate the multiplica-
tion of binary polynomials for arithmetic in GF(2m) in [56],
resulting in almost double the performance for the Galois
Field GF(2191) and a fixed reduction polynomial. Similar
results were shown in [57] using the same instruction set
extensions retargeted to a 16-bit RISC processor core. The
implementation in [34] targets a MIPS32 architecture and
also attempts to accelerate word-level polynomial multipli-
cation through the use of Comba’s method of handling the
inner loops of the multiplication operation, resulting in a
performance improvement by a factor 6. Numerous gen-
eralized Galois Field multipliers have also been proposed
for use in elliptic curve cryptosystems [58], [59], [60], [61],
[62], [63]. These implementations focus on accelerating ex-
ponentiation and inversion in Galois Fields GF (2m) where
m ≈ 160−256. Because they do not employ a Galois Field
fixed field constant matrix, these implementations are more
generalized than is necessary when targeting block cipher
implementations. Moreover, block ciphers employ Galois

Field fixed field constant multiplication for small m, result-
ing in hardware that performs the multiplication at the bit
level with no complex multiplication algorithms.

Instruction set extensions designed to minimize the num-
ber of memory accesses and accelerate the performance of
AES implementations have been proposed for a wide range
of processors [28], [64], [65], [66]. The extensions in [64] tar-
get a general-purpose RISC architecture with multimedia
instructions. Strategies are presented to implement AES
using multimedia instructions while specifically attempt-
ing to minimize the number of memory accesses. While
the processor is datapath-scalable, the strategies in [64]
do not map well to 32-bit architectures. Extensions pro-
posed in [65] are designed to combine the SubBytes and
MixColumns AES functions into one T table look-up oper-
ation to speed up algorithm execution. However, the func-
tional unit in [65] requires a significant amount of hard-
ware to implement and cannot be used for either the final
AES round (where the MixColumns function is not used) or
key expansion (where the SubBytes function is used with-
out the MixColumns function). However, T table perfor-
mance is heavily dependent upon available cache size [28].
The extensions proposed in [66] target the Xtensa 32-bit
processor and improve the performance of AES encryption
but worsen the performance of decryption. Unfortunately,
functionality and area overhead information for the associ-
ated instruction extensions is not provided. The implemen-
tation in [28] targets a LEON-2 processor core and com-
bines the SubBytes and ShiftRows AES functions through
the use of an instruction set extension termed sbox. Spe-
cial instructions are also provided to efficiently compute the
MixColumns AES function through the use of ECC instruc-
tion set extensions as proposed in [35]. The combination of
these extensions results in a performance improvement of
up to 3.68 for encryption and 2.76 for decryption versus an
AES implementation with no instruction set extensions.

III. Efficient Generalized Galois Field Fixed

Field Constant Multiplication

The goal of a Galois Field fixed field constant multiplier
is to perform a fixed field multiplication over a given Galois
Field. As an example, consider the representative Galois
Field GF(28), used by AES. Note that [A3 : A0] are the
input bytes and [B3 : B0] are the output bytes [67]:

(
B0
B1
B2
B3

)
=

(
K00 K01 K02 K03
K10 K11 K12 K13
K20 K21 K22 K23
K30 K31 K32 K33

) (
A0
A1
A2
A3

)
(1)

The core operation in this fixed field multiplication is an
8-bit inner product that must be performed sixteen times,
four per row. The four inner products of each row are
then XORed to form the final output word. For a known
primitive polynomial p(x), k(x) (representing the 8-bit con-
stant), and a generic input a(x), we create a polynomial
equation of the form b(x) = a(x) × k(x) mod p(x) where
each coefficient of b(x) is a function of a(x). This results
in an 8-bit × 8-bit matrix representing the coefficients of
b(x) in terms of a(x) [67]. To illustrate the creation of this
matrix, the following example is provided. Let:
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k(x) = (02)16 = (00000010)2 = x

p(x) = x
8 + x

4 + x
3 + x + 1

a(x) = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

Therefore, we see that b(x) = a7x
8 + a6x

7 + a5x
6 + a4x

5 +
a3x

4 +a2x
3 +a1x

2 +a0x mod p(x). Reducing modulo p(x)
results in b(x) = a6x

7 + a5x
6 + a4x

5 + [a3 + a7]x4 + [a2 +
a7]x3 + a1x

2 + [a0 + a7]x + a7. This yields the resultant
mapping:




b0
b1
b2
b3
b4
b5
b6
b7


 =




0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0







a0
a1
a2
a3
a4
a5
a6
a7


 (2)

An 8 × 8 matrix must be generated for each Kxy, result-
ing in a total of sixteen matrices. Note that this analysis
holds true for Galois Fields other than GF(28) with cor-
responding adjustments to the mapping used to calculate
b(x) = a(x) × k(x) mod p(x).

A. Expected Hardware Resource Requirements

The 8 × 8 matrix used to calculate b(x) requires 64 stor-
age bits to hold the matrix contents. Eight 2-input AND
gates are required to perform the coefficient multiplication
of ai × ki,j when calculating each bi, resulting in a total
of 64 2-input AND gates. The eight resultant products for
each row must be added modulo two to form the final bi.
Modulo two addition is performed via 2-input XOR gates.
Using a binary tree to perform the additions results in the
use of seven 2-input XOR gates when calculating each bi

for a total of 56 2-input XOR gates. Therefore, the total
cost in logic resources of calculating an 8-bit inner product
Ai ×Ki,j is 64 storage bits, 64 2-input AND gates, and 56
2-input XOR gates. Finally, the cost of calculating 16 8-
bit inner products is 1,024 storage bits, 1,024 2-input AND
gates, and 896 2-input XOR gates.

Each Bi = (A0 × Ki,0) + (A1 × Ki,1) + (A2 × Ki,2) +
(A3 × Ki,3). The modulo two addition is again performed
via 2-input XOR gates using a binary tree, requiring the
use of three sets of eight 2-input XOR gates for a total of 96
2-input XOR gates to calculate the four Bi. An additional
32 storage bits are required to hold the input values for
Ai. This brings the logic resource total to 1,056 storage
bits, 1,024 2-input AND gates, and 992 2-input XOR gates.
Using the unit-gate model approximations in [68], a 2-input
XOR gate is counted as two gate equivalents. Assuming
that storage bits are implemented as SRAM, and using an
estimate of four gates per SRAM bit [69], the total number
of gate equivalents required to create the generalized Galois
Field fixed field constant multiplier over GF(28) is 7,232.

The logic resource requirements of the matrix based
implementation compare favorably versus a look-up table
based implementation, the most likely implementation al-
ternative based on the discussion in Section II. 8-bit to 8-
bit look-up tables may be used to calculate each Aj ×Ki,j,
requiring a total of sixteen look-up tables. Each look-up

table has 256 addresses and eight data bits for a total of
2,048 storage bits per look-up table, resulting in 32,768 to-
tal storage bits. The modulo two addition required to cal-
culate each Bi is again performed via 2-input XOR gates
using a binary tree, resulting in an additional 24 2-input
XOR gates per Bi for a total of 96 2-input XOR gates.
This brings the logic resource total to 32,768 storage bits
and 96 2-input XOR gates. Using the same approximations
from [68] and [69], the total number of gate equivalents re-
quired to create the look-up table based implementation is
131,264, an increase by a factor of 18 in terms of gate equiv-
alents versus a matrix based implementation. However, it
should be noted that the look-up table based implemen-
tation has the added flexibility of being used to integrate
the SubBytes transformation with the MixColumns trans-
formation to form a T table look-up operation.

B. Expected Hardware Performance

Based on the implementation described in Section III-A,
the 8 × 8 matrix used to calculate an 8-bit inner product
requires one level of logic to perform the coefficient mul-
tiplication of ai × ki,j when calculating each bi. Another
three levels of logic are required to implement the binary
tree to perform the modulo two additions to form the final
bi. Therefore the cost of calculating an 8-bit inner product
is four levels of logic. Each Bi is calculated using modulo
two addition performed via 2-input XOR gates using a bi-
nary tree that requires two levels of logic, resulting in the
total cost of calculating each Bi being six levels of logic.
Each of the four Bi may be calculated in parallel, resulting
in no additional cost for calculating all of the elements.

C. Expected Software Performance

From a software perspective, we assume the use of a
processor IP core that will access the matrix based im-
plementation as part of its datapath. Table I details the
instructions required to use the multiplier based on the pro-
cessor word size. Multiplier configuration occurs prior to
algorithm execution as part of the set-up phase. Once the
matrices have been configured, the execution of additional
instructions is required to load a value into the Ai storage
elements. A final instruction is required to load the final
value of Ai and read the result of the generalized Galois
Field fixed field constant multiplication.

TABLE I

Instructions for accessing extended datapath

Operation 8-Bit 16-Bit 32-Bit 64-Bit
Matrix Config. 128 64 32 16

Look-up table Config. 4,096 2,048 1,024 512

Loading/Reading 4 2 1 1

Comparing the instruction usage for the matrix based
implementation to that of a look-up table based imple-
mentation yields extremely favorable results. As shown
in Table I, the number of instructions required to compute
a multiplication is the same. However, the matrix based
implementation results in an improvement by a factor of 32
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in terms of the number of instructions required for system
set-up versus a look-up table based implementation.

Note that clock cycle count per instruction is dependent
upon the number of clock cycles per machine cycle and the
number of machine cycles per instruction, both of which
are determined by the processor IP core in use. Both the
matrix based implementation and the comparison look-up
table based implementation result in one instruction re-
quiring one machine cycle to execute independent of the
processor IP core in use. However, it is clear that the per-
formance advantage of a look-up table based solution for
performing a generalized Galois Field fixed field constant
multiplication in one machine cycle is outweighed by both
the overhead cost and logic resource requirements detailed
in Table I and Section III-A, respectively. Alternative fixed
constant matrix instruction set extensions exist that bridge
the gap between the generalized matrix based and look-up
table based implementations [35], [36]. A comparison of
our proposed generalized matrix based multiplier instruc-
tion set extension versus the alternative instruction set ex-
tensions will be performed in Section IV-B.

Standard high-speed and efficient software implementa-
tions of Galois Field fixed field constant multiplication typ-
ically employ software look-up tables for algorithms such
as AES. These implementations are not generalized, uti-
lizing large fixed arrays of bytes designed to map each Ai

to its corresponding Bi for a specific constant matrix of
elements Ki,j for the Galois Field GF(28). Such software
implementations require four 8-bit to 8-bit software look-
up table operations and three bit-wise XOR operations to
calculate each Bi, resulting in a total of 16 look-up table
operations and 12 bit-wise XOR operations [37], [38].

Table II illustrates the cost in machine cycles for such
an implementation for a range of processor word sizes.
Note that the machine cycle costs are based on data
available in [70] and that the best/worst case data pre-
sented for the 8088 processor is dependent upon the ad-
dressing mode used to access operands in memory. Each
Bi = (A0 ×Ki,0)+ (A1×Ki,1)+ (A2×Ki,2)+ (A3 ×Ki,3).
We assume an optimal mapping of Bi to assembly lan-
guage instructions such that the look-up table operation
(A0 ×Ki,0) is performed as a MOV instruction from mem-
ory to a register. The value stored in the register is then
combined with the look-up table result for (A1 ×Ki,1) and
stored back in the same register via an XOR instruction
that uses (A1 × Ki,1) as the memory address for one of
the source operands. As a result, the register contains
(A0 × Ki,0) + (A1 × Ki,1). Similarly, another register is
used to perform the same sequence of operations to calcu-
late (A2 × Ki,2) + (A3 × Ki,3). One final XOR instruction
is required to combine the results. This process must be
repeated four times to calculate each element Bi.

Comparing the instruction usage for the matrix based
implementation to that of software based implementations
yields extremely favorable results. Based on the data in
Tables I and II, the matrix based implementation results
in a reduction in the number of machine cycles by factors
ranging from 1.65 to 12.23 when computing a Galois Field

TABLE II

Cycle count comparison — software vs. proposed extension

Processor Multiplication Total
8088 168/208 168/208
80186 188 188
80286 104 104
80386 88 88
80486 28 28

Pentium 28 28
Matrix 1 17/33/66/132

fixed field constant multiplication. The overhead associ-
ated with system set-up in both implementation methods
is incurred when the program is initially loaded. In the
case of a software implementation, no additional instruc-
tions are required to populate the look-up tables while the
matrix based implementation requires instructions to con-
figure the matrices as detailed in Table I. However, this
overhead becomes negligible if we assume significant us-
age of the Galois Field fixed field constant multiplication
operation, a valid assumption when considering bulk data
encryption via block ciphers such as AES.

IV. Implementation Results

A VHDL implementation of the matrix based Galois
Field fixed field constant multiplier targeting the Xilinx
XC2V500-6FG256 FPGA using the Xilinx ISE Project
Navigator Release Version 8.1i tools was generated to vali-
date the hardware resource requirements estimates of Sec-
tion III-A [71]. The implementation assumes deployment
in a processor with a 32-bit word size and results were ob-
tained from the Xilinx ISE Project Navigator. Note that
the XC2V500 embedded RAM elements are not used to
hold the matrices for the matrix based implementation as
the elements are more suited for use in coarse grained mem-
ory applications. Instead, the matrices are mapped to the
flip-flops contained within the CLB slices.

A. Hardware Resource Requirements Evaluation

The resultant gate count for the matrix based imple-
mentation is 12,785. The implementation used flip-flops to
implement the storage bits and the Xilinx tools use an es-
timate of eight gates per flip-flop rather than the estimate
of four gates per SRAM bit detailed in [69] and discussed
in Section III-A. Adjusting the resultant gate count by
using the estimate of four gates per flip-flop yields an up-
dated gate count of 8,557. Moreover, it is important to note
that the resultant gate count from FPGA synthesis does
not correspond well to actual standard-cell gate counts for
for implementations of the same circuit, and thus the gate
count is within expected bounds.

B. Performance Evaluation

Table III details the performance of the matrix based
implementation versus estimates of software implementa-
tions, extending the data presented in Tables I and II.
Note that throughput is calculated ignoring instructions
required to configure the matrix based implementation as
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these instructions are performed once per algorithm imple-
mentation. As a result, the effect of these instructions on
throughput is minimal when the number of Galois Field
fixed field constant multiplication operations is large, as is
the case when performing bulk data encryption using AES.

Based on the output of the Xilinx tools, the matrix based
implementation achieved a maximum operating frequency
of 200 MHz when provided with a 5 ns maximum clock
period timing constraint. Note that the maximum oper-
ating frequencies for the processors in Table III were ob-
tained from [72]. The data in Table III indicates that the
matrix based implementation results in a performance im-
provement by factors ranging from 28.00 to 8,311.68 versus
software implementations when computing a Galois Field
fixed field constant multiplication. As discussed in Sec-
tion I, VPNs can demand encryption throughputs at speeds
exceeding ATM rates of 622 Mbps. Based on the data in
Table III, the matrix based implementation is the only im-
plementation that meets ATM encryption throughput re-
quirements for performing Galois Field fixed field constant
multiplication operations for use in block ciphers such as
AES. Clearly the matrix based implementation offers a cost
effective solution for accelerating Galois Field fixed field
constant multiplication operations.

TABLE III

Throughput comparison

Maximum
Frequency Throughput Improvement

Processor (MHz) (Mbps) Factor
8088 5 0.95/0.77 6,736.84/8,311.68
80186 10 1.70 3,764.70
80286 20 6.15 1,040.66
80386 40 14.55 439.86
80486 133 152.00 42.10

Pentium 200 228.57 28.00
Matrix 200 6,400.00 1.00

Table IV details the cycle counts when using the pro-
posed matrix based implementation as an instruction set
extension (termed mixcolm) for a LEON-2 processor core
[73] versus the instruction set extensions mixcol4 and mix-
col4s developed in [36] targeting the same processor core.
Note that the abbreviation PC-KS is used to indicate a
pre-computed key schedule, OTF-KS is used to indicate
an on-the-fly key schedule, and that UR indicates an im-
plementation with unrolling. Cycle counts are obtained
from [36] with the mixcolm instruction directly replacing
the mixcol4 and mixcol4s instructions, resulting in identi-
cal reductions in cycle count for both AES encryption and
decryption [36]. These reductions are based on the instruc-
tion set extensions calculating the result of the entire 32-bit
Galois Field fixed field constant multiplication in one cy-
cle, requiring a total of four instructions to perform the
operation over the entire 128-bit AES state.

It is clear from the data in Table IV and that the AES
S-Box look-up table operation is the primary performance
bottleneck as compared to the Galois Field fixed field con-
stant multiplication. This finding is consistent with the
findings in [43], [49], [50], where avoiding referencing ex-

ternal memory resulted in a significant reduction in cycle
count when implementing the DES S-Box look-up tables.
The effect of the instruction set extensions used to acceler-
ate Galois Field fixed field constant multiplication are thus
more pronounced when combined with the sbox or sbox4s
instruction set extensions proposed in [36].

TABLE IV

AES-128 performance comparison — cycle counts

Enc./Dec. Enc./Dec.
Software PC-KS OTF-KS
No Extensions 1,637/1,955 2,239/2,434
mixcol4/mixcolm 939/970 1,186/1,497
sbox + mixcol4/mixcolm 337/330 397/415
sbox4s + mixcol4s/mixcolm 219/218 255/300
sbox4s + mixcol4s/mixcolm UR 196/196 226/262

A critical differentiator between the two instruction set
extensions is that the implementations in [36] have the val-
ues for the AES MixColumns and InvMixColumns transfor-
mation matrices hard-coded in the hardware. As a result,
the implementations in [36] require roughly 700 equivalent
gates and remove the need for overhead instructions used
to configure the matrix based implementation. However,
because the implementations in [36] are not generalized,
the block ciphers detailed in Section I that also employ
Galois Field fixed field constant multiplication cannot be
accelerated using these instruction set extensions. While
it is expected that AES will dominate implementations in
fielded products, the ability to support other block ciphers
at a relatively small hardware cost coupled with equivalent
cycle counts versus the implementations in [36] make the
matrix based implementation an attractive option.

V. Conclusions

With the advent of intellectual property processor cores,
the opportunity exists to augment existing datapaths and
instruction sets to add acceleration modules to achieve
efficient and high-speed implementations of critical algo-
rithms, such as the AES block cipher, used for bulk data
encryption. A hardware architecture that achieves fast and
efficient implementation of generalized Galois Field fixed
field constant multiplication, a core operation of the AES
Algorithm Rijndael, has been presented for use as an in-
struction set extension. A detailed discussion of the ar-
chitecture has been provided and an analysis of system
performance and resource utilization has been performed.
This analysis has demonstrated that the proposed ma-
trix based multiplier implementation provides a fast, effi-
cient, and generalized solution for performing Galois Field
fixed field constant multiplication at a cost of less than
7,600 additional gate equivalents. The performance analy-
sis has shown that the matrix based multiplier outperforms
software based implementations while matching the cycle
count reductions of previously reported results based on
AES-specific instruction set extensions.
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[56] S. Tillich and J. Großchädl, “A Simple Architectural Enhance-
ment for Fast and Flexible Elliptic Curve Cryptography Over
Binary Finite Fields GF(2m),” in Proceedings of the Ninth Asia-
Pacific Conference on Advances in Computer Systems Architec-
ture — ACSAC 2004, Beijing, China, September 7-9 2004, vol.
LNCS 3189, pp. 282–295, Springer-Verlag.
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